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ABSTRACT 
 

In recent years, Information and Communication Technology (ICT) has experienced tremendous progress 
(especially the advancement of AI-based Chatbots), profoundly affecting the global economic structure, 
social transformation, business innovation, education models, soft skills acquisition, human lifestyles, and 
so on. The main objective of this study is to develop and validate an enhanced Innovation Resistance 
Theory (IRT) model to measure the barriers of AI-based Chatbots usage among teacher trainees. This study 
mainly uses the quantitative research method and PLS-SEM for data analysis. This study finds that Value 
Barrier (VB), Risk Barrier (RB), Image Barrier (IB), Information Quality Barrier (IQB), and Job Relevance 
Barrier (JRB) have a significant and direct influence on teacher trainees’ resistance to AI-based Chatbots 
(RTAC). However, the effects of Usage Barrier (UB) and Tradition Barrier (TB) on teacher trainees’ 
RTAC are less significant. VB plays a mediating role in the relationship between Technology Anxiety (TA) 
and RTAC. RB mediates the relationship between the Electronic Word-of-Mouth Barrier (E-WOMB) and 
RTAC. JRB can also play a mediating role. This study not only proposes a new theoretical model, which is 
based on the traditional IRT model and combines new constructs (e.g., IQB and E-WOMB) and new paths 
(e.g., the mediating role of JRB), but also contributes to the cultivation of future technological talents and 
the spread and development of AI-based Chatbots in the future. 
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1. INTRODUCTION  

In recent decades, Information and 
Communication Technology (ICT) has become one 
of the most inventive technological domains and a 
crucial facilitator of innovation across different 
industries (1). ICT has experienced tremendous 
progress, profoundly affecting the global economic 
structure, social transformation, business innovation, 
education models, soft skills acquisition, and human 
lifestyles (1–4). Subjects associated with ICT have 
experienced some of the most accelerated growth in 
patent publications; their proportion of total patent 
publications increased greatly (Figure 1) (1). In 
2020, the seven largest investors in research and 
development (R&D) were all ICT companies: 

Alphabet, Amazon, Apple, Huawei, Meta, 
Microsoft, and Samsung (1). Therefore, ICT has 
gained a significant share and occupies a non-
negligible position in the global landscape, and it is 
likely to continue to have a vital influence on future 
economic dynamics, societal evolution, 
technological upgrading, educational situation, and 
others.   

As an important component of ICT, Artificial 
Intelligence (AI) incorporates multiple technologies 
such as Natural Language Processing (NLP), 
Machine Learning (ML), Deep Learning (DL), and 
has extremely strong perception, learning, 
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inferencing, and problem-solving capabilities (4–6). 

 

Figure 1: Global ICT-related Patent 
Publications from 1980-2020 

AI has outperformed human performance on 
various criteria, such as picture classification, visual 
reasoning, and English comprehension (Figure 2) 
(7). According to the International Monetary Fund’s 
staff forecasts, nearly 40 % of global employment is 
affected by AI, and about 60 % of jobs in developed 
economies are likely to be affected by AI (8). As a 
result, a number of technologies embedded in AI 
have not only demonstrated the ability to 
outperform humans in several aspects but also have 
the potential to have a widespread and profound 
impact on both the economy and the job market 
worldwide. 

 

Figure 2: Select Al Index Technical Performance 
Benchmarks VS. Human Performance 

With the iteration of AI technology, especially 
the flourishing of AI-based Chatbots represented by 
ChatGPT and Sora, the capability boundaries, 
visual scope, NLP capabilities, DL capabilities, 
simulation capabilities, and so on of AI 
technologies have been greatly improved. AI-based 
Chatbots are software programs that can 
communicate with users verbally or through text 
(6,9). Currently, many AI-based Chatbots have 
emerged globally, including but not limited to: 
ChatGPT, Google Bard, New Bing, Kimi, Ernie Bot, 
and Tongyi Qianwen. AI-based Chatbots perform 

well in programming, continuous dialogue, writing, 
text analysis, logical deduction, memory 
consolidation, and others. Numerous industries are 
also gradually being affected to varying degrees by 
AI-based Chatbots, for example: computing (10–
12), smart driving (13,14), unmanned aerial 
vehicles (UAVs) (15–17), video production (18,19), 
data science (20,21), healthcare (22,23), education 
(10,24). In the field of education, despite the huge 
possibilities of AI-based Chatbots for lesson 
planning (25–27), teaching efficiency (28,29), 
content improvement (30,31), educational 
assessments (27), personalized instruction (32), 
stimulating motivation (33), and numerous other 
benefits, it is still being resisted by lots of teacher 
trainees. The integration between AI-based 
Chatbots and education is still very insufficient, and 
many teacher trainees are resistant (e.g., postponing, 
delaying, or rejecting) to AI-based Chatbots (34–
40). 

However, previous studies mainly focused on the 
relationship between AI-based Chatbots and other 
populations (5,20,30,40–42), while the study 
targeting the specific group of teacher trainees are 
still very limited. Simultaneously, a number of prior 
researchers have attempted to utilize Technology 
Acceptance Model (TAM) (43,44), Unified Theory 
of Acceptance and Use of Technology (UTAUT) 
(45,46), Diffusion of Innovation (DOI) theory (47) 
in the field of information systems (IS) to explore 
different factors influencing users’ technology 
acceptance, while neglecting the function of 
Innovation Resistance Theory (IRT) in teacher 
trainees’ AI-based Chatbots resistance behaviors. 
Regrettably, TAM, UTAUT, DOI, and other 
theoretical models are primarily applicable to the 
analysis of technology acceptance behaviors, and it 
is difficult to capture the psychological barriers, 
physical barriers, negative behavior characteristics, 
and other factors of users in terms of technology 
resistance behaviors. Since this study mainly 
focuses on the technology resistance behaviors of 
teacher trainees, these theoretical models are not 
suitable for this study. IRT provides a 
comprehensive framework to analyze why users are 
resistant to adopting new products or technologies, 
and explains in-depth the resistance behaviors of 
consumers when they are confronted with new 
technologies or products (48–52), so it is suitable to 
be used as the basic theoretical framework for this 
study. Additionally, historical research on IRT has 
primarily focused on its five foundational variables 
(Usage Barrier (UB), Value Barrier (VB), Risk 
Barrier (RB), Tradition Barrier (TB) and Image 
Barrier (IB)) (53–58), but ignoring empirical 
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examinations of Information Quality Barrier (IQB) 
and Job Relevance Barrier (JRB). 

Noticeably, with the development of information 
technology (IT), the quality of information 
generated by AI-based Chatbots is becoming more 
and more important. With respect to teacher 
trainees, if the content generated by AI-based 
Chatbots has serious IQB (e.g., fraudulent 
information, misleading teaching guidelines, or 
non-verified statistics), it is quite likely to lead 
teacher trainees to resist AI-based Chatbots. 
Unfortunately, a lot of previous studies have paid 
attention to the relationship between information 
quality and the adoption of other technologies 
(45,59,60), while neglecting to deeply analyze the 
association between IQB and the resistance 
behaviors of AI-based Chatbots, particularly among 
the peculiar group of teacher trainees.  

Besides, the JRB signifies teacher trainees’ 
perception of barriers referring to the degree to 
which the AI-based Chatbots are applicable to his 
or her job. If teacher trainees perceived that AI-
based Chatbots are irrelevant to their present job 
and future work contents, they may lack enough 
motivation to accept these innovative technologies. 
Nevertheless, past studies have largely focused on 
the positive impact of job relevance on acceptance 
behaviors (29,61–63), while ignoring the influence 
of JRB among teacher trainees.  

Previous work has also noted the significant 
effect of Technology Anxiety (TA) on adoption 
behaviors or resistance behaviors (64–69), but very 
few studies have explored the indirect effects of TA 
on resistance to AI-based Chatbots (RTAC) 
behaviors via VB and JRB. The role of Electronic 
Word-of-Mouth Barrier (E-WOMB) in consumer 
decision-making behaviors should also not be 
ignored (65,70–72), while the relationship between 
E-WOMB and RTAC has not been fully explored, 
especially when RB, JRB are used as mediating 
variables. 

Therefore, the main objective of this study is to 
develop and validate an enhanced IRT model to 
measure the barriers of AI-based Chatbots usage 
among teacher trainees. Within this enhanced IRT 
model, this study also empirically examines the 
relationship between IQB, JRB, and teacher 
trainees’ RTAC. Teacher trainees are both users and 
future promoters of AI-based Chatbots techniques. 
The persistence of barriers may result in 
technological lags, economic losses, and weakened 
competitive advantages. Although innovation has 
been one of the focuses of scholars, however, 

previous researchers have devoted more attention to 
the logical relationship between AI-based Chatbots 
and positive attributes and less attention to the 
logical relationship between AI-based Chatbots and 
negative attributes (73,74). One of core concerns of 
this study focuses on the barriers of AI-based 
Chatbots usage among teacher trainees, and its 
choice is also based on the considerations: (1) 
Theoretical gap: the existing theoretical models for 
measuring teacher trainees’ RTAC are still very 
rare; (2) Realistic demand: studying this topic will 
not only contribute to the spread of AI-based 
Chatbots among teacher trainees, but also 
contribute to the cultivation of future technological 
talents and the spread and development of AI-based 
Chatbots in the future society; (3) Method 
innovation: the test of the negative factors and new 
scale in this paper can capture the essence of 
barriers more accurately and make up for the 
limitations of traditional methods. This study not 
only helps to extend the theoretical boundaries, 
suitable scope, and applicable groups of the IRT 
model, but also provides referenceable data and 
practical guidance for overcoming the barriers in 
the process of AI-based Chatbots diffusion. 

 

2. LITERATURE REVIEW 
2.1 Information and Communication 
Technology (ICT) 

In recent decades, the significant advancement of 
ICT has resulted in many economic and non-
economic transformations, social revolutions, 
lifestyle modifications, and education changes 
across the world (3,4,32,75). ICT applications 
include but are not limited to NLP, internet of 
Things (IoT), virtual reality (VR), augmented 
reality (AR), mixed reality (MR), automatic speech 
recognition (ASR), online learning platforms, 
intelligent tutoring systems, metaverse, AI-based 
Chatbots (1,32,76,77). From 2005 to 2019, the 
global ICT services exports virtually increased 
fourfold, which was mostly due to IT services, and 
the proportion of ICT services in overall services 
exports increased consistently from 7% to 11% (see 
Figure 3) (1). In 2022, IT services, the fundamental 
component of ICT services exports, increased by 
43% relative to 2019 (1). According to the Trade in 
Value-Added (TiVA) data set, the value-added 
development rate of IT services is around double 
that of the global economy, outperforming all other 
industries during the previous two decades (1). 
Nonetheless, a series of difficulties and challenges 
have arisen, such as ethical issues (32), regional 
imbalance issues (1,4), and outdated infrastructure 
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(75). Therefore, reviewing the great opportunities 
and myriad challenges that have arisen during the 
evolution of ICT also provides a valuable reference 
for the continuation of this study. 

 

Figure 3: The Global ICT Services Exports 

2.2 Artificial Intelligence  
As one of the crucial branches of ICT, the role of 

AI in enhancing international competitiveness, 
allocating resources, knowledge management, 
digital transformation, and improving decision-
making efficiency cannot be underestimated, and it 
has become one of the core driving forces of the 
fourth industrial revolution (78–82). According to 
Statista data, the market size of AI is projected to 
exhibit a compound annual growth rate (CAGR 
2025-2030) of 27.67%, culminating in a market 
volume of US$826.73 billion by 2030 (83). 
Simultaneously, the AI market’s impact on GDP 
might reach 50% to 70% by 2030 (Figure 4) (83). 
PwC’s Global Artificial Intelligence Study indicates 
that global GDP may increase by as much as 14% 
by 2030 due to AI, representing an additional $15.7 
trillion, hence being the most significant 
commercial potential in the current rapidly evolving 
economy (84). Numerous countries have also paid 
high attention to the evolution of AI and have taken 
a series of measures in many aspects such as 
financial investment, policy preference, talent 
cultivation, and technological upgradation, for 
example: the United States, Canada, United 
Kingdom, Australia, Singapore, China (4,85–88). 

In terms of industries, AI has also had a 
widespread and profound impact on different 
industries, including healthcare, finance, industrial 
robotics, knowledge management, marketing, 
journalism, movies, short videos, art, unmanned 
vehicles, UAVs, education, and so on. For example, 
in the healthcare industry, AI is playing a role in 
empowering medical professionals to diagnose 
patients with a wide range of diseases, reshaping 
healthcare business models, innovating system 
performance, improving the patient experience, and 
others (89–91). In the financial domain, AI has 
tremendous potential in stock price prediction, asset 

allocation, investment consulting, risk control, 
algorithmic transactions, fraud detection, credit 
scoring, and other directions (92–95). In the 
educational sector, AI presents both a lot of 
opportunities, such as: a smart tutoring system (96), 
supplementary teaching and learning 
resources(97,98), programming self-efficacy (99), 
tailoring the learning experience (100), and human-
computer interaction (101); and various challenges, 
such as: inappropriate utilization of AI technologies 
(98), misinformation (101), algorithmic biases (24), 
ethical issues (96,102), or privacy concerns (24). As 
a result, the current growing tendency of AI is hard 
to stop, and how to make full use of the advantages 
brought by AI to raise international competitiveness, 
optimize the economic and social structure, and 
promote the development of different industries 
while circumventing the incidental negative effects 
and so on are all problems worthy of further in-
depth study. 

 

Figure 4: The Impact of the Artificial Intelligence 
Market on GDP 

2.3 Artificial Intelligence-Based Chatbots and 
Teacher Trainees 

In recent years, AI-based Chatbots, which are 
supported by large-scale language models, for 
instance ChatGPT, Bard, Grok, New Bing, Kimi, 
Ernie Bot, Tongyi Qianwen, DeepSeek, have 
significantly improved the ability of AI in various 
dimensions, such as language understanding, 
information generation, human-computer 
interaction, and content analysis (6,98,103,104). AI-
based Chatbots fully leverage NLP, ML, DL, Deep 
Neural Network (DNN), Sentiment Analysis (SA), 
Context-Awareness, Conversation Management, 
and other technologies to enable computers to 
engage in human-like verbal interactions that lead 
to conversations, question answering, and task 
completion (9,10,33,98,103). According to Deloitte 
forecasts, with the rapid growth in demand for 
generative artificial intelligence (GAI) training and 
inferencing, global data center electricity use might 
double to about 1,065 TWh by 2030 (Figure 5) 
(105). 
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Figure 5: Global Data Center Electricity Use 
Expected    (Note: P represents the predicted value) 

GAI has the potential to contribute approximately 
$4.4 trillion annually to the world’s economy, 
transforming industries and worldwide commerce 
(106). AI-based Chatbots have begun to influence a 
variety of different industries, including but not 
limited to e-commerce, customer service, short 
video making, healthcare, and education. For 
instance, in the domain of customer service, AI-
based Chatbots are playing a role in enhancing 
customer engagement (107), improving customer 
satisfaction (108), smart searching (109), and 
maintaining brand reputation (110). In the field of 
education, AI-based Chatbots are becoming an 
important tool to support teaching and learning. AI-
based Chatbots offer a number of benefits for 
teaching and instruction in different aspects, like 
teaching methods (29,31,111), teaching resources 
(31,101,111), individualized feedback (27,30,112), 
customized tutoring (31,32,76,111), students’ self-
paced learning (24,32,99), classroom management 
techniques (5,61,63,102,111), and many others. 

Despite AI-based Chatbots having so many 
advantages and benefits, however, many teacher 
trainees still show different levels of resistance (e.g. 
rejection, postponement, procrastination, or even a 
tendency of opposition) to AI-based Chatbots 
(34,36,39,112–114). Some teacher trainees’ 
resistance to AI-based Chatbots may derive from 
technological incompatibility, perceived value 
barriers, risk worries, traditional perceptions, or 
unfavourable images (34,39,43,50,99,111–113,115–
117). Notably, teacher trainees, as future educators, 
are both important consumers and influential 
promoters of AI-based Chatbots, while their 
negative attitudes or resistance behaviours towards 
AI-based Chatbots will directly affect the valid 
promotion and application of AI-based Chatbots in 
future education. However, so far, there is still a 
lack of suitable and valid theoretical models to 
measure the relationship between the main barriers 

and teacher trainees’ resistance to AI-based 
Chatbots. 

2.4 Innovation Resistance Theory 
Previous studies have attempted to study AI-

based Chatbots with different theoretical models, 
such as TAM (118–120), UTAUT 1 or 2 (121,122), 
Diffusion Theory of Innovation (123), Theory of 
Social Support (124), Protection Motivation Theory 
(PMT) (125), Elaboration Likelihood Model (ELM) 
(126), Expectation-Confirmation Model (ECM) 
(122), Use and Gratification Model (127), Status 
Quo Bias (SQB) Theory (128), and so forth, but 
they have mainly focused on testing the acceptance 
willingness or adoption behaviours of different 
groups of people, and have neglected to measure 
the resistance behaviours of teacher trainees to AI-
based Chatbots from the negative perspective. 

In exploring the phenomenon of teacher trainees 
resisting AI-based Chatbots, choosing the 
appropriate theoretical framework is critical. 
Although models of technology acceptance 
categories commonly employed in past research 
have delivered essential theoretical support for 
understanding technology adoption behaviour, these 
models primarily concentrate on users’ positive 
acceptance paths to technology, emphasizing 
positive drivers such as perceived usefulness, ease 
of use or hedonic motivation, while these theories 
are inadequate for explaining why teacher trainees 
resist emerging technologies. 

In contrast, Innovation Resistance Theory (IRT) 
(Ram & Sheth, 1989) provides a more 
comprehensive perspective for understanding 
technological resistance behaviours by 
systematically analysing the Usage Barrier (UB), 
Value Barrier (VB), Risk Barrier (RB), Tradition 
Barrier (TB) and Image Barrier (IB) that users 
encounter in accepting innovative technologies. 
Inside the classical constructs of the IRT model, the 
UB primarily refers to the incompatibility between 
innovative products and consumers’ existing 
workflows, practices, or habits (50,129). Prior 
investigations in information systems have shown 
that the correlation between UB and the acceptance 
of different merchandise has garnered significant 
scholarly focus (130–135). VB is mostly associated 
with a weaker performance-to-price value, 
particularly in comparison to alternatives (50,136). 
In the past, the role of VB has also been tested in 
different scenarios, which include MOOC (134), 
eco-friendly cosmetics (135), hotel booking apps 
(132), mobile payment (137), and so on. Ram and 
Sheth (1989) posited that consumers were likely to 
postpone or reject the adoption of new commodities 
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after recognizing the relative RBs, which contained 
economic risk, social risk, physical risk, and 
functional risk. The correlation between RB and the 
acceptance or resistance to innovation has been 
acknowledged as significant by numerous prior 
surveys (51,54,64,130,137–139). For example, 
teacher trainees may be resistant to AI-based 
Chatbots because of worries about the potential RB, 
including ethical risks, privacy leakage, 
misinformation dissemination, and more. Some 
teacher trainees may prefer to follow the traditional 
mode (one of RB) of teaching because it is more 
familiar and comfortable for them, whereas AI-
based Chatbots are unable to offer timely 
communication or emotional support during the 
teaching process, leading to some teacher trainees’ 
RTAC. 

Ram and Sheth (1989) thought that TB for 
personal customers might arise when their 
behaviours deviate from social norms or familial 
values. There was a number of published literature 
explaining the effects of TB (53,133–135,137,139–
141). IB is mainly related to the customer’s 
unfavourable image of a product, which may stem 
from any unfavourable association, such as the 
category to which the product belongs, the industry 
to which the product belongs, or the country in 
which the product is manufactured (50). The impact 
of IB has attracted heightened attention from 
several researchers (134–137,142). Synchronously, 
the IRT has been validated and applied to a number 
of areas of research, for example: mobile payments 
(52,143), service robots (SRs) (144), metaverse 
(145), facial recognition payment (146), driver 
assistance systems (147), smart hotels (74,148), 
non-fungible tokens (NFTs) (56,149), green IT 
(150), shopping platforms (151), over-the-top 
services (OTTs) (152), autonomous delivery 
vehicles (ADVs) (153), online-learning (154), 
healthcare (155), fitness apps (156), online dating 
apps (ODAs) (157), algorithm aversion (158), 
online-to-offline (O2O) platforms (159), virtual 
streamers (160), electric vehicle  (161,162), travel 
applications (163,164), and so on. Therefore, the 
IRT is a suitable foundational model for this study, 
which not only contributes to deepening the 
understanding of the phenomenon of teacher 
trainees’ RTAC at the theoretical level and 
identifying some of the major barriers behind this 
phenomenon, but also helps to propose valuable 
references for the direction of technological 
research and development of AI-based Chatbots and 
their applications at the practical level. 

However, with the shifting economic situation, 
social restructuring, and technological advances, 
especially the rapid changes in generative AI such 
as ChatGPT, the limitations of the traditional IRT 
model have been gradually exposed, for example: 
insufficient consideration of the quality of the 
information generated, and insufficient 
comprehensiveness in capturing the technical 
features. Prior researchers have experimented with 
adding some variables such as mobile 
innovativeness (165), embarrassment (146), inertia 
(159), expertise barriers (166), technology 
vulnerability barriers (152), surveillance (143), 
information overload (167), or moderating variables 
such as attitude (157), gender (153), environmental 
concern (168) and discoverability (159) to increase 
the explanatory power of the model or to increase 
the applicability of the scenarios, however, 
empirical validation of the relationship between the 
IQB, JRB, and RTAC is still very inadequate, 
particularly among teacher trainees.  

What’s more, the progression of AI-based 
Chatbots technologies, coupled with modifications 
in economic and social situations, has rendered the 
constraints of conventional IRT influencing factors 
increasingly conspicuous (134,137,169,170), 
whereas the factors that include Information Quality 
Barrier (IQB) and Job Relevance Barrier (JRB) may 
become significant constructs that impact teacher 
trainees’ resistance behaviours. For instance, in the 
education background, if AI-based Chatbots are 
unable to generate accurate, valid, latest, or 
personalized teaching information, it is likely to 
lead directly to teacher trainees’ resistance to AI-
based Chatbots. Unfortunately, most previous 
studies have paid attention to the association 
between information quality and the adoption of 
other technologies (59,119), while having neglected 
in-depth analysis of the connection between IQB 
and the resistance behaviours of AI-based Chatbots, 
particularly among teacher trainees. Besides, if 
teacher trainees perceive JRB, which means that 
AI-based Chatbots have little relevance to their 
present tasks and future jobs, hence lack a strong 
incentive to apply to these innovative techniques. 
Nevertheless, past research mainly focused on the 
positive effect of job relevance on adopter 
behaviours (29,61–63,171), while few empirical 
studies have measured the relationship between 
JRB and resistance to AI-based Chatbots. 

In this study, Technology Anxiety (TA) mainly 
relates to the degree of anxiety and emotional 
reactions that are caused by using AI-based 
Chatbots or considering the possibility of new 
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technology utilization (68,69,172–177). Cham et al. 
(2022) found that TA was one of the key 
psychological barriers affecting mobile payment 
services. The relationship between anxiety and 
other factors affecting technology adoption (67). In 
the case of T-Express, there are some researchers 
noticed the influence of TA on VB (65). In spite of 
many researchers have pointed out the important 
role of TA in consumer technology acceptance or 
resistance behaviours (64–69), little research has 
systematically explored the indirect effects of TA 
on resistance to AI-based Chatbots through VB and 
JRB, and this study will fill this gap. 

Electronic Word-of-Mouth Barrier (E-WOMB) is 
primarily associated with the perception of negative 
comments made by potential, actual, or former 
netizens about AI-based Chatbots, which are made 
available to numerous individuals or institutions 
through the internet (178–180). E-WOMB also 
played an important role in people’s decision-
making behaviours (65,70–72), but the connection 
between E-WOMB and resistance to AI-based 
Chatbots among teacher trainees has not been 
thoroughly studied, especially when RB and JRB 
are treated as mediating variables. As teacher 
trainees will be pivotal in the future of education, 
their perceptions of AI-based Chatbots may 
significantly influence the future implementation of 
such technology in educational settings. 

All in all, as ICT’s global influence increases and 
AI technologies advance rapidly, they are becoming 
more penetrative and powerful in the education 
space. In the past, the related studies on theoretical 
models for measuring teacher trainees’ RTAC were 
still very limited, while this study proposes a new 
theoretical model that is based on the traditional 
IRT and combines new constructs and new paths. In 
recent years, with the emergence of AI-based 
Chatbots such as ChatGPT, related research has 
once again become one of the hot directions. 
However, there is still a paucity of research 
examining teacher trainees’ resistance to AI-based 
Chatbots behaviours from the innovation resistance 
theory, so there is a need to develop a model and 
conduct an empirical study. 

 

3. CONCEPTUAL MODEL 
Based on the analysis of the aforementioned 

literature review and the core framework of IRT, 
this study proposes a conceptual model for teacher 
trainees’ RTAC. Inheriting the five barrier 
dimensions in the Innovation Resistance Theory -
UB, VB, RB, TB, IB- this model further combines 

the situational characteristics of the field of 
educational AI-based Chatbots with the uniqueness 
of the teacher trainee population, so as to construct 
a theoretical model that is more in line with 
practical application contexts. This new conceptual 
model introduces two new independent variables 
(IQB and JRB) and attempts to test the indirect 
effects of TA and E-WOMB on RTAC (Figure 6). 

Unlike the previous TAM and UTAUT models 
that focus on positive acceptance behaviors, the 
current conceptual model in this study emphasizes 
the complex psychological dynamics and behaviors 
of teacher trainees when facing new technologies 
from the perspective of “resistance,” providing a 
new research path for the theory and practice of the 
application of AI-based Chatbots in the field of 
information technologies. 

 

Figure 6: Overview of Conceptual Model and 
Research Hypotheses 

 

4. HYPOTHESES 
The hypothesis is a statement, or a set of 

statements presented as a provisional causal 
explanation for an observable phenomenon, and it is 
critically significant in the scientific process (181–
183). In the present study, to identify the main 
barriers of teacher trainees’ RTAC, the following 
hypotheses are proposed (Figure 6). 

4.1 Main Hypotheses 
4.1.1 Usage Barrier 

Based on Ram and Sheth’s (1989) opinions, one 
of the important reasons for customers’ resistance 
to innovative products was the incompatibility 
between the new and traditional things. Some 
researchers argued that UB had a non-significant 
impact on algorithm aversion (158). Nonetheless, a 
majority of studies discovered that UB had an 
impact on the acceptance or rejection 
(52,56,153,157). For instance, Siddiqui et al. proved 
that UB had a remarkable negative impact on the 
acceptance of online dating apps (ODAs) (157). For 
teacher trainees, if they perceived that AI-based 
Chatbots were incompatible with their current 
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habits, working style, or lifestyle, they might not 
want to utilize them again in the future. Therefore, 
the present examination proposes the subsequent 
hypothesis: 

H1： Usage Barrier has a significant influence 
on Resistance to AI-based Chatbots among teacher 
trainees. 

4.1.2 Value Barrier 
One study found that VB was not statistically 

significant evidence contributing to small 
merchants’ hesitance toward O2O platforms (159). 
But a lot of previous studies have proved the 
relationship between VB and users’ behaviors in 
various contexts, for instance: green IT (150), over-
the-top services (OTTs) (152), autonomous delivery 
vehicles (ADVs) (153), smart hotels (148), AI 
algorithms (158), NFTs (56), mobile social 
commerce (142). According to these findings, it is 
probable that VB will similarly influence users’ 
behaviors in the realm of AI-based Chatbots, either 
positively or negatively. The present study posits 
that VB is likely a significant factor influencing 
teacher trainees’ RTAC, hence proposing the 
following hypothesis: 

H2： Value Barrier has a significant influence on 
Resistance to AI-based Chatbots among teacher 
trainees. 

4.1.3 Risk Barrier 
In the past decade, the majority of research in IS 

has concentrated on the impact of RB on the 
acceptance of innovation (51,56,138,150,157). 
Conversely, Ma and Lee (2019) contended that RB 
was inconsequential to the utilization of MOOCs in 
a developing nation. Regrettably, these studies have 
primarily examined the correlation between RB and 
the adoption of commodities. Only a limited 
number of studies have investigated resistance to 
innovation from the perspective of RB, such as by 
Cham et al. (2022), Leong et al. (2020), Uddin et al., 
(2024). The prior inconsistencies and disputes about 
content and outcomes have prompted the present 
research to assert that an additional comprehensive 
examination of the relationship between RB and 
RTAC is urgently required. Thus, this study 
proposes the subsequent hypothesis: 

H3： Risk Barrier has a significant influence on 
Resistance to AI-based Chatbots among teacher 
trainees. 

4.1.4 Tradition Barrier 
In the background of psychological resistance, 

Ram and Sheth (1989) also illustrated that 
entrenched traditions significantly impact individual 

behaviors. A considerable number of scholars have 
already looked into the correlation between TB and 
technology acceptance or use intention in various 
dimensions: digital payment systems (139), eco-
friendly cosmetics (135), ODAs (157), green IT 
(150), virtual streamers (160), e-learning (154). 
Nevertheless, such studies have predominantly been 
approached from the perspective of TB and 
customers’ acceptance behaviors. Empirical 
research carried out by Uddin et al. (2024) that 
measured the WhatsApp payment system (WPS) 
revealed the relationship between TB and resistance 
to innovation. Consequently, based on the 
preceding considerations, this study posits that 
teacher trainees’ RTAC may be influenced by TB, 
and presents the following hypothesis: 

H4 ：  Tradition Barrier has a significant 
influence on Resistance to AI-based Chatbots 
among teacher trainees. 

4.1.5 Image Barrier 
Ram and Sheth (1989) thought that innovations 

acquired a distinct character from their birth, and 
the IB emerged out of stereotyped concepts and 
made innovations difficult. Numerous studies have 
focused on the correlation between IB and usage 
intention or adoption across many domains: mobile 
payments service (137), O2O platforms (Chawla et 
al., 2024), stereotype for MOOCs (134), green IT 
(150), and so on. Only very few researchers (e.g., 
151) studied IB from a resistance viewing angle. In 
light of the preceding arguments concerning IB, the 
following hypothesis is proposed in this study: 

H5： Image Barrier has a significant influence 
on Resistance to AI-based Chatbots among teacher 
trainees. 

4.1.6 Information Quality Barrier 
Based on Eom’s (184) findings, the utilization of 

e-learning management systems (e-LMS) did not 
exhibit a positive relationship with information 
quality. Nevertheless, a lot of prior surveys have 
demonstrated the relevance between information 
quality and the adoption of innovations in dissimilar 
domains, such as big data analytics (BDA) (185), 
blockchain (186), and cash on delivery (COD) 
payment system in Shopee (187). What’s more, 
Michel-Villarreal et al. (98) elucidated that the 
deficiency in accuracy and dependability of the 
information produced by the GenAI system would 
lead to issues. For teacher trainees, if the 
information quality created by AI-based Chatbots 
was low mass and produced IQB, it might cause 
teacher trainees’ resistance and the failure of 
innovative technologies. The preceding information 
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and arguments led to this study to propose the 
hypothesis: 

H6 ：  Information Quality Barrier has a 
significant influence on Resistance to AI-based 
Chatbots among teacher trainees. 

4.1.7 Job Relevance Barrier 
Job relevance is an influential element of TAM2 

for assessing intention to use or use behaviors 
(63,188). The majority of previous studies 
examined the positive correlation between job 
relevance and the acceptance of innovative products 
in miscellaneous subjects, for example, LMS (61,63) 
and AI-based conversational agents (42). 
Nevertheless, a great deal of prior research has 
concentrated on job relevance rather than JRB, 
particularly with the implementation of AI-based 
Chatbots. On the opposite side, if teacher trainees 
perceived that the results generated by AI-based 
Chatbots were irrelevant to their present work or 
future job (e.g., incorrect teaching information, 
incompatible pedagogical styles, or misleading 
instructional guidelines), they may reject the 
utilization of AI-based Chatbots. Consolidating the 
above-mentioned deliberations and arguments, the 
subsequent hypothesis is formally propounded: 

H7：  Job Relevance Barrier has a significant 
influence on Resistance to AI-based Chatbots 
among teacher trainees. 

4.2 Mediating Hypotheses 
4.2.1 The Mediating Effect of Value Barrier 
between Technology Anxiety and Resistance to 
AI-based Chatbots 

Previous studies have realized the negative 
impact of TA on perceived VB in different 
situations (65). For example, TA had an impact on 
the perceived value of an individual’s use of the 
mobile ticketing application T-express, thereby 
reducing the willingness to adopt (65). There are 
also several studies that have found that TA directly 
or indirectly contributes to people’s acceptance of 
technology (189,190). Whereas VB is closely 
related to the final behavioral decision of the users 
(56,150,154,191). Dogra et al. (192) argued that 
pricing value is the most important component and 
essential for visitors’ intention to acquire online 
travel products. For teacher trainees, if they feel VB 
due to TA, they are likely to resist AI-based 
Chatbots. VB may play a mediating role between 
TA and teacher trainees’ RTAC, which means that 
teacher trainees with higher technology anxiety are 
more likely to develop value skepticism towards 
AI-based Chatbots, which enhances their tendency 

to resist. Synthesizing the above deliberations, the 
next hypothesis is formulated for this study: 

H8：  Value Barrier mediates the relationship 
between Technology Anxiety and Resistance to AI-
based Chatbots among teacher trainees. 

4.2.2 The Mediating Effect of Risk Barrier 
between Electronic Word-of-Mouth Barrier and 
Resistance to AI-based Chatbots 

Web-based technologies have provided multiple 
chances for E-WOM transmission (193). Ashtiani 
and Iranmanesh (194) found that positive word of 
mouth (P-WOM) had a positive influence on the 
acceptance of electronic banking, whereas 
negatively influenced the perceived risk of 
electronic banking services. In another empirical 
investigation, Tang and Chen (195) revealed that 
negative E-WOM had a positive effect on the 
seller’s resistance to the digital device recycling 
platform (DDRP). And for users, RB could have a 
strong implication on their decision to adopt or 
resist an innovation (52,64,133,137,138). For 
teacher trainees, electronic word-of-mouth barrier 
(E-WOMB) (e.g., generating misleading 
information, erroneous theoretical underpinnings, or 
various unfavorable comments) may exacerbate 
their perceived RB of AI-based Chatbots, which in 
turn may enhance their resistance behaviors. 
Considering the preceding discussions, the 
following hypothesis is subsequently proposed: 

H9：  Risk Barrier mediates the relationship 
between Electronic Word-of-Mouth Barrier and 
Resistance to AI-based Chatbots among teacher 
trainees. 

4.2.3 The Mediating Effect of Job Relevance 
Barrier between Technology Anxiety and 
Resistance to AI-based Chatbots 

TA encompassed fears of total incapacity to 
acquire new technologies, inadequate mastery of 
new technologies, inability to apply learned skills, 
and job displacement by younger (196). TA may 
increase users’ worries about JRB. Some research 
suggested that different forms of anxiety (e.g., 
Learning Anxiety, AI Configuration Anxiety, and 
Job Replacement Anxiety) may influence 
practitioners’ attitudes and psychological responses 
to AI (197). For teacher trainees, those individuals 
with higher levels of TA are more likely to perceive 
AI-based Chatbots as potentially of insufficient 
practical functionalities in their current professional 
training and future teaching job, and to develop a 
perception of JRB that enhances their tendency to 
resist AI-based Chatbots. After considering the 
above factors and preceding discussions, this study 
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proposes the following hypothesis of mediating 
effects: 

H10 ：  Job Relevance Barrier mediates the 
relationship between Technology Anxiety and 
Resistance to AI-based Chatbots among teacher 
trainees. 

4.2.4 The Mediating Effect of Job Relevance 
Barrier between Electronic Word-of-Mouth 
Barrier and Resistance to AI-based Chatbots 

Contingent upon the different types of worker 
electronic word of mouth (weWOM) (e.g., positive, 
neutral, and negative) on the internet, individuals 
produce varying behavioral intentions concerning 
distinct recruitment factors (198). For the adoption 
of social networking sites (SNSs), the E-WOM has 
a significant impact (199). Even for prospective 
students, E-WOM in social media also significantly 
influenced their university selection process (200). 
Regarding teacher trainees, E-WOMB may make 
them perceive that AI-based Chatbots have multiple 
JRBs in terms of lesson planning, instructional 
material preparation, educational skill enhancement, 
and others, thereby enhancing their resistance 
behaviors. Therefore, on the basis of the above-
mentioned discussions on E-WOMB, JRB, and AI-
based Chatbots, the following hypothesis is 
formulated in this study: 

H11 ：  Job Relevance Barrier mediates the 
relationship between Electronic Word-of-Mouth 
Barrier and Resistance to AI-based Chatbots among 
teacher trainees. 

5. RESEARCH METHODOLOGY 
After comparing the advantages and 

disadvantages of quantitative and qualitative 
research methods (201–204) and the features of the 
IRT model, the quantitative research method was 
selected for this study because it was more suitable 
for the research objectives and research 
characterizations of this study. All the Likert scales 
employed in this study were adapted from previous 
scales (e.g. 64,133,136,137,167,184,188,205,206) 
and were adjusted to fit the target population and 
specific characteristics of this study. Drawing on 
previous sampling methods and sampling 
experiences (207–211), and the lack of a complete 
list of teacher trainees and various limitations, this 
study mainly utilized convenience sampling and the 
snowball sampling method. Over the past years, the 
Partial Least Squares Structural Equation Modeling 
(PLS-SEM) technique has been extensively applied 
in a number of studies (56,150,212,213). Hair et al. 
(2017) found that the IS domain showed a higher 
degree of maturity in employing PLS-SEM to 

address model complexity and formative measures. 
Consequently, in accordance with past research 
experience and the personalized nature of this study, 
PLS-SEM is the appropriate data analysis strategy 
for this study. The reliability test and validity test of 
this study presented good status and met the 
requirements for further research. Cronbach’s 
Alpha (α) is adopted to test the reliability and 
internal consistency of the scales in the current 
study, which has been widely referred to in 
numerous research (214–216). Considering the 
aforementioned discussions about Alpha ’ s values 
(215,217), this study intends to select 0.7 (α≥0.7) 
as a standard for evaluating good reliability. Based 
on previous researchers’ suggestions for the pilot 
study (218–220) and the unique characteristics of 
this study, 40 questionnaires were used for the pilot 
study and the examination of Alpha’s values. The 
reliability test results (Table 1) indicate that the 
distribution of α values is between 0.770 and 0.942, 
signaling a good degree of reliability.  

Table 1.  Overview of Reliability Analysis 

 UB VB RB TB IB IQB JRB TA 
E-

WOMB 
RTAC 

α 0.900 0.807 0.818 0.805 0.851 0.902 0.917 0.942 0.853 0.770 

  

 

6. DATA ANALYSIS 
This study’s data analysis techniques mostly 

reference works of significant scholars in the realm 
of data analytics (e.g., 211, 212,221–225). After the 
implementation of data collection pertaining to AI-
based Chatbots impacting factors, the present study 
predominantly employs IBM SPSS Statistics and 
Smart PLS 4 for data analysis, which is briefly 
described in the next steps. In this study, 570 
questionnaires were returned, out of which 9 were 
deleted due to missing data or other reasons, and 
561 questionnaires remained. At the stage of 
checking for suspicious response patterns, this 
study drew on the experience of data analysis 
professionals (e.g. 222,224), resulting in the 
deletion of 42 questionnaires with the same answers 
or suspicious answers and the retention of 517 
questionnaires. The detection of outliers is mainly 
done by univariate and multivariate detection 
methods (222,224,226,227). In the univariate 
testing phase, this study utilized “box plot” 
checking and discriminant Z-scores (between -3.29 
and +3.29), resulting in the deletion of 27 
questionnaires with outliers and the preservation of 
490 questionnaires. In the procedure of multivariate 
outlier detection, this study primarily deployed 
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Mahalanobis Distance and chi-square ( ) (p < 
0.001) distribution testing method, causing 87 
questionnaires to be deleted and leaving 403 
questionnaires for further analysis. Among the 403 
questionnaires, there were 127 males and 276 
females. Most respondents were between the ages 
of 18 - 20 (216 respondents, 53.6%), followed by 
those between the ages of 21 - 23 (104 respondents, 
25.8%), with the other age groups making up a 
fairly small percentage. The highest number of 
people occupying a medium level of knowledge 
about AI-based Chatbots totaled 290 respondents 
(72.0%), followed by the number of people who 
knew very little, 92 (22.8%), and the smallest 
number of people who knew a lot, only 21 people 
(5.2%). J. F. Hair et al. (222) believed that in order 
to understand the distribution of the data, Skewness 
and Kurtosis should be examined. When the data 
shows a normal distribution, the values of Skewness 
and Kurtosis lie between -2 and +2 (222,228). After 
testing, the Skewness values are between -0.386 
and 0.154, and the Kurtosis values are between -
0.511 and 0.174, which conforms to the normality 
data distribution pattern. This study’s PLS-SEM is 
primarily conducted from two perspectives: the 
evaluation of the measurement model and the 
evaluation of the structural model, which has been 
mentioned in some research (212,222,226,229). The 
subsequent sections will comprehensively describe 
the information regarding the evaluation 
methodologies, metrics, and results obtained from 
these two models. 

6.1 Assessment of Measurement Model 
Taking into account previous experiences in the 

assessment of measurement model, this study 
assesses the measurement model from four aspects 
(Internal Consistency Reliability, Indicator 
Reliability, Convergent Validity, and Discriminant 
Validity), so that to confirm the validity and 
reliability of the measurement model and to get 
ready for the subsequent phase of hypothesis 
examination and structural model evaluation. 
Indicator Reliability often signifies that the 
associated indicators share significant 
commonalities, and it is typically advised that the 
standardized outer loadings should be equal to or 
exceed 0.708 (222,226). However, indicators with 
lower outer loadings are occasionally retained 
because of their significance to content validity 
(222). Several items with outer loadings below 
0.708 were removed from this study, including: 
UB1, RB5, IQB2, RTAC1, and RTAC2. Despite 
the individual indicator RB1 being a minor lower 
than 0.708, it is satisfied in the field of CR and 

Average Variance Extracted (AVE), so the item is 
kept for subsequent examination. Composite 
Reliability (CR) (pc) was considered to evaluate 
internal consistency reliability (222,226), and this 
study chose 0.7 as the threshold value. As can be 
seen in Table 2, the CR values in the current study 
are between 0.737 and 0.849, which meets the 
demand of internal consistency reliability. 
Convergent Validity can be assessed by measuring 
the value of AVE (AVE≥0.5) (222,226), and all 
the AVE values in this study were above 0.5, which 
meets the requirement of convergent validity. There 
are multiple techniques for assessing discriminant 
validity, for example: Fornell-Larcker criterion, 
cross-loadings, and Heterotrait-Monotrait Ratio 
(HTMT) (212,222,223,226,230). Table 3 illustrates 
that all construct values exceed the squared 
associations of other constructs, hence confirming 
the fulfillment of discriminant validity standards.  

Table 2.  The Outer Loadings, CR, and AVE 
Constructs Indicators Outer loadings CR AVE 

UB 

UB2 0.749 

0.802 0.598 
UB3 0.791 

UB4 0.716 

UB5 0.832 

VB 

VB1 0.731 

0.764 0.581 
VB2 0.732 

VB3 0.802 

VB4 0.780 

RB 

RB1 0.699 

0.78 0.606 
RB2 0.842 

RB3 0.825 

RB4 0.737 

TB 

TB1 0.743 

0.742 0.563 
TB2 0.775 

TB3 0.745 

TB4 0.739 

IB 

IB1 0.739 

0.774 0.592 
IB2 0.808 

IB3 0.785 

IB4 0.744 

IQB 

IQB1 0.750 

0.849 0.621 

IQB3 0.791 

IQB4 0.804 

IQB5 0.799 

IQB6 0.795 

JRB 

JRB1 0.759 

0.849 0.622 

JRB2 0.79 

JRB3 0.806 

JRB4 0.806 

JRB5 0.780 

TA 
TA1 0.772 

0.841 0.607 
TA2 0.779  
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Table 3.  Analysis of the Fornell-Larcker 
Criterion 

 EWOMB IB IQB JRB RB RTAC TA TB UB VB 

EWOMB 0.746          

IB 0.605 0.769         

IQB 0.65 0.747 0.788        

JRB 0.622 0.674 0.657 0.788       

RB 0.488 0.411 0.539 0.372 0.778      

RTAC 0.482 0.604 0.592 0.689 0.288 0.809     

TA 0.673 0.677 0.663 0.774 0.423 0.671 0.779    

TB 0.531 0.673 0.648 0.638 0.448 0.53 0.634 0.751   

UB 0.418 0.531 0.512 0.465 0.378 0.436 0.518 0.481 0.773  

VB 0.472 0.545 0.592 0.564 0.52 0.535 0.603 0.549 0.657 0.762 

  

6.2 Assessment of Structural Model 
After examining the validity and reliability of the 

measurement model, the next step is to evaluate the 
structural model, which primarily assesses 
collinearity issues, significance, relevance, and so 
forth (212,222,226). J. F. Hair et al. (222) 
highlighted that the Variance Inflation Factor (VIF) 
values for the predictor constructs ought to be under 
5, and preferably below 3, to guarantee that 
collinearity did not substantially affect the 
estimations of the structural model. The results 
indicate that all VIF values (Minimum: 1.299, 
Maximum: 1.983) in the present study are below 5, 
signifying the absence of collinearity concerns. The 
accepted metrics for the path coefficients varied 
from -1 to +1, with values nearing +1 signifying 
strong positive associations (212,222,226). If a 
coefficient was notably established by its standard 
error, calculated through the “t” value generated 
from bootstrapping (226). Typically, a few critical t 
values (e.g., 1.65, 1.96, 2.57) exist for two-tailed 
tests, contingent upon the study objectives and 
disciplines (222,226), while the current research 
chooses 1.65 as a critical t value. Researchers 
typically reported “p” values (5% probability of 
error) in lieu of t values, indicating the likelihood of 
erroneously denying the null hypothesis (222,226), 
and the present study also selects 0.05 (equal to 5%) 
as a critical p-value. Table 4 and Figure 7 depict the 
evaluation outcomes of the structural model in this 
study. Usually, one of the important techniques to 
evaluate the structural model is the coefficient of 

determination ( ) (0.25, 0.50, and 0.75), which is 
measured as the squared correlation between the 
real and predicted values of a specific endogenous 

construct (212,222,226). As shown in Table 5,  
is 0.539, which represents that the structural 

model’s explanatory power in this study is 
moderate level. 

Table 4.  Assessment of Hypotheses in the 
Structural Model of the IRT 

Hypotheses Relationships β T  P Results 

H1 UB -> RTAC 0.005 0.102 0.919 Unsupported 

H2 VB -> RTAC 0.174 2.879 0.004 Supported 

H3 RB -> RTAC -0.108 2.366 0.018 Supported 

H4 TB -> RTAC 0.02 0.342 0.732 Unsupported 

H5 IB -> RTAC 0.143 2.185 0.029 Supported 

H6 IQB -> RTAC 0.148 2.346 0.019 Supported 

H7 JRB -> RTAC 0.423 6.96 0.000 Supported 

H8 TA -> VB -> RTAC 0.105 2.762 0.006 Supported 

H9 EWOMB -> RB -> RTAC -0.053 2.276 0.023 Supported 

H10 TA -> JRB -> RTAC 0.275 6.273 0.000 Supported 

H11 
EWOMB -> JRB -> 

RTAC 
0.078 3.426 0.001 Supported 

  

 

Figure 7: The Evaluation Outcomes of the 
Structural Model 

 

Table 5.  The Calculation of  Values 
Constructs 𝑹𝟐 the level of 𝑹𝟐 

RTAC 0.539 Moderate 

  

 

7. DISCUSSIONS 
Within the hypotheses proposed in this study, the 

majority of hypotheses have garnered substantial 
support, but others have failed to meet the 
significance threshold. Afterward, this study 
analyzes each proposed hypothesis and performs 
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the relevant examination. The statistical results do 
not corroborate H1, indicating that the direct impact 
of UB on RTAC is not statistically important. This 
phenomenon might stem from the advanced nature 
of AI-based Chatbots technologies and the 
simplicity of the interactive discussion interface, 
making initiation relatively effortless. According to 
the research results, the significant effect of H2 is 
entirely verified, which is not only consistent with 
the core hypothesis of IRT but also sheds further 
light on the unique mechanisms through which VB 
works in the context of educational technology 
uptake. Compared with prior correlated literature 
(e.g.133,134,136,156,167,191,231), this new 
finding expands the applicable boundaries, suitable 
groups, and core points of VB in the rapidly 
evolving AI era. This result enhances the theoretical 
framework in IS and practically offers a concrete 
reference for AI-based Chatbots promotion tactics, 
such as mitigating the substantial influence of VB 
on RTAC by augmenting the cost-effectiveness of 
AI technology to elevate users’ adoption. Besides, 
Hypothesis 3 is also supported by statistical data, 
demonstrating that RB has a significant effect on 
teacher trainees’ RTAC. This new discovery not 
only corroborates the outcomes of Cham et al. 
(2022), Leong et al. (2020), and Uddin et al. (2024) 
but also further implies the resonance of RB roles 
(i.e., data privacy concerns and fraudulent 
information) across different groups.  

Hypothesis 4 is not supported; this result differs 
from the findings of some existing studies, such as 
Leong et al. (2020), M. Talwar et al. (2024), Rabaai 
et al. (2024), and Uddin et al. (2024). The possible 
reasons are: (ⅰ) with the universalization of AI 
technologies and the acceleration of education 
informatization, teacher trainees’ awareness of AI 
technologies has increased, which may weaken the 
influence of traditional concepts on their 
willingness to use them; (ⅱ) teacher trainees belong 
to a group of young people who have received 
higher education, and they may be more open-
minded towards emerging techniques, which may 
reduce the constraints imposed by conventional 
perceptions on their behavioral decision-making. 
Hypothesis 5 of this study receives support, 
indicating that IB significantly affects teacher 
trainees’ RTAC. Future research could further 
explore how to lower IB to AI-based Chatbots 
through reshaping technology branding, improving 
the external image of the enterprise, optimizing the 
human-computer interaction experience, improving 
content quality, and so on. 

Hypothesis 6 of this study is supported, 
suggesting that IQB significantly influences teacher 
trainees’ RTAC. For teacher trainees, if AI-based 
Chatbots fail to provide accurate, up-to-date, 
efficient, and professional information that matches 
their teaching needs (e.g., incorrectly generated 
information, out-of-date pedagogical content, and 
irregularities in citations), it may negatively 
influence their own training and teaching practice. 
Synchronously, the data supports H7 and 
demonstrates a significant relationship between 
JRB and RTAC. Such significance illustrates that 
JRB (e.g., low relevance of generated information 
to job requirements; ignorance of individualized 
needs of teacher trainees; incoherence of goals) can 
significantly influence teacher trainees’ RTAC.  

H8 receives statistical support suggesting that 
VB plays a significant mediating role in the 
relationship between TA and teacher trainees’ 
RTAC. When teacher trainees feel TA over the 
complexity, acquisition costs, or potential 
uncertainties of AI-based Chatbots, they may 
further appraise the value of this technology, 
particularly whether it is effective in enhancing 
pedagogical efficiency, assisting with work, 
alleviating the burden of lesson planning, or other 
material benefits. H9 is confirmed, signifying that 
RB mediates significantly in the relationship 
between E-WOMB and teacher trainees’ RTAC. 
This finding further reveals that E-WOMB (e.g., 
negative online reviews) can easily lead teacher 
trainees to higher RB for AI-based Chatbots, which 
in turn can lead to resistance behaviors. Hypothesis 
10 gains support, signaling that JRB plays a 
significant mediating role in the relationship 
between TA and teacher trainees’ RTAC. The TA 
that teacher trainees feel when using AI-based 
Chatbots may trigger stronger JRBs (e.g., 
perceptions of limited functions of the technology 
in education and difficulty in fitting their own 
teaching needs), which will further reinforce their 
resistance behaviors. The results of this study 
indicate that Hypothesis 11 holds true and that JRB 
plays a significant mediating role in the connection 
between E-WOMB and teacher trainees’ RTAC. 
Teacher trainees, while being approached about the 
E-WOMB of AI-based Chatbots, will further assess 
whether the technology is able to meet their 
pedagogical needs, and if they perceive the 
technology to have JRBs (e.g., difficulty in 
integrating it into their daily pedagogical practices), 
this will further contribute to the emergence of a 
stronger tendency to resist AI-based Chatbots. 
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AI-based Chatbots not only involve the current 
world’s cutting-edge techniques, but will also have 
a far-reaching influence on numerous aspects of the 
future of humanity. As the backbone of the 
instructional group in the future, teacher trainees’ 
technological skills, capabilities to use AI-based 
Chatbots, and educational ideas are closely linked 
to long-term growth and prospective 
competitiveness. Theoretically, compared with the 
previous literature (e.g., 42, 61,63), this study is one 
of the earliest documents that put forward the 
mediating role of JRB between E-WOMB and 
RTAC, and solved the limitations that JRB had not 
been fully discussed before. At the application level, 
existing studies (e.g., 132, 135, 137) focus on other 
aspects, while this paper extends the research scope 
to new fields and new groups, thereby revealing the 
complex psychological and behavioral mechanisms 
of teacher trainees in the face of AI-based Chatbots. 
Through the perspective of Innovation Resistance 
Theory, this study deeply explores the resistance 
behaviors of teacher trainees to AI-based Chatbots, 
which opens a new theoretical path for research in 
the domain of IS and provides practical insights. 
This study reveals that teacher trainees’ resistance 
to AI-based Chatbots is not only caused by 
traditional barriers (such as VB and IB), but also 
driven by new barriers (such as IQB and JRB). 
Such a study not only deepens the understanding of 
IRT, but also injects new vitality into the research 
of technology adoption and resistance in the realm 
of IS through an interdisciplinary perspective.  

8. CONCLUSIONS AND LIMITATIONS 
On the basis of the Innovation Resistance Theory, 

the current study develops and validates an 
enhanced theoretical model that offers a 
comprehensive analysis of the impact of various 
barrier elements on resistance behaviors toward AI-
based Chatbots. This study aligns technological 
evolution trends, incorporates recent academic 
advancements, and adapts to the demands of AI-
based Chatbots iteration by introducing new 
independent variables (e.g., IQB, JRB, E-WOMB) 
and employing a quantitative analysis technique and 
PLS-SEM to empirically evaluate behavioral data 
from groups of teacher trainees. This study finds 
that VB, RB, IB, IQB, and JRB have a significant 
and direct influence on teacher trainees’ RTAC. 
However, the effects of UB and TB on teacher 
trainees’ RTAC are less significant. VB plays a 
significant mediating role in the relationship 
between TA and teacher trainees’ RTAC. RB 
mediates significantly in the relationship between 
E-WOMB and teacher trainees’ RTAC. JRB plays a 
significant mediating role in the relationship 

between TA and teacher trainees’ RTAC. JRB plays 
a significant mediating role in the relationship 
between E-WOMB and teacher trainees ’  RTAC. 
The principal contributions of this study are 
reflected in the following aspects: (ⅰ) Expanding the 
application scenarios of Innovation Resistance 
Theory by introducing it into the field of AI-based 
Chatbots acceptance and resistance; (ⅱ) Adding the 
study population (teacher trainees) to which the AI-
based Chatbots and IRT models apply; (ⅲ) 
Deepening the understanding of educational 
technology resistance behaviors among teacher 
trainees; (ⅳ) The findings of the present study offer 
significant insights into the advancement and 
enhancement of AI technology, the exploration of 
barriers factors of personal behaviors, and the 
establishment of a supportive social framework.  

Although this study makes important 
contributions to both IS theory and AI-based 
Chatbots practice, it still has some limitations. For 
example, this study utilizes a cross-sectional data 
collection strategy, which elucidates the 
associations among different factors, but it is 
difficult to fully capture the temporal dynamics of 
teacher trainees’ psychology and behaviors, which 
may constrain the long-term implications of the 
research conclusions. Although this study 
synthesizes several variables from IS, education 
science, marketing science, behavioral science, and 
others, it cannot encompass all factors that may 
affect technological resistance behaviors, for 
example, external environmental differences, 
emotional fluctuations, social influence, herd 
effects, or asymmetric information. Future research 
could further investigate the heterogeneity of 
technology resistance behaviors under different 
groups and cultural backgrounds, so as to promote 
both theoretical and practical breakthroughs in AI-
based Chatbots. 
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