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ABSTRACT 

Social engineering attacks present a major threat in today's interconnected world, exploiting the intricacies 
of human communication to deceive individuals and extract sensitive information. With the increasing 
reliance on messaging platforms, communication has become highly informal, often involving colloquial 
language, abbreviations, and dynamically evolving linguistic styles. These characteristics obscure user intent 
and make it difficult to identify malicious or deceptive behaviour. Detecting such threats requires a deep 
understanding of conversational context, which is often lacking in current approaches thereby leaving people 
vulnerable to subtle social engineering attacks embedded within everyday messages. This study addresses 
this gap by fine-tuning DistilBERT, a state-of-the-art natural language processing (NLP) model, to detect 
social engineering attacks in message conversations. Leveraging its ability to understand contextual 
semantics while maintaining computational efficiency, the model was trained and evaluated using the SMS 
Spam Collection dataset. The proposed approach achieved a high detection accuracy of 99.46%, 
outperforming previous models such as SOCIALBERT. While the results demonstrate strong classification 
performance, limitations include the use of a single text-based dataset and the exclusion of multimodal 
content such as images and links. Future work should explore more diverse and multilingual datasets, 
incorporate multimodal detection, and optimise the model further for deployment in resource-constrained 
environments. 
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1. INTRODUCTION 

In today’s digitally connected world, 
cybersecurity threats are no longer limited to 
technical vulnerabilities but increasingly exploit 
human behaviour. Among these, social engineering 
attacks are particularly dangerous, leveraging 
psychological manipulation rather than technical 
exploits to deceive individuals into compromising 
security. These attacks are prevalent across critical 
sectors such as financial services, healthcare, and 
government, where disclosing sensitive information 
can lead to devastating consequences [1][2]. Despite 
advancements in cybersecurity technologies, 
humans remain the weakest link. According to the 
2024 Verizon Data Breach Investigations Report, 68% 
of security breaches involved human factors, such as 
being deceived by social engineering attacks or 
unintentional errors. This alarming statistic 
highlights the urgent need to strengthen defences not 
just at the system level, but also in detecting socially 
engineered manipulation at the communication level.  

The rise of digital messaging platforms has 
further complicated the landscape. While these tools 
have made communication faster and more 
convenient [3], they also introduce new 
vulnerabilities [4]. Modern digital communications 
often contain informal language, abbreviations, and 
ambiguous phrasing, which attackers exploit to mask 
their true intent [5]. Unlike traditional phishing 
emails or messages that may explicitly request 
credentials, modern social engineering messages use 
subtle tactics such as persuasion, authority, or 
urgency to manipulate users without directly asking 
for sensitive data [6]. However, existing detection 
methods often do not incorporate a deep contextual 
understanding of language, focusing instead on 
surface-level features such as keywords or syntactic 
patterns. This highlights a research gap in 
developing models that can capture the nuanced 
meanings and implicit cues commonly found in 
social engineering messages.  

Therefore, this study proposes a machine 
learning-based approach using DistilBERT, a lighter 
and faster variant of the Bidirectional Encoder 
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Representations from Transformers (BERT) 
language model to enhance the detection accuracy of 
social engineering attacks in message conversations. 
DistilBERT retains 97% of BERT's language 
understanding capability while being 40% smaller 
and 60% faster during inference, making it suitable 
for real-time or resource-constrained environments 
[7]. This efficiency is achieved using only six 
transformer layers compared to the 12 layers in the 
BERT base model [7]. BERT-based models are 
known for their bidirectional understanding of 
language, allowing them to capture subtle cues and 
deeper semantic context [8][9]. The model will be 
trained and evaluated using the SMS Spam 
Collection dataset, which includes a range of 
malicious and legitimate messages. To assess 
performance, standard metrics such as accuracy, 
precision, recall, and F1-score will be used. This 
study is significant as it explores the intersection of 
natural language processing and cybersecurity, 
aiming to enhance the detection of social 
engineering attacks in digital messages. By 
leveraging state-of-the-art NLP models, the study 
seeks to contribute to more robust and intelligent 
security mechanisms.  

The following section presents the research 
background, providing context for the study. This 
will be followed by the methodology section, which 
focuses on data preprocessing, model training, and 
evaluation. The next section covers the results and 
discussion, analysing the model's performance and 
key findings. Finally, the concluding section 
summarises the project, highlighting its limitations 
and potential directions for future work. 

2. RESEARCH BACKGROUND 

A social engineering attack is a cyberattack 
strategy that leverages human vulnerabilities to 
undermine the security of various cyberspace 
elements, including infrastructure, data, resources, 
users, and operations [10]. In contrast to traditional 
cyberattacks, which target technical flaws, social 
engineering attacks deceive individuals into 
disclosing sensitive information or circumventing 
security measures. Attackers frequently use 
psychological tactics to induce a sense of urgency or 
fear, prompting victims to act quickly without 
critically assessing the situation. According to a 
survey conducted by [3], social engineering is 
recognised as one of the most significant 
cybersecurity threats, as it can bypass even the most 
robust security measures, such as firewalls and 
intrusion detection systems. In the early efforts to 

counter social engineering, researchers and 
practitioners focused primarily on user education 
and security policies [11]. Training programs aimed 
to raise awareness of social engineering techniques 
and teach users how to recognise and respond to 
suspicious activities. While these efforts helped 
reduce user susceptibility to known tactics, they 
were not sufficient to keep pace with the increasing 
sophistication and evolving nature of attacks.  

Subsequent detection systems relied on rule-
based and signature-based approaches, which 
flagged messages containing specific keywords, 
phrases, or structural patterns often associated with 
smishing attempts [12]. For instance, [13] proposed 
an approach that uses a pre-defined Topic Blacklist 
(TBL) to verify the discussion topics in text lines 
generated by potential attackers. Similarly, [14] 
proposed integrating topic blacklists with NLP to 
detect question-command patterns that suggest 
malicious intent. Their study focused on identifying 
question-command patterns in text conversations 
using NLP, extracting topics from these question-
commands, and comparing them against pre-defined 
TBL [14]. Although effective in identifying well-
defined attack patterns, these static methods lacked 
the flexibility to detect novel and subtle tactics that 
evade pre-defined rules [3].  

To overcome these limitations, some 
researchers have conducted numerous studies on 
detecting social engineering attacks using NLP, 
machine learning, and deep learning algorithms. The 
approach for social engineering attack detection, as 
presented by [15], incorporates case-based reasoning 
(CBR) systems for malicious URL detection and 
convolutional neural networks (CNNs) to determine 
if a conversation suggests a social engineering attack. 
Besides, the SEADer model used NLP to detect 
grammatical inconsistencies and classify 
conversations using artificial neural networks (ANN) 
[16], while SEADer++ v2 further enhances this 
process by adding three additional columns to the 
classification dataset, creating a total of seven 
columns, to improve output quality. This model 
leverages NLP for text processing and classification 
with Random Forest (RF), Multi-Layer Perceptron 
(MLP), and k-nearest neighbours (KNN) algorithms. 
Consequently, the proposed method in their study 
achieved slightly better accuracy (80.1%) and 
average curve results (89.2%) compared to 
SEADer++ [17]. Furthermore, a detection model 
that relies solely on text input for identifying social 
engineering -  
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Figure 1: An overview of research design

attacks has achieved over 80% classification 
accuracy, with classifiers like Neural Network, RF, 
and Support Vector Machine (SVM), where SVM 
demonstrated the overall best performance [18]. In 
social engineering attack detection using an 
attention-based Bidirectional Long Short-Term 
Memory (Bi-LSTM) and CNN, a dataset consisting 
of user information and chat dialogue is pre-
processed before input into the module for final 
analysis. The attention-based Bi-LSTM is used to 
capture contextual semantics from the dialogue text, 
while the CNN integrates user characteristics and 
content features for classification and judgement [6]. 
This model focuses on detecting social engineering 
attacks in conversational form by analysing both 
chat history and user information. Additionally, the 
SOCIALBERT model, built on DistilBERT, was 
fine-tuned for a downstream task to detect various 
social engineering tactics in text messages, 
achieving a high accuracy of 97.55% [19].   

Although recent studies have incorporated 
advanced NLP, machine learning, and deep learning 
models into social engineering attack detection, a 
significant gap remains underexplored in terms of 
contextual understanding. While [6] employed an 
attention-based Bi-LSTM combined with CNN to 
capture contextual semantics from chat dialogue, the 
study did not report standard performance metrics 
such as accuracy, precision, recall, or F1-score, 
limiting the assessment of its practical effectiveness. 
In another study, the SOCIALBERT model [19], 
which is based on the DistilBERT algorithm known 
for its contextual understanding capabilities. 
However, the study primarily focused on 
categorising the different types of social engineering 

tactics presented in messages and evaluated their 
performances. 

3. METHODOLOGY 

The methodology employed to detect social 
engineering attacks using machine learning, with a 
specific focus on the fine-tuning of the pre-trained 
DistilBERT model. It also includes the description of 
the dataset, preprocessing steps, model development, 
training, and evaluation techniques. The goal is to 
create a robust classification model that 
differentiates the text messages between social 
engineering attack and non-attack, thereby 
enhancing the detection performance. Figure 1 
provides an overview of the research design process.  

 
Figure 2: The class distribution of dataset 
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3.1 Dataset 

This study utilises a publicly available, real-
world dataset: the SMS Spam Collection Dataset, 
which was downloaded from Kaggle. An overview 
of the dataset reveals a total of 5572 rows, all in 
English and primarily derived from message 
conversations. These messages represent scenarios 
that may involve either an attempted social 
engineering attack or a benign (non-attack) 
interaction. Among these, 86.6% (4825 rows) are 
labelled as benign or legitimate, while 13.4% (747 
rows) are labelled as malicious, as illustrated in 
Figure 2. Furthermore, the dataset is organized into 
five columns: v1, v2, and three unnamed columns. 
The v1 column serves as a class label, indicating 
whether the message is legitimate or not, while the 
v2 column contains a string representing a message 
or a segment of a conversation. This string serves as 
the raw input to the model. 

3.2 Data Preprocessing 

Data preprocessing is essential for preparing the 
dataset for effective machine learning training and 
evaluation. It cleans and standardises raw textual 
data, addressing inconsistencies, noise, and missing 
elements that can impact model performance. In this 
study, three unnamed columns with over 99% 
missing data were manually removed, and the 
column names v1 and v2 were renamed to label and 
text, respectively, for clarity. The classification 
labels were also updated to "attack" and "non-attack" 
to align with the project's scope. Subsequent 
preprocessing steps included text normalisation, 
tokenisation with DistilBERT, applying padding and 
truncation to ensure uniform input sizes for the 
DistilBERT model, and handling the imbalanced 
dataset. 

3.2.1 Text normalization 

To ensure uniformity and minimises variations 
caused by inconsistent formatting, all text input is 
converted to lowercase using the distilbert-base-
uncased parameter from the Hugging Face 
Transformers library during tokenisation, as 
DistilBERT is a case-sensitive model [20]. The term 
“uncased” indicates that the model is designed to 
handle text without sensitivity to letter casing. In 
other words, it treats uppercase and lowercase letters 
equivalently, meaning that “Attack” and “attack” are 
considered identical during both tokenisation and 
processing. 

3.2.2 Tokenisation 

Tokenisation involves converting raw text into a 
structured format that a machine learning model can 
process. It employs WordPiece Tokenisation to break 
down text into smaller components, sub words or 
morphemes called tokens. DistilBERT uses a pre-
trained tokeniser that maps tokens to numerical 
identifiers, known as token IDs, based on the model's 
pre-defined vocabulary. Meanwhile, Special tokens 
are added to structure the input sequence for the 
DistilBERT model. The [CLS] token is inserted at 
the beginning to represent the entire sequence and 
serve as a classification token, while the [SEP] token 
is appended at the end to indicate sequence 
boundaries.  

3.2.3 Padding and truncation 

Padding involves appending special padding 
tokens [PAD] to the end of a sequence to ensure it 
matches the required maximum sequence length 
when text sequences are shorter than the model's 
expected input length. After adding, an attention 
mask is generated to help the model distinguish 
between meaningful tokens and padding tokens. 
This mask assigns a value of 1 to actual tokens and 
0 to padding tokens which effectively instructs the 
model to ignore the padding during computations. 
Moreover, truncation is applied to handle sequences 
that exceed the maximum length permitted by the 
model. It involves discarding tokens beyond the 
maximum allowed length by setting the true 
parameter to the truncation during tokenisation.  

3.2.4 Imbalance Dataset 

This imbalance makes it difficult for models to 
effectively learn and classify minority classes, often 
resulting in biased predictions and poor performance 
on malicious messages. To address this issue, sample 
based class weight (SBCW) is used to adjust the 
contribution of each class to the loss function during 
training. Class weights are calculated based on the 
frequency of each class in the dataset. According to 
[21], the formula is:  

𝑤௖ =
𝑛

𝑘 ∙ 𝑛௖

 

Where: 
𝑤௖: Weight for class c 
𝑛: Total number of samples in the dataset 
𝑘: Number of unique classes 
𝑛௖: Number of samples in class c 

The computed weights for the two classes are 0.5775 
for the non-attack class and 3.7266 for the attack 
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class. These weights are then converted into a 
PyTorch tensor and integrated into the loss function 
to enhance learning for the minority class.  

3.3 Model Development 

The development of the social engineering 
attack detection model involves leveraging 
DistilBERT, a transformer-based NLP model known 
for its efficiency and contextual understanding 
capabilities. The process begins by loading a pre-
trained DistilBERT model, specifically 
DistilBERTForSequenceClassification, from the 
Hugging Face Transformers library to handle the 
classification task. The model is configured for 
binary classification by setting the num_labels 
parameter to 2, ensuring it outputs two logits 
corresponding to "attack" and "non-attack" 
messages. Dropout mechanisms are applied to 
enhance generalisation and prevent overfitting, 
thereby improving the model’s accuracy on unseen 
data. Specifically, attention_probs_dropout_prob = 
0.5 introduces dropout in the self-attention 
mechanism, randomly zeroing out 50% of attention 
scores during training to reduce over-reliance on 
specific words or phrases. Similarly, 
hidden_dropout_prob = 0.5 applies dropout in the 
fully connected layers, deactivating 50% of neurons 
to encourage learning of broader patterns rather than 
memorising the training data. 

3.4 Model Training and Testing 

The dataset is initially divided into training and 
test sets using an 80:20 ratio. Additionally, the 
training set is further split into training and 
validation sets using another 80:20 ratio, ensuring 
the validation set is available to monitor the model’s 
performance during training. This validation set is 
essential for hyperparameter tuning, allowing the 
selection of the best parameters for the final training 
and evaluation process. A random seed is applied to 
ensure reproducibility by generating the same 
sequence of random numbers across different runs, 
resulting in a consistent dataset split every time the 
code is executed.  

3.4.1 Hyperparameter Tuning 

Hyperparameter tuning is a step in optimising 
machine learning models, as it determines the 
configuration of parameters that most effectively 
enhance model performance. Optuna, an open-
source hyperparameter optimisation framework is 
applied to automate the process of discovering the 
optimal hyperparameters for machine learning 

models. The Optuna workflow for hyperparameter 
tuning consists of four main steps: defining the 
objective function, specifying the search space, 
creating a study, and running the optimisation. First, 
an objective function is defined to encapsulate the 
model training and evaluation process. This function 
returns a validation loss that Optuna seeks to 
minimise. Next, the search space is defined to 
represent the range and types of hyperparameters to 
explore, including learning rate, batch size, number 
of epochs, and weight decay. The learning rate is set 
to 2e-5, 3e-5, or 5e-5, the batch size is either 16 or 
32, the number of epochs ranges from 2 to 4, and the 
weight decay ranges from 0.01 to 0.05. After 
defining the objective function and search space, an 
Optuna study is created to manage the 
hyperparameter optimisation process. The 
optimisation process is then initiated, iteratively 
evaluating the objective function with various 
hyperparameter combinations and navigating the 
search space to identify configurations that provide 
the best hyperparameters.  

3.4.2 Final Training 

The final training process involves combining 
the training and validation sets to maximise data 
utilisation, especially when working with small 
datasets. By merging these sets, the model can 
leverage a larger and more diverse dataset, enabling 
it to learn richer representations and improve 
performance on unseen data. This approach is 
particularly beneficial for small datasets, as it 
maximises the data used for training while reserving 
the test set for unbiased evaluation. The model is 
then trained on the aggregated dataset using the best 
hyperparameters obtained from the tuning process. 
These optimal hyperparameters—such as learning 
rate, batch size, number of epochs, and weight 
decay—are detailed in Table 1. After training, its 
performance is rigorously evaluated using a test set 
to determine its ability to generalise to unseen data. 

Table 1: The best parameter after hyperparameter tuning 
Hyperparameter Value 

Learning rate 5e-05 

Batch size 16 

Number of epochs 2 
Weight decay 0.01892612832422345 

3.5 Performance Metrics 

The effectiveness of the machine learning model 
for detecting social engineering attacks is  
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Figure 3: Result of confusion matrix

evaluated using key metrics, including accuracy, 
precision, recall, and F1-score. These metrics are 
computed from the confusion matrix, which 
encapsulates the model's performance in terms of 
True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN). 

Accuracy: It measures the overall correctness of the 
model by calculating the ratio of correctly classified 
instances (both positive and negative) to the total 
instances. It offers a general assessment of the 
model’s performance across all classes, ensuring that 
the predicted outcomes align closely with the actual 
labels. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision: Precision assesses the accuracy of the 
model's positive predictions. A high precision score 
indicates that the model is likely correct when it 
predicts an attack. This metric is particularly 
important in situations where minimising false 
positives is critical to reducing false alarms. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall: Recall measures the model’s ability to 
correctly identify all actual positive instances. High 
recall ensures that the model detects most attacks, 
which is vital in applications where missing an attack 
(false negatives) has significant consequences. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-score: The F1-score combines precision and 
recall into a single metric by calculating their 
harmonic mean. It provides a balance between 
precision and recall, especially useful in situations 
where the dataset is imbalanced and both metrics are 
critical for evaluating performance. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

4. RESULT AND DISCUSSION 

Figure 3 depicts the confusion matrix, which 
provides a detailed breakdown of the model's 
classification performance by comparing predicted 
labels with true labels. The results indicate that the 
model correctly classified 146 instances of malicious 
messages as "attack" (true positives) and 963 
instances of benign messages as "non-attack" (true 
negatives). Additionally, the model misclassified 
only 3 benign messages as "attack" (false positives) 
and 3 malicious messages as "non-attack" (false 
negatives). These results suggest a strong 
classification performance with minimal 
misclassification errors. 
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Table 2: Result of performance metrics 
Metrics Value (%) 
Accuracy 99.46 
Precision 99.46 
Recall 99.46 
F1-Score 99.46 

The evaluation results, as shown in Table 2, 
demonstrate the model's exceptional performance in 
detecting social engineering attacks, achieving an 
accuracy of 99.46%. This indicates that the model 
correctly classified nearly all test samples, 
highlighting its reliability and strong generalisation 
to unseen data. Additionally, precision, recall, and 
F1-score are all equally high at 99.46%, 
underscoring the model’s balanced capability to 
minimise both false positives and false negatives. 
These metrics confirm the model's effectiveness in 
accurately identifying both attack and non-attack 
messages. Overall, the consistently high 
performance across all evaluation metrics suggests 
that the model successfully learns the distinguishing 
patterns of attack messages.  

 
Figure 4: Comparison of accuracy between current and 
previous work 

Figure 4 provides a comparative analysis in 
terms of accuracy between the proposed model and 
the SOCIALBERT model previously introduced by 
[19]. The analysis highlights that the fine-tuned 
DistilBERT model achieves an accuracy of 
approximately 99.5%, surpassing the 97.5% 
accuracy of SOCIALBERT. While the 2% difference 
may seem minor, it is significant in cybersecurity 
contexts, where even small improvements can 
greatly reduce the risk of undetected social 
engineering attacks. Although the proposed model 
demonstrates higher accuracy, it is important to note 
that the SOCIALBERT model also achieves a high 
level of accuracy. The difference in results primarily 
stems from the models' distinct objectives and 

configurations. SOCIALBERT was designed for 
multi-class classification to distinguish between 
multiple types of social engineering tactics, such as 
pretexting, baiting, urgency, consensus, authority, 
and familiarity. This broader classification task 
increases complexity, as it involves distinguishing 
subtle features across multiple categories.   

In contrast, the present study focused on binary 
classification (attack vs. non-attack), allowing for 
more focused optimisation. The proposed model 
incorporates strategies such as applying class 
weights to handle class imbalance, ensuring that the 
minority class receives adequate emphasis during 
training. This tailored approach enhances the 
model’s ability to accurately detect attacks and 
contributes to its improved performance, with the 
variance in results underscoring the importance of 
aligning model architecture and training strategies 
with specific detection objectives. In summary, the 
experimental results demonstrate that the proposed 
fine-tuned DistilBERT model effectively meets the 
research objectives by delivering high accuracy 
compared to the prior model. 

5. CONCLUSION 

In conclusion, this study presents a significant 
contribution to social engineering attack detection 
by introducing a fine-tuned DistilBERT model, 
optimised for both performance and efficiency. With 
an accuracy of 99.46%, the model demonstrates a 
substantial improvement over previous approaches, 
such as SOCIALBERT, which achieved 97.5%. This 
work contributes to the body of knowledge by 
leveraging DistilBERT’s contextual understanding 
capabilities to enhance detection accuracy in binary 
classification tasks, addressing the critical challenge 
of identifying social engineering attacks with high 
precision. The evaluation metrics, including 
precision, recall, and F1-score, further emphasise the 
model's robustness and potential to minimise false 
positives and negatives in real-world applications. 
While the study is limited to text-based data, 
excluding multimodal threats involving images, 
videos, and links, it provides a foundational 
approach for text-based social engineering detection, 
setting the stage for future research. The lack of 
diverse publicly available datasets presents a 
challenge for generalising the model across different 
communication formats and languages, but it also 
points to an opportunity for future work to expand 
datasets and explore multilingual models. 
Furthermore, while the DistilBERT is computational 
efficiency outperforms BERT, there remains room 
for further optimisation in resource-constrained 
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environments. Future studies should focus on 
multimodal detection, dataset diversification, and 
computational efficiency improvements through 
techniques such as model quantisation and pruning. 
These advancements will push the boundaries of 
social engineering attack detection and pave the way 
for scalable, efficient, and comprehensive solutions 
to counter evolving cyber threats. 
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