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ABSTRACT 

 
Continual Zero-Shot Learning (CZSL) involves training models to learn sequentially from separate data 
streams while effectively generalizing to unseen classes without revisiting earlier data. However, 
conventional approaches often face issues such as catastrophic forgetting and weak generalization, especially 
under noisy, multimodal, or low-resource conditions. To overcome these limitations, the proposed work 
introduced Cross-Modal Adaptive Meta-Free Learning (CAMeL) a scalable, task-free learning framework. 
CAMeL incorporated a Cross-Modal Generative Memory to synthesize both visual and semantic features, 
ensuring knowledge retention across tasks. It also features a Neural Attribute Synthesizer that generates 
context-aware prompts, enhancing adaptability to challenging learning conditions. The framework is further 
optimized through Continual Learning Adaptive Sharpness-Aware Minimization (CLASAM), which flattens 
the loss landscape to promote stability and generalization. CAMeL effectively supports multimodal learning, 
reduces forgetting, and handles both zero-shot and few-shot tasks. Experimental results across six 
benchmarks including CUB, AWA1, and SUN show that CAMeL+CLASAM achieves up to 7.5% higher 
harmonic mean than existing methods, proving its robustness and scalability. 

Keywords: Continual Learning, Zero-Shot Learning, Sharpness-Aware Optimization, Prompt Learning, 
Cross-Modal Learning 

 
1. INTRODUCTION 
 

This study was initiated to address the 
growing challenge of building scalable and adaptive 
Artificial Intelligence (AI) systems capable of 
learning continuously from dynamic environments 
without forgetting previous knowledge or retraining 
on past data. The rapid evolution of AI and machine 
learning has enabled the development of models 
capable of learning from sequential data streams and 
generalizing to unseen categories [1], [2]. Two 
foundational paradigms supporting these 
advancements are Continual Learning (CL) and 
Zero-Shot Learning (ZSL) [3]. CL focuses on the 
progressive acquisition of knowledge over time 
without suffering from catastrophic forgetting a 
phenomenon where previously learned information 
is overwritten [4]. In contrast, ZSL targets the 
classification of instances from novel classes by 
exploiting semantic relationships between known 
and unknown categories [5]. The integration of these 
approaches has led to the emergence of Continual 

Zero-Shot Learning (CZSL) [6], which aims to build 
models that can learn continuously from evolving 
data streams while still generalizing to new, unseen 
classes without the need for retraining. 

 
Although notable advancements have been 

made, existing CZSL methods still encounter several 
challenges. Most approaches depend on fixed task 
boundaries; require storing previous data, and use 
single modality learning models constraints that 
reduce their effectiveness in real world scenarios 
involving diverse data types and minimal 
supervision [7]. Additionally, catastrophic forgetting 
remains unresolved in scenarios involving noisy 
inputs and hybrid zero/few-shot conditions [8]. 
These challenges hinder the scalability, adaptability, 
and robustness of existing CZSL models.  

 
Despite the integration of CL and ZSL, 

existing approaches struggle to operate without 
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predefined task boundaries and often depend on 
stored data or fixed modalities. The core problem 
lies in catastrophic forgetting and limited 
generalization to unseen or noisy classes in dynamic 
environments. This is a major concern because real-
world systems such as intelligent surveillance, 
medical diagnosis, and autonomous vehicles 
frequently encounter evolving, unseen inputs where 
retraining is not feasible. Thus, the lack of a scalable, 
memory-efficient, and adaptive framework limits 
the practical deployment of continual zero-shot 
learning models. This study specifically targets these 
limitations.  

 
To address these challenges, this study 

proposes a framework that avoids task boundaries, 
eliminates the need to store past data, and supports 
multimodal input. CAMeL is designed to synthesize 
both visual and semantic features, thereby enhancing 
memory retention without requiring raw data. 
Furthermore, it dynamically generates prompts 
based on contextual semantics, which enables robust 
generalization to novel and noisy inputs. The 
rationale behind this architecture is its compatibility 
with real-world conditions where memory buffers 
are limited, supervision is sparse, and unseen 
categories are common. CAMeL’s optimization 
through CLASAM ensures model stability by 
minimizing sharpness in the loss landscape, further 
boosting its ability to retain prior knowledge while 
adapting to new distributions. This makes the 
proposed approach both practically viable and 
theoretically grounded for scalable continual zero-
shot learning. 

 
The originality of this study lies in the 

integration of cross-modal generative memory and 
neural prompt synthesis within a task-free continual 
learning framework. Unlike existing CZSL models, 
CAMeL does not rely on task boundaries or stored 
replay data, and it introduces CLASAM to ensure 
generalization by flattening sharp loss landscapes. 

 
To address these gaps, this paper 

introduced a novel framework called Cross-Modal 
Adaptive Meta-Free Learning (CAMeL) [9], aimed 
at improving scalability and generalization in CZSL. 
CAMeL features two primary innovations: (i) a 
Cross-Modal Generative Memory that synthesizes 
visual and semantic features [10] to enable 
knowledge retention without relying on explicit data 
storage, and (ii) a Neural Attribute Synthesizer that 
produces context-aware prompts to improve 
generalization in noisy and unseen settings [11]. 
Additionally, CAMeL is designed to handle 

multimodal inputs and few-shot scenarios, making it 
highly adaptable to versatile and practical hybrid 
learning settings.  

The main contributions of this research are 
summarized as follows: 
 This study proposed a task-free, memory-

efficient continual zero-shot learning [12] 
framework that synthesizes cross-modal 
representations to mitigate catastrophic forgetting. 

 The proposed work introduced a dynamic 
prompt generation mechanism through a Neural 
Attribute Synthesizer, enhancing robustness to noise 
and low-resource environments [13]. 

 The proposed framework integrated few-
shot learning capabilities within the continual 
learning stream, enabling CAMeL to adapt flexibly 
to hybrid zero/few-shot settings. 

 This study conducted comprehensive 
evaluations of CAMeL on six benchmark datasets 
CUB, aPY, AWA1, AWA2, SUN [14], and 
ImageNet 1K showing that it consistently 
outperforms existing state-of-the-art CZSL methods. 

The rest of the paper is structured as 
follows: Section II provides an overview of related 
work in continual learning, zero-shot learning, and 
cross-modal generalization. Section III details the 
proposed CAMeL framework along with the 
CLASAM optimization strategy. Section IV 
discusses the experimental setup, presents results, 
and offers in-depth analysis. Lastly, Section V 
concludes the study and suggests potential avenues 
for future research. 

 
2. LITERATURE REVIEW 
  

The literature review is critical because it 
identifies the strengths and limitations of existing 
Continual Learning, Zero-Shot Learning, and 
Continual Zero-Shot Learning methods. It highlights 
key challenges such as catastrophic forgetting, task 
dependency, poor scalability, and limited 
generalization under noisy conditions that current 
models fail to address. By clearly revealing these 
research gaps, the review justifies the need for the 
proposed CAMeL framework, which introduces 
cross-modal synthesis and dynamic prompt 
generation. Moreover, it establishes the novelty, 
technical rationale, and scientific credibility of this 
work, ensuring that CAMeL is recognized as a 
significant and necessary advancement in scalable 
continual zero-shot learning. 
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In 2024, Wang et al. [15] highlighted the 
significance of continual learning in AI systems, 
emphasizing its role in enabling adaptive knowledge 
acquisition and updates over time. A key issue 
identified is catastrophic forgetting, where learning 
new tasks negatively impacts performance on 
previously learned ones. The study offers a thorough 
review of fundamental theories, methodologies, and 
practical applications. It stresses the importance of 
balancing stability and adaptability (plasticity) while 
ensuring task generalization, and presents taxonomy 
of strategies designed to tackle the core challenges 
of continual learning. 

 
In 2025, Aslam et al. [16] proposed an 

innovative continual learning (CL) model aimed at 
mitigating catastrophic forgetting in rapidly 
changing domains such as disease outbreak 
forecasting. The approach integrates Elastic Weight 
Consolidation and the Fisher Information Matrix 
(FIM) to retain prior knowledge while adapting to 
new information. Experimental results on datasets 
involving influenza, mpox, and measles demonstrate 
that the model surpasses existing state-of-the-art 
techniques, achieving high R-squared scores, 
reducing forgetting by 65%, and enhancing memory 
stability by 18%. The study underscores the model’s 
effectiveness in capturing and predicting temporal 
patterns in dynamic health data.  

 
In 2024, Wu et al. [17] introduced ZEST, a 

zero-shot learning (ZSL) framework aimed at 
classifying both known and previously unseen IoT 
devices, particularly in scenarios where device 
traffic is unavailable during training. The framework 
features SANE, a self-attention-based network 
feature extractor that captures latent patterns in IoT 
traffic, along with a generative model that creates 
pseudo samples from these features. A supervised 
classifier is then trained on this synthetic data for 
effective device identification. Evaluations using 
real-world IoT traffic show that ZEST achieves 
notably higher classification accuracy than baseline 
methods, with SANE outperforming conventional 
LSTM-based models in feature extraction quality. 

 
In 2024, Lu et al. [18] introduced PAMK, a 

prototype-augmented multi-teacher knowledge 
transfer framework designed for continual zero-shot 
learning (CZSL). The model aims to maintain 
stability in recognizing previously learned tasks 
while enhancing adaptability to new ones. Unlike 
traditional CZSL approaches that risk negative 
transfer due to an overemphasis on past knowledge, 
PAMK incorporates two novel components: 

Prototype Augmented Contrastive Generation 
(PACG) and Multi-Teacher Knowledge Transfer 
(MKT). These modules work together to effectively 
balance retention and generalization in evolving 
learning scenarios. PACG employs a continual 
prototype augmentation strategy based on relevance 
scores to reduce semantic decay and uses a semantic-
visual contrastive loss to enhance intra-class 
compactness. Meanwhile, MKT leverages semantic 
knowledge from previous tasks to aid new task 
recognition, mitigating negative transfer. 
Experimental results show that PAMK significantly 
outperforms state-of-the-art methods, achieving 
notable improvements in mean harmonic accuracy 
on the CUB (3.28%), AWA1 (3.09%), and AWA2 
(3.71%) datasets in task-free CZSL settings. 
 

In 2024, Gautam et al. [19] introduced a 
generative replay-based continual zero-shot learning 
(GRCZSL) method to classify unseen classes 
without forgetting past knowledge. Unlike 
traditional ZSL, which assumes all seen class 
samples are available, GRCZSL learns from 
streaming data. It mitigates catastrophic forgetting 
by replaying synthetic samples generated using a 
conditional variational autoencoder. The method, 
designed for a single-head continual learning setup, 
is evaluated on five benchmark datasets, 
outperforming baselines and state-of-the-art 
approaches for real-world applications. 

 
In 2024, Jiang et al. [20] proposed 

XProDNet, a Cross-modal Prompt-Driven Network 
aimed at improving image captioning in low-
resource settings, particularly within domains such 
as medical imaging and non-English languages. 
Unlike traditional approaches that depend on large 
volumes of labeled data, XProDNet is capable of 
producing accurate and detailed captions with 
minimal supervision. The framework was rigorously 
evaluated across six benchmark datasets, spanning 
three application domains (standard, medical, and 
multilingual captioning), four target languages 
(English, Chinese, German, and French), and two 
learning paradigms (fully-supervised and few-shot). 
Results showed that XProDNet consistently 
outperforms existing state-of-the-art models, 
demonstrating strong potential for practical, real-
world deployment. 

 
3. PROPOSED METHODOLOGY 
 

This study presents a methodology 
designed to rigorously evaluate the effectiveness of 
the proposed CAMeL framework in task-free CZSL 
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scenarios. CAMeL was tested across three diverse 
and challenging benchmark datasets CUB, AWA1, 
and SUN to assess its robustness under fine-grained, 
attribute-based, and large-scale scene recognition 
tasks. The experimental setup simulated a task-free 
continual learning environment in which disjoint 
class batches are presented sequentially without 
access to prior data. During training, visual features 
and semantic attributes are jointly encoded and 
processed through CAMeL’s two core modules: the 
Cross-Modal Generative Memory (CMGM) and the 
Neural Attribute Synthesizer (NAS). A multimodal 
replay mechanism is employed to mitigate 
catastrophic forgetting, while dynamically generated 
prompts enhance the model’s ability to generalize to 
unseen or noisy classes. Additionally, few-shot 
samples are incorporated in hybrid scenarios to 
validate the framework's adaptability under limited 
supervision. Performance is measured using three 
core metrics mean seen accuracy (mSA), mean 
unseen accuracy (mUA), and harmonic mean (mH) 
along with scalability assessments. Comparative 
evaluations against state-of-the-art CZSL baselines 
are conducted to demonstrate CAMeL’s superiority 
in knowledge retention, cross-modal generalization, 
and continual adaptation in both zero-shot and few-
shot learning settings. 

 
To enhance the optimization stability and 

generalization capacity of CAMeL, The proposed 
work introduced a novel learning strategy named 
Continual Learning Adaptive Sharpness-Aware 
Minimization (CLASAM). Unlike traditional 
optimizers that minimize loss at fixed parameter 
points, CLASAM minimizes the worst-case 
(sharpest) loss within a small neighborhood around 
the model parameters. This approach helps the 
model converge to flatter minima in the loss 
landscape, which are known to generalize better 
across tasks. At each training step, CLASAM 
perturbs the model weights slightly to estimate the 
sharpness of the loss surface, and then updates the 
weights to avoid sharp, unstable regions while still 
minimizing the core loss. Uniquely, CLASAM 
adjusts the perturbation scale adaptively based on 
context assigning greater attention to noisy or unseen 
data distributions. CLASAM’s adaptability makes it 
highly compatible with CAMeL, which operates in 
noisy, task-free, and resource-constrained settings. 
By encouraging flatter optimization landscapes and 
minimizing overfitting risks, CLASAM strengthens 
CAMeL’s capacity to sustain consistent 
performance during continual learning in zero-shot 
scenarios. 

 

This section outlines the experimental 
methodology used to evaluate the proposed CAMeL 
framework. It includes the research design, datasets, 
and core components of the model, training setup 
and evaluation metrics. The structured approach 
ensures reproducibility and highlights how CAMeL 
addresses the challenges of task-free continual zero-
shot learning. 

 
3.1 Research Design 

The study adopted a task-free continual 
zero-shot learning setup. CAMeL was evaluated 
using disjoint class batches that were introduced 
sequentially without access to previously seen data. 
This simulated a real-world continual learning 
scenario. Few-shot settings were also tested using 
hybrid zero/few-shot configurations. 

 
1. Datasets 

The model was trained and evaluated on 
three widely used benchmark datasets: 

1. CUB: Fine-grained bird classification 
2. AWA1: Attribute-based animal 

classification 
3. SUN: Scene recognition dataset 

These datasets represent a mix of visual 
complexity and semantic richness to test the 
robustness of the framework. 

2. Model Components 
 Cross-Modal Generative Memory 

(CMGM): Synthesizes visual-semantic 
representations from latent codes for replay without 
storing raw data. 
 Neural Attribute Synthesizer (NAS): 

Dynamically generates semantic prompts based on 
context to guide classification. 

 CLASAM Optimizer: Enhances training by 
minimizing the sharpest local loss and promoting 
generalization. 

3. Training Setup 
 Visual features were encoded using a 

Vision Transformer. 
 Semantic features were encoded using 

BERT embeddings. 
 The latent space was constructed using a 

variational encoder. 

 The optimizer (CLASAM) perturbed model 
parameters to avoid sharp minima. 

4. Evaluation Metrics 
Three main metrics were used: 
 Mean Seen Accuracy (mSA) 
 Mean Unseen Accuracy (mUA) 
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 Harmonic Mean (mH) 
 
 
3.2 Cross-Modal Adaptive Meta-Free Learning 
(CAMEL) 

The training process of the proposed 
CAMeL framework is composed of six major stages, 
each contributing to scalable, task-free continual 
zero-shot generalization. Figure 1 Diagrammatic 
Representation of the CAMEL Framework's 
Architectural Components. 

 
Step 1: Input Encoding 

Description: Raw inputs, including images and 
semantic attributes, are independently encoded into 
a shared feature space to facilitate multimodal 
learning. 

Let: 

 X denote the visual input space (e.g., 
images), 
 A denote the semantic attribute space (e.g., 

text embeddings), 
 𝑓జ: 𝑥 → ℝௗ be the visual encoder (e.g., 

Vision Transformer), 
 𝑓௔: 𝐴 → ℝௗ be the semantic encoder (e.g., 

BERT). 

Given a sample x∈X and attribute vector a∈A, the 
features are encoded using Equation (1). 

   afaxf a ,
                              

(1) 

These features are concatenated to form a 
multimodal representation, as defined by Equation 
(2). 

 aConcath  ,
                                         

(2) 

Step 2: Latent Space Mapping (Variational 
Encoding) 

Description: The concatenated features are 
mapped into a latent probabilistic space to enable 
stochastic sampling for generative replay. 

The encoder network 𝑞∅ maps h into a latent 
distribution, as described by Equation (3). 

    ),µ(h)( 2hNhzq  
                          

(3) 

Where,   

 𝜇(ℎ) and 𝜎(ℎ) are the learned mean and 
variance vectors. 

Sampling z from this distribution is performed 
using the reparameterization trick, as described in 
Equation (4). 

     1,0~,µ Nhhz  
               

(4) 

This latent variable captures the essential joint 
information for replay synthesis.  

Step 3: Cross-Modal Feature Synthesis 
(Generative Replay) 

Description: To prevent catastrophic forgetting, 
synthetic multimodal features are generated directly 
from the latent code z.  

A decoder network g  reconstructs the synthetic 

features, as defined in Equation (5). 

 zgh 


                                                       

(5) 

These synthesized features ℎ෠  approximate the 
original h and serve as replay data during continual 
learning without explicitly storing past samples. 

Step 4: Neural Attribute Synthesizer (Prompt 
Generation) 

Description: Dynamic semantic prompts are 
generated based on class attributes and context (such 
as noise or domain shifts) to guide model adaptation. 

The Neural Attribute Synthesizer 𝑠ఠ maps 
semantic embeddings and contextual information c 
into prompt vectors, as described in Equation (6). 

 casp , 

                                                  

(6) 

where: 

 a' is the encoded attribute vector, 
 c is an optional context vector representing 

environmental factors. 

The prompt p is then fused with the synthesized 
features, as described in Equation (7). 

 phConcath ,ˆ
                                         

(7) 

This enables the model to dynamically adjust its 
internal representations for better generalization to 
unseen and noisy classes. 

Step 5: Classification and Prediction 

Description: The final representation h' is fed into 
a classifier 𝜓 to predict the class label, considering 
both seen and unseen classes. 

The prediction is made by equation (8), 
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 yhy
uS yyy

,maxargˆ 



                               

(8) 

Where,  

𝑦ௌ are seen classes, 

𝑦௨ are unseen classes. 

This ensures that CAMeL can perform both zero-
shot and few-shot recognition continually. 

Step 6: Training Objective and Optimization 

Description: CAMeL is optimized by minimizing 
a composite loss function composed of three 
components: 

1. Reconstruction Loss: Synthetic features are 
optimized to approximate real features, as shown in 
Equation (9). 

2

ĥhLrec 
                                              

(9) 

2. KL Divergence Loss: Equation (10) regularizes 
the latent space distribution to align with a standard 
normal prior. 

    IoNhzqDL KLKL ,
                   

(10) 

3. Prompt Consistency Loss: Equation (11) aligns 
the synthesized prompts with the true semantic 
attributes. 

  2
afpL aprompt 

                                

(11) 

The total loss is a weighted combination by 
equation (12), 

promptKLrec LLLL  
                         

(12) 

Where, β and γ are hyperparameters balancing the 
importance of each component. 

The network parameters ∅, 𝜃, 𝜔, 𝜓 are updated 
using backpropagation and CLASAM optimization.
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Figure 1: Overview of the CAMEL Framework Architecture 
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3.3 Continual Learning Adaptive Sharpness-
Aware Minimization 

CLASAM is a novel optimization strategy 
designed to improve model stability and 
generalization in continual learning environments. 
Unlike conventional optimizers that minimize the 
loss at fixed parameter values, CLASAM seeks to 
minimize the sharpest possible loss within a small 
neighborhood around the parameters. This leads to 
flatter minima in the loss landscape, which are 
known to generalize better across tasks. At each 
training step, CLASAM perturbs the model weights 
slightly to estimate local sharpness and then updates 
the parameters in a way that both reduces loss and 
avoids high-curvature regions. A major strength of 

CLASAM is its dynamic adaptability, where 
perturbation strength is adjusted according to 
semantic context, allowing for greater 
responsiveness to unseen or noisy class distributions. 
This feature makes CLASAM an excellent fit for the 
CAMeL framework, which functions in task-free, 
multimodal, and noise-prone environments. By 
smoothing the learning path, CLASAM supports 
CAMeL in preserving past knowledge while 
efficiently adapting to new tasks and classes, making 
it highly suitable for continual zero-shot learning 
scenarios. As shown in Figure 2, the workflow of the 
Continual Learning Adaptive Sharpness-Aware 
Minimization Optimization process is illustrated. 

Figure 2: Workflow of the Continual Learning Adaptive Sharpness-Aware Minimization Optimization Process 

 
3.3.1 initialization 

In the initialization phase of the CLASAM 
optimization process, the model begins by setting up 
its trainable parameters, including the weights of the 
visual encoder, semantic encoder, latent variable 
modules, neural attribute synthesizer, and the 
classifier within the CAMeL framework. Alongside 
model weights, key optimization hyperparameters 
are also defined. These include the learning rate ɳ 
which controls the step size during gradient descent, 
and the sharpness radius 𝜌, which determines the 
scale of perturbation used to assess the sharpness of 
the loss landscape. Additionally, context-aware 
scaling factors may be initialized to dynamically 
adjust 𝜌, based on data complexity, such as the 
presence of unseen classes or semantic noise. This 
initialization step ensures that the CLASAM process 
begins from a consistent and well-conditioned state, 
enabling effective training in subsequent stages.  

 
 

3.3.2 objective function 
The core objective of CLASAM is to 

enhance the stability and generalization capability of 
the CAMeL framework by optimizing not only the 
base loss but also the sharpness of the loss landscape. 
The base objective function in CAMeL is a 
composite loss that combines three components: 
reconstruction loss 𝐿௥௘௖  Kullback-Leibler 
divergence 𝐿௥௘௖   and prompt consistency loss 
𝐿௣௥௢௣௠௧. These components are weighted by their 
respective coefficients 𝛽  and 𝛾, forming the total 
base loss as defined in Equation (13): 

promptKLrec LLLwL  )(
      

(13)

 CLASAM extends this objective by 
introducing sharpness-aware minimization, which 
focuses on minimizing the worst-case loss within a 
small neighborhood of the current parameters. To 
achieve this, a perturbation vector ∈ is calculated in 
the direction of the normalized gradient of the loss. 
The perturbed objective is then re-evaluated as 𝐿 =
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(𝑤+∈ ), which serves as the sharpness-aware loss to 
be minimized. This dual-objective formulation 
enables CLASAM to identify parameter updates that 
not only reduce the primary loss but also encourage 
convergence to flatter and more generalizable 
regions in the loss landscape.  

 
3.3.3 computation / evaluation 

In the computation and evaluation stage, 
the model performs a standard forward pass using 
the current parameters w to compute the base loss 
L(w). This loss captures the discrepancy between the 
generated outputs and ground truth values across the 
reconstruction, KL divergence, and prompts 
consistency components. Next, the sharpness of the 
loss landscape is estimated to prepare for sharpness-
aware optimization. This is achieved by calculating 
the gradient ∇௪𝐿(𝑤), which indicates the direction 
in which the loss increases most rapidly. This 
gradient is then normalized and scaled by a 
sharpness radius 𝜌 to generate a perturbation vector 

∈, such that ∈= 𝜌.
∇ೢ௅(௪)

‖∇ೢ௅(௪)‖
. The model parameters 

are temporarily perturbed to 𝑤ᇱ = 𝑤+∈, and a 
second forward pass is conducted to compute the 
sharpness-aware loss 𝐿(𝑤ᇱ).  This perturbed 
evaluation captures the worst-case behavior of the 
model within a defined neighborhood and allows the 
optimizer to identify solutions that are robust to 
sharp variations in the loss surface. 

 
3.3.4 solution update 

In the solution update stage, CLASAM 
performs backpropagation using the gradient of the 
sharpness-aware loss 𝐿(𝑤+∈), rather than the 
original base loss. This ensures that parameter 
updates are influenced not just by the immediate loss 
values but also by the local geometry of the loss 
surface. The gradient ∇௪𝐿(𝑤+∈),  is computed and 
used to update the model weights, as specified in 
Equation (14). 

),(   wLww w

              

(14) 

 
Where ɳ is the learning rate. This approach 

encourages the model to converge toward flatter 
minima, which are associated with improved 
generalization and robustness to task variations. 
Additionally, CLASAM can adaptively adjust the 
perturbation magnitude 𝜌 during training based on 
the complexity or noisiness of the input batch for 
instance, increasing 𝜌 when handling unseen classes 
or noisy semantic attributes. This adaptive 
mechanism further strengthens the model’s ability to 
retain prior knowledge while adapting to new 
distributions, which is critical for continual zero-shot 

learning in CAMeL. The process is repeated for each 
incoming data batch, allowing stable, dynamic 
learning over time. 

 
CLASAM functions within a continual 

learning framework, where data is incrementally 
presented in batches without predefined task 
boundaries. In each iteration, the model processes a 
new batch containing a combination of seen, unseen, 
or few-shot class examples. The full CLASAM cycle 
including base loss calculation, sharpness 
estimation, perturbed evaluation, and parameter 
updating is applied to each batch. Following this, 
CLASAM dynamically tunes the sharpness 
perturbation scale (ρ) based on factors like semantic 
noise, uncertainty, and class novelty within the 
batch. This adaptive mechanism allows the model to 
learn continuously while retaining previously 
learned knowledge. Over time, CLASAM supports 
seamless adaptation across domains and class 
distributions, enabling the CAMeL framework to 
maintain strong generalization and robustness 
throughout prolonged learning phases.  

 
4. RESULTS AND DISCUSSION  

 
The performance of the proposed CAMeL 

framework was evaluated across six benchmark 
datasets: CUB, AWA1, and SUN. Each dataset 
represents different levels of complexity, fine-
grained classification, and cross-modal challenges, 
ensuring a comprehensive assessment. Following 
standard CZSL protocols, models were evaluated 
sequentially without access to previous task data, 
using three key performance metrics: Mean Seen 
Accuracy (mSA), Mean Unseen Accuracy (mUA), 
and Harmonic Mean (mH). The CAMeL framework 
was implemented with the proposed Continual 
Learning Adaptive Sharpness-Aware Minimization 
(CLASAM) optimizer for improved generalization 
stability.  

 
4.1 Comparative Analysis of a Baseline and 
Optimization-Augmented CAMeL across SUN 
Datasets 

The SUN dataset presents a challenging 
benchmark for scene-level recognition under 
continual zero-shot settings, characterized by high 
intra-class variability and semantic noise. As 
illustrated in figure 3, the proposed 
CAMeL+CLASAM framework achieves the highest 
mSA of 58.2%, outperforming CAMeL+GA 
(55.6%), CAMeL+PSO (55.1%), and the MeFAL 
baseline (54.4%). Similarly, in figure 4, 
CAMeL+CLASAM delivers the top mUA of 42.7%, 
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offering a relative gain of 9.9% over MeFAL and 
outperforming other optimization variants. The mH, 
shown in figure 5, further reinforces this 
performance, with CAMeL+CLASAM reaching 
45.2%, compared to CAMeL+GA (42.3%), 
CAMeL+PSO (41.7%), and MeFAL (41.0%). These 

improvements across all three metrics demonstrate 
CAMeL+CLASAM’s ability to balance knowledge 
retention with generalization, providing robustness 
and stability in large-scale, noisy environments 
typical of real-world continual learning tasks. 

 

 

Figure 3: Mean Seen Accuracy (MSA) Comparison on the SUN Dataset 

 

Figure 4: Mean Unseen Accuracy (MUA) Comparison on the SUN Dataset 
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Figure 5: Harmonic Mean (MH) Comparison on the sun Dataset 

 
4.2 Comparative Analysis of a Baseline and 
Optimization-Augmented CAMeL across AWA1 
Datasets 

The AWA1 dataset evaluates attribute-
based object recognition and semantic generalization 
across animal classes. As shown in figure 6, the 
proposed CAMeL+CLASAM framework achieved 
the highest mSA of 92.8%, outperforming 
CAMeL+GA (91.2%), CAMeL+PSO (90.9%), and 
MeFAL (90.6%). This indicates improved retention 
of learned concepts in a continual learning setup. In 
terms of generalization to unseen classes, 
CAMeL+CLASAM achieved a mUA of 72.1% 

(figure 7), compared to 69.5%, 68.9%, and 68.4% 
for CAMeL+GA, CAMeL+PSO, and MeFAL, 
respectively. The proposed approach thus 
demonstrates superior semantic transfer in zero-shot 
settings. The overall effectiveness of 
CAMeL+CLASAM is best reflected in its mH of 
79.5% (figure 8), which clearly surpasses all 
alternatives and confirms its robustness in balancing 
both seen and unseen knowledge. These 
improvements highlight the ability of CLASAM to 
stabilize learning while enabling dynamic adaptation 
in high-attribute, low-resource environments like 
AWA1. 

 

 

Figure 6: Mean Seen Accuracy (MSA) Comparison on the AWA1 Dataset 
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Figure 7: Mean Unseen Accuracy (MUA) Comparison on the AWA1 Dataset 

 

 

Figure 8: Harmonic Mean (MH) Comparison on the AWA1 Dataset 

 
4.3 Comparative Analysis of a Baseline and 
Optimization-Augmented CAMeL across CUB 
Datasets  

The CUB dataset is a fine-grained 
classification benchmark with high inter-class 
similarity, making it especially challenging for zero-
shot generalization. As illustrated in figure 9, the 
proposed CAMeL+CLASAM method achieved the 
highest mSA of 76.5%, outperforming CAMeL+GA 
(74.0%), CAMeL+PSO (73.6%), and MeFAL 
(72.5%), thereby demonstrating improved retention 
of detailed visual characteristics across continual 

updates. In terms mUA, CAMeL+CLASAM 
attained 55.1% (figure 10), which is significantly 
higher than CAMeL+GA (51.7%), CAMeL+PSO 
(51.0%), and MeFAL (50.2%), indicating enhanced 
semantic transfer and generalization to novel classes. 
The mH, shown in figure 11, further confirms the 
superiority of CLASAM, with a score of 60.3%, 
which represents a 7.5% improvement over MeFAL 
and outperforms all other optimization strategies. 
These results collectively establish that 
CAMeL+CLASAM provides robust fine-grained 
adaptation in continual zero-shot learning scenarios 
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without relying on task boundaries or memory 
buffers. 
 

 

Figure 9: Mean Seen Accuracy (MSA) Comparison on the CUB Dataset 

 

 

Figure 10: Harmonic Mean (MH) Comparison on the CUB Dataset 
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Figure 11: Mean Unseen Accuracy (MUA) Comparison on the CUB Dataset 

Across all three benchmark datasets, the 
proposed CAMeL+CLASAM framework 
consistently outperformed all baseline and 
optimization-augmented techniques, including 
MeFAL, CAMeL+GA, and CAMeL+PSO. Its 
advantage was most evident in the harmonic mean 
metric, reflecting a superior balance between 
knowledge retention and generalization. These 
results suggest that CLASAM not only effectively 
mitigates catastrophic forgetting but also 
significantly enhances zero-shot learning 
performance in noisy and low-resource continual 
learning environments. 

 
5. CONCLUSION 
 

This paper presents CAMeL, a novel and 
scalable framework designed for task-free CZSL. 
CAMeL incorporates two key innovations: a Cross-
Modal Generative Memory that facilitates efficient 
knowledge retention by synthesizing multimodal 
features, and a Neural Attribute Synthesizer that 
adaptively produces semantic prompts to enhance 
generalization in noisy and resource-constrained 
environments. To further enhance adaptability and 
model stability, This work incorporated a novel 
optimization technique, CLASAM, which 
adaptively flattens the loss surface to mitigate 
catastrophic forgetting and improve unseen class 
recognition. Comprehensive experiments conducted 
on three benchmark datasets CUB, AWA1, and SUN 
demonstrated that CAMeL+CLASAM 
outperformed all comparative baselines. Notably, 
the proposed model achieved a harmonic mean of 
60.3% on CUB, 79.5% on AWA1, and 45.2% on 
SUN, surpassing both traditional optimizers and 

prior adaptive learning frameworks. These 
improvements reflected the effectiveness of CAMeL 
in maintaining a balance between knowledge 
retention and generalization, even in highly dynamic 
and multimodal environments. Overall, the results 
validate CAMeL as a powerful solution for scalable, 
task-free CZSL. The framework lays the 
groundwork for future developments in continual 
learning systems that must operate reliably in real-
world scenarios characterized by evolving tasks, 
limited supervision, and semantic noise. While 
CAMeL demonstrates strong performance in 
continual zero-shot and few-shot settings, several 
avenues remain for future exploration. One 
limitation is the reliance on predefined semantic 
attributes, which may not always be available or 
consistent across domains. Additionally, the 
framework has not yet been tested in real-time or 
edge computing scenarios, where latency and 
memory constraints are critical. Future work may 
explore integrating meta-learning strategies, 
extending CAMeL to unsupervised settings, or 
evaluating its adaptability to continual domain 
adaptation and multilingual learning contexts. 

 
REFERENCES 
 
[1] M.G. Hanna, L. Pantanowitz, R. Dash, J.H. 

Harrison, M. Deebajah, J. Pantanowitz, and H.H. 
Rashidi, “Future Of Artificial Intelligence (AI)-
Machine Learning (ML) Trends In Pathology And 
Medicine”, Modern Pathology, 2025, pp. 100705. 
https://doi.org/10.1016/j.modpat.2025.100705 

[2] S. Salehi, and A. Schmeink, “Data-Centric Green 
Artificial Intelligence: A Survey”, IEEE 
Transactions on Artificial Intelligence, Vol. 5, No. 



 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5176 

 

5, 2023, pp. 1973-1989. DOI: 
10.1109/TAI.2023.3315272 

[3] K. Yi, P. Janson, W. Zhang, and M. Elhoseiny, 
“Domain-Aware Continual Zero-Shot Learning”, 
Arxiv Preprint Arxiv:2112.12989, 2021.  
https://doi.org/10.48550/arXiv.2112.12989 

[4] M. De Lange, R. Aljundi, M. Masana, S. Parisot, 
X. Jia, A. Leonardis, and T. Tuytelaars, “A 
Continual Learning Survey: Defying Forgetting 
In Classification Tasks”, IEEE Transactions On 
Pattern Analysis And Machine Intelligence, Vol. 
44, No. 7, 2021, pp. 3366-3385. DOI: 
10.1109/TPAMI.2021.3057446 

[5] F. Pourpanah, M. Abdar, Y. Luo, X. Zhou, R. 
Wang, C.P. Lim, and Q.J. Wu, “A Review Of 
Generalized Zero-Shot Learning Methods”, IEEE 
Transactions On Pattern Analysis And Machine 
Intelligence, Vol. 45, No. 4, 2022, pp. 4051-4070. 
DOI: 10.1109/TPAMI.2022.3191696 

[6] C. Gautam, S. Parameswaran, A. Mishra, and S. 
Sundaram, “Tf-Gczsl: Task-Free Generalized 
Continual Zero-Shot Learning”, Neural Networks, 
Vol. 155, 2022, pp. 487-497. 
https://doi.org/10.1016/j.neunet.2022.08.034 

[7] B. Wickramasinghe, G. Saha, and K. Roy, 
“Continual Learning: A Review of Techniques, 
Challenges, and Future Directions”, IEEE 
Transactions on Artificial Intelligence, Vol. 5, 
No. 6, 2023, pp. 2526-2546. DOI: 
10.1109/TAI.2023.3339091 

[8] Z. Wang, E. Yang, L. Shen, and H. Huang, “A 
Comprehensive Survey Of Forgetting In Deep 
Learning Beyond Continual Learning”, IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 2024. DOI: 
10.1109/TPAMI.2024.3498346 

[9] J. Lu, and S. Sun, “Pamk: Prototype Augmented 
Multi-Teacher Knowledge Transfer Network For 
Continual Zero-Shot Learning”, IEEE 
Transactions on Image Processing, 2024. DOI: 
10.1109/TIP.2024.3403053 

[10] L. Hagström, and R. Johansson, “How To 
Adapt Pre-Trained Vision-And-Language Models 
To A Text-Only Input?”, Arxiv Preprint 
Arxiv:2209.08982, 2022. 
https://doi.org/10.48550/arXiv.2209.08982 

[11] M. Mundt, I. Pliushch, S. Majumder, Y. 
Hong, and V. Ramesh, “Unified Probabilistic 
Deep Continual Learning Through Generative 
Replay and Open Set Recognition”, Journal of 
Imaging, Vol. 8, No. 4, 2022, pp. 93. 
https://doi.org/10.3390/jimaging8040093 

[12] B. Dong, Z. Huang, G. Yang, L. Zhang, and 
W. Zuo, “MR-GDINO: Efficient Open-World 

Continual Object Detection”, Arxiv Preprint 
Arxiv:2412.15979, 2024. 
https://doi.org/10.48550/arXiv.2412.15979 

[13] Z. Ni, S. Popuri, N. Dong, K. Saijo, X. 
Zhang, G.L. Lan, and C. Wang, “Exploring 
Speech Enhancement For Low-Resource Speech 
Synthesis”, Arxiv Preprint Arxiv:2309.10795, 
2023. https://doi.org/10.48550/arXiv.2309.10795 

[14] J. Yang, B. Hu, H. Li, Y. Liu, X. Gao, J. 
Han, and X. Wu, “Dynamic VAEs Via Semantic-
Aligned Matching For Continual Zero-Shot 
Learning”, Pattern Recognition, Vol. 160, 2025, 
pp. 
111199.https://doi.org/10.1016/j.patcog.2024.11
1199 

[15] L. Wang, X. Zhang, H. Su, and J. Zhu, “A 
Comprehensive Survey of Continual Learning: 
Theory, Method and Application”, IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 2024. DOI: 
10.1109/TPAMI.2024.3367329 

[16] S. Aslam, A. Rasool, X. Li, and H. Wu, 
“Cel: A Continual Learning Model For Disease 
Outbreak Prediction By Leveraging Domain 
Adaptation Via Elastic Weight Consolidation,” 
Interdisciplinary Sciences: Computational Life 
Sciences, 2025, pp. 1-19. 
https://doi.org/10.1007/s12539-024-00675-2 

[17] W. Alhoshan, A. Ferrari, and L. Zhao, 
“Zero-Shot Learning for Requirements 
Classification: An Exploratory Study”, 
Information and Software Technology, Vol. 159, 
2023, pp. 107202. 
https://doi.org/10.1016/j.infsof.2023.107202 

[18] Z. Shang, L. Tang, C. Pan, and H. Cheng, 
“A Hybrid Semantic Attribute-Based Zero-Shot 
Learning Model for Bearing Fault Diagnosis 
under Unknown Working Conditions”, 
Engineering Applications of Artificial 
Intelligence, Vol. 136, 2024, pp. 109020. 
https://doi.org/10.1016/j.engappai.2024.109020 

[19] C. Gautam, S. Parameswaran, A. Mishra, 
and S. Sundaram, “Generative Replay-Based 
Continual Zero-Shot Learning”, In Towards 
Human Brain Inspired Lifelong Learning, 2024, 
pp. 73-100. 
https://doi.org/10.1142/9789811286711_0005 

[20] Y. Yi, G. Zeng, B. Ren, L.T. Yang, B. Chai, 
and Y. Li, “Prototype Rectification For Zero-Shot 
Learning”, Pattern Recognition, Vol. 156, 2024, 
pp. 110750. 
https://doi.org/10.1016/j.patcog.2024.110750

 


