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ABSTRACT 
 

Intrusion Detection Systems (IDS) face significant challenges in identifying minority attack classes within 
imbalanced network traffic, leading to compromised security in critical systems. To address this, we propose 
an Attention-Enhanced Long Short-Term Memory (AE-LSTM) model that integrates multi-head attention 
mechanisms with Long Short-Term Memory (LSTM) networks for robust intrusion detection. The model is 
trained on the NSL-KDD dataset using a comprehensive preprocessing pipeline that includes one-hot 
encoding, normalization, and SMOTE-based oversampling to mitigate class imbalance, particularly for rare 
attack types such as User-to-Root (U2R) and Remote-to-Local (R2L). Our architecture incorporates an 
LSTM layer with multi-head attention, residual connections, and dense layers with dropout regularization. 
Experimental results demonstrate a classification accuracy of 98.43% and a Top-5 accuracy of 100%. ROC-
AUC scores reached 1.00 for most classes, and Precision-Recall analysis confirmed high sensitivity for 
minority attacks. Visualization via t-SNE revealed distinct inter-class separation. The proposed AE-LSTM 
model significantly enhances detection performance on imbalanced datasets, presenting a promising 
approach for next-generation intrusion detection systems (IDS). 
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1. INTRODUCTION  

In today's digital world, the complexity and 
vulnerability of network infrastructures have 
significantly increased. Cybersecurity has 
become a paramount concern, with intrusion 
detection systems (IDS) playing a critical role in 
safeguarding digital assets against different 
activities. The other IDS approaches, often 
relying on authentication-based detection, 
struggle to identify novel and sophisticated 
attacks, necessitating the adoption of more 
advanced methodologies. 
Machine learning (ML) has emerged as a 
powerful tool for handling statistical data. In 
networking, intrusion detection, and cyber 
attacks, as per [2] and [16], ML models can 
capture non-sequence patterns and classify data. 
However, dynamic and sequence data features are 
interdependent, and samples also depend on each 
other. Therefore, these ML models will not 
capture sequential patterns from the networking 
data. Although this model provides better 

accuracy, it cannot handle adversarial attacks. 
Instead of simple machine learning (ML) 
methods, some researchers, such as [16], have 
implemented ensemble methods like AdaBoost 
and Random Forests, which can be adapted to 
handle class imbalance by focusing on instances 
that are difficult to classify. 
Deep learning (DL), a subset of machine learning 
(ML), addresses these limitations by 
automatically learning hierarchical feature 
representations from raw data. Among DL 
architectures, LSTM networks from [4], [13], 
[14], and [15] have shown promise in modeling 
sequential data, capturing temporal dependencies 
essential for analyzing network traffic patterns. 
LSTM networks are particularly effective in 
handling time-series data; they are perfectly 
suitable for intrusion detection tasks because this 
data consists of many dependency features related 
to time and attack.  However, only a sequential 
model, such as LSTM, can capture temporal 
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sequential patterns from a large amount of data 
when handling it. And the CNN model will not 
capture sequential dependencies from the given 
samples.  
A significant challenge while using ML and DL-
based methods for IDS is the issue of class 
imbalance in network traffic datasets. Typically, 
datasets contain a disproportionate number of 
regular traffic instances compared to various 
types of attacks, including sporadic but critical 
ones such as U2R and R2L attacks. This 
imbalance in classes can bias the learning process, 
which will lead to reduced performance for 
minority classes. 
When implementing a model for multiple-class 
classification, class imbalances can create models 
that are biased towards the majority class, leading 
to high overall accuracy but poor performance in 
detecting minority class instances. This is 
particularly problematic in intrusion detection, 
where the minority classes often represent the 
most critical threats and have a dynamic nature. 
And the attackers will attack every time with rare 
patterns, so there is no chance to delete minority 
classes. For instance, a model might achieve high 
accuracy by correctly identifying regular traffic 
but fail to detect rare but important attacks, 
rendering the IDS ineffective. Without handling 
the minority classes, training any model is not 
applicable.  
To address class imbalance, various techniques 
have been proposed to mitigate this issue. One 
common approach is data-level methods, which 
involve resampling the dataset to balance the class 
distribution. Oversampling techniques, such as 
the Synthetic Over Sampling Technique, generate 
synthetic samples for minority classes, thereby 
balancing the dataset and giving equal priority to 
all classes, allowing for more effective learning 
from underrepresented classes. Another approach 
is algorithm-level methods, which modify the 
learning algorithm to reduce bias towards the 
majority class. This includes cost-sensitive 
learning, where misclassification costs are 
adjusted to penalize errors in minority classes 
more heavily. In addition to handling class 
imbalance, incorporating attention mechanisms 
into deep learning models has improved intrusion 
detection capabilities. The attention method in 
LSTM will take position-level inputs and 
sequences related to time.  Integrating attention 
with LSTM networks enables a more nuanced 
analysis of networking and flow, which improves 
the complexity and accuracy of the model in 
detection.  

2. RELATED WORK   
 
Recent advancements in IDS, threat detection, 
and cybersecurity analytics have increasingly 
incorporated DL, hybrid architectures, and 
optimization techniques. Several studies have 
explored these integrations using benchmark and 
contemporary datasets to address evolving 
security challenges in both traditional and IoT-
driven environments. Sharma et al. [1] introduced 
MA-Deep, a multi-attention-based deep 
convolutional recurrent neural network, which 
was trained on the CICIoMT 2024 dataset—a 
modern and dynamically evolving IoT dataset. 
Their model achieved a remarkable accuracy of 
99.49%, benefiting from the synergy between 
spatial feature extraction through CNNs and 
temporal modeling via RNNs. However, the 
authors acknowledged that CNNs, while effective 
for spatial patterns, fall short in capturing 
positional and sequential dependencies inherent 
in network traffic. Kanthimathi et al. [2] 
developed multiple hybrid models that combine 
CNNs with Salp Swarm Optimization (SSO), 
followed by classifiers such as XGBoost, LSTM, 
and Random Forest. Using the CICDDoS2019 
dataset, the proposed models achieved a 
maximum accuracy of 98.63%, highlighting the 
efficacy of optimization and ensemble techniques 
for DDoS detection. 
Bhattacharya et al. [3] employed a CNN-RNN 
hybrid model using the NSL-KDD dataset. 
Despite achieving a modest accuracy of 81.38%, 
their findings indicated that while hybrid models 
offer promise, RNNs suffer from vanishing 
gradient issues, limiting their ability to capture 
long-term dependencies within sequential 
network traffic data. To address these limitations, 
Imrana et al. [4] proposed a CNN-GRU-FF 
model, which was tested on both the NSL-KDD 
and UNSW-NB15 datasets. Achieving an 
impressive 99.69% accuracy, the study 
demonstrated that gated recurrent units (GRUs), 
when combined with feedforward layers, 
effectively capture sequential and contextual 
patterns in intrusion data. Sukanya et al. [5] 
implemented a hybrid intrusion detection system 
(IDS) that fuses anomaly detection with 
conventional classification techniques using the 
UNSW-NB dataset. Although the model achieved 
an accuracy of 85.10%, it highlighted the 
importance of unsupervised pre-filtering in 
enhancing detection sensitivity. However, this 
method is limited in its ability to counter evolving 
adversarial attacks due to static clustering 
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mechanisms. Ganapaneni et al. [6] explored 
standalone and hybrid models—CNN, RNN, and 
CNN-RNN—on the NSL-KDD dataset. 
Consistent with Bhattacharya et al. [3], their 
models also reported an accuracy of 81.38%, 
underscoring the constraints of traditional 
datasets and the need for advanced feature 
engineering. Cui et al. [7] focused on intelligent 
feature extraction to improve IDS performance. 
Using the ToN_IoT and UNSW-NB15 datasets, 
their model achieved 99.55% accuracy, indicating 
that insufficient feature extraction can 
compromise robustness and suggesting the need 
for automated, intelligent pipelines. 
Aljabri et al. [8] introduced MHAID-IWSOA, an 
IDS that utilizes multi-headed attention enhanced 
by an Improved Whale Swarm Optimization 
Algorithm. Tested on the Edge-IIoT dataset, it 
achieved 98.28% accuracy, showcasing the 
benefits of combining attention mechanisms with 
evolutionary optimization for edge computing 
environments. Logeswari et al. [9] developed a 
hybrid approach integrating Adaptive Neuro-
Fuzzy Inference Systems (ANFIS), RNN, and 
Quantum-Inspired Particle Swarm Optimization 
(QIPSO) on the ToN-IoT and BOT-IoT datasets. 
Their model achieved 98.60% accuracy, 
validating the potential of combining fuzzy logic 
and deep learning (DL) to handle uncertainty in 
IoT data. Mao et al. [10] proposed MFEI-IDS, a 
Multi-Feature Extraction and Integration model 
using fully connected layers, evaluated on ISCX 
2012 and CIC-IDS 2017 datasets. With 99.47% 
accuracy, their work demonstrated the strength of 
fusing diverse features from multiple input 
streams to improve generalizability. Oladele et al. 
[11] introduced ABA-IDS, tailored for Controller 
Area Network (CAN) traffic. This anomaly-based 
model achieved 99.30% accuracy, highlighting 
the growing importance of IDS in automotive 
networks and embedded communication systems. 
Vadisetty et al. [12] addressed the issue of 
adversarial machine learning in Intrusion 
Detection Systems (IDS). Their model, tested 
across multiple datasets (UNSW_NB15, 
CICIDS2017, NID, and TON_IoT), achieved an 
accuracy of 98.90%. Their findings highlighted 
the critical need for IDS robustness against 
adversarial samples in critical infrastructure. Wu 
et al. [13] implemented an Enhanced Residual-
MBi-LSTM model on the HighD dataset. 
Achieving 98.01% accuracy, the combination of 
residual learning and bi-directional LSTM proved 
beneficial for anomaly detection in vehicular 
time-series data. Awan et al. [14] proposed 

SACNN, a spatial attention-based CNN designed 
for malware detection using the Malimg dataset. 
The model yielded 98.62% accuracy, 
demonstrating how attention mechanisms can 
enhance spatial localization in image-based 
malware classification. Liao et al. [15] developed 
a Multi-Channel Fusion model integrated with a 
Convolutional Block Attention Module (MCF-
CBAM), which achieved the highest accuracy 
among all reviewed works, at 99.94%. This 
model, tested on N-BaIoT, KDDCUP99, and 
UNSW-NB15, underscored the value of cross-
channel attention in enhancing learning 
granularity. Immadisetty et al. [16] revisited 
classical machine learning approaches, 
employing XGBoost and SVM for anomaly 
classification on the KDD dataset. Despite 
achieving a respectable 94.20% accuracy, the 
study reinforced the viability of traditional 
machine learning (ML) techniques for resource-
constrained environments. Pham et al. [17] 
proposed the AAGCN (Attention-Augmented 
Graph Convolutional Network) for activity 
recognition, evaluating it on the CMDFALL, 
MICA-Action3D, and NTU-RGBD datasets. 
Reporting 88.2% accuracy, they highlighted the 
promise of graph-based models in capturing 
spatial-temporal relations in human behavior 
analysis. 
Zhang et al. [18] introduced a novel traffic 
representation approach for intrusion detection 
using the NSL-KDD dataset, achieving an 
accuracy of 95.20%. The study emphasized 
learning representations directly from raw 
network traffic without relying on handcrafted 
features. Chithanuru et al. [19] implemented a 
hybrid RAE-GAMI-Net framework in Proof-of-
Stake blockchain environments. With 96.20% 
accuracy, the study underscored the growing need 
for anomaly detection within decentralized 
systems. Alharbi et al. [20] presented a hybrid 
model combining YAMNet and CNNs for 
industrial fault detection (IFD), evaluated on the 
MIMII dataset. Achieving an accuracy of 83.55%, 
the study addressed the challenges of acoustic-
based fault detection in noisy environments. Qiao 
et al. [21] employed a Bi-LSTM architecture on a 
custom cattle video dataset to detect behavioral 
anomalies, achieving an accuracy of 90.70%. This 
work extended IDS applications to smart 
agriculture and livestock monitoring. Chao et al. 
[22] developed MST3D, a multi-scale 
spatiotemporal 3D convolutional model for 
behavioral anomaly prevention, achieving an 
accuracy of 90.94%. Their work showcased the 
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utility of 3D Convolutional Neural Networks 
(CNNs) in surveillance-based anomaly detection. 
Jiang et al. [23] introduced memory-guided 
feature learning for visual anomaly detection, 
which was evaluated on the UCSD Ped2 and 
CUHK datasets. With 99.50% accuracy, the 
model demonstrated the effectiveness of 
attention-enhanced memory units in dense, 
context-rich environments. Malik et al. [24] 
compared CNN and SVM models for emotion-
based anomaly detection using CASME II and 
SAMM datasets. The hybrid model achieved an 
accuracy of 89.40%, reflecting the value of 
combining deep learning and conventional 
classifiers for affective analysis. Abd El-Nabi et 
al. [25] employed the Fast Gradient Sign Method 
(FGSM) for adversarial training on Eye-Blink and 
CEW datasets, attaining 99.82% accuracy. 
However, the study noted that while high-
performing, the model lacks robustness against 
evolving adversarial threats in vision-based IDS, 
particularly for human-computer interaction. 
 
3. METHODOLOGY 
 
We implemented a hybrid model that combines 
LSTM with Multi-Head Attention mechanisms to 
effectively capture sequential data, such as time 
series or natural language, for classification tasks. 
This integration will provide the strengths of both 
LSTM and attention mechanisms to capture 
temporal dependencies and focus on salient 
features within the input sequences. 
The model begins with an input layer that accepts 
data shaped according to the input shape, typically 
representing sequences over time with multiple 
features. This input is fed into an LSTM layer 
model consisting of 128 units, and the 
return_sequences parameter is set to True to 
preserve the temporal structure for subsequent 
layers. The LSTM layer also has dropout and 
recurrent dropout rates of 0.2 to prevent 
overfitting by randomly deactivating a fraction of 
units during training. LSTM networks are adept at 
capturing long-term dependencies in sequential 
data due to their gated architecture, which 
regulates the flow of information and gradients 
through time. 
After the LSTM layer, the trained data is passed 
to a Multi-Head Attention mechanism with four 
heads and a key dimension of 32. This layer 
allows the model to attend to different positions 
within the sequence simultaneously, enabling it to 
capture various contextual relationships. The 
attention process updates the weights with a 

sequence, considering the relevance of each time 
step to highlight essential features that contribute 
to effective prediction. The output of the attention 
method is combined with the original LSTM 
output through a residual connection, and the 
result is normalized using Layer Normalization 
with a small epsilon value of 1e-6 to maintain 
numerical stability. 
After the sequential layers, a feed-forward layer is 
added, consisting of a dense layer with 128 units 
and an activation function. With this, all vectors 
are converted to the range [0 to +α]. A Dropout 
layer with a dropout rate of 0.3 follows this thick 
layer. It means that 30% of the neurons are 
dropped from the network after every iteration. 
This combination introduces non-linearity and 
further regularization, enhancing the model's 
ability to learn complex patterns perfectly with 
neurons. The final output is passed through a 
Global Average Pooling layer, which aggregates 
the information across the time dimension, 
resulting in a fixed-size vector that summarizes 
the sequence's salient features. 
Finally, the model concludes with a dense output 
layer employing a softmax activation function, 
producing a probability distribution over the 
target classes. This configuration is suitable for 
multi-class classification problems, where the 
model predicts the likelihood of each class given 
the input sequence. 
a. Data pre-processing and 
Normalization 
The NSL-KDD dataset from Kaggle is used to 
train the proposed model for evaluating Intrusion 
Detection Systems (IDS). It consists of various 
features, including many classes. However, the 
dataset inherently suffers from class imbalance, 
where certain attack types, such as U2R and R2L, 
have a minimal number of samples compared to 
other classes, like DoS attacks and regular traffic. 
This class imbalance in data will create several 
challenges, such as the potential for overfitting, 
which may lead to bias towards both the majority 
and minority classes.  
To address these challenges, a comprehensive 
data preprocessing strategy was employed. 
Initially, categorical features such as protocol 
type, service, and flag were transformed using 
one-hot encoding, converting them into numerical 
representations suitable for machine learning 
algorithms. This step ensures that the model can 
effectively interpret these categorical variables.  
Subsequently, normalization techniques were 
applied to scale numerical features. 
Normalization is essential because the features in 
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the dataset vary widely in scale, ranging from one-
digit numbers to five-digit numbers; for instance, 
the duration feature can range from 0 to over 
58,000 seconds. Without normalization, features 
with larger scales will dominate the learning 
process, leading to a biased model.  The minority 
classes are balanced by generating synthetic 

samples of the minority classes through 
interpolation between existing minority instances, 
as shown in Figure 1. After preprocessing and 
balancing, the dataset was prepared for training 
and testing. The training set consisted of 100,778 
cases, while the testing set comprised 25,195 
instances.  

 
Figure 1: Original And Pre-Processed Data 

 
4. RESULT ANALYSIS AND DISCUSSION 
 
The training process for the proposed deep 
learning model was conducted over 10 epochs, 
utilizing a T5 GPU to leverage its high 
computational capabilities. The model 
demonstrated significant performance 
improvements throughout the training period, 
indicating effective learning and generalization. 
In the first epoch with random weights, the model 
achieved an accuracy of 64.01% and 83.50% on 
the training and validation sets, respectively, with 
corresponding loss values of 0.9031 and 0.4634. 
This early stage reflects the model's adaptation to 
the data and the commencement of learning 
complex patterns. 
However, from the second epoch, the training and 
validation accuracy increased to 78.09% and 
94.01%, respectively, accompanied by a decrease 
in training loss to 0.5205 and validation loss to 
0.1998. These enhancements suggest that the 
model is effectively capturing intricate features 
and reducing error rates. By the third epoch, with 
suitable weights, the model achieved training and 
validation accuracies of 80.98% and 96.90%, 
respectively. From this, it is observed that, with 

the random weights and the Adam optimizer, the 
weights are correctly updated, and the training 
and validation losses further decrease to 0.4286 
and 0.0968, respectively. This indicates continued 
refinement in feature extraction and model 
optimization. 
Throughout the subsequent epochs, the model's 
performance improves epoch by epoch, reaching 
training and validation accuracies of 96.72% and 
98.34% by the tenth epoch, as illustrated in Figure 
2. The training and validation losses also 
decreased correspondingly, indicating the model's 
robustness in learning complex features. In this, 
the accuracy and loss are correctly updated, 
preventing overfitting.  
The training durations per epoch ranged from 
approximately 361 to 439 seconds, reflecting the 
computational demands of processing a large 
dataset with complex features. Despite the 
substantial time investment, the consistent 
improvement in accuracy and loss metrics 
underscores the model's efficacy and the 
adequacy of the computational resources 
employed. 
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Figure 2: Learning Curves Of Proposed Models 

 

 
Figure 3: Confusion Matrix Of The Proposed Model 
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The proposed deep learning-based intrusion 
detection model demonstrates exceptional 
performance across all classes, effectively 
addressing both common and rare attack types. 
The evaluation metrics reveal that the model 
accurately identifies instances from each class, 
including the minority classes, indicating its 
robustness and reliability. 
Class 0 (Normal): The model achieved near-
perfect accuracy in classifying regular traffic, 
with a very high rate of correct identifications and 
a very low rate of misclassifications. This 
suggests that the model is highly effective in 
distinguishing between normal and abnormal 
network activities. 
Class 1 (DoS): For Denial of Service (DoS) 
attacks, the model demonstrated a strong ability to 
identify attacks while minimizing false positives.  
Class 2 (Probe): In detecting probing activities, 
the model maintained a high rate of correct 
classifications, ensuring that probing attempts are 
accurately identified.  

Class 3 (R2L): The model demonstrated a strong 
capability in identifying Remote-to-Local attacks, 
accurately classifying instances with minimal 
errors.  
Class 4 (U2R): Despite the rarity of User-to-Root 
attacks, the model effectively identified these 
instances, demonstrating its ability to detect even 
the least frequent attack types with high accuracy, 
as shown in Figure 3. 
The model achieved an overall accuracy of 
98.43%, indicating that it correctly classified a 
significant majority of the instances in the test 
dataset, as illustrated in Figure 4.  
Top-N Accuracy: The model's top-N accuracy 
metrics further demonstrate its effectiveness. 
With a 99.89% top-2 accuracy, 99.98% top-3 
accuracy, and 100% top-5 accuracy, the model 
ensures that the correct class is often among the 
top predictions, enhancing its practical 
applicability in scenarios where multiple potential 
threats need to be considered. 

 
Figure 4: Performance Of The Proposed Model 

Figure 5 presents the ROC and PR curves for all 
five classes. In the ROC curve (left), the model 

achieves near-perfect AUC scores for each class; 
Classes 0, 1, and 4 attain an AUC of 1.00, while 
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Classes 2 and 3 achieve an AUC of 0.99, 
indicating highly effective discrimination 
between classes. The ROC curve illustrates the 
model's performance across all classes.  On the 
right, the Precision-Recall (PR) curve provides 
insights into the model’s ability to handle 
imbalanced data and class-specific performance. 
The Average Precision (AP) values for Class 0, 1, 
and 4 are 1.00, while Class 2 and 3 slightly trail 
with 0.98 and 0.97, respectively. The nearly flat 
curves near the top right corner reflect high 
precision and recall across all classes. From this, 
it is concluded that the model reliably identifies 
relevant patterns with minimal false positives. 

Figure 6 illustrates the t-SNE visualization of the 
test sample embeddings. This non-linear 
dimensionality reduction technique projects high-
dimensional features into a two-dimensional 
space for visual inspection and analysis. Each 
color denotes a distinct class label. The resulting 
plot shows well-separated clusters, with minimal 
overlap between different classes. Notably, 
Classes 0, 1, and 3 exhibit compact and distinct 
clusters, demonstrating that the model has learned 
discriminative feature representations. Some 
minor overlaps exist between Class 2 and Class 4, 
aligning with the slightly lower PR values 
observed in Figure 1, but overall class separation 
remains strong. 

 
Figure 5: ROC And P-R Curve Of The Proposed Model 
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Figure 6: Class-Wise TSNE Of The Proposed Model 

 
Figure 7: Correctly Classifies And Misclassifies Samples With The Proposed Model On Test Data. 

 
From Figure 7, it is observed that the model 
achieves near-perfect classification accuracy for 
Classes 0, 1, 2, and 4, with over 13,000 instances 
correctly classified in each case and negligible 
misclassifications.  
In contrast, Class 3 exhibits a noticeable drop in 
classification performance. Out of the total 
samples for Class 3, approximately 5,000 
instances were misclassified, representing a 
significant portion of the total. This discrepancy 

suggests that the model struggles to distinguish 
Class 3 from other classes, possibly due to 
overlapping feature representations, class 
imbalance, or intrinsic similarities with other 
classes in the dataset. 
The findings from this figure align with the 
slightly lower AUC (0.99) and average precision 
(0.97) observed for Class 3 in the ROC and PR 
curves.  

 
Table 1: Comparison Of The Proposed Model With The Prescribed Model 

Refence Methodology Dataset Used Accuracy 
(%) 

 [3] The hybrid CNN-RNN NSL-KDD 81.38% 

 [4] A hybrid IDS integrating anomaly 
detection 

UNSW-NB15 85.10% 

 [6] CNN, RNN, and hybrid CNN-RNN NSL-KDD 81.38% 

 [8] MHAID-IWSOA Edge-IIoT  98.28% 

 [13] Enhanced Residual-MBi-LSTM HighD  98.01% 

 [16] XGBoost for anomaly classification, 
SVM 

NSL-KDD 94.20% 

 [17] AAGCN CMDFALL, MICA-
Action3D, NTU-RGBD 

88.2%  
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 [18] Network traffic representation,  network 
intrusion detection  

NSL-KDD 95.20% 

 [19] RAE-GAMI-Net Proof of Stake blockchain 96.20% 

 [20] YAMNet IFD, CNNs MIMII 83.55% 

 [21]  BiLSTM custom cattle video 90.70% 

 [22] MST3D  On the Prevention 90.94% 

 [24] CNN,  SVM CASME II and SAMM 89.40% 

Proposed 
model 

LSTM + Multi-head attention NSL-KDD 98.4% 

To test the robustness of the model, we created 
four ablated models. We evaluated and compared 
their performance with that of the original model, 
as shown in Table 2, focusing solely on the 
integration of LSTM and attention mechanisms. 
The baseline model utilized a single-layer LSTM 
with 128 units, followed by a dense layer and 
dropout, and got an accuracy of 0.91. The second 
model incorporated a Multi-Head Attention 
(MHA) mechanism after the LSTM layer, which 
captures positional and sequential patterns from 
different parts of the input sequence, with a 
performance of 0.96. The third architecture, 

which utilized a Bidirectional LSTM to capture 
contextual information from both past and future 
states, followed by MHA, achieved an accuracy 
of 0.96. The final model, which combined LSTM 
with MHA and added two dense layers to enhance 
feature representation, outperformed all the other 
models, achieving an accuracy of 0.98. All 
ablated models were trained using the Adam 
optimizer for weight update and with early 
stopping based on validation loss. Performance 
was assessed using classification metrics on the 
test set. From all the ablated models, the original 
model performed consistently.  

 
Table 2: Ablated Models With Hyperparameters And Accuracy 

Model 
Name 

LSTM 
Units 

Bi-
LSTM 

Multi-
Head 

Attention 

Dense 
Layers 

Dropout 
Rates 

Global 
Avg 

Pooling 

Acc 

LSTM 128 No No 1 × 128 0.2, 0.3 No 0.91 

LSTM + 
Attention 

128 No Yes (4 
heads) 

1 × 128 0.2, 0.3 Yes 0.96 

Bi-
LSTM + 
Attention 

64 × 2 Yes Yes (4 
heads) 

1 × 128 0.2, 0.3 Yes 0.96 

LSTM + 
Attention 
+ Dense 

128 No Yes (4 
heads) 

2 × 
(256,128) 

0.2, 0.3 Yes 0.984 

 
 
 
 
 
 



 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5160 

 

5. CONCLUSION 
 
This study presents a robust and scalable hybrid 
model that combines LSTM with multi-head 
attention to effectively capture sequential and 
temporal features, thereby detecting and 
classifying intrusion events in network traffic 
data. With the LSTM's temporal modeling 
capabilities and attention mechanisms, the model 
successfully captures complex patterns and 
highlights salient features across different attack 
types, achieving an accuracy of 0.984. The 
validated results on the NSL-KDD dataset 
demonstrate that the proposed model not only 
achieves high accuracy but also effectively 
handles minority classes and detects various types 
of adversarial attacks, which are typically 
challenging in intrusion detection systems (IDS). 
The use of the over-sampling method for data 
balancing, and with normalization and categorical 
encoding, significantly contributed to the model's 
generalization ability. Moreover, the model's 
performance is observed, including ROC, PR 
curves, and t-SNE plots, which reinforces the 
model’s discriminative capability. Although the 
classification performance slightly declined for 
the R2L class, this opens avenues for further 
enhancements using techniques such as focal loss, 
advanced class-specific augmentation, or 
adaptive attention scaling.  
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