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ABSTRACT 

Fault diagnosis in industrial manufacturing is a critical issue that affects the productivity and efficiency of 
manufacturing processes. Outdated methods for fault diagnosis often rely on manual inspections, which are 
time-consuming and prone to errors. This framework proposes a deep learning-based fault diagnosis model 
to improve productivity in industrial manufacturing. The JAYA optimization algorithm and Fast Grid 
Search (FGS) are employed to optimize the hyperparameters of the model. The proposed model is 
implemented in MATLAB software and evaluated using a dataset of industrial manufacturing process data. 
The results show that the proposed model achieves high accuracy and precision in fault diagnosis, 
outperforming traditional methods. The model can identify faults early, reducing downtime and improving 
overall productivity. The findings indicate that predictive maintenance and optimized feature importance 
significantly enhance performance metrics and reduce downtime, with notable improvements in accuracy 
up to 0.99 and substantial cost savings, contributing to a return on investment of around 85%. The 
development of a more efficient and reliable fault diagnosis system for industrial manufacturing has 
contributed to this framework. Future scope includes integrating the proposed model with other machine 
learning algorithms and incorporating sensor data from multiple sources to further improve its 
performance. 

Keywords: Deep Learning, Fault Diagnosis, Industrial Manufacturing, JAYA Optimization Algorithm, 
Fast Grid Search, and CNN Architecture. 

1. INTRODUCTION 
In the rapidly evolving field of industrial 

manufacturing, the quest for enhanced productivity 
and operational efficiency remains paramount. 
Traditional fault diagnosis methods, often reliant on 
manual inspections and rule-based systems, 
struggle to keep pace with the increasing 
complexity and scale of modern manufacturing 
processes [1]. These conventional approaches are 
not only time-consuming but also prone to human 

error, which can lead to costly downtimes and 
reduced productivity [2]. The emergence of deep 
learning technologies offers a transformative 
solution to these challenges, providing the 
capability to automate and refine fault diagnosis 
with unprecedented accuracy and efficiency [3]. 
The primary problem addressed by the deep 
learning-based fault diagnosis model is the 
inefficiency and inaccuracy inherent in traditional 
fault detection methods. Manufacturing systems are 
characterized by a multitude of variables and 
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intricate interactions, making fault detection a 
challenging task [4]. Traditional methods often fail 
to capture the nuanced patterns associated with 
faults, leading to delayed or missed detections. This 
issue becomes particularly critical in high-stakes 
industries where equipment failures can lead to 
significant financial losses and safety hazards [5]. 
Manual fault diagnosis is resource-intensive and 
requires specialized expertise, which is not always 
available on-site. Implementing a deep learning-
based fault diagnosis model leverages advanced 
machine learning techniques to improve the 
accuracy and efficiency of fault detection in 
industrial manufacturing [6-7]. By utilizing deep 
neural networks, the model aims to analyze large 
volumes of sensor data and operational metrics to 
identify potential faults in real-time. This approach 
seeks to minimize human intervention, reduce 
diagnostic errors, and provide timely insights into 
equipment performance, ultimately leading to 
enhanced productivity and reduced operational 
costs [8]. The model is designed to be adaptable to 
various manufacturing environments, making it a 
versatile tool for diverse industrial applications. 
Initially, data acquisition is conducted, where 
extensive datasets of sensor readings, operational 
logs, and maintenance records are collected from 
manufacturing equipment [9]. This data is then pre-
processed to clean and normalize it, ensuring that it 
is suitable for deep learning algorithms. Feature 
extraction techniques are applied to highlight 
relevant patterns and anomalies within the data. A 
deep learning model, typically involving 
convolutional neural networks (CNNs) or recurrent 
neural networks (RNNs), is then trained on this data 
to recognize fault signatures and predict potential 
failures. The model's performance is evaluated 
using metrics such as accuracy, precision, recall, 
and F1-score, and iterative adjustments are made to 
refine its predictive capabilities [10-12].  

 The deep learning-based approach is expected 
to be transformative. Preliminary results indicate 
that the model can significantly enhance fault 
detection rates and reduce false positives compared 
to traditional methods [13]. The ability to predict 
potential faults before they manifest allows for 
proactive maintenance and reduces unexpected 
downtimes [14]. This predictive capability 
translates into higher productivity, as 
manufacturing processes can be optimized to 
minimize interruptions and maintain smooth 
operations. The automation of fault diagnosis 
reduces the reliance on specialized human 
expertise, making the system more cost-effective 
and scalable [15]. The limitations of existing fault 
diagnosis approaches in industrial manufacturing. 
As manufacturing systems become more complex 
and data-rich, the need for advanced diagnostic 

tools that can handle vast amounts of information 
and deliver accurate predictions is increasingly 
critical [16-17]. Deep learning offers a promising 
solution by providing sophisticated analytical 
capabilities that can enhance the overall efficiency 
and reliability of manufacturing processes [18]. By 
integrating these advanced techniques into fault 
diagnosis, industries can achieve significant 
improvements in productivity, safety, and 
operational excellence. The deep learning-based 
fault diagnosis model represents a significant 
advancement in industrial manufacturing, 
addressing the limitations of traditional methods 
and offering a robust solution for improving 
productivity [19]. Through its sophisticated 
analytical capabilities and predictive power, this 
model promises to revolutionize fault detection and 
maintenance practices, paving the way for more 
efficient and reliable manufacturing operations 
[20]. The novelty of this work lies in its innovative 
application of deep learning techniques to fault 
diagnosis in industrial manufacturing, coupled with 
the use of the JAYA optimization algorithm and 
Fast Grid Search (FGS) for hyperparameter tuning. 
Unlike traditional diagnostic methods that rely on 
manual inspections or basic algorithms, this 
approach leverages advanced machine learning to 
predict faults early and optimize feature 
importance, leading to significant improvements in 
accuracy, with a diagnostic performance reaching 
up to 0.99. The framework offers a data-driven, 
automated solution that reduces downtime and 
enhances overall productivity, achieving a high 
return on investment (85%). Moreover, this study 
opens the door for integrating multi-source sensor 
data, offering a pathway for more robust, real-time 
fault detection and predictive maintenance in 
industrial settings. The remaining sections are 
arranged as follows: The literature review was 
described in Section 2, the proposed technique was 
described in Section 3, the results were discussed in 
Section 4, and the paper's conclusion was described 
in Section 5. 

 
2. LITERATURE SURVEY 

Recent studies have highlighted the 
effectiveness of deep learning models in fault 
diagnosis, demonstrating significant improvements 
in industrial manufacturing productivity by 
enabling early and accurate detection of equipment 
malfunctions. Techniques such as convolutional 
neural networks (CNNs) and recurrent neural 
networks (RNNs) have been particularly successful 
in enhancing fault prediction and reducing 
downtime. Hu et al., [21] developed a robust fault 
diagnosis framework using deep learning to 
accurately identify fault states and types in power 
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systems, even amidst disturbances. The proposed 
framework, combining unsupervised deep auto-
encoding for feature extraction and supervised 
convolutional neural networks for real-time fault 
assessment, outperforms existing methods in fault 
detection and prevention. Kosuru et al., [22] 
enhanced the reliability and security of battery 
management systems (BMS) by detecting and 
classifying faulty sensors and transmission data 
using deep learning. The proposed incipient bat-
optimized deep residual network (IB-DRN) 
method, combined with z-score normalization, 
SPCA, and EMPA, significantly outperforms 
traditional techniques in identifying and classifying 
faulty battery data. Hasan et al., [23] designed, 
compared, and implemented three model-based 
fault diagnosis algorithms for robotic systems: a 
nonlinear adaptive observer (NLAO), an adaptive 
extended Kalman filter (AEKF), and an adaptive 
exogenous Kalman filter (AXKF). Each algorithm 
has distinct advantages and limitations, with the 
AXKF showing superior performance in fault 
detection and estimation for a ball-balancing robot. 
Awan et al., [24] evaluated the economic impact of 
introducing technology in Pakistan from 1985 to 
2018, focusing on its effect on GDP. In the large 
manufacturing sector, the labour force, health, 
education, and exports all positively and 
significantly impact GDP. The study underscores 
the urgent need for R&D and technology adoption 
to accelerate GDP growth and expansion. Yang et 
al., [25] assessed the impact of intelligent 
manufacturing on industrial green total factor 
productivity using data from 30 Chinese provinces 
(2006-2020). Intelligent manufacturing positively 
affects productivity, with increasing marginal 
effects across quantile levels. Human capital, green 
technology innovation, and producer service 
agglomeration enhance this effect, particularly in 
regions with carbon trading and green 
transformation policies.  

 Several recent studies have advanced the 
understanding of productivity enhancement and 
fault diagnosis in Industry 4.0 environments 
through the integration of leadership, machine 
learning, and digital technologies. Dabić et al. [26] 
explored how individual leadership values and 
capabilities significantly influence productivity, 
highlighting the importance of aligning leadership 
qualities with technological adoption to maximize 
operational efficiency. Wang et al. [27] addressed 
fault diagnosis challenges by proposing the multi-
local model decision conflict resolution (MLMF-
CR) algorithm, which effectively integrates 
heterogeneous data sources, such as vibration and 
current signals, to improve diagnostic accuracy in 
industrial motor bearings. Shafi et al. [28] 
developed a real-time deep learning framework 

using convolutional neural networks (CNNs) to 
detect faulty components in aerospace 
manufacturing, resulting in a 52.88% reduction in 
time delays and a 34.32% cost reduction, thereby 
enhancing production quality. Similarly, Khan et al. 
[29] introduced a dynamic soft sensing model using 
a fuzzy logic-based stacked data-driven auto-
encoder (FL_SDDAE) combined with a least 
square error backpropagation neural network 
(LSEBPNN), achieving 94% prediction 
performance and 85% measurement accuracy while 
reducing computational time by 34%. Alshathri et 
al. [30] proposed an efficient fault diagnosis model 
combining Digital Twin (DT) technology and 
machine learning, optimized by a Genetic 
Algorithm (GA). Their hybrid GA-SVM model 
achieved 95% accuracy, surpassing traditional 
methods and improving decision-making for 
Industrial Internet of Things (IIoT) applications. 
Collectively, these studies demonstrate that the 
integration of intelligent algorithms, leadership 
strategies, and real-time data processing 
significantly enhances fault detection, decision 
accuracy, and productivity in smart manufacturing 
systems.  

 
3. RESEARCH PROPOSED 

METHODOLOGY 
The methodology employed in developing a 

deep learning-based fault diagnosis model for 
enhancing productivity in industrial manufacturing 
involves a systematic approach to leverage 
advanced machine learning techniques. This 
includes preprocessing raw sensor data to extract 
meaningful features, which are crucial for 
accurately detecting faults in manufacturing 
processes. Supervised learning algorithms such as 
convolutional neural networks (CNNs) [31] or 
recurrent neural networks (RNNs) [32] are then 
applied to learn complex patterns and relationships 
from the preprocessed data. Transfer learning may 
also be employed to adapt models trained on 
similar tasks to the specific manufacturing context, 
optimizing performance with fewer labelled 
samples. The methodology includes rigorous 
validation procedures to ensure the model's 
robustness and generalizability across different 
operating conditions and environments within 
industrial settings. This approach not only aims to 
detect faults promptly but also supports proactive 
maintenance strategies, thereby minimizing 
downtime and improving overall productivity. The 
integration of deep learning techniques in fault 
diagnosis represents a cutting-edge solution poised 
to revolutionize manufacturing efficiency and 
reliability [33]. 
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Figure 1: Block Diagram of the Proposed Work 
Figure 1 illustrates the comprehensive 

approach of a deep learning-based fault diagnosis 
model aimed at enhancing productivity in industrial 
manufacturing. The diagram begins with Data 
Acquisition, where sensor data from manufacturing 
processes is collected in real-time. This raw data 
undergoes rigorous Data Pre-processing, utilizing 
the JAYA Optimization Algorithm to reduce 
dimensionality [34] and enhance model 
performance. This step is crucial for extracting 
relevant features that capture underlying fault 
patterns effectively. Deep Learning Models for 
Industrial Fault Diagnosis are employed, 
integrating techniques such as Fast Grid Search 
(FGS) to optimize hyperparameters efficiently. 
FGS enhances exploration across both discrete and 
continuous hyperparameter spaces, ensuring robust 
model configurations. The architecture U-
Net_CNN is specifically chosen for its ability to 
develop accurate and resilient models tailored for 
fault diagnosis tasks [35] in industrial settings. 
Optimizing Deep Learning Model Performance for 
Fault Diagnosis focuses on continuous 
improvement strategies. This includes iterative 
refinement of models based on ongoing data 
streams and feedback loops from industrial 
operations. By ensuring the models adapt to 
evolving conditions and maintain high accuracy in 
fault detection, this iterative process supports 

uninterrupted production and minimizes downtime 
[36]. 
Hypothesis of this study 

Hypothesis 1: Deep learning-based fault 
diagnosis models, when optimized using the JAYA 
algorithm and Fast Grid Search (FGS), will provide 
significantly higher accuracy and precision in fault 
detection compared to traditional manual inspection 
methods. 

Hypothesis 2: The integration of predictive 
maintenance using deep learning models will lead 
to earlier fault detection, resulting in a significant 
reduction in machine downtime and an 
improvement in overall manufacturing productivity 
[37]. 

Hypothesis 3: Optimization techniques such as 
the JAYA algorithm and Fast Grid Search (FGS) 
will improve the performance of deep learning 
models in fault diagnosis, resulting in higher 
diagnostic accuracy (up to 0.99) and more reliable 
predictions. 

Hypothesis 4: The implementation of a deep 
learning-based fault diagnosis system will result in 
substantial cost savings in industrial manufacturing 
by reducing the frequency and cost of unplanned 
maintenance, contributing to an ROI of 
approximately 85%. 

Hypothesis 5: Incorporating sensor data from 
multiple sources (e.g., temperature, pressure, 
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vibration) into the deep learning model will 
improve fault detection accuracy and robustness, 
leading to more effective fault diagnosis and 
reduced overall downtime. 
3.1. Data Acquisition 

 Sensor data and log data are collected from 
sources to monitor equipment health and detect 
faults. Vibration sensors, temperature sensors, and 
pressure sensors are installed on machinery and 
equipment to collect vibration, temperature, and 
pressure data, respectively [38]. These data help 

identify trends and patterns that can indicate 
potential equipment failures. Log data is collected 
from manufacturing systems, machine learning 
models, production systems, and maintenance 
records to provide information on production 
schedules, maintenance records, quality control 
data, model performance metrics, training data, 
production rates, quality metrics, production 
schedules, maintenance schedules, repair history, 
and maintenance costs [39].  

Table 1: Sample Sensor Data 

Sensor Type Equipment ID Date/Time Value Unit 

Vibration Machine A 2024-07-17 10:00:00 2.5 mm/s 

Temperature Machine A 2024-07-17 10:00:00 75 °C 

Pressure Machine B 2024-07-17 10:00:00 5.2 MPa 

Vibration Machine B 2024-07-17 10:00:00 0.8 mm/s 

Temperature Machine B 2024-07-17 10:00:00 68 °C 

 

Table 1 presents sample sensor data, capturing 
real-time measurements from industrial equipment. 
It includes details such as sensor type (vibration, 
temperature, pressure), equipment ID (Machines A 
and B), date and time of measurement, the recorded 
value, and its corresponding unit [40]. This data is 
crucial for monitoring equipment health and 
performance. 

Table 2: Sample Log Data 

Data Source Description Value 

Production 
System 

Last Production 
Run 

2024-07-
16, 08:00 
- 16:00 

Maintenance 
Records 

Last 
Maintenance for 

Machine A 

2024-06-
15 (Oil 

Change) 
Quality 

Control Data 
Defect Rate 
(Machine B) 

2% (Last 
Week) 

Machine 
Learning 

Model 

Anomaly 
Detection 
Accuracy 

92% 

Production 
Rate 

Average Daily 
Production 

(Machine A) 
100 units 

Maintenance 
Cost 

Yearly 
Maintenance 

Cost (Machine 
B) 

$5,000 

Table 2 compiles various log data points, 
providing insights into different aspects of the 
industrial operation. It covers information like the 
last production run, maintenance history for 
specific machines, defect rates, machine learning 

model performance, production rates, and 
maintenance costs. This aggregated data is valuable 
for analysis, optimization [41], and decision-
making within the industrial process. 
Source 

Predictive Maintenance Datasets for the 
Industries: 

 https://labelyourdata.com/articles/predictive-
maintenance-datasets 
3.2. Data Pre-processing 

Data pre-processing is a crucial step in 
machine learning that involves cleaning, 
normalizing, and feature engineering to prepare 
data for analysis and modelling. The JAYA 
optimization algorithm, inspired by the behaviour 
of flocks of birds searching for food, can be 
modified to optimize feature selection in data pre-
processing. By using an optimization algorithm, the 
most relevant features from a set of candidate 
features are selected that best represent the 
underlying relationships in the data.  
3.3. Jaya Algorithm  

The algorithm iterates through neighbour 
selection, crossover, mutation, and evaluation steps 
until a stopping criterion is reached. The objectives 
can be modified to include feature selection with 
max correlation, min-entropy, or a hybrid approach. 
By applying JAYA for feature selection, we can 
reduce dimensionality and improve model 
performance. 

 Equation (1) outlines the connection between 
the electromagnetic power and electromagnetic 
torque of a brushless DC motor. 
Pୣ ୫(t) = C(t))Ω(t) = ∑ e୧(t)i୧(t)୫

୧ୀଵ          (1) 
 In equation (1), C(t) is the electromagnetic 

torque,  represents the rotational speed, and m is the 



 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5099 

 

number of phases. The back electromotive force of 
the i-th phase is denoted by e୧(t), and i୧(t) 
represents the current of the i-th phase. 

 Once the motor reaches a steady state of 
operation, the electromagnetic power value stays 
consistent, and the motor power equation can be 
expressed using Equation (2). 
CΩ = 2EI                                                         (2) 

 In equation (2), E represents the constant back 
electromotive force, I represents the constant 
current, and C represents the constant 
electromagnetic torque. Lenz's law states that the 
back electromotive force in the motor can be 
determined by varying the coil flux. The pole 
distance for the movement of the motor rotor is 
denoted as 

஠

୮
, and equation (3) provides the formula 

for the back electromotive force. 

E =
୬

ସ

ଶ∅

஠/୮
Ω                                                        (3) 

 In Equation (3), n represents the number of 
coil turns, p represents the number of pole pairs, 
and φ denotes the magnetic flux. Equation (4) 
illustrates the formula for the magnetic flux when 
the coil is placed in a magnetic field. 
∅ = BୣS୮                                                           (4) 

 In Equation (4), Bୣ acts as the maximum 
magnetic flux density in the air gap, while S୮ 
represents the surface area of the magnetic pole. 
When the flux changes linearly with the position of 
the rotor, Equation (5) describes the expression of 
electromagnetic torque. 

C = nIBୣ
ୗ౛

ଶ஠
                                                       (5) 

Equation (6) describes the air gap area. 
Sୣ = 2pS୮                                                  (6) 
In a radial brushless DC motor, equation (7) 

describes its air gap area. 
Sୣ = πDୱL୫                                               (7) 
 Equation (7) provides the relationship between 

Dୱ, the inner diameter of the stator, and L୫, the 
stretching length of the motor. This equation is used 
to calculate the electromotive force based on 
equation (3), (4), and (7), resulting in the 
expression given by equation (8). 

E =
୬

ସ
BୣDୱL୫Ω                                          (8) 

 This study identifies the crucial structural 
parameters of a brushless DC motor, as depicted in 
Figure 2. The schematic in Figure 2 illustrates the 
essential components of a brushless DC motor. 
Equation (9) presents the formula for determining 
the key structural parameter of the brushless DC 
motor. 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧Sୣ୬ୡ ≈ hd[2π ቀ

ୈ౩

ଶ
− ebቁ − πhd − Nୣ(li + ld)

Sୣ୬ୡK୰ =
ଷ

ଶ
n

ଵ

஢
 

Dୣ୶୲ = Dୱ + 2(e + ha + hcr) 

D୧୬୲ = Dୱ = 2(eb + hd + hcs) 

hc =
ୣୠ

ୡ୭ୱ (஑/ଶ)
−

ୈ౩

ଶ
ቂ

ଵ

ୡ୭ୱ (஑/ଶ)
− 1ቃ

hi =
ୈ౩

ଶ
ቂ1 − cos ቀ

஑౟

ଶ
ቁቃ + hc cos ቀ

஑౟

ଶ
ቁ

 

            (9) 

 Equation (10) describes the law of fux 
conservation in the main magnetic circuit of a 
motor. 

BୢId = Bୣα
ୈ౩

ଶ
                                                 (10) 

 In Equation (10), Bୢ represents the magnetic 
induction intensity of the motor teeth. The magnetic 
flux from the permanent magnet of the motor flows 
through both sides of the rotor yoke, and Equation 
(11) explains the conservation of magnetic flux. 
ଵ

ଶ
B஑β ቀ

ୈ౩

ଶ
+ eቁ = Bୡ୰hcr                                 (11) 

 B஑ Equation (11) represents the intensity of 
magnetic induction for the rotor yoke, while B஑ 
denotes the residual magnetism of the permanent 
magnet. Equation (12) outlines the phase resistance. 

R୮୦ = ρୡ୳(1 + αୡ୳Tୡ୳)
୬

ଶ
Lୢୱ

ஔ

୍
                       (12) 

 In Equation (12), αୡ୳ represents the resistivity 
of the copper wire at 0 degrees Celsius, with a 
positive thermal coefficient. Tୡ୳ denotes the 
temperature of the coil, and the expression for 
copper loss is obtained from Equation (12) as 
outlined in Equation (13). 
R୨ = 2R୮୦Iଶ                                                    (13) 

The efficiency is described by Equation (14). 

η =
େஐି୔ౣ

େஐା୔ౠା୔౜
                                                  (14) 

In Equation (14), P୫ represents a mechanical 
loss. 

 Equation (15) depicts the traditional JAYA 
algorithm’s process for updating the population. 
x୧,୨′ = x୧,୨ + rଵ ∙ ൫xୠୣୱ୲,୨ − หx୧,୨ห൯ − rଶ ∙

൫x୵୭୰ୱ୲,୨ − หx୧,୨ห൯                                            (15) 
 In Equation (15), rଵ represents the value of the 

j-th variable in the optimal solution, while x୵୭୰ୱ୲,୨ 
represents the value of the j-th variable in the 
worst-case solution. Both rଵ and rଶ are random 
numbers that fall within the range of [0,1]. 

Equation (16) describes this process. 
x୧,୨′ =

ቊ
x୧,୨ + rଵ ∙ ൫xୠୣୱ୲,୨ − หx୧,୨ห൯ + rଶ ∙ ൫x୫,୨ − x୬,୨൯, if f(x୫) < f(x୬)

x୧,୨ + rଵ ∙ ൫xୠୣୱ୲,୨ − หx୧,୨ห൯ + rଶ ∙ ൫x୫,୨ − x୬,୨൯, otherwise 
  

                                                                         (16) 
 In equation (16), rଵ represents the value of the 

j-th variable in the optimal solution. x୫,୨ and x୬,୨ 
are the j-th dimensional variables of randomly 
chosen individuals in the current population, with 
the condition that m ≠  n ≠  i. 
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 Equation (17) describes the updated formula 
of the algorithm after introducing an adaptive 
strategy. 
x୧,୨

ᇱ = x୧,୨ + wଵ ∙ rଵ ∙ ൫xୠୣୱ୲,୨ − หx୧,୨ห൯ − wଶ ∙ rଶ ∙

൫x୵୭୰ୱ୲,୨ − หx୧,୨ห൯                                            (17) 
 In Equation (17), rଵ represents the value of the 

j-th variable in the optimal solution, while x୵୭୰ୱ୲,୨ 
represents the value of the j-th variable in the 
worst-case solution. The variables rଵ and rଶ are 
random quantities within the range of [0,1]. Both 
wଵ and wଶ are weight values that adjust with the 
iterations' quantities, as described in Equation (18) 
during the adaptive adjustment process. 

ቐ
wଵ = sin ቀ

஠୲

ଶ୲ౣ౗౮
+ πቁ + 1

wଶ = cos ቀ
஠୲

ଶ୲ౣ౗౮
+ πቁ + 1

                         (18) 

 In Equation (18), t represents the current 
number of iterations, while t୫ୟ୶ represents the 
maximum number of iterations. As the number of 
iterations increases, the value of wଵ decreases from 
1 to 0, and the value of wଶ increases from 0 to 1. 
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Figure 2: Flow of JAYA Algorithm 
Figure 2 depicts the flow of the JAYA 

Algorithm within a deep learning-based fault 
diagnosis model tailored for industrial 
manufacturing. The process begins with Input, 
where initial parameters and data are fed into the 
algorithm. Population initialization follows, where 
a set of solutions (individuals) is generated to 
represent potential configurations for fault 
diagnosis models. The algorithm then calculates the 
objective function for each individual, assessing its 

performance in terms of fault detection accuracy or 
other relevant metrics. It subsequently identifies the 
best and worst individuals based on these 
evaluations, utilizing this information to update the 
population dynamically. A key feature of the JAYA 
Algorithm is its adaptive selection learning 
strategy, which integrates a recurrent network to 
enhance decision-making capabilities. This 
adaptive selection mechanism continuously 
evaluates whether specified conditions are met, 
refining the population over iterations to improve 
model performance. The flowchart further 
illustrates decision points where the algorithm 
determines whether to continue refining the 
population based on current performance (denoted 
by 'N' and leading back to the step of searching for 
best and worst individuals) or to output the final 
optimized configuration ('Y' leading to Output). 
3.4. Deep Learning Models for Industrial Fault 

Diagnosis 
Fast Grid Search (FGS) is an efficient 

optimization method that combines the benefits of 
grid search and random search. Unlike traditional 
grid search, which exhaustively searches all 
possible combinations of hyperparameters, FGS 
randomly samples the hyperparameter space, 
evaluates the objective function, and refines the 
search process. This approach offers several 
advantages, including computational efficiency, 
improved exploration, and flexibility to handle both 
discrete and continuous hyperparameters. In 
industrial fault diagnosis, FGS can be used to tune 
the hyperparameters of a U-Net architecture with a 
convolutional neural network (CNN), such as the 
number of convolutional layers, filters per layer, 
kernel size, and activation functions. A 5-fold 
cross-validation grid search is employed to identify 
the optimal combination of hyperparameters and 
develop a robust and accurate model for fault 
diagnosis. 
3.5. Fast Grid Search (FGS) 

Fast Grid Search (FGS) is a streamlined variant 
of the traditional grid search algorithm used for 
hyperparameter optimization in machine learning. 
Unlike exhaustive grid search, which evaluates all 
possible combinations of hyperparameters, FGS 
intelligently narrows down the search space by 
skipping non-promising combinations early in the 
process. This efficiency is achieved by leveraging 
early stopping criteria based on the performance of 
evaluated models. By adopting a systematic 
approach to exploring hyperparameter values, FGS 
significantly reduces computational costs and time 
without compromising the quality of the final 
model. It balances the exploration of diverse 
parameter configurations with the exploitation of 
promising ones, making it particularly suitable for 
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large datasets and complex models where 
exhaustive search would be computationally 
prohibitive. FGS represents a practical and efficient 

approach to hyperparameter tuning, enhancing the 
scalability and performance of machine learning 
models across various domains. 
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Figure 3: Flowchart FGS Algorithm  
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The Figure 3 Flowchart for the Fast Grid 
Search (FGS) Algorithm outlines a streamlined 
approach to hyperparameter optimization in 
machine learning. It begins with defining a grid of 
hyperparameter values to explore. The algorithm 
systematically evaluates models using these 
configurations, starting with the first set of 
parameters. It measures the model's performance 
against predefined criteria and records the results. 
FGS then progresses to the next set of 
hyperparameters, iteratively refining its search 
based on the outcomes of previous evaluations. 
Importantly, FGS incorporates early stopping 
mechanisms, allowing it to terminate the evaluation 
of unpromising hyperparameter combinations early, 
thus conserving computational resources. This 
iterative process continues until all combinations 
within the defined grid are evaluated or until 
convergence criteria are met. The Flowchart for 
FGS demonstrates its efficiency in balancing 
thorough exploration of hyperparameter space with 
computational feasibility, thereby optimizing model 
performance effectively. 

3.6. Convolutional Neural Network (CNN) 
Architecture 

CNNs have revolutionized fault diagnosis 
in industrial manufacturing by leveraging deep 
learning techniques. CNNs excel in extracting 
intricate features from complex data such as sensor 
readings or image data, crucial for identifying 
subtle anomalies in machinery or products. This 
architecture's hierarchical layers enable automatic 
feature learning, eliminating the need for manual 
feature extraction and thus streamlining the 
diagnostic process. By harnessing large-scale data 
sets, CNNs can generalize well across diverse 
manufacturing environments, enhancing both 
accuracy and productivity in fault detection. This 
introduction highlights CNNs as pivotal tools in 
advancing industrial manufacturing efficiency 
through sophisticated fault diagnosis capabilities. 
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Figure 4: CNN Architecture 
Figure 4 Convolutional Neural Networks 

(CNNs) have emerged as a cornerstone in 
improving productivity within industrial 
manufacturing through their advanced fault 
diagnosis capabilities. CNNs are specifically 
designed to handle complex data like sensor 
readings, spectrograms, or image data commonly 
found in industrial settings. At the heart of CNN 
architecture are convolutional layers, which 
systematically scan input data using filters to 
extract hierarchical features. These filters learn 
patterns at different levels of abstraction, enabling 
the network to discern subtle variations indicative 

of faults or anomalies in machinery or products. 
Pooling layers then condense the information 
extracted by the convolutional layers, reducing 
computational complexity while retaining critical 
features. The deep layers of CNNs facilitate 
automatic feature learning, eliminating the manual 
extraction process and enhancing efficiency in fault 
detection. This attribute is crucial in industrial 
manufacturing, where timely identification of faults 
can prevent downtime, optimize maintenance 
schedules, and improve overall productivity. CNNs' 
ability to generalize from large-scale datasets 
ensures robust performance across diverse 



 Journal of Theoretical and Applied Information Technology 
31st July 2025. Vol.103. No.14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5103 

 

manufacturing environments. By continuously 
learning from new data, these models adapt to 
evolving conditions, making them invaluable tools 
for achieving higher accuracy and operational 
efficiency in fault diagnosis within industrial 
manufacturing processes. 

 Assuming that the input feature of the 
convolutional neural network is X, and the feature 
map of the i-th layer is Mi(M# = X), the 
convolution process can be expressed as: 
M୧ = f(M୧ିଵ⨂w୧ + b୧)                                (19) 

 W୧ is the weight vector of the convolution 
kernel of the i-th layer, the operation symbol ⨂ 
represents the convolution operation, and is the 
offset vector of the i-th layer, and (z) is the 
excitation function. 

 Assume M For the input of the pooling layer, 
Hi is the output of the pooling layer, then the 
pooling layer can be represented as: 
Hଵ = subsampling(M୧ିଵ)                            (20) 

 Therefore, to eliminate the influence of 
dimension differences, it is necessary to carry out 
numerical values. The normalized formula is as 
follows: 

x =
୶ି୑୧୬

୑ୟ୶ି୑୧୬
                                                    (21) 

 This experiment uses accuracy (AC) as an 
evaluation index to measure the effect of the model. 
AC formula is as follows: 

AC =
୘୔ା୘

୘୔ା୘୒ା୊୔ା୊
                                          (22) 

 Among them, TP is the number of samples of 
attack behaviours that are correctly classified;  

TN is the number of samples of normal 
behaviours that are correctly classified;  

FP is the number of samples of normal 
behaviours that are misclassified.  

FN is the number of samples of misclassified 
attack behaviours. 

 Initializes a population of potential feature 
subsets and evaluates their fitness based on 
classification metrics. Through iterative updates 
guided by equations that emulate the hierarchical 
structure dynamically refines these feature subsets.  
 D = หC. X୮(it) − X (it)ห                                (23)  

 Here, X୮(it) denotes the position vector of the 
p −th at the current iteration, while X (it)represents 
the position vector of the current wolf i. The 
coefficient matrix C scales the distance calculation, 
influencing how wolves adjust their positions in the 
search space.  
 X(it + 1) = X୮(it) − A. D                             (24)  

 At each iteration t, adjust their positions 
X(it) towards the position X୮(it) of a scaled by a 
coefficient A and a distance vector  . The distance 
vector D, typically หC. X୮(it) −  X(it)ห guides the 
magnitude and direction of movement, balancing 

the exploration of new solutions and exploitation of 
known, better-performing solutions.  
 A = 2a. rଵ − a                                                (25) 

And  
 C = 2. rଶ                                                         (26) 

 A dictates the step size with which each 
position is towards superior exploration of new 
solutions and exploitation of promising ones. The 
term 2a. rଵ − a ensures A is dynamically computed 
using a, a user-defined parameter that controls the 
magnitude of movement, and rଵ, a random factor 
introducing variability into the search. On the other 
hand, C influences the distance calculation that 
determines superior positions.  

 ቐ

D஑ = |Cଵ. X஑ − X|

Dஒ = หCଶ. Xஒ − Xห

Dஔ = |Cଷ. Xஔ − X|

                                 (27) 

And  

 ቐ
Xଵ = X஑(it) − Aଵ. D஑

Xଶ = Xஒ(it) − Aଶ. Dஒ

Xଷ = Xஔ(it) − Aଷ. Dஔ

                           (28) 

And  

X(t + 1) =
ଡ଼భାଡ଼మାଡ଼య

ଷ
                                (29)  

By calculating distances D஑, Dஒ and Dஔ based 
on the positions of alpha, beta, and delta wolves 
relative to the current solution X, scaled by 
coefficients Cଵ, Cଶ and Cଷ. The positions Xଵ, Xଶ and 
Xଷ  update the current solution X towards these 
superior positions using step sizes Aଵ, Aଶ and Aଷ . 
(fଵ, … , f୩) =

ଵ

୩
∑ v(f୧)

୩
୧ୀଵ                                (30) 

 One simple variation of the representation is 
the weighted model, where distinct vectors are 
assigned varying weights. 

(fଵ, … , f୩) =
ଵ

∑ ୟ౟
ౡ
౟సభ

∑ a୧v(f୧)
୩
୧ୀଵ               (31) 

 Each feature f୧ is assigned a weight a୧ to 
represent its relative significance. For instance, in a 
document categorization project, a feature f୧ might 
represent a word within the document, with its 
weight a୧ reflecting the word's TF-IDF value. The 
most basic neural network is the perceptron, which 
functions as a linear combination of its inputs. 

NN୔ୣ୰ୡୣ୮୲୰୭୬(x) = xW + b (32) 
x ∈ ℝୢ౟౤ , W ∈ ℝୢ౟౤×ୢ౥౫౪ , b ∈ ℝୢ౥౫౪             (33) 

 W is the weight matrix, and b is a bias term. A 
feed-forward neural network with one hidden-layer 
has the form: 
NN୑୐୔ଵ(x) = g(xWଵ + bଵ)Wଶ + bଶ          (34) 
x ∈ ℝୢ౟౤ , Wଵ ∈ ℝୢ౟౤×ୢభ , bଵ ∈ ℝୢభ , Wଶ ∈
ℝୢభ×ୢమ , bଶ ∈ ℝୢమ                                            (35) 

Wଵ and bଵ represent a matrix and bias term 
used in the initial linear transformation of the input 
data, g is a non-linear function applied element-
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wise, and Wଶ and bଶ are the matrix and bias terms 
used in the subsequent linear transformation. 
NN୑୐୔ଶ(x) = (gଶ(gଵ(xWଵ + bଵ)Wଶ + bଶ))Wଷ                                                             
(36) 

It is perhaps clearer to write deeper networks 
like this using intermediary variables. 
NN୑୐୔ଶ(x) = y                                               (37) 
hଵ = gଵ(xWଵ + bଵ)                                        (38) 
hଶ = gଶ(hଵWଶ + bଶ)                                     (39) 
y = hଷWଷ                                                       (40) 

 The hard-tanh activation function is an 
approximation of the tanh function, which is faster 
to compute and take derivatives of: 

hardtanh(x) = ൝
−1
1
x

x < −1
x > 1

otherwise
                    (41) 

 The ReLU unit clips each value x < 0 at 0. 
Despite its simplicity, it performs well for many 
tasks, especially when combined with the dropout 
regularization technique. 

ReLU(x) = max(0, x) = ቄ
0
x

 
x < 0

otherwise
       (42) 

X = xଵ, … , x୩                                                   (43) 

softmax(x୧) =
ୣ౮౟

∑ ୣ
౮ౠౡ

ౠసభ

                                  (44) 

 The multiplication f୧E will be the 
corresponding row of E. Thus, v(f୧) can be defined 
in terms of E and f୧ . ReLU units work better than 
tanh, and tanh works better than sigmoid. In many 
cases, the output layer vector is also transformed.  
3.7. U-NET Architecture 

The U-Net architecture represents a pivotal 
advancement in deep learning for fault diagnosis in 
industrial manufacturing. Originally devised for 
biomedical image segmentation, U-Net has been 
adeptly adapted to analyze and classify complex 
data from manufacturing environments. Its 
distinctive U-shaped structure integrates symmetric 
contracting and expanding pathways, optimizing 
feature extraction and preserving spatial 
information crucial for precise fault localization. By 
leveraging this architecture, industrial applications 
benefit from enhanced accuracy in identifying 
faults within intricate datasets, promoting proactive 
maintenance and minimizing downtime. U-Net's 
versatility and efficacy underscore its role as a 
transformative tool in augmenting productivity and 
operational efficiency across various sectors of 
industrial manufacturing. 

 

Figure 5: U-NET Architecture 
The Figure 5 U-Net architecture has gained 

prominence in industrial manufacturing for its 
robust capabilities in fault diagnosis and 
productivity enhancement. Its design features a 
distinctive U-shaped topology, which includes a 
contracting path for capturing context and an 
expansive path for precise localization of faults. 
This dual-path structure enables U-Net to 

effectively handle complex data such as sensor 
readings, spectrograms, or image data commonly 
encountered in manufacturing environments. At the 
core of U-Net are convolutional and pooling layers 
that facilitate automatic feature extraction and 
spatial preservation. The contracting path utilizes 
successive convolutional and pooling operations to 
extract high-level features, while the expansive path 
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employs transposed convolutions to generate a 
detailed segmentation map that highlights potential 
faults or anomalies. U-Net's architecture is 
particularly suited for tasks requiring fine-grained 
spatial resolution, crucial in pinpointing subtle 
deviations indicative of faults. By leveraging its 
learned features and spatial information 
preservation, U-Net enhances the accuracy and 
efficiency of fault diagnosis processes. This 
capability translates into minimized downtime, 
optimized maintenance schedules, and improved 
overall productivity within industrial 
manufacturing. U-Net's adaptability to different 
types of manufacturing data and its ability to 
generalize from diverse datasets underscore its 
utility as a versatile tool in industrial applications. 
Its integration into fault diagnosis models signifies 
a significant advancement towards proactive 
maintenance strategies and operational excellence 
in industrial settings. 
3.8. Optimizing Deep Learning Model 

Performance for Fault Diagnosis 
To optimize the performance of the deep 

learning model for fault diagnosis, a training 
schedule is implemented with an epoch size of 50 
to ensure that the model is thoroughly trained on 
the provided dataset. A decreasing learning rate is 
employed to prevent overfitting, which is a 
common issue in machine learning where the model 
becomes too specialized in the training data and 
fails to generalize well to new, unseen data. The 
model's performance is closely monitored using a 
range of metrics, including accuracy, precision, 
recall, and F1-score, which provide a 
comprehensive understanding of the model's 
strengths and weaknesses. Confusion matrices and 
learning curves are also visualized to identify 
potential issues and ensure fairness in the 
evaluation process. 

To ensure continuous improvement and 
accurate fault diagnosis, post-deployment 
monitoring strategies are put in place. This includes 
regular tracking of key metrics and data collection 
to detect any changes in production processes or 
fault patterns. To maintain accuracy over time, the 
model is planned to be retrained and updated 
periodically with new data and adapted its 
hyperparameters to accommodate changing 
conditions. This adaptive approach enables the 
model to learn from new patterns and faults, 
ensuring that it remains effective and accurate in 
diagnosing faults even as the production process 
evolves. By continuously refining the model, the 
system can maintain its high performance and 
provide reliable fault diagnosis capabilities for 
industrial manufacturing applications. 

Research Design 

 This comprehensive data collection enables 
the development of a predictive maintenance model 
that accurately predicts equipment failures and 
minimizes downtime. This study employs a deep 
learning-based fault diagnosis framework to 
enhance productivity in industrial manufacturing by 
reducing downtime and improving fault detection 
accuracy. The model uses the JAYA optimization 
algorithm and Fast Grid Search (FGS) for 
hyperparameter tuning, optimizing the performance 
of the deep learning system. The operationalization 
of concepts includes using industrial process data 
for training and testing the model, evaluating its 
effectiveness through metrics such as accuracy (up 
to 0.99), precision, and recall. Additionally, 
predictive maintenance and feature importance 
optimization are incorporated to proactively 
identify faults, significantly reducing maintenance 
costs and increasing operational efficiency. The 
model’s effectiveness is measured in terms of 
downtime reduction and a return on investment 
(ROI) of approximately 85%, showcasing its 
potential to improve both fault diagnosis and 
productivity in industrial settings. 
3.9. Limitations 

Data Dependency and Quality 

 Deep learning models often require large amounts 
of labelled data for training. In industrial settings, 
obtaining sufficient high-quality data can be 
challenging, especially if sensors are not well-
calibrated or data is missing. 

 In fault detection, certain types of faults might be 
rare, leading to class imbalance issues. Deep 
learning models can struggle to detect these rare 
faults unless techniques like oversampling, 
undersampling, or cost-sensitive learning are 
used. 

High Computational Cost 

 Deep learning models can be computationally 
expensive to train, requiring high-performance 
hardware such as GPUs. This increases the cost 
and time needed for model development and 
deployment, especially in resource-constrained 
environments. 

 The high computational resources required for 
deep learning models also contribute to 
significant energy consumption, which can be a 
concern in industrial settings where efficiency is 
critical. 

Interpretability and Transparency 

 Deep learning models are often considered black 
boxes, making it difficult to interpret how they 
arrive at a specific conclusion. In fault diagnosis, 
understanding why a model has identified a 
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certain fault is crucial for maintenance personnel 
and decision-makers. 

 In industrial applications, engineers and operators 
need to trust the models, and the inability to 
explain the reasoning behind a diagnosis can lead 
to skepticism about its reliability. 

Generalization Issues 

 Deep learning models are prone to overfitting, 
especially when the dataset is small or not diverse 
enough. This means that the model might perform 
well on the training data but fail to generalize to 
unseen or real-world data. 

 Faults in manufacturing systems can vary 
depending on factors like machinery age, 
environmental conditions, and maintenance 
schedules. A model trained in one environment 
may not perform well in another due to these 
differences. 

Integration with Existing Systems 

 Many industrial plants rely on legacy machinery 
and software that may not easily integrate with 
modern deep learning solutions. Implementing 
these technologies can require significant 
modification to existing infrastructure, which can 
be costly and time-consuming. 

 In many industrial applications, fault diagnosis 
needs to be performed in real time. Deploying 
deep learning models to work in real-time 
systems can be a challenge due to latency and the 
computational demands of the models. 

Deployment and Maintenance 

 Once a deep learning model is deployed, it may 
need to be updated as the system evolves or new 
types of faults emerge. Retraining models can be 
time-consuming, and changes in the 
manufacturing process may lead to the need for 
significant adjustments to the models. 

 Over time, the performance of the model might 
degrade as the underlying manufacturing system 
or fault patterns change. This phenomenon, 
known as model drift, necessitates continuous 
monitoring and periodic retraining. 
 

4. EXPERIMENTATION AND RESULT 
DISCUSSION 

 
The experimentation and result discussion for 

the deep learning-based fault diagnosis model in 
industrial manufacturing will begin with an 
introduction to the experimental setup, including 
data sources and preprocessing steps. It will then 
delve into the implementation details of the chosen 
deep learning architecture, emphasizing training 
methodologies and hyperparameter optimizations. 
Evaluation metrics such as accuracy, precision, 

recall, and F1-score will be outlined to measure the 
model's performance. The presentation of 
experimental results will follow, comparing the 
model's effectiveness with baseline approaches or 
previous studies. The discussion will interpret 
findings, addressing strengths, limitations, and 
implications for enhancing productivity in 
industrial settings. Finally, a conclusion will 
summarize key insights and propose future research 
directions to further refine and apply the fault 
diagnosis model. 

Table 3: System Configuration for Simulation 

MATLAB Version R2023a 
Operating System Windows 10 Home 

Memory Capacity 16GB DDR3 

Processor Intel Core i7 @ 3.5GHz 

 

 The system configuration for the simulation of 
this study is mentioned in the below table (3). The 
proposed method of this research work was done 
using MATLAB of version R2023a with the 
processor of core i7@ 3.5GHz and the RAM of 
DDR3-16GB.  

 
Figure 6: Impact of Predictive Maintenance 

Implementation  
Figure 6 represents the impact of predictive 

maintenance implementation on unplanned 
downtime over 12 months. The graph plots the 
monthly unplanned downtime in hours against the 
months, with the x-axis representing the months 
and the y-axis representing the unplanned 
downtime. Before predictive maintenance 
implementation, which began around Month 6, 
unplanned downtime fluctuated significantly, 
reaching a peak in Month 2 and decreasing slightly 
towards Month 6. This suggests that there was no 
consistent pattern or strategy in place to mitigate or 
prevent unplanned downtime during this period. 
The data indicates that maintenance activities were 
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likely reactive, rather than proactive, leading to the 
variability in downtime. The introduction of 
predictive maintenance around Month 6 marked a 
significant turning point. Following 
implementation, unplanned downtime began to 
decline consistently, with a notable decrease in 
downtime hours by Month 7. This reduction in 
downtime continued throughout the remaining 
months, reaching its lowest point by Month 12. The 
graph illustrates that predictive maintenance was 
successful in reducing unplanned downtime, as the 
data shows a clear downward trend. The impact of 
predictive maintenance is evident in the substantial 
reduction in unplanned downtime hours. By 
identifying potential issues before they become 
major problems, predictive maintenance enables 
proactive maintenance actions to be taken, 
minimizing the likelihood of equipment failure and 
subsequent downtime.  

 

Figure 7: Evaluation of Predictive Maintenance 
 
Figure 7 compares predicted failures, actual 

failures, and maintenance scheduled over 12 
months, showcasing the performance of the 
maintenance strategy. The predicted failures line 
exhibits a volatile pattern, peaking at month 8 and 
then dropping to a low point in month 10. Actual 
failures initially increase, reaching a peak in month 
4, but decline sharply in month 6 before rising 
again. Maintenance was scheduled near peaks in 
both predicted and actual failures, indicating 
proactive measures were taken to address potential 
issues. Despite some discrepancies between 
predicted and actual failures, the correlation 
between maintenance and both types of failures 
suggests that the strategy is effective in mitigating 
equipment failure risk. Overall, the chart highlights 
the importance of predictive maintenance in 
minimizing downtime and reducing costs by 
identifying potential equipment failures and 
enabling proactive maintenance actions. 

Table 4: Deep Learning in Industrial Fault Diagnosis 

Limitation Impact (1-
10) Numerical Impact 

Data Dependency 
and Quality 8 

>10,000 labelled 
instances, Class 
Imbalance: 1:10 

High 
Computational 

Cost 
9 

Training time: 1-10 
days, GPUs with 12-

24 GB VRAM 

Interpretability 
and Transparency 7 

SHAP/LIME explain 
80-90% of 
predictions 

Generalization 
Issues 8 

5-20% drop in 
performance without 
domain adaptation 

Deployment and 
Maintenance 6 

Retraining: 1-3 
weeks, Adaptation: 

1-2 weeks 

Table 4 shows the key limitations in applying 
deep learning to industrial fault diagnosis, along 
with their impacts and mitigation strategies. High 
data dependency and computational cost are major 
challenges, while model interpretability and 
generalization issues also hinder performance. 
Solutions like data augmentation, model 
compression, and continuous retraining can help 
improve outcomes, ensuring more reliable and 
efficient real-world applications. 

 

Figure 8: Impact of Early Detection on Equipment 
Lifespan 

 
Figure 8 illustrates the effect of early detection 

on equipment lifespan over 12 months. The 
horizontal axis represents time in months, and the 
vertical axis denotes the percentage of equipment 
lifespan remaining. The red line shows a gradual 
decline in equipment lifespan, starting at around 
70% and stabilizing at approximately 95% after 12 
months. This indicates that early detection 
significantly slows down the degradation of 
equipment. In contrast, the blue line shows a 
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steeper decline, starting at around 70% and 
reaching nearly 10% after 12 months. This 
highlights the substantial negative impact of not 
implementing early detection measures. The graph 
demonstrates that early detection is crucial for 
extending equipment lifespan. By implementing 
effective early detection systems, organizations can 
significantly reduce equipment degradation and 
optimize their asset utilization. 

 

Figure 9: Accuracy of Test Data vs. Iterations 
 
Figure 9 shows the performance of a machine 

learning model over multiple iterations, as 
measured by its accuracy on a test dataset. The 
number of iterations and the accuracy represented 
ranged from 0.53 to 0.59. The line plot reveals that 
the model's accuracy improves steadily during the 
initial iterations, with a significant increase from 
around 0.53 to 0.57 within the first 5 iterations. 
This rapid growth suggests that the model is 
learning effectively from the training data during 
this phase, with the algorithm making significant 
adjustments to improve its performance. After this 
initial rapid growth, the accuracy continues to 
increase, but at a slower pace. The model's 
performance plateaus around 0.59 after 
approximately 25 iterations, indicating that it has 
approached its optimal level of performance. This 
suggests that the model has learned most of what it 
can from the training data and is now refining its 
performance at a slower rate. 

 
Figure 10: Model Accuracy Over Time 

 
Figure 10 presents a line graph illustrating the 

change in model accuracy over time steps. The time 
steps are represented, ranging from 0 to 20, along 
with the model accuracy, spanning from 0.70 to 
0.84. Initially, at time step 0, the model accuracy 
starts at approximately 0.84. As the time steps 
progress, the model accuracy gradually decreases, 
following a downward-sloping curve. The decline 
appears to be exponential, with a steeper drop in 
accuracy during the earlier time steps and a more 
gradual decrease towards the later time steps. By 
the end of the observed time frame (time step 20), 
the model accuracy has settled around 0.70. The 
graph suggests that the model's performance, as 
measured by accuracy, deteriorates over time. This 
decline could be attributed to various factors, such 
as overfitting, changes in data distribution, or 
degradation of the model's internal parameters. 
Further analysis would be required to pinpoint the 
exact cause of this accuracy drop. 

 
Figure 11: Impact of JAYA Optimization on Feature 

Importance 
Figure 11 presents two bar charts that display 

the importance of five features before and after 
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JAYA optimization. Before optimization, the 
importance of the features was distributed as 
follows: Feature 1 had an importance of 
approximately 0.16, Feature 2 had an importance of 
approximately 0.12, Feature 3 had an importance of 
approximately 0.14, Feature 7 had an importance of 
approximately 0.12, and Feature 8 had an 
importance of approximately 0.16. After JAYA 
optimization, the importance of the features 
changed slightly. Specifically, Feature 1 increased 
its importance from 0.16 to 0.17, Feature 2 
increased its importance from 0.12 to 0.14, Feature 
3 significantly increased its importance from 0.14 
to 0.20, and Feature 8 increased its importance 
from 0.16 to 0.21. Only Feature 7 remained 
unchanged with an importance of approximately 
0.12. JAYA optimization had a notable impact on 
the importance of Features 1, 3, and 8, with these 
features becoming more important after 
optimization. In contrast, features 2 and 7 remained 
relatively unchanged. The changes in feature 
importance may suggest that JAYA optimization 
helped to identify and emphasize the most critical 
features in the dataset, which could lead to 
improved performance in a machine learning model 
or other applications where these features are used. 

 

 
Figure 12: Comparison of Hyperparameter Tuning 

Methods 
 

Figure 12 presents a bar chart comparing the 
time taken for hyperparameter tuning using two 
different methods: Traditional Grid Search and 
Faster Grid Search. The results show that the 
Traditional Grid Search method takes a significant 
amount of time, with a recorded time of 
approximately 3500 seconds. On the other hand, the 
Faster Grid Search method demonstrates a 
remarkable improvement in efficiency, taking only 

around 500 seconds to complete the 
hyperparameter tuning process. This represents a 
substantial reduction in time, with the Faster Grid 
Search method being approximately 7 times 
quicker than the Traditional Grid Search method. 
This significant difference in time suggests that the 
Faster Grid Search method is a more efficient and 
practical approach for hyperparameter tuning, 
allowing researchers and practitioners to quickly 
explore a larger design space and optimize their 
models with greater speed and agility. 

 

Figure 13: Comparison of Performance of the 
Model  

 
Figure 13 presents a bar chart comparing the 

performance metrics of four different models 
(Model A, Model B, Model C, and Model D) across 
four evaluation metrics: Accuracy, Precision, 
Recall, and F1 Score. The scores range from 0.800 
to 1.000 on the y-axis. The results show that Model 
A has the lowest scores across all metrics, with an 
Accuracy of 0.94 and Precision of 0.91, indicating a 
lower level of performance compared to the other 
models. Model B demonstrates improvement over 
Model A, with scores ranging from 0.95 to 0.97, 
suggesting a moderate level of performance. Model 
C has consistently high scores across all metrics, 
with each metric scoring around 0.97, indicating a 
strong level of performance. Model D stands out as 
the top-performing model, with an exceptional 
Recall of 0.99 and other metrics ranging from 0.98 
to 0.98. This suggests that Model D is highly 
accurate and effective in identifying relevant 
instances. The results demonstrate a clear ranking 
of the models from lowest to highest performance: 
Model A, Model B, Model C, and then Model D. 
The findings highlight the importance of evaluating 
models using multiple metrics to get a 
comprehensive understanding of their strengths and 
weaknesses and suggest that Model D may be the 
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most suitable choice for real-world applications 
where high accuracy and recall are crucial. 

 
Figure 14: Analysing of Cost-Saving Factors 

 
Figure 14 highlights the significance of cost-

saving initiatives in driving financial performance. 
A combination of three key components contributes 
to substantial cost savings, with Total Cost Savings 
accounting for 27% of the total savings. This 
category boasts an impressive ROI of around 80%, 
likely resulting from efforts to reduce operational 
expenses, streamline processes, and optimize 
resource allocation. The Cost Saving Factors 
component, which accounts for 25% of the total 
savings, also yields an ROI of around 85%, 
possibly due to initiatives such as renegotiating 
contracts, implementing energy-efficient measures, 
or reducing waste. Meanwhile, the unidentified 
third factor, responsible for 20% of the total 
savings, also generates an ROI of around 85%, 
suggesting that there may be other effective cost-
saving strategies not explicitly listed. Together, 
these three components drive significant cost 
savings, which are essential for enhancing financial 
performance. The high ROIs for each category 
demonstrate that these initiatives are generating 
substantial returns on investment. The importance 
of targeted cost-saving initiatives is underscored, 
emphasizing the need to identify and implement 
effective strategies to reduce costs and improve 
financial performance. Overall, the figure 
emphasizes the value of cost-saving initiatives in 
driving financial performance, with a combination 
of Total Cost Savings, Cost Saving Factors, and an 
unidentified third factor all contributing to 
significant returns on investment. 

 
5. RESEARCH CONCLUSION 

The framework concludes that the 
implementation of a deep learning-based fault 
diagnosis model, optimized using the JAYA 
algorithm and Fast Grid Search (FGS), significantly 
improves productivity in industrial manufacturing. 
The model achieves high accuracy and precision in 
diagnosing faults, outperforming traditional 

methods. The proposed framework has been 
successfully implemented in MATLAB software 
and evaluated using a dataset of industrial 
manufacturing process data. The findings 
demonstrate the potential of this model to 
revolutionize fault diagnosis in industrial 
manufacturing, enabling more efficient and reliable 
operations. By identifying faults early, the model 
reduces downtime, resulting in substantial cost 
savings and a return on investment of around 85%. 
The optimized feature importance and predictive 
maintenance capabilities of the model contribute to 
notable improvements in accuracy up to 0.99. 
Future developments will focus on integrating the 
model with other machine learning algorithms and 
incorporating sensor data from multiple sources to 
further enhance its performance. 
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