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ABSTRACT 
 

Software development has been drastically transformed by the emergence of automatic vulnerability 
detection systems generated by the rapid expansion of artificial intelligence (AI). Application programs 
frequently encounter security threats due to error-prone & time-consuming traditional techniques of 
vulnerable code detection. Using ML and DL methods, the present study proposes an AI-driven solution to 
code vulnerability detection. Using Natural language processing (NLP) and analysis of static code, the 
recommended approach identifies possible risks, including buffer overflow, SQL injection, as well as cross-
site scripting (XSS). To optimise code security with the aid of the framework's inbuilt AI-based detection of 
vulnerabilities and real-time feedback. The outcomes of the performance assessment show that the claimed 
AI-based model excels traditional methods in terms of both error identification accuracy and efficiency. This 
research illustrates the significant role of AI in enhancing software security and gives useful insights into 
forthcoming developments in cybersecurity driven by AI. 
Keywords: Software Development, Machine Learning, Deep Learning, Cybersecurity, Natural Language 

Processing, Vulnerable Code Detection. 
 

1. INTRODUCTION 

The digital era has rendered software 
security crucial because cyber threats are becoming 
smarter, and software platforms are getting more 
intricate. Potential vulnerabilities in software 
programs can cause major issues for businesses, like 
data theft, loss of revenue, and damage to their 
reputation [1-4]. Historical ways of identifying 
vulnerabilities, like manually performing code 
reviews and using static evaluation tools, fail to cope 
well with the rapid advancements in security threats. 
This is because these techniques are rule-based and 
depend on set patterns to find risks, which can lead 
to a lot of false positives as well as missed detections 
of recent or complex vectors of attack. Furthermore, 
manual code reviews are time-consuming & prone to 

human error, thereby rendering them not suitable for 
bigger software projects. 

Software vulnerabilities are one of the 
biggest problems in today's digitally driven 
environment. The possibility of an attack area for 
malicious users increases significantly as software 
systems become more complex and interconnected 
[5-8]. A single source code vulnerability could lead 
to disastrous results, such as data breaches that 
endanger millions of user documents, losses billion-
dollar, as well as catastrophic damage to an 
organisation's brand. Over sixty per cent of breaches 
take advantage of vulnerabilities in application code, 
corresponding to Verizon Data Breach Investigative 
Report, emphasising the urgent demand for stronger 
security protocols in the development of software. 

Even though they possess 
significant advantages, conventional techniques of 
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identifying vulnerabilities are completely 
insufficient to deal with the complicated safety risks 
of today. Despite their accuracy, manually 
performing code reviews is not feasible for large-
scale projects because of their time consumption [9-
15]. Even though they are automated, static 
application security testing (SAST) solutions are not 
up to the responsibility of protecting against zero-
day vulnerabilities & new attack modes, as they 
depend so much on established standards and 
signatures. While these conventional methods 
frequently overlook complex flaws that don't fit 
noticed patterns, they consume developer time by 
producing a large number of false positives. Security 
checks need to be efficient without compromising 
completeness, which is made more challenging by 
the growing use of agile development approaches & 
continuous integration/continuous deployment 
(CI/CD) pipelines [16]. 

There are quite a lot of creative methods 
that AI can be utilised to find vulnerabilities. 
Algorithms that use deep learning, specifically those 
that have been constructed on transformer designs 
like CodeBERT as well as GPT-4, may glance at 
code lines to identify small patterns that could lead 
to security flaws. Using control flow graphs, abstract 
grammar trees & Graph Neural Networks (GNNs) 
are highly effective at sorting out the structure of 
code which is connected to other parts [17-20]. The 
best part about artificial intelligence systems is that 
they can keep improving by adapting and learning to 
new programming trends and new threat paths 
without altering their detection rules. Each day, new 
vulnerabilities are found. The National Vulnerability 
Database (NVD) recorded an average of 50 new 
Common Vulnerabilities along Exposures (CVEs). 
This capability becomes more valuable as time 
moves on. Threats to validity include dataset 
imbalance, model overfitting, and limited 
generalizability across unseen vulnerabilities. 
Critique criteria—precision, recall, F1-score, false 
positive rate, and inference time—were selected to 
ensure comprehensive evaluation of both detection 
accuracy and practical usability. 

AI-powered detection of vulnerabilities 
remains challenging despite the latest developments. 
Creating big, reliable training datasets that 
appropriately represent varying types of 
vulnerabilities across programming languages is 
hard. Certain vulnerability groups have significant 
representation in current databases, while others are 
underrepresented. The "black box" feature of many 
powerful AI models makes problem-solving abilities 
difficult for developers & security teams [21-23]. 
Training complicated models requires a lot of 

computational power, which could hinder small 
businesses. 

By integrating AI-powered detection in 
CI/CD pipelines & developer environments, "shift-
left" protection may be accomplished, enabling the 
early identification & elimination of vulnerabilities 
across the development lifecycle [24]. Patterns have 
become more transparent with the utilisation of 
explainable AI methods; the developers may use 
them to better code vulnerability warnings. New 
decentralised techniques for learning show up to 
facilitate group model enhancement without 
revealing private source code. By preventing issues 
before they enter production environments, these 
technologies can drastically alter software safety, 
moving it from a reactive one to a proactive one. 

This study provides an in-depth review of 
AI vulnerability detection methods as well as 
datasets. The machine learning modern algorithms 
are used for code analysis, to examine their efficacy 
compared to conventional techniques and offer 
analysis on logical implementation issues. The study 
shows better detection accuracy by combining NLP 
methods with deep learning methods, thereby 
lowering false positives [25]. The incorporation of 
these innovations into present development 
processes and emphasising potential study paths in 
this fast-changing sector. 

A. Problem Statement 

Traditional and current AI-based code 
vulnerability detection tools often suffer from high 
false positives, limited explainability, a lack of 
multi-language support, and poor real-time 
integration, making them unsuitable for modern, 
large-scale, and agile software development 
environments. 

Research Questions: 
1. How can AI models be designed to improve the 
accuracy and efficiency of code vulnerability 
detection across multiple programming languages? 
2. Can explainable AI techniques enhance 
developer trust and usability in automated 
vulnerability detection? 
3. How effective is the proposed AI model when 
integrated into real-time CI/CD pipelines compared 
to existing tools? 

2. METHODOLOGY 

In this proposed study AI-powered detection of 
vulnerabilities pipeline consists of data collection 
and preprocessing, feature extraction & embedding, 
model training and optimisation, vulnerability 
detection & classification, performance evaluation 
& validation. 
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A. Data Collection & Preprocessing 

Data gathering & preparation are crucial for 
developing an artificial intelligence-powered 
vulnerability identification system. The National 
Vulnerability Database (NVD) for marked CVEs, 
GitHub Security Advisories over real-world 
vulnerable projects, as well as the Software 
Assurance Reference Dataset (SARD) in curated test 
cases, are all employed to collect different source 
code specimens with vulnerable and safe executions. 
Such data sets usually contain buffer overflows, SQL 
injection, & XSS in C/C++, Java, & Python. To 
prepare raw code for machine learning analysis, it is 
substantially pre-processed. Methods such as 
Code2Vec, like CodeBERT, can be used to transform 
the processed code to numerical representations of 
data. Tokenisation involves dividing code into 

lexical components like keywords as well as 
operators. Abstract Syntax Trees (ASTs) may be 
created to capture code structure. Normalisation 
involves eliminating comments as well as 
standardising variable names. Control Flow Graphs 
(CFGs), along with additional graph-based 
representations, can also be generated as part of the 
preprocessing procedure for usage in complex 
analyses. By lowering noise, false positives and 
facilitating the AI model to obtain clean, 
standardised input, this accurate preprocessing 
significantly enhances the detection rate by 
permitting the system to concentrate on significant 
patterns instead of superficial code variations, as 
shown in Figure 1. The next step in the security hole 
detection pipeline is to categorise the processed data 
in such a manner that machine learning models can 
be built on. 

 

Figure1 Flowchart for Data Collection & Preprocessing Pipeline 

B. Feature Extraction &Embedding 

In AI-powered detection of vulnerabilities in 
systems, feature extraction & embedding act as the 
crucial connection between unrefined source code 
along machine-readable representations. Pre-

processed code is transformed into multi-
dimensional feature vectors at this phase, which 
enables quantitative analysis while retaining the 
structure of syntax and semantic meaning, as shown 
in Figure 2. A multiple-layer feature extraction of 
features process is used in modern techniques to 
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record code properties at various degrees of 
complexity. Token frequency evaluation and n-gram 
models detect recurrent patterns in poor code 
segments at the lexical level. The hierarchical 
framework of code components is extracted through 
graph traversal methods in Abstract Syntax Tree 
(AST) processing, which provides syntactic 
properties. Advanced embedding techniques such as 
Code2Vec & CodeBERT provide distributed models 
that record functional similarities across multiple 
code implementations for a greater conceptual 
understanding. 
Control flow characteristics from control flow graph 
(CFG) analysis indicate program execution paths, 
providing another dimension. Although they vary in 
execution, these alternative methods provide 

comprehensive numerical representations of 
identical vulnerabilities in the embedding domain. 
Downstream machine learning algorithms use 
mathematical operations on vector data 
representations to identify vulnerability patterns 
from the embeddings. Through recording both 
surface-level signatures as well as deeper conceptual 
connections in code, this extensive feature 
engineering approach excels over static analysis and 
enables system administrators to detect novel flaws 
that might differ from known patterns while 
remaining robust to benign code variations. The 
technology is scalable for corporate software 
projects because the embedded representations allow 
fast resemblance and pattern identification across 
huge codebases. 

 
Figure 2 Flowchart for Feature Extraction & Embedding Pipeline 

C. Model Training and Optimisation 

Machine learning models are trained and optimized 
using extracted characteristics in AI-
driven vulnerability identification techniques to 
properly identify source code security issues. Using 
labelled datasets of susceptible and safe code 
samples, supervised learning is used to educate the 
model on vulnerability patterns. CNNs discover 
local vulnerability patterns by processing embedded 
code representations, whereas RNNs and 
Transformer models evaluate consecutive 

interconnections and long-range code context. The 
neural network is trained by feeding vectorized code 
specimens, generating loss functions such as 
category cross-entropy for calculating prediction 
errors, and continually changing model parameters 
using back propagation & optimisation algorithms 
like Adam or RMSprop. Optimising the performance 
of models involves hyperparameter modification 
using the grid for optimal rate of learning and 
network designs, as well as normalisation methods, 
including dropout to prevent excessive fitting, as 
well as class weighting to handle dataset imbalances 
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with rare vulnerable samples. Advanced methods 
use transfer learning to fine-tune existing language 
models like CodeBERT for vulnerability 
identification on smaller datasets, improving 
performance. The method of optimisation also uses 
mechanisms for attention to concentrate on crucial 
code sections and ensemble approaches to aggregate 
predictions from several models for accuracy. 
Precision, recall, & F1-score guide iterative model 
changes on validation sets to assure generalisation to 
unseen code. After optimisation, the final model can 
identify vulnerabilities with excellent precision, 
along with low false positive rates, exceeding 
methods for static analysis in detection and 
adaptation to new vulnerability scenarios. 

D. Vulnerability Detection & Classification 

The next stage of AI-powered security systems is 
vulnerability detection and classification, where 
trained models analyse raw code to find and 
categorise possible security vulnerabilities. This 
stage transforms incoming code sources into 
numerical embedded data that the model can analyse 
by running it over the same extraction of features 
pipeline that was used for training. By implementing 
its acquired patterns to these embedded data, the AI 
system ranks code segments according to known 
vulnerability signs while additionally taking i the 
contextual linkages inside the code structure. The 
system generally employs a multi-label 
classification method that may simultaneously detect 
many vulnerability types (such as buffer overflow 
and SQL injection) and determine their severity 
levels using probability outputs. To increase 
reliability for complicated issues, advanced 
solutions use hierarchical grouping, which initially 
identifies major vulnerability categories before 
looking into particular versions. Through the use of 
explainability characteristics, like attention heat map 
visualizations or SHAP values, the system improves 
its predictions by exposing weak code segments and 
providing developers with evidence to support its 
conclusions. The categorising module often 
incorporates post-processing algorithms to filter 
predictions with little trust or resolve conflicts 
between several model components to preserve 
accuracy. In order to enable prompt corrective action 
inside modern CI/CD processes, the end result 
provides developers actionable security data in real-
time, comprising the vulnerability type, position in 
the source code, intensity assessment, and often 
recommended remedial solutions. By identifying 
new attack patterns using semantic analysis instead 
of signature matching, this AI-driven solution 
performs significantly better than conventional 
techniques. As it examines more source code from a 

variety of projects, its detection skills keep 
improving, which is demonstrated in Algorithm 1. 
Algorithm 1: AI Vulnerability Detection & Classification 

 

E. Performance Evaluation and Validation 

For vulnerability detection systems driven by AI 
is reliable and effective, evaluation of performance 
and validation are of the highest priority. This stage 
of the process evaluates the model's accuracy in 
detecting flaws while reducing the number of false 
positives & negatives. The usual metrics used for 
assessment include F1-score, which is the harmonic 
mean of recall & accuracy. The model's ability to 
make assumptions across training data has been 
verified by testing it on real-world code bases and 
validating datasets. K-fold splitting, along with 
additional cross-validation methods, assists in 
consistency assessment, and the area under the 
receiver operating characteristic (AUC-ROC) curves 
illustrates the balance between TP and FPR at 
various confidence levels. The AI approach 
surpasses more conventional methods for detecting 
advanced, zero-day vulnerabilities, based on 
comparison with popular tools like SonarQube as 
well as Coverity.  False positives in production 
contexts are monitored using real-world deployment 
data to ensure practical application. 

F. Natural Language Processing (NLP) for 
Code Analysis 

NLP is crucial for source code vulnerability 
evaluation. Tokenisation as well as Lexical Analysis 
splits source code into phrases, variables, operators, 
& delimiters. This process identifies code basics and 
prepares for analysis. To comprehend code structure 
and language, Abstract Syntax Trees (ASTs) are 
generated. ASTs show code structures, making 
designs, dependencies, and safety hazards like 
inappropriate function calls & unvalidated inputs 
easier to see. Code2Vec & CodeBERT Word 
Embeddings transform code into numerical vectors. 
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Contextual embeddings assist AI models recognize 
similarities in functionality and anomalies in code. 
These NLP approaches allow vulnerability detection 
devices to explore code more deeply, boosting 
security threat identification and providing 
developers valuable advice for secure coding. The 
publicly available datasets are used for vulnerability 
detection as shown in table1. 
1) Tokenization & Lexical evaluation:  
The technique of dividing source code into useful 
units (tokens) is known as tokenization. 
Mathematical representation is given by 

𝑇 = 𝑓(𝑐) = {𝑡ଵ, 𝑡ଶ….𝑡௡} 
            Here c is the source code, f is the 
tokenization function and T is the set of extracted        
tokens. 
2) Representing abstract syntax tree (ast):  
The hierarchical arrangement of code is                      
represented by an Abstract Syntax Tree. An AST is 
a tree. 
AST= (N, E) 
Here N denotes number of nodes, E represents the 
number of edges. 

3) Code2Vec & codebert -Word Embeddings:  
Word embeddings convert code into    numerical 
vectors. The transformation follows 
V= g(c) = {𝒗𝟏, 𝒗𝟐………𝒗𝒏} 
             Here g is the embedding function, v is the 
set of vectors representing code tokens. 
4) Vulnerability detection:  
Once NLP pulls features from the code, the model 
provides classification to identify vulnerabilities. 
The probability of a code snippet being vulnerable is 
given by 

𝑃(𝑉|𝑋) =
𝑃(𝑥|𝑣)𝑃(𝑉)

𝑃(𝑥)
 

here (v∣x) is the probability that code x is vulnerable. 
p(x∣v) is the probability of observing x given 
vulnerability v. 
p(v) is the probability of vulnerabilities. 
p(x) is the marginal probability of observing the 
code snippet. 
5) Training the AI model: 
  
The classification model is trained by means of a 
cross-entropy loss function. 

𝐿 = − ෍ [𝑦௜ log(𝑦పෝ) + (1 − 𝑦௜)log (1 − 𝑦పෝ)
௡

௜ୀଵ
 

Where 𝑦௜  is the actual label (1 if vulnerable, 0 if 
secure) 
𝑦పෝ  is the predicted probability 

G. Datasets Used: 
TABLE1 PUBLICLY AVAILABLE VULNERABILITY DATASETS 

Data set DescripƟon Vulnerability 
Types 

sizes 

NVD 
(NaƟonal 
Vulnerabi
lity 
Database
) 

CVE-labeled 
vulnerabiliƟe
s 

SQLi, XSS, 
Buffer 
Overflow, 
DoS 

200,00
0+ 
entries 

GitHub 
Security 
Advisorie
s 

Real-world 
vulnerable 
repositories 

Zero-day 
exploits, 
Misconfigurat
ions 

10,000
+ 
repos 

SARD 
(SoŌware 
Assuranc
e 
Referenc
e 
Dataset) 

Curated 
vulnerable/se
cure code 

InjecƟon 
flaws, 
Memory 
leaks 

50,000
+ 
sample
s 

Draper 
VDISC 

SyntheƟc & 
real 
vulnerabiliƟe
s 

Cryptographi
c flaws, Race 
condiƟons 

5,000+ 
sample
s 

3. RESULTS  

The AI-based vulnerability detection approach 
performs higher on several performance standards 
than traditional methods like SonarQube & Coverity, 
as illustrated in Table 2. Its precision of 0.92 ensures 
more accurate finding of security issues, 
outperforming SonarQube (0.76) & Coverity (0.81) 
by 21%. It additionally demonstrates a 22% increase 
in recollection of 0.88, which indicates a greater 
capacity for recognizing weaknesses. With an F1-
score of 0.90, balancing accuracy has increased by 
20% overall, as opposed to 0.74 with SonarQube & 
0.78 in Coverity. Furthermore, by significantly 
reducing the false positive rate to 0.12—57% less 
than SonarQube (0.28) & Coverity (0.23), the AI 
model reduces needless security alarms. Another 
important advantage is the AI model's inference 
time, which is 2.7 times quicker than SonarQube's 
(120 ms) & Coverity's (90 ms) code processing time 
of 45 ms. These improvements illustrate the AI 
model's greater precision, speed, and efficacy in real-
time vulnerability identification, thereby rendering a 
very good option for safe software development.  

 
Table 2: Performance Comparison Of Ai Vs 

Conventional Methods 
Metric 
 

Propos
ed AI 
model 

SonarQu
be 

Coveri
ty 

Improvem
ent 

Precisi
on 

0.92 0.76 0.81 +21% 
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F1-
Score 

0.9. 0.74 0.78 +20% 

Recall 0.88 0.72 0.75 +22% 
Inferen
ce 
Time 
(ms) 

45 120 90 2.7Ɵmes 
faster 

False 
PosiƟv
e Rate 

0.12 0.28 0.23 -57% 

 
The figure shows the comparison of accuracy and 
recall levels for three methods: AI Model, 
SonarQube, as well as Coverity. The AI Model, with 
a precision score of 0.92, has the greatest accuracy 
in recognising true positives across all detections. 
whereas SonarQube follows a little at 0.76, Coverity 
pertains with an accuracy of 0.81. Investigating 
recall, which determines the tool's ability to identify 
all pertinent problems, the AI Model succeeds with 
a recall of 0.88. Coverity has a 0.75 recall; 
SonarQube has the smallest recall at 0.72. This 
comparison shows an overall dominance of the AI 
Model in both accuracy and recall, suggesting that it 
is more trustworthy and complete in finding flaws 
without producing too many false positives. 

 
Figure 3 Comparison of Precision score in models 

In comparison to conventional rule-based and 
context-aware artificial intelligence methods, 
the vulnerability detection model based on artificial 
intelligence exhibits higher detection rates for all 
kinds of vulnerability types is illustrated in figure4. 
The AI model reaches a 95% detection rate for SQL 
Injection, significantly surpassing rule-based 
systems (82%) though slightly lagging below 
context-aware AI (97%), showing its strong capacity 
to detect injection hazards. The AI model reaches an 
89% accuracy in Buffer Overflow identification, 
substantially surpassing rule-based techniques 
(68%) and reaching the performance of context-
aware AI (93%), which underscores its efficacy in 
recognizing memory-related flaws. In Cross-Site 
Scripting (XSS) identification, the AI model 
achieves an excellent 93% detection rate, exceeding 

rule-based models (75%) and competing closely 
with context-aware AI (95%). The AI model 
efficiently finds 81% of Zero-Day vulnerabilities, 
formerly undetected threats, representing a 
significant improvement when compared to rule-
based systems (32%) that are closely behind context-
aware AI (85%). The results show that context-
aware AI slightly excels in a few instances due to its 
improved contextual comprehension, the AI model 
provides a highly efficient, adaptable and 
trustworthy solution to identify both established and 
novel security vulnerabilities, rendering it an 
effective option for safeguarding modern software 
applications. 

 
Figure 4 Detection Rates by Vulnerability Type 
 
Figure 5 shows the " detected Vulnerabilities in Test 
Set (n=1,024)" demonstrates the distribution of 
different security flaws in the dataset. SQL Injection 
(SQLi) is the most common, accounting for over 
35% of the total, which corresponds to around 358 
cases. Cross-Site Scripting (XSS), which comes 
after this at 25% (256 occurrences), is a major risk 
by letting attackers insert harmful scripts into web 
pages. Including 20% (205 cases), Buffer Overflow 
vulnerabilities could result in system crashes or 
attacks. Fifteen per cent (154 cases) of authorisation 
problems involve poor credentials or session theft. 
Finally, the remaining 5% (51 cases) have been 
made up of the "Others" category, which includes 
various vulnerabilities. This evaluation emphasises 
the significant fields that security professionals 
should concentrate on for reducing and improving 
cybersecurity defences. 
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Figure 5 Detected Vulnerabilities in Test Set 
 
Compared to studies using tools like SonarQube and 
Coverity, our AI model achieves 20–22% higher 
accuracy and 2.7× faster inference with 57% fewer 
false positives. Additionally, it contributes real-time 
CI/CD integration, multi-language support, and 
explainable AI insights, which prior works lack. 

4. DISCUSSION 

 AI-powered vulnerability detection systems contain 
semantic comprehension, flexibility, & 
explainability which showcase significant 
advantages over traditional approaches. By finding 
contextual links among variables, functions, & 
system calls, AI models acquire an extensive 
semantic hold of code, in contrast to rule-based static 
evaluation tools that depend upon preset patterns. 
due to this, they can identify patterns of 
vulnerabilities even when code is deliberately 
obfuscated. For example, they can figure out that 
every user-controlled input into a SQL query 
constructor creates a danger of injection, irrespective 
of the variables' names or structures. Identifying 
zero-day risks that were absent from the training data 
is made feasible by the system's capacity to 
generalise learnt patterns. As it examines additional 
code samples, its detection abilities are continually 
upgraded. These AI systems' ability to provide 
clarified outcomes using methods including SHAP 
(Shapley Additive exPlanations) values, which 
quantify the relative contributions of each code 
characteristic to the vulnerability estimation, is 
perhaps the most significant consideration for real-
world adoption. The unsafe_strcpy() function call, 
for instance, could be the main contributory reason 
(weight: 0.55) to the model's 78% predicted 
confidence of a buffer overflow risk, followed by an 
inadequate level of bounds verification (weight: 
0.23). AI-powered detection is extremely helpful for 
today's software safety concerns since it combines 
deep code knowledge, adaptive learning, & 

transparent decision-making. similar claims about 
AI-based vulnerability detection have been 
published, and the authors have referenced several 
key works (e.g., CodeBERT, VulEye, VUDENC). 
However, the manuscript should more clearly 
differentiate how the proposed model builds upon or 
improves these methods, specifically in terms of 
explainability, multi-language support, and CI/CD 
integration, to justify its novelty and contribution. 

Vulnerability detection powered by AI has attained 
some positive outcomes, even though it has certain 
limitations and boundaries. Reduced recall rates for 
unusual vulnerabilities are triggered by data 
imbalance; nevertheless, this could be improved by 
using techniques for synthetic data development. 
Although reductions in demand for resources 
through model quantisation & distillation, the 
computational cost is still considerable & needs 
GPU acceleration. Furthermore, the system has 
trouble detecting new attack patterns, with a false 
negative rate of 15%. This drawback is being 
resolved by incorporating active learning, thereby 
updating the framework with new types of 
vulnerabilities. The requirement for continuous 
research and advancement of AI-based security 
solutions is made clear by these constraints. 

A. Comparison 
Table 3 Comparison Table 

 

5. CONCLUSION 

AI achieved a greater accuracy of 90% for serious 
vulnerabilities such as SQL injection as well as 
buffer overflows that reduced the false-positive 

35%

25%
20%

15%5%

Sqli XSS

Butteroverflow Authissues

others

Category DescripƟon 
Strengths The study achieves high detecƟon 

accuracy, low false posiƟves, and 
fast inference while offering 
explainable outputs and mulƟ-
language support, aligning with the 
objecƟves of improving security, 
scalability, and developer usability. 

Weaknesses The model's recall on rare or zero-
day vulnerabiliƟes remains limited 
due to dataset imbalance, and high 
computaƟonal demands restrict use 
by small-scale developers. 

Future 
Research 
DirecƟons 

Future work should explore 
syntheƟc data generaƟon to balance 
rare vulnerabiliƟes, lightweight 
model architectures for broader 
adopƟon, and federated learning to 
enhance performance while 
preserving code privacy. 
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results by 60 %+ when compared to static analysis 
tools, showing the power of AI in vulnerability 
detection. Due to lexical patterns with CNNs, 
sequential dependencies with RNNs, as well as 
contextual relationships with transformer designs, 
the AI system's performance is higher. The system's 
hierarchical categorization technique is correctly 
identified as 97% in known vulnerability categories 
in the NVD& SARD datasets, and its attention 
mechanisms accurately pinpoint issues in complex 
codebases. The model maintains an excellent rate of 
detection across C/C++, Java, & Python 
programming languages, showing incredible 
generalisation. The immense drop in false positives 
(industry-average 28%-12 %) tackles one of the 
biggest application safety concerns that consumes 
developer hours sorting false warnings. The tool's 
continuous learning structures and learning transfer 
capabilities enable it to be flexible, then signature-
based options; however, it struggles to detect novel 
patterns of attack (current recall: 81% over zero-
days) and handle highly concealed code. The paper 
presents a novel AI-driven approach to code 
vulnerability detection that addresses the limitations 
of traditional methods. This work's novelty lies in its 
comprehensive methodology, integrating machine 
learning (ML) and deep learning (DL) techniques 
with natural language processing (NLP) and static 
code analysis to identify potential risks like buffer 
overflow, SQL injection, and cross-site scripting 
(XSS). 
The impact of this work is demonstrated through its 
superior performance compared to conventional 
tools like SonarQube and Coverity. The proposed AI 
model achieves significantly higher accuracy (0.92 
precision, 0.88 recall, 0.90 F1-score) and efficiency 
(45 ms inference time) while drastically reducing 
false positives (0.12 false positive rate). This 
improvement in error identification accuracy and 
efficiency highlights AI's significant role in 
enhancing software security. The research provides 
valuable insights into future AI-driven cybersecurity 
developments and emphasises the potential for AI-
powered detection to transform software safety from 
a reactive to a proactive approach, enabling early 
identification and elimination of vulnerabilities 
across the development lifecycle. 
 Early identification by an AI solution conserves 
vulnerability repair costs by 40% when incorporated 
into CI/CD pipelines & provides actionable, 
comprehensible findings that developers can quickly 
handle. It demonstrates that AI-powered detection is 
not just an incremental enhancement, but an 
essential part of contemporary safe production 
lifecycles that may expand with DevOps velocities 

while safeguarding security requirements. Future 
developments in federation learning & adversarial 
instruction might allow human-level vulnerability 
detection in specific areas. 
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