
 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5216

MESSAGE CONVERSATION BASED SOCIAL ENGINEERING
ATTACK DETECTION USING MACHINE LEARNING

SEAH NI MIN1, NOR FAZLIDA MOHD SANI2
1,2Department of Computer Science, Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, Serdang 43400, Selangor Malaysia
E-mail: 1gs67602@student.upm.edu.my, 2fazlida@upm.edu.my

ABSTRACT

Social engineering attacks present a major threat in today's interconnected world, exploiting the intricacies
of human communication to deceive individuals and extract sensitive information. With the increasing
reliance on messaging platforms, communication has become highly informal, often involving colloquial
language, abbreviations, and dynamically evolving linguistic styles. These characteristics obscure user intent
and make it difficult to identify malicious or deceptive behaviour. Detecting such threats requires a deep
understanding of conversational context, which is often lacking in current approaches thereby leaving people
vulnerable to subtle social engineering attacks embedded within everyday messages. This study addresses
this gap by fine-tuning DistilBERT, a state-of-the-art natural language processing (NLP) model, to detect
social engineering attacks in message conversations. Leveraging its ability to understand contextual
semantics while maintaining computational efficiency, the model was trained and evaluated using the SMS
Spam Collection dataset. The proposed approach achieved a high detection accuracy of 99.46%,
outperforming previous models such as SOCIALBERT. While the results demonstrate strong classification
performance, limitations include the use of a single text-based dataset and the exclusion of multimodal
content such as images and links. Future work should explore more diverse and multilingual datasets,
incorporate multimodal detection, and optimise the model further for deployment in resource-constrained
environments.

Keywords: Messages, Social Engineering Attack, NLP, Machine Learning, DistilBERT.

1. INTRODUCTION

In today’s digitally connected world,
cybersecurity threats are no longer limited to
technical vulnerabilities but increasingly exploit
human behaviour. Among these, social engineering
attacks are particularly dangerous, leveraging
psychological manipulation rather than technical
exploits to deceive individuals into compromising
security. These attacks are prevalent across critical
sectors such as financial services, healthcare, and
government, where disclosing sensitive information
can lead to devastating consequences [1][2]. Despite
advancements in cybersecurity technologies,
humans remain the weakest link. According to the
2024 Verizon Data Breach Investigations Report, 68%
of security breaches involved human factors, such as
being deceived by social engineering attacks or
unintentional errors. This alarming statistic
highlights the urgent need to strengthen defences not
just at the system level, but also in detecting socially
engineered manipulation at the communication level.

The rise of digital messaging platforms has
further complicated the landscape. While these tools
have made communication faster and more
convenient [3], they also introduce new
vulnerabilities [4]. Modern digital communications
often contain informal language, abbreviations, and
ambiguous phrasing, which attackers exploit to mask
their true intent [5]. Unlike traditional phishing
emails or messages that may explicitly request
credentials, modern social engineering messages use
subtle tactics such as persuasion, authority, or
urgency to manipulate users without directly asking
for sensitive data [6]. However, existing detection
methods often do not incorporate a deep contextual
understanding of language, focusing instead on
surface-level features such as keywords or syntactic
patterns. This highlights a research gap in
developing models that can capture the nuanced
meanings and implicit cues commonly found in
social engineering messages.

Therefore, this study proposes a machine
learning-based approach using DistilBERT, a lighter
and faster variant of the Bidirectional Encoder

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5217

Representations from Transformers (BERT)
language model to enhance the detection accuracy of
social engineering attacks in message conversations.
DistilBERT retains 97% of BERT's language
understanding capability while being 40% smaller
and 60% faster during inference, making it suitable
for real-time or resource-constrained environments
[7]. This efficiency is achieved using only six
transformer layers compared to the 12 layers in the
BERT base model [7]. BERT-based models are
known for their bidirectional understanding of
language, allowing them to capture subtle cues and
deeper semantic context [8][9]. The model will be
trained and evaluated using the SMS Spam
Collection dataset, which includes a range of
malicious and legitimate messages. To assess
performance, standard metrics such as accuracy,
precision, recall, and F1-score will be used. This
study is significant as it explores the intersection of
natural language processing and cybersecurity,
aiming to enhance the detection of social
engineering attacks in digital messages. By
leveraging state-of-the-art NLP models, the study
seeks to contribute to more robust and intelligent
security mechanisms.

The following section presents the research
background, providing context for the study. This
will be followed by the methodology section, which
focuses on data preprocessing, model training, and
evaluation. The next section covers the results and
discussion, analysing the model's performance and
key findings. Finally, the concluding section
summarises the project, highlighting its limitations
and potential directions for future work.

2. RESEARCH BACKGROUND

A social engineering attack is a cyberattack
strategy that leverages human vulnerabilities to
undermine the security of various cyberspace
elements, including infrastructure, data, resources,
users, and operations [10]. In contrast to traditional
cyberattacks, which target technical flaws, social
engineering attacks deceive individuals into
disclosing sensitive information or circumventing
security measures. Attackers frequently use
psychological tactics to induce a sense of urgency or
fear, prompting victims to act quickly without
critically assessing the situation. According to a
survey conducted by [3], social engineering is
recognised as one of the most significant
cybersecurity threats, as it can bypass even the most
robust security measures, such as firewalls and
intrusion detection systems. In the early efforts to

counter social engineering, researchers and
practitioners focused primarily on user education
and security policies [11]. Training programs aimed
to raise awareness of social engineering techniques
and teach users how to recognise and respond to
suspicious activities. While these efforts helped
reduce user susceptibility to known tactics, they
were not sufficient to keep pace with the increasing
sophistication and evolving nature of attacks.

Subsequent detection systems relied on rule-
based and signature-based approaches, which
flagged messages containing specific keywords,
phrases, or structural patterns often associated with
smishing attempts [12]. For instance, [13] proposed
an approach that uses a pre-defined Topic Blacklist
(TBL) to verify the discussion topics in text lines
generated by potential attackers. Similarly, [14]
proposed integrating topic blacklists with NLP to
detect question-command patterns that suggest
malicious intent. Their study focused on identifying
question-command patterns in text conversations
using NLP, extracting topics from these question-
commands, and comparing them against pre-defined
TBL [14]. Although effective in identifying well-
defined attack patterns, these static methods lacked
the flexibility to detect novel and subtle tactics that
evade pre-defined rules [3].

To overcome these limitations, some
researchers have conducted numerous studies on
detecting social engineering attacks using NLP,
machine learning, and deep learning algorithms. The
approach for social engineering attack detection, as
presented by [15], incorporates case-based reasoning
(CBR) systems for malicious URL detection and
convolutional neural networks (CNNs) to determine
if a conversation suggests a social engineering attack.
Besides, the SEADer model used NLP to detect
grammatical inconsistencies and classify
conversations using artificial neural networks (ANN)
[16], while SEADer++ v2 further enhances this
process by adding three additional columns to the
classification dataset, creating a total of seven
columns, to improve output quality. This model
leverages NLP for text processing and classification
with Random Forest (RF), Multi-Layer Perceptron
(MLP), and k-nearest neighbours (KNN) algorithms.
Consequently, the proposed method in their study
achieved slightly better accuracy (80.1%) and
average curve results (89.2%) compared to
SEADer++ [17]. Furthermore, a detection model
that relies solely on text input for identifying social
engineering -

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5218

Figure 1: An overview of research design

attacks has achieved over 80% classification
accuracy, with classifiers like Neural Network, RF,
and Support Vector Machine (SVM), where SVM
demonstrated the overall best performance [18]. In
social engineering attack detection using an
attention-based Bidirectional Long Short-Term
Memory (Bi-LSTM) and CNN, a dataset consisting
of user information and chat dialogue is pre-
processed before input into the module for final
analysis. The attention-based Bi-LSTM is used to
capture contextual semantics from the dialogue text,
while the CNN integrates user characteristics and
content features for classification and judgement [6].
This model focuses on detecting social engineering
attacks in conversational form by analysing both
chat history and user information. Additionally, the
SOCIALBERT model, built on DistilBERT, was
fine-tuned for a downstream task to detect various
social engineering tactics in text messages,
achieving a high accuracy of 97.55% [19].

Although recent studies have incorporated
advanced NLP, machine learning, and deep learning
models into social engineering attack detection, a
significant gap remains underexplored in terms of
contextual understanding. While [6] employed an
attention-based Bi-LSTM combined with CNN to
capture contextual semantics from chat dialogue, the
study did not report standard performance metrics
such as accuracy, precision, recall, or F1-score,
limiting the assessment of its practical effectiveness.
In another study, the SOCIALBERT model [19],
which is based on the DistilBERT algorithm known
for its contextual understanding capabilities.
However, the study primarily focused on
categorising the different types of social engineering

tactics presented in messages and evaluated their
performances.

3. METHODOLOGY

The methodology employed to detect social
engineering attacks using machine learning, with a
specific focus on the fine-tuning of the pre-trained
DistilBERT model. It also includes the description of
the dataset, preprocessing steps, model development,
training, and evaluation techniques. The goal is to
create a robust classification model that
differentiates the text messages between social
engineering attack and non-attack, thereby
enhancing the detection performance. Figure 1
provides an overview of the research design process.

Figure 2: The class distribution of dataset

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5219

3.1 Dataset

This study utilises a publicly available, real-
world dataset: the SMS Spam Collection Dataset,
which was downloaded from Kaggle. An overview
of the dataset reveals a total of 5572 rows, all in
English and primarily derived from message
conversations. These messages represent scenarios
that may involve either an attempted social
engineering attack or a benign (non-attack)
interaction. Among these, 86.6% (4825 rows) are
labelled as benign or legitimate, while 13.4% (747
rows) are labelled as malicious, as illustrated in
Figure 2. Furthermore, the dataset is organized into
five columns: v1, v2, and three unnamed columns.
The v1 column serves as a class label, indicating
whether the message is legitimate or not, while the
v2 column contains a string representing a message
or a segment of a conversation. This string serves as
the raw input to the model.

3.2 Data Preprocessing

Data preprocessing is essential for preparing the
dataset for effective machine learning training and
evaluation. It cleans and standardises raw textual
data, addressing inconsistencies, noise, and missing
elements that can impact model performance. In this
study, three unnamed columns with over 99%
missing data were manually removed, and the
column names v1 and v2 were renamed to label and
text, respectively, for clarity. The classification
labels were also updated to "attack" and "non-attack"
to align with the project's scope. Subsequent
preprocessing steps included text normalisation,
tokenisation with DistilBERT, applying padding and
truncation to ensure uniform input sizes for the
DistilBERT model, and handling the imbalanced
dataset.

3.2.1 Text normalization

To ensure uniformity and minimises variations
caused by inconsistent formatting, all text input is
converted to lowercase using the distilbert-base-
uncased parameter from the Hugging Face
Transformers library during tokenisation, as
DistilBERT is a case-sensitive model [20]. The term
“uncased” indicates that the model is designed to
handle text without sensitivity to letter casing. In
other words, it treats uppercase and lowercase letters
equivalently, meaning that “Attack” and “attack” are
considered identical during both tokenisation and
processing.

3.2.2 Tokenisation

Tokenisation involves converting raw text into a
structured format that a machine learning model can
process. It employs WordPiece Tokenisation to break
down text into smaller components, sub words or
morphemes called tokens. DistilBERT uses a pre-
trained tokeniser that maps tokens to numerical
identifiers, known as token IDs, based on the model's
pre-defined vocabulary. Meanwhile, Special tokens
are added to structure the input sequence for the
DistilBERT model. The [CLS] token is inserted at
the beginning to represent the entire sequence and
serve as a classification token, while the [SEP] token
is appended at the end to indicate sequence
boundaries.

3.2.3 Padding and truncation

Padding involves appending special padding
tokens [PAD] to the end of a sequence to ensure it
matches the required maximum sequence length
when text sequences are shorter than the model's
expected input length. After adding, an attention
mask is generated to help the model distinguish
between meaningful tokens and padding tokens.
This mask assigns a value of 1 to actual tokens and
0 to padding tokens which effectively instructs the
model to ignore the padding during computations.
Moreover, truncation is applied to handle sequences
that exceed the maximum length permitted by the
model. It involves discarding tokens beyond the
maximum allowed length by setting the true
parameter to the truncation during tokenisation.

3.2.4 Imbalance Dataset

This imbalance makes it difficult for models to
effectively learn and classify minority classes, often
resulting in biased predictions and poor performance
on malicious messages. To address this issue, sample
based class weight (SBCW) is used to adjust the
contribution of each class to the loss function during
training. Class weights are calculated based on the
frequency of each class in the dataset. According to
[21], the formula is:

𝑤௖ =
𝑛

𝑘 ∙ 𝑛௖

Where:
𝑤௖: Weight for class c
𝑛: Total number of samples in the dataset
𝑘: Number of unique classes
𝑛௖: Number of samples in class c

The computed weights for the two classes are 0.5775
for the non-attack class and 3.7266 for the attack

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5220

class. These weights are then converted into a
PyTorch tensor and integrated into the loss function
to enhance learning for the minority class.

3.3 Model Development

The development of the social engineering
attack detection model involves leveraging
DistilBERT, a transformer-based NLP model known
for its efficiency and contextual understanding
capabilities. The process begins by loading a pre-
trained DistilBERT model, specifically
DistilBERTForSequenceClassification, from the
Hugging Face Transformers library to handle the
classification task. The model is configured for
binary classification by setting the num_labels
parameter to 2, ensuring it outputs two logits
corresponding to "attack" and "non-attack"
messages. Dropout mechanisms are applied to
enhance generalisation and prevent overfitting,
thereby improving the model’s accuracy on unseen
data. Specifically, attention_probs_dropout_prob =
0.5 introduces dropout in the self-attention
mechanism, randomly zeroing out 50% of attention
scores during training to reduce over-reliance on
specific words or phrases. Similarly,
hidden_dropout_prob = 0.5 applies dropout in the
fully connected layers, deactivating 50% of neurons
to encourage learning of broader patterns rather than
memorising the training data.

3.4 Model Training and Testing

The dataset is initially divided into training and
test sets using an 80:20 ratio. Additionally, the
training set is further split into training and
validation sets using another 80:20 ratio, ensuring
the validation set is available to monitor the model’s
performance during training. This validation set is
essential for hyperparameter tuning, allowing the
selection of the best parameters for the final training
and evaluation process. A random seed is applied to
ensure reproducibility by generating the same
sequence of random numbers across different runs,
resulting in a consistent dataset split every time the
code is executed.

3.4.1 Hyperparameter Tuning

Hyperparameter tuning is a step in optimising
machine learning models, as it determines the
configuration of parameters that most effectively
enhance model performance. Optuna, an open-
source hyperparameter optimisation framework is
applied to automate the process of discovering the
optimal hyperparameters for machine learning

models. The Optuna workflow for hyperparameter
tuning consists of four main steps: defining the
objective function, specifying the search space,
creating a study, and running the optimisation. First,
an objective function is defined to encapsulate the
model training and evaluation process. This function
returns a validation loss that Optuna seeks to
minimise. Next, the search space is defined to
represent the range and types of hyperparameters to
explore, including learning rate, batch size, number
of epochs, and weight decay. The learning rate is set
to 2e-5, 3e-5, or 5e-5, the batch size is either 16 or
32, the number of epochs ranges from 2 to 4, and the
weight decay ranges from 0.01 to 0.05. After
defining the objective function and search space, an
Optuna study is created to manage the
hyperparameter optimisation process. The
optimisation process is then initiated, iteratively
evaluating the objective function with various
hyperparameter combinations and navigating the
search space to identify configurations that provide
the best hyperparameters.

3.4.2 Final Training

The final training process involves combining
the training and validation sets to maximise data
utilisation, especially when working with small
datasets. By merging these sets, the model can
leverage a larger and more diverse dataset, enabling
it to learn richer representations and improve
performance on unseen data. This approach is
particularly beneficial for small datasets, as it
maximises the data used for training while reserving
the test set for unbiased evaluation. The model is
then trained on the aggregated dataset using the best
hyperparameters obtained from the tuning process.
These optimal hyperparameters—such as learning
rate, batch size, number of epochs, and weight
decay—are detailed in Table 1. After training, its
performance is rigorously evaluated using a test set
to determine its ability to generalise to unseen data.

Table 1: The best parameter after hyperparameter tuning
Hyperparameter Value

Learning rate 5e-05

Batch size 16

Number of epochs 2
Weight decay 0.01892612832422345

3.5 Performance Metrics

The effectiveness of the machine learning model
for detecting social engineering attacks is

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5221

Figure 3: Result of confusion matrix

evaluated using key metrics, including accuracy,
precision, recall, and F1-score. These metrics are
computed from the confusion matrix, which
encapsulates the model's performance in terms of
True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN).

Accuracy: It measures the overall correctness of the
model by calculating the ratio of correctly classified
instances (both positive and negative) to the total
instances. It offers a general assessment of the
model’s performance across all classes, ensuring that
the predicted outcomes align closely with the actual
labels.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision: Precision assesses the accuracy of the
model's positive predictions. A high precision score
indicates that the model is likely correct when it
predicts an attack. This metric is particularly
important in situations where minimising false
positives is critical to reducing false alarms.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall: Recall measures the model’s ability to
correctly identify all actual positive instances. High
recall ensures that the model detects most attacks,
which is vital in applications where missing an attack
(false negatives) has significant consequences.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1-score: The F1-score combines precision and
recall into a single metric by calculating their
harmonic mean. It provides a balance between
precision and recall, especially useful in situations
where the dataset is imbalanced and both metrics are
critical for evaluating performance.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4. RESULT AND DISCUSSION

Figure 3 depicts the confusion matrix, which
provides a detailed breakdown of the model's
classification performance by comparing predicted
labels with true labels. The results indicate that the
model correctly classified 146 instances of malicious
messages as "attack" (true positives) and 963
instances of benign messages as "non-attack" (true
negatives). Additionally, the model misclassified
only 3 benign messages as "attack" (false positives)
and 3 malicious messages as "non-attack" (false
negatives). These results suggest a strong
classification performance with minimal
misclassification errors.

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5222

Table 2: Result of performance metrics
Metrics Value (%)
Accuracy 99.46
Precision 99.46
Recall 99.46
F1-Score 99.46

The evaluation results, as shown in Table 2,
demonstrate the model's exceptional performance in
detecting social engineering attacks, achieving an
accuracy of 99.46%. This indicates that the model
correctly classified nearly all test samples,
highlighting its reliability and strong generalisation
to unseen data. Additionally, precision, recall, and
F1-score are all equally high at 99.46%,
underscoring the model’s balanced capability to
minimise both false positives and false negatives.
These metrics confirm the model's effectiveness in
accurately identifying both attack and non-attack
messages. Overall, the consistently high
performance across all evaluation metrics suggests
that the model successfully learns the distinguishing
patterns of attack messages.

Figure 4: Comparison of accuracy between current and
previous work

Figure 4 provides a comparative analysis in
terms of accuracy between the proposed model and
the SOCIALBERT model previously introduced by
[19]. The analysis highlights that the fine-tuned
DistilBERT model achieves an accuracy of
approximately 99.5%, surpassing the 97.5%
accuracy of SOCIALBERT. While the 2% difference
may seem minor, it is significant in cybersecurity
contexts, where even small improvements can
greatly reduce the risk of undetected social
engineering attacks. Although the proposed model
demonstrates higher accuracy, it is important to note
that the SOCIALBERT model also achieves a high
level of accuracy. The difference in results primarily
stems from the models' distinct objectives and

configurations. SOCIALBERT was designed for
multi-class classification to distinguish between
multiple types of social engineering tactics, such as
pretexting, baiting, urgency, consensus, authority,
and familiarity. This broader classification task
increases complexity, as it involves distinguishing
subtle features across multiple categories.

In contrast, the present study focused on binary
classification (attack vs. non-attack), allowing for
more focused optimisation. The proposed model
incorporates strategies such as applying class
weights to handle class imbalance, ensuring that the
minority class receives adequate emphasis during
training. This tailored approach enhances the
model’s ability to accurately detect attacks and
contributes to its improved performance, with the
variance in results underscoring the importance of
aligning model architecture and training strategies
with specific detection objectives. In summary, the
experimental results demonstrate that the proposed
fine-tuned DistilBERT model effectively meets the
research objectives by delivering high accuracy
compared to the prior model.

5. CONCLUSION

In conclusion, this study presents a significant
contribution to social engineering attack detection
by introducing a fine-tuned DistilBERT model,
optimised for both performance and efficiency. With
an accuracy of 99.46%, the model demonstrates a
substantial improvement over previous approaches,
such as SOCIALBERT, which achieved 97.5%. This
work contributes to the body of knowledge by
leveraging DistilBERT’s contextual understanding
capabilities to enhance detection accuracy in binary
classification tasks, addressing the critical challenge
of identifying social engineering attacks with high
precision. The evaluation metrics, including
precision, recall, and F1-score, further emphasise the
model's robustness and potential to minimise false
positives and negatives in real-world applications.
While the study is limited to text-based data,
excluding multimodal threats involving images,
videos, and links, it provides a foundational
approach for text-based social engineering detection,
setting the stage for future research. The lack of
diverse publicly available datasets presents a
challenge for generalising the model across different
communication formats and languages, but it also
points to an opportunity for future work to expand
datasets and explore multilingual models.
Furthermore, while the DistilBERT is computational
efficiency outperforms BERT, there remains room
for further optimisation in resource-constrained

90

92

94

96

98

100

Current Proposed
Fine-tuned DistillBERT

Previous Work
(SOCIALBERT)

Accuracy Comparison (%)

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5223

environments. Future studies should focus on
multimodal detection, dataset diversification, and
computational efficiency improvements through
techniques such as model quantisation and pruning.
These advancements will push the boundaries of
social engineering attack detection and pave the way
for scalable, efficient, and comprehensive solutions
to counter evolving cyber threats.

REFERENCES

[1] Mishra, M. K., & Pandey, K. D. (2024). Social
Engineering Attacks and Counter Measures: A
Comprehensive Analysis. International
Journal of Advanced Research in Science,
Communication and Technology, 167–171.
https://doi.org/10.48175/IJARSCT-17826

[2] Naz, A., Sarwar, M., Kaleem, M., Mushtaq, M.
A., & Rashid, S. (2024). A comprehensive
survey on social engineering-based attacks on
social networks. International Journal of
ADVANCED AND APPLIED SCIENCES,
11(4), 139–154.
https://doi.org/10.21833/ijaas.2024.04.016

[3] Salahdine, F., & Kaabouch, N. (2019). Social
Engineering Attacks: A Survey. Future Internet,
11(4), 89. https://doi.org/10.3390/fi11040089

[4] Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M.,
Yilmaz, A. A., & Akin, E. (2023). A
Comprehensive Review of Cyber Security
Vulnerabilities, Threats, Attacks, and Solutions.
Electronics, 12(6), 1333.
https://doi.org/10.3390/electronics1206133

[5] Zerkina, N., Kostina, N., & Pitina, S. A. (2015).
Abbreviation Semantics. Procedia - Social and
Behavioral Sciences, 199, 137–142.
https://doi.org/10.1016/j.sbspro.2015.07.497

[6] Lan, Y. (2021). Chat-Oriented Social
Engineering Attack Detection Using Attention-
based Bi-LSTM and CNN. 2021 2nd
International Conference on Computing and
Data Science (CDS), 483–487.
https://doi.org/10.1109/CDS52072.2021.0008
9

[7] Sanh, V., Debut, L., Chaumond, J., & Wolf, T.
(2020). DistilBERT, a distilled version of
BERT: Smaller, faster, cheaper and lighter (No.
arXiv:1910.01108). arXiv.
https://doi.org/10.48550/arXiv.1910.01108

[8] Moon, K. Z., Salma, U., & Uddin, M. S. (2024).
BERT-Based Personalized Course
Recommendation System from Online
Learning Platform. 2024 6th International
Conference on Electrical Engineering and
Information & Communication

Technology (ICEEICT), 980–985.
https://doi.org/10.1109/ICEEICT62016.2024.
10534490

[9] Renuka, O., & Radhakrishnan, N. (2024).
BERT for Twitter Sentiment Analysis:
Achieving High Accuracy and Balanced
Performance. Journal of Trends in Computer
Science and Smart Technology, 6(1), 37–50.
https://doi.org/10.36548/jtcsst.2024.1.003

[10] Wang, Z., Zhu, H., & Sun, L. (2021). Social
Engineering in Cybersecurity: Effect
Mechanisms, Human Vulnerabilities and
Attack Methods. IEEE Access, 9, 11895–
11910.
https://doi.org/10.1109/ACCESS.2021.30516
33

[11] Hoeschele, M., & Rogers, M. (2006).
Detecting Social Engineering. In M. Pollitt &
S. Shenoi (Eds.), Advances in Digital
Forensics (Vol. 194, pp. 67–77). Kluwer
Academic Publishers.
https://doi.org/10.1007/0-387-31163-7_6

[12] Jain, A. K., & Gupta, B. B. (2018). Rule-Based
Framework for Detection of Smishing
Messages in Mobile Environment. Procedia
Computer Science, 125, 617–623.
https://doi.org/10.1016/j.procs.2017.12.079

[13] Bhakta, R., & Harris, I. G. (2015). Semantic
analysis of dialogs to detect social engineering
attacks. Proceedings of the 2015 IEEE 9th
International Conference on Semantic
Computing (IEEE ICSC 2015), 424–427.
https://doi.org/10.1109/ICOSC.2015.7050843

[14] Sawa, Y., Bhakta, R., Harris, I. G., & Hadnagy,
C. (2016). Detection of Social Engineering
Attacks Through Natural Language Processing
of Conversations. 2016 IEEE Tenth
International Conference on Semantic
Computing (ICSC), 262–265.
https://doi.org/10.1109/ICSC.2016.95

[15] Lansley, M., Polatidis, N., Kapetanakis, S.,
Amin, K., Samakovitis, G., & Petridis, M.
(2019). Seen the villains: Detecting Social
Engineering Attacks using Case-based
Reasoning and Deep Learning. ICCBR
Workshops.
https://api.semanticscholar.org/CorpusID:207
967464

[16] Lansley, M., Polatidis, N., & Kapetanakis, S.
(2019). SEADer: A Social Engineering Attack
Detection Method Based on Natural Language
Processing and Artificial Neural Networks. In
N. T. Nguyen, R. Chbeir, E. Exposito, P.
Aniorté, & B. Trawiński (Eds.), Computational
Collective Intelligence (Vol. 11683, pp. 686–

 Journal of Theoretical and Applied Information Technology
31st July 2025. Vol.103. No.14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5224

696). Springer International Publishing.
https://doi.org/10.1007/978-3-030-28377-
3_57

[17] Lansley, M., Kapetanakis, S., & Polatidis, N.
(2020). SEADer++ v2: Detecting Social
Engineering Attacks using Natural Language
Processing and Machine Learning. 2020
International Conference on INnovations in
Intelligent SysTems and Applications
(INISTA), 1–6.
https://doi.org/10.1109/INISTA49547.2020.91
94623

[18] Lopez, J. C., & Camargo, J. E. (2022). Social
Engineering Detection Using Natural
Language Processing and Machine Learning.
2022 5th International Conference on
Information and Computer Technologies
(ICICT), 177–181.
https://doi.org/10.1109/ICICT55905.2022.000
38

[19] Abobor, M., & Josyula, D. P. (2023).
SOCIALBERT a Transformer based Model
Used for Detection of Social Engineering
Characteristics. 2023 International Conference
on Computational Science and Computational
Intelligence (CSCI), 174–178.
https://doi.org/10.1109/CSCI62032.2023.0003
3

[20] Distilbert/distilbert-base-uncased · Hugging
Face. (2024, March 11). Hugging Face.
https://huggingface.co/distilbert/distilbert-
base-uncased

[21] Bakirarar, B., & Elhan, A. H. (2023). Class
Weighting Technique to Deal with Imbalanced
Class Problem in Machine Learning:
Methodological Research. Turkiye Klinikleri
Journal of Biostatistics, 15(1), 19–29.
https://doi.org/10.5336/biostatic.2022-93961

