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ABSTRACT 
 

Lake Toba serves as a crucial water resource that is extensively utilized for various purposes. However, 
different water types have distinct uses, necessitating proper classification. Government Regulation No. 82 
of 2001 establishes water quality standards to classify water into several categories, each indicating its 
appropriate use. This study proposes the use of a deep neural network (DNN) to classify the water quality of 
Lake Toba. The research explores different activation functions—Softmax, ReLU, and Sigmoid—along with 
the SGD, RMSProp, and Adam optimizers. To determine the most effective model architecture, each 
activation function was tested in combination with different optimizers. The findings indicate that deep neural 
networks (DNNs) can be effectively utilized for water quality classification, with accuracy and error rates 
influenced by the activation function, optimizer, number of neurons, and number of hidden layers. The dataset 
used in this study includes measurements of water temperature, pH level, dissolved oxygen concentration, 
oxidation-reduction potential, air temperature, and humidity, which are essential for monitoring the water 
quality of Lake Toba. The testing process consists of two approaches: (1) classification using three 
parameters, based on Government Regulation No. 82 of 2001, and (2) classification using six parameters. 
Each test is conducted using the same model architecture. The highest recorded accuracy in the experiments 
was 99% (0.998402), with the lowest recorded loss at 0.014616. These results were obtained from studies 
utilizing three parameters. 

Keywords: Lake Toba; Water quality Classification; Deep Neural Network (DNN); Machine Learning; 
Government Regulation No. 82 of 2001 

 
1. INTRODUCTION  
 

Lake Toba, which is one of the largest lakes in 
Indonesia, was formed by the volcanic eruptions. It 
is still a vital water resource in North Sumatra 
Province. However, water quality has become a 
situation over the past decade. As one of the 
essentials for human life after air [1], water needs a 
careful quality assessment. Regular monitoring of 
the quality of water in Lake Toba is essential to 
ensure the standards concerning health and 
environmental regulations. 

The society living around Lake Toba relies on the 
lake's water for many purposes, including daily 
needs such as drinking, cooking, and washing. Even 
irrigation, recreation, and fishing need it. However, 
different regions of the lake differ on water quality. 

Some areas have good water quality compared to 
others. This water quality problem is due to human 
activities and the environmental factors. Other 
instances, such as air pollution, also introduce 
harmful substances like nitrogen dioxide and sulfur 
dioxide into the environment [2]. 

 The diverse topography of the lake's 
surroundings, which includes mountainous and hilly 
terrains, has an impact on these variations. Human 
activities generate various forms of waste, which 
impact the aquatic environment and overall water 
quality [3]. According to the World Health 
Organization, unsafe drinking water and inadequate 
sanitation are responsible for 80% of illnesses in 
developing countries [4]. Water is a vital resource for 
agricultural irrigation, industrial processes, and daily 
life. Its quality has a direct impact on agriculture, 
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economic growth, and public health [5]. In 
Indonesia, water quality standards are regulated 
under Government Regulation No. 82 of 2001, 
which classifies water into different categories based 
on its appropriate usage. 

Water quality classification is essential to assess 
the suitability of lake water for various activities in 
different regions. The water quality problem is seen 
as the most important social, scientific, and 
technological problem of our time [6]. 
Understanding water quality serves as a benchmark 
for the government in establishing regulations [3]. 
Traditionally, water classification involves the 
collection of samples from various locations, 
followed by laboratory analysis [7]. But this 
approach takes a long time and causes delays. 
Therefore, an effective system is required to improve 
the precision and efficiency of water quality 
classification. 

In aquatic environment research, machine 
learning models have been employed for the 
construction, monitoring, simulation, evaluation, 
and optimization of various water treatment and 
management systems [8]. One strategy is to use 
machine learning algorithms in conjunction with 
sensors. Data obtained from sensors, including pH 
and dissolved oxygen (DO) measurements, can be 
classified using machine learning techniques. 
However, machine learning models frequently 
encounter performance difficulties while processing 
large datasets. Deep neural networks (DNNs) can be 
employed to mitigate these limitations. Although 
deep neural networks (DNNs) may occasionally 
exhibit performance comparable to or worse than 
classic machine learning techniques with small 
datasets, their efficacy markedly enhances with 
larger dataset sizes. Recent research indicates that 
deep neural networks (DNNs) can get accuracy rates 
of up to 99% in water quality classification tasks, 
highlighting their efficacy for environmental 
monitoring [9]. Furthermore, DNNs have 
demonstrated efficacy in the identification, 
prediction, and classification of data [10]. 

Several studies have investigated water quality 
classification using neural networks. The 
backpropagation neural network (BPNN) has been 
used as a classifier for water quality assessment [11], 
producing classification results that enable better 
water quality management and pollution control. 
Compared to traditional evaluation methods, BPNN 
provides more objective and reliable assessments. 
Additionally, this model demonstrates high 
flexibility and adaptability. Xue Xicheng and Chen 
Yan [12] explored the evaluation of rainwater quality 

using a radial basis function artificial neural network 
(RBF-ANN). Due to its superior approximation 
capabilities, fast training speed, ability to avoid local 
minima, and resilience to subjective biases, the RBF-
ANN model is highly suitable for comprehensive 
water quality evaluation. 

Wang et al. [3] conducted a study employing the 
Long Short-Term Memory Neural Network (LSTM 
NN) methodology for water quality prediction, 
comparing it with Backpropagation Neural 
Networks (BPNN) and Extreme Learning Machines 
(ELM). The results indicated that the LSTM neural 
network attained superior accuracy compared to both 
the BPNN and ELM. Reference [13] investigated the 
classification and monitoring of water quality in 
shrimp aquaculture utilizing electronic nose (e-nose) 
and electronic tongue (e-tongue) technology. The 
study indicated a discriminant accuracy of 86.02% 
for Function 1 and 8.82% for Function 2 with the e-
nose, but the e-tongue attained an accuracy of 84.5% 
for Function 1 and 15.2% for Function 2. 
Furthermore, Zhu and Hao [1] evaluated water 
quality with a fuzzy neural network (FNN), 
illustrating that FNN enhances the precision of water 
quality assessments, rendering it a dependable and 
effective method. 

Previous studies indicate that methods employing 
neural networks (NNs) frequently yield superior 
outcomes compared to traditional machine learning 
techniques. Furthermore, research comparing 
various types of neural networks has demonstrated 
that certain models are more effective or better suited 
for particular problems than others. Moreover, inside 
neural networks, the efficacy of each approach 
fluctuates depending on the specific problem being 
tackled. In this study, the method used is a DNN [1], 
[11]-[13]. 

Other studies have also employed traditional 
machine learning methods for water quality 
classification. For instance, N. Raviteja et al. utilized 
Support Vector Machine (SVM) and achieved an 
accuracy of 83% [14], while Salisu Yusuf 
Muhammad et al. applied the K-Star algorithm, 
obtaining an accuracy of 86.67% [15]. Additionally, 
Theyazn H. H. Aldhyani et al. implemented a 
Nonlinear Autoregressive Neural Network 
(NARNET) for water quality prediction, achieving 
the highest accuracy of 97.01% [16]. 

Another study introduced the BS-FAMLP model, 
a hybrid approach combining Gradient-Boosted 
Decision Trees (GBDT) and Multilayer Perceptron 
(MLP) to improve water quality classification. By 
using Bayesian optimization to fine-tune 
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hyperparameters and a feature-weighting attention 
mechanism, the model adjusts the importance of 
features, making it more accurate. Tested on a 
groundwater dataset with 188,623 samples, it 
achieved 96.16% accuracy. This study highlights the 
effectiveness of combining machine learning 
techniques to improve classification performance 
and streamline water quality assessment [17]. 

Prior research indicates a distinct necessity for 
more effective and precise methods for categorizing 
water quality tailored for extensive freshwater 
bodies with intricate ecosystems, such as Lake Toba. 
Our efforts specifically concentrate on the 
application of DNN technology to the intricate 
topographical and climatic conditions of Lake Toba. 
This research fills an important gap between 
advanced computer techniques and essential 
environmental monitoring needs, which could 
change how we assess water quality in large 
freshwater systems affected by different human 
actions and environmental pressures. 

Water is categorized mostly according to its 
degree of use rather than its degree of contamination 
in this study. The used data include water quality 
monitoring data conducted by Rahmat et al. [7]. 
Subsequently, the data will undergo classification 
using deep neural network (DNN). The presented 
findings consist of accuracy and error graphs, as well 
as Excel files with testing and classification 
outcomes. In this study, the authors propose a deep 
neural network (DNN) to classify water quality and 
apply it to the classification of Lake Toba water. 

2. METHODOLOGY 

2.1 Water Quality 

Government Regulation No. 82 of 2001 
concerning Environmental Management governs 
water quality standards in Indonesia. According to 

this regulation, water quality is categorized into four 
classes based on its intended use: 

i. Class I: Suitable for drinking water or other 
uses requiring similar water quality; 

ii. Class II: Suitable for recreational facilities, 
freshwater fish farming, livestock, and 
agriculture; 

iii. Class III: Suitable for freshwater fish farming, 
livestock, and agriculture; 

iv. Class IV: Suitable for irrigation of crops or 
agriculture. 

Each of these water classes represents 
specific water quality standards deemed suitable for 
their respective uses. The criteria for water quality 
are assessed based on five groups of parameters: 
physical properties, inorganic chemistry, organic 
chemistry, microbiology, and radioactivity. One key 
parameter in the group of inorganic chemicals is pH. 
Additional parameters used to evaluate and classify 
water quality standards are presented in Table 1. 

2.2 Proposed Method 

Deep Neural Networks (DNNs) are an evolution 
of Neural Networks (NNs), also known as Artificial 
Neural Networks (ANNs), which are computational 
models inspired by the structure of biological neural 
networks [18]. Early versions of NNs were shallow, 
typically consisting of one input layer, one output 
layer, and at most one hidden layer between the two. 
In contrast, DNNs are characterized by having three 
or more layers, including the input and output layers. 
Essentially, a DNN is an ANN with multiple hidden 
layers sandwiched between the input and output 
layers [19]. 

In DNNs, each layer of nodes (neurons) trains a 
different set of features based on the output from the 
previous layer. The deeper the network, the more 
complex the features it can extract, as each layer 
combines and refines the features learned by the 
previous layer.  

Table 1: Water Quality Standards According to Government Regulation No. 82/2001 

Parameter Group  Parameter Unit Class 
Class I Class II Class III Class IV 

Physical Properties Water 
Temperature 

°C Deviation of 3 
from natural 
temperature  

Deviation of 3 
from natural 
temperature  

Deviation of 3 
from natural 
temperature  

Deviation of 
5 from natural 
temperature  

Inorganic Chemistry pH - 6–9 6–9 6–9 5–9 
Dissolved 
Oxygen (DO) 

mg/L 
 

≥6 ≥4 ≥3 ≥0 
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Table 2: Sensors used for data collection 

Sensor Measurement Unit 

DS18S20 Probe Sensor water temperature °C 
Analog pH Meter Pro pH - 
Dissolved Oxygen Sensor Kit  Dissolved Oxygen (DO) mg/L 
DHT11 Sensor Air Humidity RH 
DFRobot ORP Meter Oxidation-reduction potential (ORP) mV 
DS18S20 Probe Sensor water temperature °C 

A function called the activation is applied to 
input values, which results in an activation level of 
the neuron, which is the output value of the neuron. 
There are a number of functions that can be used in 
neurons. The activation function determines which 
neurons must be active and not. One of the most 
commonly used functions is the step function or 
linear threshold function.  

In this approach, inputs to a neuron are summed 
(each multiplied by its respective weight), and the 
result is compared to the threshold 𝑡. If the sum 
exceeds the threshold 𝑡, the neuron is activated with 
an activation level of 1. Conversely, if the sum is 
below the threshold 𝑡, the neuron is inactive with an 
activation level of 0. 

In some networks, when the input value does not 
exceed the threshold 𝑡, the activation level is set to 1 
instead of 0. After determining the output, the 
network adjusts its weights to optimize performance. 
This adjustment process is guided by an algorithm 
called an optimizer. Common optimizers used are 
Stochastic Gradient Descent (SGD), RMSProp, and 
Adam. These optimizers play a crucial role in 
minimizing the error and improving the model's 
learning efficiency. 

2.3 Dataset 

The dataset used in this study focuses on 
monitoring the water quality of Lake Toba. Data 
collection was conducted for two days, specifically 
on October 25-26, 2016. The dataset includes 
measurements of water temperature, pH, dissolved 
oxygen (DO) levels, oxidation-reduction potential 
(ORP), air temperature, and humidity. 
Measurements were taken at the following locations: 

i. Haranggaol Horison, Simalungun Regency; 
ii. Ajibata, Toba Samosir Regency; 
iii. Parapat, Simalungun Regency. 

The sensors used for data collection in this 
research are presented in Table 2. The sensors were 

immersed in the water for 1-2 days, allowing the 
parameter values to change naturally over time. 

2.4 General Architecture 

The classification of Lake Toba's water quality 
is determined based on data collected in the research 
conducted by Rahmat et al. [7], which follows a 
systematic procedure. Generally, the procedure 
consists of three main steps: preprocessing, training, 
and testing. Prior to use, the data undergoes initial 
processing. Following this, the DNN model is 
constructed in preparation for the training and testing 
phases. Once the model is built, training is 
conducted using the processed data. The procedure 
then continues with the testing phase. Upon 
completion, a graph is generated to illustrate the 
accuracy and loss/error incurred during the training 
and testing phases. Further details about the 
classification process can be observed in the overall 
architecture presented in Figure 1. 

In the preprocessing stage, the first step was data 
cleaning, which aims to remove rows of data with 
empty values, mismatched indices, or invalid data 
entries. Then the data is split into training and testing 
datasets. Each dataset is then further divided into 
features and labels. The subsequent step involves 
normalizing the features using the Least Absolute 
Deviations (LAD) method. Mathematically, the 
vector magnitude (norm) calculated using LAD can 
be represented as shown in Eq. (1). 

𝑆 = ෍  

௡

{௜ୀଵ}

|𝑥௜| (1) 

This calculation basically adds up all entries 
(𝑥) from 𝑥ଵ to 𝑥௡. After getting the norm from line 
n, the new value of 𝑥 can be seen in Eq. (2). 

𝑥௡௘௪ = 𝑥
1

𝑠
 (2) 

Once normalized, the feature data values are 
transformed to range between -1 and 1. The final 
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process involves encoding the label data. This is 
necessary because the labels, which will serve as the 
output in the application, are in categorical form. 

The training phase is the stage where the DNN is 
implemented. The normalized and encoded training 
data is used during this phase. The process begins 
with each input data (feature) being fed into the 
nodes of the input layer. Then, the weights and 
biases are initialized randomly, with their values 
ranging between 0 and 1. During each batch, the 
weights are updated based on the optimizer 
algorithm used. In this study, one of the optimizers 
applied is Stochastic Gradient Descent (SGD).  

SGD updates the model parameter (𝜃) in the 
negative direction of the gradient (𝑔) by taking a 
subset or mini-batch data size (𝑚). Neural network 
is represented by 𝑓൫𝑥(௜); 𝜃൯ where  𝑥(௜) is training 
data and 𝑦(௜) is a training label, gradient loss 𝐿 is 
calculated by observing the model parameters 𝜃. 
Learning rate (𝜖௞) determines the size of the steps 
taken by the algorithm along the gradient (in the 
negative direction in the case of minimization and in 
a positive direction in the case of maximization). The 
SGD mathematical notation can be seen in Eq. (3) 
and Eq. (4). 

𝑔 =
1

𝑚
𝛻ఏ ෍  

௜

 𝐿൫𝑓൫𝑥(௜); 𝜃൯, 𝑦(௜)൯ (3) 

𝜃 = 𝜃 − 𝜖௞ × 𝑔 (4) 

While the calculation to get the output from 
node 𝑖 to node 𝑗 can be seen in Eq. (5). 

𝑋௝ = ෍  

௡

௜ୀଵ

𝑥௜ ⋅ 𝑤௜௝ − 𝜃௝ (5) 

𝑛 is the number of inputs to node 𝑗; 𝑤௜௝  is the 
weight between nodes 𝑖 and 𝑗;  𝜃௝ is the threshold 
value (bias) for node 𝑗, which is a random value 
between 0 and 1; 𝑥௜  is the input value for node 𝑖; and 
𝑋௝ is the output of node 𝑖 which is also the input for 
node 𝑗. 

The calculation results of each node will be 
propagated into the activation function to get the 
active node. Because this study is about 
classification, the activation function in the output 
layer uses softmax. This activation function is 
intended to handle data with categorical output. The 
formula of the softmax activation function can be 
seen in Eq. (6). 

𝜎(𝑧) =
𝑒௭

∑  ௄
௞ୀଵ   𝑒௭𝑘

 (6) 

𝑧 is the result of calculations in the layer, 𝑒 is 
the error or loss value, 𝑘 is the number of dimensions 
of the label (output). 

After getting the active node, the calculation 
goes to the next layer and goes to the output layer 
that keeps repeating until the specified iteration. The 
last stage is testing. At this stage, the model that has 
undergone the learning stage is tested to see the 
performance of the model. Normalized data testing 
and encoding are used at this stage.

 

Figure 1: General Architecture 
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3. RESULTS 

The first test uses three parameters based on 
Government Regulation No. 82 of 2001, while the 
second test incorporates all parameters in the dataset. 
The preprocessing stage involves data cleaning, data 
splitting, separating features and labels, normalizing 
features, and encoding labels. The results of the data 
cleaning process are shown in Table 2. 

Table 2 highlights the number of rows 
remaining after data cleaning. Many rows were 
removed due to the presence of invalid data lines, 
such as values that could not be interpreted as 
numeric or rows where the number of columns 
exceeded or fell short of the expected count. After 
cleaning the data, all files were merged into a single 
dataset. Following the data cleaning process, the 
dataset is split into training and testing subsets. The 
result of these processes is presented in Table 3. 

Table 3: Number of rows in the dataset before and after 
data cleaning 

File Name Number of data rows 
Before After 

Dataset.txt 15718 15642 

The distribution of water quality classes in the 
dataset is presented in Figure 3. The majority of the 
dataset is classified as Class II (7,172 samples) and 
Class I (5,597 samples), signifying that most water 
samples meet relatively high-quality standards. 
Conversely, Class III (4 samples) and Class IV 
(2,869 samples) have significantly fewer data points, 
indicating that instances of lower water quality are 
less frequent in the dataset. 

The classification results for each region are 
presented in Table 4. From the table, several key 
observations can be made. In Ajibata, 1,301 out of 
1,400 rows were classified as Class II. In 
Haranggaol, 5,937 out of 6,058 rows were classified 
as Class I, while in Parapat, 7,318 out of 8,200 rows 
were classified as Class II. These results indicate that 
the water quality in Ajibata and Parapat falls under 
Class II, whereas in Haranggaol, it is classified as 
Class I. 

The next step involves preparing the data by 
separating it into features and labels. After 

identifying which columns correspond to features 
and labels, the feature data is normalized, and the 
label data is encoded. The effectiveness of 
classification depends on the number of waveforms 
accurately recognized as belonging to a specific 
category [20]. To better understand the relationships 
between different water quality parameters, a 
correlation heatmap is presented. This visualization 
highlights the degree of correlation between each 
feature, helping to identify patterns and 
dependencies within the dataset. Figure 3 presents 
the correlation heatmap of the selected parameters. 

 
Figure 2: Distribution of water quality classes after data 

cleaning and labeling, showing the number of 
observations for Class III and Class IV. 

Once the preprocessing phase is complete, the 
training phase begins. Training is conducted using 
varying numbers of neurons and hidden layers. 
Additionally, different activation functions and 
optimizers are tested. The activation functions used 
in this research include softmax, ReLU, and 
sigmoid, while the optimizers tested include SGD, 
RMSProp, and Adam.  

Initially, the experiment is conducted using 
three parameters: pH, DO, and water temperature. 
After identifying the most optimal combination of 
activation function, optimizer, hidden layers, and 
neurons, three additional parameters—air 
temperature, ORP, and air humidity—are 
introduced. 

Table 4: Experiment results with the most optimal activation function and optimizer trained using six features sorted in 
descending order based on the highest training accuracy 

Location Class Water 
Quality Class I Class II Class III Class IV 

Ajibata 72 1280 2 28 Class II 
Haranggaol 5476 1 1 526 Class I 
Parapat 49 5891 1 2285 Class II 
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During the first phase, a series of tests is 
performed to determine the most suitable activation 
function and optimizer. The loss/error value is 
calculated using the categorical cross-entropy 
function, which is the most appropriate loss function 
for multi-label data. At this stage, the number of 
hidden layers and neurons is not yet optimized, so 
the initial values used are 5 hidden layers and 64 
neurons. Based on the results of experiments with 
different activation functions and optimizers, the 
final outcomes are summarized in Table 5. 

 

Figure 3: Correlation heatmap showing the relationships 
between ORP, pH, water temperature, air humidity, air 
temperature, and class with values ranging from -1 to 1. 

Table 5 presents the experimental results using 
different optimizers and activation functions. Each 
experiment was trained for 1,000 epochs with an 
early stopping mechanism based on the loss value, 
with a patience parameter of 30. The dataset was 
split into 80% for training and 20% for testing. The 
experiments were conducted using three input 
parameters: pH, water temperature, and dissolved 
oxygen (DO). The learning rate was set to 0.001, 
with a batch size of 32, five hidden layers, and 64 
neurons per layer. The table is sorted in descending 
order based on training accuracy. The highest testing 

accuracy of 0.998402 was achieved using the SGD 
optimizer with the ReLU activation function. The 
graph illustrating the highest accuracy levels is 
shown in Figure 5. The graphs illustrating the 
highest and lowest accuracy levels are presented in 
Figures 7 and 8. 

 

Figure 4: Training and validation accuracy and loss over 
epochs for the most optimal combination of optimizer and 

activation function, trained using three features. 

Table 5: Experiment results with different activation and optimizer sorted in descending order based on the highest 
training accuracy 

No Optimizer Activation Accuracy Loss/Error Time to 
Train (s) Training Testing Training Testing 

1 SGD ReLu 0.999200 0.998402 0.004591 0.012583 531.231674 
2 Adamax ReLu 0.998801 0.998402 0.004512 0.006947 63.9516453 
3 AdamGrad ReLu 0.998101 0.998402 0.004512 0.006947 63.9516453 
4 Adam ReLu 0.997502 0.988494 0.009268 0.047629 26.2919938 
5 RMSProp ReLu 0.995804 0.998721 0.013465 0.004003 40.6875546 
6 Adadelta ReLu 0.990809 0.991371 0.049889 0.056193 547.378306 
7 Adamax Sigmoid 0.936963 0.937999 0.169442 0.185234 293.328241 
8 Adam Sigmoid 0.934665 0.937360 0.170226 0.178026 81.2457304 
9 RMSProp Sigmoid 0.934565 0.928731 0.169874 0.189297 202.118056 
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Table 6: Experiment results with the most optimal activation function and optimizer trained using six features sorted in 
descending order based on the highest training accuracy 

No Number 
of Hidden 

Layers 

Number 
of 

Neurons 

Batch 
Size 

 

Accuracy Loss/Error Time to 
Train (s) Training Testing Training Testing 

1 5 96 32 0.999200 0.998402 0.004245 0.014616 647.373745 
2 5 64 32 0.999001 0.998721 0.005340 0.009932 642.292580 
3 3 32 16 0.998901 0.998082 0.006922 0.021817 907.060529 
4 4 48 32 0.998901 0.999041 0.007405 0.011390 515.858443 
5 6 64 16 0.998701 0.998721 0.004018 0.012343 956.276379 
6 6 32 16 0.998401 0.998082 0.005410 0.012373 670.685301 
7 5 64 64 0.998301 0.997762 0.009093 0.014748 359.039999 
8 4 128 64 0.998001 0.996164 0.014139 0.025046 319.581876 
9 5 80 64 0.997402 0.994886 0.013532 0.020674 443.252383 
10 7 48 32 0.991208 0.986896 0.033836 0.040665 522.096319 

 

The confusion matrix for the most optimal 
combination of optimizer and activation function 
shown in Figure 5 reveals the model's strong 
predictive performance across three of the four 
classes, demonstrating high accuracy in classifying 
classes I, II, and IV with 1109, 1466, and 549 correct 
predictions, respectively.  

The minimal misclassification rates for these classes 
indicate robust model performance. The model's 
inability to correctly identify class III can be 
attributed to the severe class imbalance in the 
dataset, where class III is represented by only 4 
instances. This extreme data scarcity for class III 
makes it statistically challenging for the model to 
learn meaningful patterns for this category 

 

Figure 5: Confusion Matrix of the testing results for the 
most optimal combination of optimizer and activation 

function, trained using three features. 

After determining the ideal model architecture, 
the next step involves conducting experiments using 

six parameters. During these experiments, we 
evaluate the loss and accuracy while adjusting other 
hyperparameters, such as the number of hidden 
layers, neurons, and batch size, to optimize 
performance. The results of these experiments are 
presented in Table 6. 

Experiments using six parameters with the same 
model architecture and training settings achieved the 
highest training and testing accuracy of 0.999200 
and 0.998402, respectively. These values are exactly 
the same as the results obtained using three 
parameters, which yielded accuracies of 0.999200 
and 0.998402. The training and testing loss for the 
six-parameter experiment were 0.004245 and 
0.014616, while the three-parameter experiment 
achieved lower loss values of 0.004591 and 
0.012583. Although the loss values for the three-
parameter experiment with the most optimal 
hyperparameters were slightly higher, the difference 
is relatively small.  

Regarding execution time, the six-parameter 
experiment took 647.373745 seconds, whereas the 
three-parameter experiment completed in 
531.231674 seconds, making the latter 13.3004% 
faster. The longer execution time of the six-
parameter model is attributed to the increased 
number of features, which requires additional 
computational resources during training. The 
training and validation accuracy, as well as the loss 
of the most optimal six-parameter model, are 
presented in Figure 6. The confusion matrix is also 
presented in Figure 7. 

A previous study also utilized this dataset but 
classified water quality differently. It applied the 
Decree of the Minister for the Environment Number 
115 of 2003, which categorizes water quality from 
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Class A to D based on different metrics. 
Additionally, it used slightly different preprocessing, 
validation, and testing methods. Despite these 
variations, the study produced good results, with the 
lowest recorded RMSE of 1.097, further 
demonstrating the reliability of the dataset for water 
quality classification [21]. 

 

Figure 6: Training and validation accuracy in (a) and 
loss over epochs in (b) for the most optimal 
hyperparameters, trained using six features. 

We also compared the results with other 
machine learning methods to evaluate the model's 
performance. In this research, we used three other 
traditional machine learning algorithms with various 
parameters: Support Vector Machine (SVM), 
Logistic Regression, and k-Nearest Neighbors 
(KNN). The results show that the deep neural 
network (DNN) outperforms the other traditional 
machine learning algorithms. The findings of this 
test are presented in Table 7. Among these models, 
DNN achieved the highest accuracy of 0.998402, 
followed by KNN with 0.997100 and SVM with 
0.996200. Logistic regression had the lowest 
accuracy of 0.978300. The results indicate that while 
DNN outperforms the traditional machine learning 
models, KNN and SVM still provide competitive 

accuracy, making them viable alternatives for 
classification tasks. 

Table 7: Performance Comparison of Deep Neural 
Network (DNN) and Traditional Machine Learning 

Algorithms 

No Algorithm Testing 
Accuracy 

1 Deep Neural Network 0.998402 
2 k-Nearest Neighbors 0.997100 
3 Support Vector Machine 0.996200 
4 Logistic Regression 0.978300 

 

Figure 7: Confusion Matrix of the testing results for the 
most optimal combination of optimizer and activation 

function, trained using three features. 

4. CONCLUSIONS 

This research employs deep learning to 
categorize water quality in Lake Toba according to 
Indonesia’s regulatory requirements (Government 
Regulation No. 82 of 2001). These guidelines define 
particular water quality classes for assessing the 
quality of Indonesian water. The study proposes an 
automated approach to precisely evaluate the water 
quality of Lake Toba utilizing deep learning 
methodology. 

The experimental results demonstrate high 
accuracy, particularly during the training process. 
The best accuracy was achieved using a model with 
the ReLU activation function and the SGD 
optimizer, configured with five hidden layers and 96 
neurons. The findings indicate that the choice of 
activation function and optimizer significantly 
impacts both the loss value and accuracy. 
Additionally, the number of hidden layers and 
neurons plays a crucial role in model performance. 

Increasing the number of hidden layers and 
neurons can enhance accuracy; however, excessive 
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additions, especially when mismatched with the 
dataset size, can degrade performance. A larger 
number of neurons requires more extensive training, 
and if the dataset is insufficient, many neurons 
remain undertrained, leading to suboptimal 
performance. Therefore, careful architectural design 
is essential to achieve optimal accuracy. 

The accuracy of deep learning models is 
significantly reliant on the quality, quantity and 
variety of the data utilized. This study’s dataset has 
specific limitations, notably with the volume of data 
obtained and the imbalance in the class distribution. 
The model was particularly trained on data from 
Lake Toba, which is one of the largest lakes in 
Indonesia. Consequently, its performance may not 
be applicable to other lakes with varying 
environmental conditions, temperatures, or pollution 
sources. Moreover, seasonal climatic fluctuations 
may impact the dataset and the classification 
outcomes, thereby compromising the model’s 
reliability over time. 

In conclusion, the proposed method 
demonstrates strong performance in the 
classification task, particularly in the water quality 
classification problem examined. With an 
appropriately designed model architecture, high 
accuracy can be attained. However, due to the 
absence of sufficient data for Class III, the model's 
performance declines when classifying samples 
labeled as Class III. 
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