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ABSTRACT 

In the rapidly evolving digital landscape, trend forecasting has become a critical task for decision-makers 
across industries. Traditional methods struggle with adaptability, scalability, and real-time trend 
identification. This paper presents a novel framework that integrates Generative AI with the Proposed Guided 
Remora Optimization Algorithm (PGROA) to enhance trend prediction accuracy while maintaining 
robustness across dynamic and multimodal datasets. The framework leverages transformer-based 
architectures for feature extraction, adaptive learning mechanisms for real-time updates, and cross-domain 
generalization techniques to ensure scalability. Additionally, interpretability methods such as SHAP values 
and attention mechanisms provide transparency in model predictions. The proposed system is evaluated on 
diverse datasets, demonstrating superior performance with an accuracy of 94.8%, an F1-score of 93.8%, and 
a significantly reduced RMSE of 0.072, outperforming existing deep learning and hybrid models. This 
research establishes a scalable and interpretable AI-driven approach to trend prediction, equipping decision-
makers with actionable insights for dynamic environments. 
Keywords: Generative AI, Trend Prediction, Adaptive Learning, Remora Optimization, Cross-Domain 

Generalization.  
 

1. INTRODUCTION 

 As the world becomes increasingly 
connected, the ability to track emerging trends has 
never been more critical. Traditional methods of 
trend detection, such as market research or expert 
analysis, often struggle to keep pace with the rapid 
evolution of technologies, social behaviors, and 
global events. However, with the exponential growth 
of digital data, new tools have emerged to analyze 
and predict these trends with greater precision. 
Generative AI, a branch of artificial intelligence that 
focuses on creating models capable of generating 
data based on patterns learned from existing 
information, is being explored as a powerful tool for 
trend forecasting. By analyzing vast amounts of 
historical data, generative AI can simulate future 
scenarios, identifying emerging topics before they 
gain widespread attention. This predictive capability 
has the potential to revolutionize various industries, 
enabling businesses, governments, and individuals 
to make more informed decisions about future 
developments. 

Generative AI enables the precise identification of 
trends by uncovering intricate patterns in large 
datasets, distinguishing significant developments 
from noise. It employs advanced natural language 
processing (NLP) and machine learning techniques 
to analyze structured and unstructured data sources, 
such as news articles, social media posts, and 
research papers. One critical aspect of effective trend 
tracking is feature extraction—identifying the most 
relevant elements that signal emerging topics. 
Traditional methods often relied on predefined 
statistical measures, whereas generative AI 
autonomously learns complex relationships within 
the data. 

Hybrid approaches, which combine generative AI 
with classical machine learning or deep learning 
techniques, have been shown to enhance trend 
prediction. For example, combining Generative 
Pretrained Transformers (GPT) with clustering 
algorithms such as k-means can group related topics, 
while integrating generative models with decision 
trees enables more interpretable insights. Similarly, 
frameworks like GPT+LSTM leverage generative 
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AI for language understanding and LSTM for 
capturing sequential dependencies in time-series 
data. These hybrid strategies improve accuracy by 
leveraging the strengths of each method, helping to 
identify subtle shifts in topics over time and 
distinguishing genuine trends from transient 
phenomena. By utilizing these advanced techniques, 
generative AI provides a more reliable foundation 
for trend prediction across diverse domains. 

To classify trends effectively and identify significant 
patterns, generative AI models often integrate with 
advanced techniques for feature extraction and 
categorization. For instance, unsupervised methods 
like clustering algorithms or supervised approaches 
like decision trees can be used to group and interpret 
patterns from raw data. In 2020, researchers 
demonstrated how multimodal frameworks, such as 
combining GPT models with visual analysis tools, 
can enhance the accuracy of predictions by utilizing 
diverse data sources like textual and visual content. 
However, relying solely on classical models or 
standalone generative techniques may fail to capture 
the deeper semantic relationships required for 
precise trend forecasting. 

Generative AI excels in extracting these semantic 
links by leveraging contextual comprehension and 
latent representation learning. Nevertheless, 
challenges such as overfitting, a common issue in 
classical machine learning methods, must be 
addressed when employing generative AI models. 
Overfitting occurs when a model learns the noise or 
specific patterns of training data rather than general 
trends, leading to poor performance on unseen data. 
To mitigate this, hybrid models that combine 
generative AI with regularization techniques or 
ensemble approaches have proven effective in 
ensuring accurate and robust trend prediction across 
dynamic datasets. 

A model that suffers from overfitting performs 
exceptionally well on training data but struggles to 
generalize to unseen data, leading to poor 
performance on fresh datasets. In the context of trend 
prediction, this challenge can hinder the ability of 
generative AI models to accurately forecast future 
developments. To address overfitting, the 
integration of neural networks with other advanced 
techniques has become a prevalent approach. Neural 
networks, known for their ability to interpret 
complex patterns, are enhanced through such 
combinations, ensuring better generalization and 
robustness. 

In the context of generative AI, various hybrid 
techniques have been employed to enhance trend 
prediction and mitigate challenges like overfitting. 
For instance, generative AI models like GPT have 
been integrated with convolutional neural networks 
(CNNs) for feature extraction and pattern 
recognition. Additionally, frameworks combining 
generative models with classical machine learning 
techniques, such as GPT+SVM or GPT+Random 
Forest, have been utilized to leverage the strengths 
of both paradigms. These approaches enable the 
extraction of semantic relationships and intricate 
patterns, ensuring robust and accurate predictions of 
trends across diverse datasets. 

Despite the significant advancements in leveraging 
generative AI for trend tracking, several limitations 
remain in existing methodologies. Current models 
often face challenges in handling highly dynamic 
and noisy datasets, which can result in inaccurate 
predictions. Additionally, many approaches struggle 
to generalize across diverse domains, as they rely 
heavily on domain-specific fine-tuning. The 
interpretability of generative AI models is another 
critical issue, making it difficult to understand the 
reasoning behind the predicted trends. Furthermore, 
computational complexity and the need for extensive 
labelled datasets can limit their scalability and 
applicability in real-time scenarios. 

This paper aims to address these limitations by 
proposing a robust and scalable framework that 
integrates generative AI with adaptive learning 
mechanisms to improve trend prediction accuracy 
across diverse datasets. By incorporating techniques 
for dynamic data handling, cross-domain 
generalization, and enhanced model interpretability, 
the proposed approach seeks to overcome the 
existing challenges and establish a comprehensive 
solution for tracking trends with generative AI. 

The need for this study arises from the increasing 
demand for real-time, robust, and interpretable trend 
prediction across diverse and dynamic domains. 
Traditional approaches fail to offer adaptability and 
explainability in multimodal environments. This 
study addresses the gap by proposing a generative 
AI-driven framework that integrates adaptive 
learning and optimization for better generalization. 
Literature was screened based on relevance to 
generative AI, multimodal trend prediction, hybrid 
deep learning architectures, and optimization 
techniques published between 2015 and 2024. Key 
selection criteria included methodological novelty, 
reported performance metrics, and domain 
applicability. 
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1.1 Motivation  

 The ability to predict future trends plays a 
pivotal role in shaping strategic decision-making 
across various fields, such as healthcare, technology, 
finance, and social sciences. Despite significant 
advancements, existing methodologies often fall 
short in addressing the complexities associated with 
dynamic, real-world datasets. 

For example, in the healthcare sector, predicting the 
progression of diseases like Alzheimer's Disease 
(AD) from medical imaging data is vital for early 
diagnosis and timely interventions. However, 
challenges such as data noise, domain dependency, 
and the need for explainability hinder the 
effectiveness of current AI models. Similarly, in the 
technology sector, identifying emerging trends 
based on noisy and rapidly evolving data sources 
like news articles, social media, or research 
publications is an equally challenging task. 

Motivated by the success of generative AI in 
capturing intricate patterns, this study aims to 
develop a scalable and interpretable framework 
capable of addressing these challenges. The 
proposed framework aspires to bridge the gap 
between theoretical advancements and practical 
implementations, ensuring that trend prediction 
models remain reliable, adaptive, and actionable.  

The paper is structured as follows: Section 2 
provides a comprehensive review of related works in 
trend prediction and generative AI methodologies, 
highlighting advancements and identifying existing 
gaps that motivate this study. Section 3 outlines the 
proposed framework, focusing on the integration of 
generative AI with adaptive learning mechanisms to 
enhance trend prediction. This section also details 
preprocessing techniques for managing dynamic 
datasets and presents strategies for achieving cross-
domain generalization and model interpretability. 
Section 4 discusses the experimental results, offering 
a comparative analysis of the proposed approach 
against existing models using a variety of 
performance metrics. Finally, Section 5 concludes 
the paper with key insights, explores potential real-
world applications, and suggests directions for future 
research to further advance trend prediction 
methodologies. 

Unlike earlier works that focused on statistical 
modeling or single-modality learning, this research 
leverages a multi-modal, generative AI-based 
framework enhanced with optimization and 
interpretability mechanisms. While prior efforts like 

GAN-based synthesis or Transformer models have 
shown promise, they often lack adaptability, 
transparency, and cross-domain performance. Our 
work differs by introducing a novel combination of 
PGRO optimization, interpretability through SHAP 
and attention, and domain-adversarial training to 
address the evolving nature of trend prediction tasks. 

1.2 Research Contribution 

 Proposed an innovative Generative AI-
driven framework that integrates the 
Proposed Guided Remora Optimization 
Algorithm (PGROA) for enhancing trend 
forecasting accuracy in dynamic 
environments. 

 Developed PGROA, an improved version 
of the Remora Optimization Algorithm, 
which enhances exploration-exploitation 
balance, ensuring faster convergence and 
better performance in optimization tasks. 

 Utilized transformer-based architectures 
(BERT, Vision Transformer (ViT), 
Temporal Convolutional Transformer 
(TCT)) for extracting features from textual, 
visual, and temporal data sources, 
improving trend prediction accuracy. 

 Implemented incremental learning with 
elastic weight consolidation (EWC) and 
Replay Buffer Systems to prevent 
catastrophic forgetting and maintain 
accuracy in real-time trend updates. 

 Applied Domain-Adversarial Neural 
Networks (DANN) to enable the model to 
generalize across multiple domains, 
ensuring robustness to domain shifts and 
varying data distributions. 

In addition to proposing a new trend prediction 
framework, this study introduces original knowledge 
in the integration of PGRO for adaptive 
optimization, interpretable multi-modal feature 
fusion, and domain-adversarial learning. These 
elements address significant limitations in existing 
works, particularly in adaptability and transparency. 
This contributes not only technical advancement but 
also provides a scalable blueprint for real-world 
deployment of generative AI systems in volatile 
trend environments. 

1.3 Problem Statement and Research Questions 
Despite advances in trend prediction, current 
methods fall short in adaptability, scalability, and 
interpretability when applied to dynamic, 
multimodal data. Generative AI models often 
struggle with generalization and lack integration 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4889 

 

with real-time learning mechanisms. 
This study aims to address the following research 
questions: 

 How can generative AI frameworks be 
designed to adapt dynamically to new data 
across domains? 

 What optimization strategies enable real-
time learning without catastrophic 
forgetting? 

 How can interpretability techniques be 
effectively integrated with deep generative 
models for trend prediction? 

2. RELATED WORK 

Early Foundations (2015-2018) 

Zhang and colleagues (2015) pioneered the 
integration of deep learning with time series 
prediction, proposing a basic LSTM architecture for 
financial trend forecasting. While their work 
demonstrated superior accuracy compared to 
traditional statistical methods, the model struggled 
with scalability across different data domains and 
required extensive domain-specific feature 
engineering.  

Building upon these limitations, Chen et al. (2016) 
introduced an attention-based mechanism to 
improve model adaptability across different time 
series data. Their framework showed a 15% 
improvement in prediction accuracy but was 
computationally intensive and required large 
training datasets, making it impractical for real-time 
applications. 

Wang and Liu (2017) addressed the computational 
constraints by developing a lightweight neural 
architecture for trend prediction. While achieving 
faster training times, their approach sacrificed 
accuracy for efficiency and showed inconsistent 
performance on non-stationary data. 

Integration of Generative Models (2019-2021) 

A significant paradigm shift occurred when Kumar 
and Martinez (2019) introduced the first GAN-based 
framework for trend prediction. Their approach 
generated synthetic training data to improve model 
robustness, achieving a 20% improvement in 
accuracy for limited dataset scenarios. However, the 
framework suffered from mode collapse and training 
instability issues. 

Lee et al. (2020) tackled the stability problems by 
developing a modified GAN architecture with 
regularization techniques. While successfully 
addressing training stability, their solution 
introduced additional hyperparameters requiring 
manual tuning, limiting its practical applicability. 
Rodriguez and Kim (2020) proposed a hybrid 
approach combining transformers with GANs for 
improved feature extraction. Their work showed 
promising results on financial datasets but failed to 
generalize well across different domains. 

Park and Thompson (2021) introduced an adaptive 
learning rate mechanism to improve training 
convergence. While their approach showed better 
stability, it still required significant computational 
resources and expert knowledge for optimal 
performance. 

Advanced Architectures and Scalability (2022-
2024) 

Wilson et al. (2022) developed a scalable framework 
using distributed computing and federated learning. 
Their approach improved computational efficiency 
but struggled with maintaining prediction accuracy 
across heterogeneous data sources. 

Chang and Patel (2023) introduced a novel self-
attention mechanism specifically designed for trend 
prediction. Their work showed exceptional 
performance on structured data but had limitations 
handling multimodal inputs and real-time updates. 

Recent work by Singh and colleagues (2024) 
focused on developing lightweight, efficient 
architectures suitable for edge deployment. While 
achieving impressive efficiency gains, their 
approach showed reduced accuracy compared to 
larger models. 

Emerging Methodologies (2022-2024) 

Wilson et al. (2022) developed a scalable framework 
using distributed computing and federated learning. 
Their approach improved computational efficiency 
but struggled with maintaining prediction accuracy 
across heterogeneous data sources. Yamamoto and 
Chen (2022) proposed a novel quantum-inspired 
generative model for trend prediction. While 
showing promising results for complex pattern 
recognition, their approach required specialized 
hardware and faced scaling limitations. Anderson et 
al. (2022) introduced a multi-task learning 
framework combining trend prediction with 
anomaly detection. Though innovative, their 
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solution showed decreased performance when 
handling imbalanced datasets. 

Brown and colleagues (2023) developed a self-
supervised learning approach for trend prediction in 
unlabeled datasets. While reducing the need for 
labeled data, their method struggled with real-time 
adaptation. Chang and Patel (2023) introduced a 
novel self-attention mechanism specifically 
designed for trend prediction. Their work showed 
exceptional performance on structured data but had 
limitations handling multimodal inputs. Li and 
Thompson (2023) proposed a robust ensemble 
method combining multiple generative models. 
Though achieving high accuracy, their approach 
faced significant computational overhead and 
complex deployment requirements. Hassan et al. 
(2023) developed a privacy-preserving generative 
framework for sensitive trend data. While ensuring 
data privacy, their method showed reduced 
prediction accuracy compared to non-private 
alternatives. Kim and Park (2023) introduced an 
interpretable deep learning framework for trend 
analysis. Their approach provided clear explanations 
but sacrificed some accuracy for interpretability. 
Zhang et al. (2023) proposed a hybrid approach 
combining statistical methods with deep learning. 
While showing good performance on traditional 
datasets, their method struggled with highly non-
linear patterns. 

Patel and Rodriguez (2024) developed an automated 
architecture search method for optimal model 
selection. Though innovative, their approach 
required extensive computational resources during 
the search phase. Singh and colleagues (2024) 
focused on developing lightweight, efficient 
architectures suitable for edge deployment. While 
achieving impressive efficiency gains, their 
approach showed reduced accuracy compared to 
larger models. Fischer and Lee (2024) introduced a 
novel cross-domain adaptation technique for trend 
prediction. Their method showed promise in transfer 
learning but required significant fine-tuning for each 
new domain. 

Our review highlights a lack of comprehensive 
frameworks that effectively combine dynamic 
learning, cross-domain adaptability, and model 
interpretability. Most existing methods are either 
domain-specific or computationally intensive, 
lacking real-time adaptability. This study fills these 
gaps by proposing a generative AI framework 
supported by PGRO optimization and 
interpretability tools like SHAP and attention 

visualization, which are currently underexplored in 
this context. 

Tabular Summary of Key Works 

Year  
 

Techniqu
e 

Key 
Contribu
tion  

Primary 
Limitation  

Chandra 
et al. 
(2021) 

Deep 
learning 
models 
(LSTM, 
GRU) for 
multi-step 
time 
series 
prediction 

 
Evaluated 
multiple 
architectu
res for 
long-term 
forecastin
g 

Limited 
interpretabi
lity and 
requires 
extensive 
hyperpara
meter 
tuning 

Hollis et 
al. 
(2018) 

Comparis
on of 
LSTM 
and 
attention 
mechanis
ms for 
financial 
forecastin
g 

Demonstr
ated the 
effectiven
ess of 
attention 
for 
capturing 
temporal 
dependen
cies 

Lacks 
exploration 
of 
multimodal 
data 

Li et al. 
(2020) 

Neural 
architectu
re search 
(AutoST) 
for spatio-
temporal 
prediction 

Automate
d model 
selection 
for time-
series 
forecastin
g 

High 
computatio
nal cost for 
model 
selection 

Liu et al. 
(2023) 

GAN-
based 
classificat
ion for 
financial 
time 
series 
volatility 
prediction 

Improved 
trend 
detection 
using 
generative 
models 

Stability 
issues in 
GAN 
training 

Smith & 
Smith 
(2020) 

Condition
al GAN 
for time-
series 
generatio
n 

Enhanced 
realism in 
synthetic 
data for 
forecastin
g 

Requires 
fine-tuning 
for domain 
adaptation 

Shu et 
al. 
(2024) 

Transfor
mer-GAN 
hybrid for 
precipitati
on 
prediction 

Improved 
spatio-
temporal 
accuracy 
with 

Computati
onal 
complexity 
remains a 
challenge 
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generative 
models 

Zhao et 
al. 
(2023) 

Bidirectio
nal 
Transfor
mer GAN 
for human 
motion 
prediction 

Strong 
performan
ce in long-
term 
sequence 
modelling 

High 
training 
cost and 
resource 
demands 

Liu et al. 
(2024) 

Trend 
detection-
based 
auto-
scaling 
for high-
concurren
cy 
systems 

Improved 
scalability 
and 
resource 
managem
ent 

Limited 
application 
to financial 
and social 
trends 

Alcazar 
et al. 
(2024) 

Classical 
and 
quantum 
generativ
e models 
for 
optimizati
on 

Hybrid 
approach 
improves 
combinat
orial 
optimizati
on 

Quantum 
methods 
are still 
experiment
al 

Zhao et 
al. 
(2015) 

Multi-
task 
learning 
for spatio-
temporal 
event 
forecastin
g 

Improved 
predictive 
power 
across 
tasks 

Lacks 
interpretabi
lity 
mechanism
s 

Zhang et 
al. 
(2024) 

Self-
supervise
d learning 
for time-
series 
analysis 

Categoriz
ed self-
supervise
d 
technique
s for 
forecastin
g 

Requires 
large 
labeled 
datasets for 
downstrea
m tasks 

Fahim et 
al. 
(2021) 

Hybrid 
LSTM 
with self-
attention 
for 
scientific 
research 
forecastin
g 

Improved 
accuracy 
with 
attention-
enhanced 
recurrent 
models 

High 
training 
complexity 

Yang et 
al. 
(2022) 

Generativ
e 
ensemble 
regression 

Physics-
informed 
deep 
generative 

Limited 
adaptabilit
y to non-

for 
particle 
dynamics 

models 
for time-
series 
prediction 

physical 
domains 

Chen et 
al. 
(2024) 

Generativ
e ML 
methods 
for 
ensemble 
postproce
ssing 

Enhanced 
calibratio
n of 
ensemble 
prediction
s 

Needs 
extensive 
historical 
data for 
effective 
training 

Yao et 
al. 
(2024) 

Interpreta
ble trend 
analysis 
neural 
networks 

Trend 
analysis 
with 
explainabl
e deep 
learning 

Still lacks 
domain-
specific 
customizati
on 

Wikle & 
Zammit
-
Mangio
n (2022) 

Statistical 
deep 
learning 
for spatial 
and 
temporal 
data 

Bridging 
statistical 
methods 
with deep 
learning 

Requires 
strong 
statistical 
expertise 
for 
effective 
use 

Alsharef 
et al. 
(2022) 

Review of 
ML and 
AutoML 
for time-
series 
forecastin
g 

Provided 
a 
comprehe
nsive 
survey of 
forecastin
g models 

Lacks real-
world 
experiment
al 
validation 

George 
et al. 
(2023) 

Survey on 
Edge 
Computin
g and its 
future in 
cloud 
computin
g 

Explored 
computati
onal 
offloading 
for time-
series 
tasks 

Edge-based 
models still 
require 
optimizatio
n 

Jia et al. 
(2025) 

Contrasti
ve 
representa
tion 
domain 
adaptatio
n for 
industrial 
time 
series 

Improved 
cross-
domain 
generaliza
tion for 
industrial 
forecastin
g 

Requires 
large-scale 
industrial 
datasets for 
training 

Yazdani 
et al. 
(2023) 

Robust 
optimizati
on for 
time-
dependent 
systems 

Evaluated 
time-
aware 
optimizati
on 
strategies 

Optimizati
on 
techniques 
may not 
generalize 
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across 
domains 

Nott et 
al. 
(2023) 

Bayesian 
inference 
for 
generativ
e models 

Improved 
uncertaint
y 
quantifica
tion in 
trend 
prediction 

High 
computatio
nal cost for 
inference 

Jin et al. 
(2024) 

Multi-
layer 
temporal 
graph 
neural 
networks 
for social 
media 
trends 

Captured 
complex 
temporal 
relationsh
ips in 
social 
media 

Requires 
fine-tuning 
for 
different 
datasets 

Fu et al. 
(2022) 

Reinforce
ment 
learning-
based 
model 
combinati
on for 
time-
series 
forecastin
g 

Adaptive 
model 
selection 
for 
varying 
trend 
dynamics 

Computati
onally 
expensive 
training 
process 

Ji et al. 
(2017) 

Trend-in-
trend 
research 
design for 
causal 
inference 

Proposed 
a 
framewor
k for 
causal 
analysis in 
time-
series data 

Requires 
expert 
domain 
knowledge 

Iwata & 
Kumaga
i (2020) 

Few-shot 
learning 
for time-
series 
forecastin
g 

Improved 
generaliza
tion with 
limited 
training 
data 

Struggles 
with noisy 
or 
unstructure
d data 

Gu et al. 
(2021) 

Transfer 
learning, 
active 
learning, 
and 
metric 
learning 
for time-
series 

Integrated 
multiple 
learning 
paradigms 
for 
prediction 

Requires 
domain 
adaptation 
for 
different 
application
s 

Pöppelb
aum et 

Contrasti
ve 
learning-

Improved 
feature 
representa

Still lacks 
interpretabi
lity for 

al. 
(2022) 

based 
self-
supervise
d time-
series 
analysis 

tion for 
forecastin
g 

decision-
making 

Zhao et 
al. 
(2023) 

Meta-
learning 
for 
increment
al stock 
trend 
forecastin
g 

Adaptive 
learning 
approach 
for 
financial 
markets 

High 
sensitivity 
to initial 
training 
conditions 

Shen et 
al. 
(2024) 

Uncertain
ty 
quantifica
tion for 
oil well 
trend 
prediction 

Addresse
d 
uncertaint
y in 
energy 
sector 
forecastin
g 

Requires 
extensive 
field data 
for 
effective 
modeling 

He et al. 
(2022) 

Machine 
learning 
for crude 
oil price 
trend 
prediction 

Integrated 
multimod
al features 
for 
improved 
accuracy 

Requires 
additional 
real-time 
market 
inputs 

 

Research Gaps 

Despite significant advancements in time-series 
forecasting, trend prediction, and interpretability, 
existing methodologies still face critical limitations 
that hinder their effectiveness in dynamic and 
multimodal environments. Traditional statistical 
models, such as ARIMA and Random Forest, 
struggle with capturing non-stationary trends and 
rapidly evolving data distributions, making them 
unsuitable for real-time forecasting. While deep 
learning approaches, including LSTMs and GRUs, 
offer improved sequence modeling capabilities, they 
suffer from catastrophic forgetting and require 
frequent retraining to adapt to new patterns. 
Furthermore, cross-domain generalization remains a 
challenge, as many models are highly domain-
specific, necessitating extensive fine-tuning to 
perform across diverse datasets. Current domain 
adaptation methods, such as contrastive learning and 
few-shot learning, show promise but often fail to 
handle high-dimensional and multimodal data 
effectively. 

Another significant gap in existing research is the 
lack of interpretability in deep learning-based trend 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4893 

 

forecasting. Many high-performing models, 
including transformer-based architectures and 
generative adversarial networks (GANs), excel in 
predictive accuracy but offer little transparency in 
their decision-making processes. Although 
techniques such as SHAP values, attention 
visualization, and saliency maps have been 
introduced for explainability, their integration with 
trend prediction remains underexplored. Moreover, 
computational complexity poses a major limitation, 
as hybrid models, such as CNN-LSTM and 
Transformer-GAN, demand extensive resources, 
making them impractical for real-time applications. 
While optimization algorithms like PSO and ACO 
enhance model tuning, they introduce high 
computational latency, limiting their scalability. 

To address these challenges, our research proposes a 
Generative AI-driven trend forecasting framework 
that integrates the Proposed Guided Remora 
Optimization Algorithm (PGROA) for efficient 
hyperparameter tuning, transformer-based 
architectures for robust cross-domain generalization, 
and advanced interpretability techniques such as 
SHAP analysis, attention visualization, and 
counterfactual explanations. Additionally, our 
framework employs incremental learning 
mechanisms to ensure adaptability without frequent 
retraining while maintaining computational 
efficiency. By balancing accuracy, scalability, and 
interpretability, our proposed approach offers a 
novel, high-performing, and transparent solution for 
dynamic trend forecasting across multiple domains. 

3. REMORA OPTIMIZATION ALGORITHM 
AND PROPOSED GUIDED REMORA 
OPTIMIZATION ALGORITHM 

This section provides an overview of the Remora 
Optimization Algorithm, a bio-inspired optimization 
technique that emulates the mutualistic relationship 
between remoras and their host organisms. It then 
introduces the Proposed Guided Remora 
Optimization Algorithm, which incorporates 
tailored guidance strategies to refine the search 
process, improve solution quality, and address the 
limitations of the original algorithm in complex 
problem domains. 

3.1 Remora Optimization Algorithm 
 
The Remora Optimization Algorithm is an 
innovative nature-inspired optimization technique 
that draws inspiration from the symbiotic 
relationship between remora fish and their host 
species, such as sharks or whales. Just as remoras 

benefit from the protection and food sources 
provided by larger marine animals, this algorithm 
seeks to enhance optimization processes by utilizing 
a cooperative search strategy. The Remora 
Optimization Algorithm operates by simulating a 
population of agents, or "remoras," that explore the 
solution space in search of optimal solutions to 
complex problems. Each remora evaluates its 
position based on a fitness function, which quantifies 
the quality of its solution relative to others. By 
continuously updating their positions and 
exchanging information about the best-found 
solutions, the remoras collaboratively navigate the 
search landscape, effectively balancing exploration 
and exploitation. Below provide the mathematical 
models for "Free travel" and "Eat thoughtfully." 

3.3.1 Initialization 
Let 𝑅௜, represents the remora position which is given 
by the Eq.1 
𝑅௜ = (𝑅௜ଵ, 𝑅௜ଶ, … … … 𝑅௜ௗ)   
 (1) 
Where 𝑅௜ represent current position of remora,  𝑑 
denotes the dimension and 𝑖 the number of the 
remora 
𝑅௕௘௦௧, represents the optimal solution which is given 
by the Eq.2 
𝑅௕௘௦௧ = (𝑅ଵ, 𝑅ଶ, … … … 𝑅ௗ)  
 (2) 
Evaluation of candidate solutions using fitness 
function is given by the Eq.3 
𝑓(𝑅௜) = 𝑓[(𝑅௜ଵ, 𝑅௜ଶ, … … … 𝑅௜ௗ)]  
 (3) 

3.1.2 Free Travel (Exploration) 
Eq.4 defines the shift in remora's location when 
swordfish serve as hosts. 

𝑅௜
௧ = 𝑅஻௘௦௧

௧ − (𝑟𝑎𝑛𝑑(0,1) ∗ ൬
ோಳ೐ೞ೟

೟ ାோೝೌ೙೏
೟

ଶ
൰ − 𝑅௥௔௡ௗ

௧

 (4) 
as 't' stands for the number of the iteration and 𝑅௥௔௡ௗ 
for the random location. 
 
A few tiny steps around the host is represented with 
𝑅௔௧௧ and its calculation is shown in the Eq.5. This is 
helpful in determining whether to switch hosts and 
change in the position. 
 
𝑅௔௧௧ = 𝑅௜

௧ + ൫𝑅௜
௧ + 𝑅௣௥௘൯ ∗ 𝑟𝑎𝑛𝑑𝑛                          (5) 

where Rpre stands for the previous position, "𝑟𝑎𝑛𝑑𝑛 
" indicates random integer, 𝑅௜

௧is the current position. 
Let 𝑓(𝑅௜

௧) denotes fitness value of the current 
position of remora and 𝑓(𝑅௔௧௧) denotes the fitness 
value of the remora’s tentative step. 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4894 

 

𝑖𝑓 𝑓(𝑅௜
௧) > 𝑓(𝑅௔௧௧) remora continues feeding on the 

same host else remora shifts to another host which 
can be whale or swordfish. 
The host is chosen by the Eq.6 
𝐻(𝑖) = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑)                                             (6) 
The remora shifts to the whale when H(i) equals 1, 
and shifts to the swordfish when H(i) equals 0. 

3.1.3 Eat Thoughtfully (Exploitation) 
Eq.7, Eq.8, Eq.9, Eq.10 describes how the position 
of the remora changes when whale is the host. 
𝑅௜ାଵ = 𝐷 ∗ 𝑒ఈ ∗ cos(2𝜋𝛼) + 𝑅௜  (7) 
𝛼 = 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑎 − 1) + 1  (8) 

𝑎 =  −(1 +
௧

்
)    (9) 

𝐷 =  |𝑅஻௘௦௧ − 𝑅௜|     (10) 
where "𝑎" decreases linearly between [-2,-1], "𝐷" is 
the current optimal solution distance from remora 
present on whale to prey, and α is a random value 
between [-1, 1]. 
In host feeding around the body of whale. 
Eq.11, Eq.12, Eq.13, Eq.14 describes the host 
feeding around the body of whale.  
𝑅௜

௧ = 𝑅௜
௧ + 𝐴                                               (11) 

𝐴 = 𝐵 ∗ (𝑅௜
௧ − 𝐶 ∗ 𝑅௕௘௦௧)                            (12) 

𝐵 = 2 ∗ 𝑉 ∗ 𝑟𝑎𝑛𝑑(0,1) − 𝑉                        (13) 

𝑉 = 2 ∗ (1 −
௧

ெ௔௫_௜௧௘௥
)                                 (14) 

 
where "C" denotes a parameter that is utilized to 
regulate the location of the remora its ranging from 
0 to 1. "A" symbolizes the movement of the remora 
over the host, or tiny steps. The volume of the host 
is represented by B. The remora's volume is 
represented using V. 
 
3.2 Proposed Guided Remora Optimization 
Algorithm 

The next position in the classic Remora 
Optimization Algorithm is selected at random. This 
may lead the algorithm move away from the 
best location and possibly toward a worse one as a 
result of this randomness, which could result in 
suboptimal convergence or a local minimum being 
reached. To address this issue we proposed a Guided 
Remora Optimization Algorithm (PGROA) that 
updates the subsequent location depending on the 
previous best position. The PGROA computes the 
ratio of the best-known position (𝑅௕௘௦௧) to that of the 
next location (𝑅௡௘௪). This ratio indicates that the 
new position (𝑅௡௘௪) is allowed if ratio falls between 
0.7 and 1. The optimal location is then updated by 
computing the fitness value of this new position. 
Iteratively, this procedure continues until the optimal 
position does not improve. 

 
𝑅௧ = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑟 𝑟𝑒𝑚𝑜𝑟𝑎 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 
𝑅௕௘௦௧ =
𝐵𝑒𝑠𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑒𝑚𝑜𝑟𝑎 𝑠𝑜 𝑓𝑎𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑅௡௘௪ = 𝑁𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑚𝑜𝑟𝑎  
𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑅) = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑅 
𝛼 = 𝑅𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑠𝑒𝑡 𝑡𝑜 0.7 
Initialize 
𝑅଴ = 𝐼𝑛𝑡𝑖𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
𝑅௕௘௦௧ =  𝑅଴ 
 
Iterate 

Generate New Position 
𝑅௡௘௪ = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
Calculate Ratio 

𝑅𝑎𝑡𝑖𝑜 =  
𝑅௕௘௦௧

𝑅௡௘௪

 

Check Ratio and Update Position: 
If 0.7≤ratio<1 then 

𝑅௧ାଵ =  𝑅௡௘௪ [The next position is 𝑅௡௘௪] 
Else 
𝑅௡௘௪

= 𝐴𝑛𝑜𝑡ℎ𝑒𝑟 𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑔𝑎𝑖𝑛 𝑐ℎ𝑒𝑐𝑘 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒
 
 
3. Fitness Calculation and Update Best Position 

𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑅௧ାଵ) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑅௕௘௦௧) 𝑡ℎ𝑒𝑛 
𝑅௕௘௦௧ =  𝑅௧ାଵ 

The above procedure continues, until there is no 
change in the best position. 
 
4. PROPOSED METHODOLOGY 

4.1 Data Collection and Pre-Processing 

In this work, data is collected from various sources 
such as news websites (Google News, BBC), social 
media platforms (Twitter, Reddit), e-commerce 
platforms (Amazon, eBay). These sources are 
chosen because they provide rich, diverse, and 
dynamic data reflecting global events, user 
behaviour, and market trends. For preprocessing, 
several techniques are applied to clean and prepare 
the data for analysis. First, irrelevant information, 
duplicate entries, HTML tags, and special characters 
are removed using regular expressions to ensure the 
dataset retains only meaningful text. Missing values 
are handled through imputation techniques like 
mean replacement for numerical data or forward 
filling for time-series data to maintain dataset 
integrity.  

Text normalization is performed by converting text 
to lowercase, removing stopwords, and applying 
stemming or lemmatization, which reduces 
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redundancy and standardizes the dataset for efficient 
processing. To filter noise, patterns such as URLs or 
advertisements are identified and removed using 
regex patterns, whitelists, ensuring that only relevant 
content is preserved. Tokenization splits the text into 
smaller units like words or phrases using tools such 
as NLTK, structuring the data for input into machine 
learning models. Numerical features are normalized 
using Min-Max Scaling to ensure uniform 
contribution across all features. For small datasets, 
data augmentation techniques like paraphrasing or 
synonym replacement are applied to artificially 
increase the data volume, helping prevent overfitting 
and enhancing generalization. Temporal alignment 
ensures that timestamps are uniformly formatted and 
synchronized across datasets, enabling consistent 
time-series analysis. These preprocessing steps are 
chosen for their robustness, scalability, and ability to 
provide well-structured and noise-free input, 
ensuring the proposed generative AI framework 
performs efficiently and accurately in dynamic and 
diverse environments. 

Dataset description 

The VaTeX dataset used in the proposed framework 
consists of multi-modal data, integrating textual, 
visual, and temporal features to enhance predictive 
accuracy. The dataset is selected for its rich multi-
modal characteristics, making it well-suited for 
video subtitle generation. It comprises 41,250 videos 
sourced from YouTube, each annotated with ten 
high-quality human-written captions in both English 
and Chinese, total of 825,000 captions. The dataset 
effectively captures textual, visual, and temporal 
features, aligning with the proposed framework. 
Textual information is derived from captions, 
processed using BERT for semantic understanding. 
Visual features are extracted from video frames 
using CNN-based models, ensuring spatial 
representation. Temporal dependencies are 
modelled using LSTM, preserving sequential 
information crucial for generating contextually 
accurate subtitles. The dataset's diversity across 
multiple domains enhances generalization, making it 
a robust benchmark for evaluating multi-modal deep 
learning models. Url: 
https://www.kaggle.com/datasets/khaledatef1/vatex
011011 

4.2 Feature Extraction Using Generative AI 

Once the data is pre-processed, the next crucial step 
is Feature Extraction Using Generative AI, where 
transformer-based generative AI models are utilized 
to extract meaningful features from the cleaned and 

structured data. These models, known for their 
ability to understand complex patterns and 
relationships, are particularly effective in handling 
diverse data types. By leveraging multi-modal data 
sources such as textual, visual, and temporal 
information, the framework ensures a 
comprehensive understanding of emerging trends. 

For textual data, transformer architectures like 
BERT (Bidirectional Encoder Representations from 
Transformers, version BERT-base, uncased) are 
used to capture contextual dependencies, semantic 
relationships, and latent patterns. BERT-base has 12 
transformer layers, 768 hidden units, 12 attention 
heads, and 110M parameters, making it highly 
effective for extracting nuanced textual features. 
GPT (Generative Pre-trained Transformer, GPT-3, 
version 175B parameters) is also leveraged for 
generating contextual embeddings and 
understanding long-form dependencies. 

Visual data, such as images or videos from social 
media or news platforms, is processed using Vision 
Transformers (ViT, Base model with 16x16 patches) 
to extract spatial features. The ViT-base model 
includes 12 layers, 768 hidden units, and 12 attention 
heads, ensuring high-resolution feature extraction 
from visual inputs. 

Temporal data, such as time-stamped news articles 
or social media posts, is handled using transformer 
models with relative positional encoding to ensure 
the sequential nature of events is retained. Models 
like Temporal Convolutional Transformers (TCT) 
are employed to preserve event order and enable 
accurate trend trajectory predictions. 

By integrating these modalities, the framework 
captures a holistic view of the trends, ensuring no 
critical aspect is overlooked. The use of multi-modal 
feature extraction, combining text, image, and time-
series data, ensures a robust understanding of the 
trends' evolution. The generative AI models’ ability 
to generalize across different domains and data types 
ensures the extracted features are both relevant and 
representative of the underlying trends. This step 
lays the foundation for robust analysis and 
prediction, enabling the framework to perform 
effectively in diverse and dynamic environments. 
The Table below shows the Parameters, Values, and 
Justification for Feature Extraction Using 
Generative AI. 
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Table: Parameters, Values, And Justification For 
Feature Extraction Using Generative AI 

Parameter Value Description 

Textual 
Model 

 

BERT-base 
(uncased) 

 

Captures 
contextual 
dependencies 
and semantic 
relationships, 
improving text 
feature 
extraction. 

BERT 
Layers 

 

12 Ensures deep 
hierarchical 
representation 
of text. 

Hidden 
Units 
(BERT) 

 

768 
 

Provides a rich 
feature space for 
better 
generalization. 

Attention 
Heads 
(BERT) 

 

12 
 

Improves multi-
headed self-
attention for 
better word 
relations. 

Visual 
Model 

Vision 
Transformer 
(ViT-base) 

 

Extracts spatial 
features from 
images and 
videos, 
outperforming 
CNN-based 
models. 

 

Patch Size 
(ViT) 

16x16 
 

Balances 
computational 
efficiency and 
feature 
resolution. 

ViT 
Layers 
 

12 
 

Ensures deeper 
learning of 
spatial 
relationships in 
images 

Hidden 
Units 
(ViT) 
 

768 
 

Provides high-
dimensional 
embeddings for 
detailed feature 
extraction. 

Attention 
Heads 
(ViT) 

 

12 
 

Enhances object 
detection and 
pattern 
recognition. 

Temporal 
Model 

 

Temporal 
Convolutional 

Captures long-
range 
dependencies in 

Transformer 
(TCT) 

 

sequential data, 
improving time-
series trend 
analysis. 

Sequence 
Length 
(TCT) 
 

60 time steps 
 

Ensures long-
term trend 
prediction 
without 
information 
loss. 

Output 
Horizon 
(TCT) 

 

30 time steps 
 

Balances 
prediction 
length and 
model accuracy. 

Attention 
Heads 
(TCT) 

 

8 
 

Improves time-
step 
dependencies 
and long-range 
forecasting. 

Feature 
Fusion 
Strategy 

 

Multi-Modal 
Embedding 

 

Combines text, 
image, and 
temporal 
features for a 
holistic trend 
prediction 
model. 

 

4.3 Adaptive Learning Mechanisms 

Building on the feature extraction phase, the next 
step involves Adaptive Learning Mechanisms, 
which are essential in ensuring the model remains 
effective in dynamically changing environments. 
Adaptive learning algorithms are implemented to 
allow the model to adjust to evolving patterns in the 
data, ensuring sustained accuracy and relevance over 
time. These mechanisms address the challenge of 
trends that are transient and rapidly changing, 
requiring the model to remain flexible and 
responsive. 

For this purpose, proposed guided Remora 
Optimization (PGRO) is utilized. PGRO is a 
specialized optimization technique designed to 
handle dynamic data patterns and minimize the need 
for constant retraining. It enables the model to adapt 
efficiently by fine-tuning hyperparameters and 
adjusting the learning rates in real-time. This 
optimization method is particularly beneficial in 
contexts where datasets evolve quickly and require 
frequent model updates. It works by using a 
population-based search that explores the optimal 
configuration of hyperparameters, ensuring that the 
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model remains adaptable while maintaining a stable 
performance across fluctuating trends. 

Incorporating PGRO allows the framework to avoid 
the pitfalls of traditional optimizers like SGD or 
Adam. SGD, while computationally efficient, can 
struggle with adapting to the complex, noisy datasets 
commonly seen in trend prediction, requiring careful 
tuning of learning rates. Similarly, Adam, despite its 
wide applicability, tends to overfit when exposed to 
dynamic or high-variance data. PGRO addresses 
these issues by guiding the model through 
hyperparameter tuning more effectively and without 
the need for constant manual intervention, making it 
suitable for real-time applications. 

To continuously update the model with new data, an 
Incremental Learning Framework is employed 
alongside PGRO. This framework ensures that 
previously learned knowledge is not overwritten, 
which is a common issue in adaptive models. 
Techniques such as Elastic Weight Consolidation 
(EWC) are incorporated to selectively update critical 
weights, maintaining a balance between learning 
new information and retaining previously acquired 
knowledge. Unlike fine-tuning, which may risk 
overfitting to new data, PGRO supports incremental 
learning by tuning only those model parameters most 
relevant to emerging trends. 

For multi-modal datasets, Replay Buffer Systems are 
integrated to retain a balanced subset of prior data, 
ensuring consistency during updates. This approach 
avoids the use of generative replay, which could lead 
to synthetic data that may not fully capture the true 
diversity of real-world trends. Instead, the Replay 
Buffer retains actual past data, making the model’s 
learning more robust and grounded in reality. 

The adaptive mechanism also includes Dynamic 
Thresholding, which adjusts model parameters, such 
as confidence thresholds for trend classification, 
based on real-time performance metrics like 
precision and recall. Static thresholds, although 
simpler, are less effective in fast-changing trend 
environments, leading to outdated predictions. 
Dynamic thresholding adjusts these thresholds as 
new data arrives, ensuring more accurate and timely 
classifications. 

Temporal adjustments are handled using the 
Temporal Fusion Transformer (TFT), which excels 
at capturing sequential patterns in time-series data. 
TFT operates by combining attention mechanisms 
with recurrent-like structures, enabling it to 
effectively model both global and local temporal 

dependencies. In this framework, the input sequence 
length is set to 60 time steps, and the output horizon 
is configured for 30 steps for multi-horizon trend 
prediction. The self-attention mechanism utilizes 8 
attention heads, ensuring that long-range 
dependencies are captured efficiently. Static 
covariates, such as demographic or categorical 
information, and dynamic covariates, including real-
time trend data, are incorporated using gating 
mechanisms that prioritize the most relevant features 
at each time step. The temporal fusion component 
integrates historical data with forecasted values, 
leveraging a hidden layer size of 128 units for 
efficient multi-modal feature fusion. These 
parameter choices allow TFT to handle complex, 
multi-dimensional data and make accurate 
predictions. Markov models, on the other hand, were 
considered but discarded due to their inability to 
capture the complexity of temporal dependencies in 
multi-modal datasets, limiting their applicability in 
this context. 

By continuously training the model with newly 
collected data and fine-tuning the adaptive 
algorithms using GRO, the framework maintains a 
balance between adapting to new trends and 
retaining knowledge from previous patterns.  

Incremental Learning Framework with Guided 
Remora Optimization 

The Incremental Learning Framework is designed to 
continuously adapt the model with new data without 
forgetting previously learned knowledge. At the 
start, the model is initialized with parameters 𝜃଴ and 
initial hyperparameters, such as the learning rate 𝜂଴ 
= 0.001 and batch size (𝐵଴ = 32), are set. The Fisher 
Information matrix 𝐹଴ is calculated to regularize the 
model and prevent overfitting on the new data. A 
replay buffer system is initialized to retain a 
balanced subset of previous data, which ensures that 
past knowledge is preserved during the learning 
process. 

As new data batches 𝐷௧  arrive over time, the model 
recalculates the loss function 𝐿௧ =  ℒ(𝜃௧ , 𝐷௧)), 
where 𝜃௧ is the updated model parameters. Proposed 
Guided Remora Optimization (PGRO) is applied to 
dynamically adjust the learning rate 𝜂௧, ensuring that 
the model adapts effectively without overshooting or 
underfitting. The learning rate is computed using the 
following formula: 

𝜂௧ =  𝜂଴ 𝑥 𝐺𝑅𝑂(𝜃௧ , 𝐷௧) 
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where 𝐺𝑅𝑂(𝜃௧ , 𝐷௧), represents the optimization 
strategy that refines the learning rate according to the 
current model parameters and the incoming data. 

Algorithm 1: Incremental Learning Framework 
with Proposed Guided Remora Optimization 
(PGRO) 
Input: Pre-trained model parameters 𝜃଴, 𝜂଴=0.001, 
batch size 𝐵௧= 32, λ=0.1, Fisher matrix  𝐹଴, replay 
buffer R, incoming data stream 𝐷௧ . 
Output: Updated model parameters 𝜃௧ 
 
1: Initialize model parameters: 𝜃଴ 
2: Set initial hyperparameters: 𝜂଴ = 0.001, batch size 
𝐵௧  = 32, regularization parameter λ = 0.1 

2.1: Compute Fisher Information Matrix: 
𝐹଴ for original dataset 
3: Initialize Replay Buffer (R) with representative 
prior data 
4: Set initial confidence threshold: τ = 0.75 

4.1: while new data batch 𝐷௧  arrives 
4.2: Compute current loss: 𝐿௧ = 

L(𝜃௧, 𝐷௧)  # Calculate Loss 
5: Adjust learning rate: 𝜂௧= 𝜂଴ × GRO(𝜃௧, 𝐷௧)  # 
Update hyperparameters using GRO optimization 
6: # Update Model Parameters 

6.1: for each batch b in 𝐷௧  (with size 𝐵௧= 
32) 

6.2: 𝜃௧ ← 𝜃௧- 𝜂௧ × ∇𝐿௧ (𝜃௧, b)  # Gradient 
descent 
7: # Regularization with EWC 

7.1: Regularize updates: 𝜃௧ ← 𝜃௧- λ × 𝐹଴ × 
(𝜃௧- 𝜃଴) 
8: # Replay Buffer Update 

8.1: Sample prior data from R to prevent 
forgetting 

8.2: Combine prior data with current batch 
𝐷௧  

8.3: Update replay buffer R with new data 
9: #  Dynamic Thresholding 

9.1: Adjust confidence thresholds: τ ← τ ± 
Δτ, based on precision and recall metrics 

9.2: if precision or recall drops below 0.75 
9.2.1: τ ← τ - 0.05  # Lower 

threshold to adapt 
9.3: else 

9.3.1: τ ← τ + 0.05  # Raise 
threshold for stricter classification 

10: # Temporal Adjustments (RNN) 
11: Capture sequential dependencies in data using 
RNN 
12: Train temporal model on combined data (current 
+ replay buffer) 
13: # Monitor and Evaluate 

13.1: Evaluate updated model: Compute 
accuracy, loss, and adaptability 

13.2: if performance is satisfactory 
13.2.1: Save updated parameters: 

𝜃௧ 
13.3: else 

13.3.1: Fine-tune model with 
additional hyperparameter adjustments 
13.4: end while 

14: Return updated model parameters 𝜃௧ 
 

4.4 Cross-Domain Generalization 

Building on adaptive learning mechanisms and 
temporal adjustments, the next critical step in the 
framework is Cross-Domain Generalization. This 
step ensures that the model performs effectively 
across diverse domains, even when faced with 
variations in data distributions. Cross-domain 
generalization addresses the challenge of domain 
shifts, which can lead to degraded model 
performance when training and testing data come 
from different distributions. 

To achieve this, Domain-Adversarial Neural 
Networks (DANN) are employed. DANN is a state-
of-the-art technique that uses adversarial learning to 
reduce domain discrepancy by aligning feature 
representations across domains. The framework 
incorporates a shared feature extractor that is 
optimized using a domain classifier and a gradient 
reversal layer (GRL). The GRL ensures that the 
feature extractor learns domain-invariant features by 
flipping the gradients during backpropagation, 
effectively minimizing domain-specific bias in the 
learned representations. 

Working of DANN 

1. Feature Extraction: Features are extracted 
using a shared network, which leverages 
the outputs from the Temporal Fusion 
Transformer (TFT). 

2. Domain Classification: A domain classifier 
is added on top of the shared feature 
extractor to predict the domain of the input 
data. 

3. Gradient Reversal Layer (GRL): During 
training, GRL reverses the gradients from 
the domain classifier, forcing the feature 
extractor to learn features that are invariant 
to domain-specific characteristics. 
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4. Loss Functions: Two loss functions are 
employed (1) task-specific loss, such as 
Mean Squared Error (MSE) for trend 
prediction, and (2) domain classification 
loss, which ensures alignment across 
domains. The total loss is given by: 

𝐿்௢௧௔௟ =  𝐿்௔௦௞ +  𝜆𝐿ௗ௢௠௔௜௡ 

Here, λ=0.5 balances the task-specific and 
domain alignment objectives. 

While traditional domain adaptation techniques like 
Maximum Mean Discrepancy (MMD) and 
Correlation Alignment (CORAL) have been widely 
used, they often struggle with high-dimensional, 
multi-modal datasets due to their reliance on 
predefined statistical measures. In contrast, DANN 
directly learns domain-invariant features through 
adversarial training, making it more suitable for 
dynamic and complex data distributions. Similarly, 
other methods like Transfer Component Analysis 
(TCA) and Joint Distribution Adaptation (JDA) lack 
the flexibility to handle both static and temporal 
covariates effectively. 

DANN was chosen due to its ability to generalize 
across domains without requiring extensive labelled 
data from the target domain. Unlike traditional fine-
tuning, which can lead to overfitting or catastrophic 
forgetting, DANN ensures robust performance 
across multiple domains by learning transferable and 
invariant features. Additionally, its adversarial 
training approach aligns well with the dynamic 
nature of trend prediction, where the target domain 
often evolves over time. By incorporating both task-
specific and domain classification objectives, 
DANN achieves a balance between predictive 
accuracy and domain robustness, making it the ideal 
choice for cross-domain generalization in this 
framework. 

This cross-domain generalization step, combined 
with incremental learning, temporal adjustments, 
and PGRO, creates a holistic framework capable of 
adapting to dynamic trends while maintaining high 
accuracy across diverse datasets. 

4.5 Model Optimization 

While Cross-Domain Generalization enhances the 
model's robustness and adaptability to diverse data, 
it does not address the fine-tuning of internal 
parameters critical for efficient learning and 
retention. Model Optimization bridges this gap by 
refining the training process to balance stability, 

generalization, and adaptability, ensuring the model 
is equipped to handle dynamic data streams without 
forgetting past knowledge or overfitting to noisy 
patterns. 

To achieve this, we first employ Elastic Weight 
Consolidation (EWC) to retain critical knowledge 
from prior learning phases. EWC minimizes 
catastrophic forgetting by applying a regularization 
term that penalizes significant changes to important 
parameters. This regularization is computed using 
the Fisher Information matrix from earlier training 
stages. The penalty ensures that updates to new data 
do not overwrite essential parameters, preserving 
performance across domains. 

Following this, Dynamic Dropout is applied to 
mitigate overfitting. Unlike static dropout, which 
uses a fixed rate for neuron removal, dynamic 
dropout adjusts the dropout rate (ρ =0.3 Initial 
dropout rate, which changes dynamically based on 
training progress) based on the model's performance 
and complexity during training. This adaptive 
approach helps the model learn robust and 
generalized features by discouraging over-reliance 
on specific neurons, effectively preventing 
memorization of irrelevant or noisy patterns. 

To ensure stability during the optimization process, 
Gradient Clipping is employed, limiting gradient 
updates to a threshold (T=1.0) to prevent exploding 
gradients. This is particularly crucial for complex 
architectures and dynamic data environments, where 
unstable gradients could hinder convergence. 
Additionally, the Cosine Annealing Learning Rate 
Scheduler is used to adjust the learning rate 
dynamically. Starting at an initial value of 𝜂଴=0.001, 
the learning rate gradually decreases following a 
cosine decay schedule, ensuring efficient 
exploration during early training and precise fine-
tuning in later stages. 

Together, these techniques complement the broader 
generalization mechanisms by fine-tuning 
parameter-level behavior. EWC ensures knowledge 
retention across phases, Dynamic Dropout fosters 
robust feature learning, Gradient Clipping stabilizes 
training, and Cosine Annealing refines convergence 
dynamics. This cohesive optimization pipeline 
ensures the model achieves high performance in 
dynamic and evolving data scenarios while 
maintaining generalization across domains. 
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4.6 Incorporating Interpretability Techniques 

Incorporating interpretability techniques into our 
framework ensures transparency and trust in 
decision-making, particularly in high-stakes, real-
world applications. Traditional interpretability 
methods, such as static feature importance or simple 
model-agnostic approaches, often fail to provide a 
comprehensive understanding of model decisions, 
especially in dynamic and complex data 
environments. To overcome these limitations, we 
employ advanced techniques like SHAP (Shapley 
Additive explanations), attention mechanism 
visualizations, saliency maps, and counterfactual 
explanations, each with specific configurations for 
optimal performance. SHAP values are calculated 
using a cooperative game theory-based approach, 
assigning contributions to individual features; for 
our model, we use a baseline value of zero to 
measure the deviation of feature importance from a 
neutral reference point. Attention visualizations are 
derived from the Temporal Fusion Transformer’s 
attention layers, with an attention head size of 12 and 
a d_model of 768, revealing temporal dependencies 
by highlighting the relative importance of sequential 
inputs during prediction. Saliency maps leverage 
gradients from the loss function with respect to input 
features, and we use ReLU-activated saliency 
outputs to focus only on positively contributing 
features in image-based data, ensuring clear and 
actionable insights. Counterfactual explanations are 
generated using optimization methods to identify the 
minimal feature perturbations needed to alter a 
prediction; here, we set an epsilon threshold of 0.01 
to determine valid perturbations while maintaining 
realistic input constraints. 

These techniques work cohesively to provide both 
local and global interpretability. SHAP identifies 
how individual features contribute to specific 
predictions, while attention visualizations and 
saliency maps offer insights into the spatial and 
temporal focus of the model across different 
modalities. Counterfactual explanations elucidate 
decision boundaries by providing scenarios where 
predictions change under minimal modifications, 
offering actionable insights for stakeholders. 
Compared to traditional methods, our approach 
provides deeper, more precise explanations. Static 
techniques like LIME often fail to adapt to complex, 
multimodal data, and basic feature importance 
metrics lack the granularity needed to validate 
predictions thoroughly. In contrast, our framework 
adapts to dynamic data streams and high-
dimensional inputs while maintaining computational 
efficiency. By integrating these advanced 

interpretability techniques with specific working 
mechanisms and initial values, we ensure that the 
model is not only robust and adaptive but also 
provides transparent, actionable insights, making it 
particularly suited for sensitive domains requiring 
both accuracy and interpretability. 

4.7 Model Training and Evaluation 

Model training and evaluation form the core of the 
pipeline, ensuring that the model achieves optimal 
performance while maintaining robustness, 
adaptability, and generalization. The training 
process begins by initializing the model parameters 
using Xavier initialization, which prevents vanishing 
or exploding gradients during early training. The 
model is trained with a batch size of 32, and the 
optimization process is guided by the Guided 
Remora Optimization Algorithm (GROA). GROA is 
a nature-inspired optimization technique that fine-
tunes the weights of the model by leveraging a 
combination of position guidance and local 
exploitation strategies, ensuring efficient 
convergence while avoiding suboptimal solutions. 
The algorithm initializes with a population size of 
20, a learning rate of 𝜂଴ = 0.001, and predefined 
exploration and exploitation ratios for balancing 
global and local searches. 

The training process follows a multi-phase approach. 
Initially, pretraining is performed using a subset of 
the dataset to capture foundational patterns. This is 
followed by fine-tuning on the full dataset, allowing 
the model to learn domain-specific intricacies. 
During training, techniques such as Elastic Weight 
Consolidation (EWC) and Dynamic Dropout are 
applied to retain past knowledge and prevent 
overfitting. Gradient clipping, with a threshold of 
T=1.0T = 1.0T=1.0, ensures stability in parameter 
updates, particularly for deeper models or dynamic 
data streams. 

Evaluation is conducted in two stages: validation and 
testing. The validation process employs k-fold cross-
validation, with k = 5 to assess model performance 
across different subsets of the data and prevent 
overfitting to any specific partition. Performance 
metrics such as accuracy, precision, recall, and F1-
score are calculated for classification tasks, while 
metrics like RMSE (Root Mean Squared Error) and 
𝑅ଶ (coefficient of determination) are used for 
regression tasks. The testing stage involves unseen 
data to evaluate the model's generalization capability 
in real-world scenarios. 
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Compared to traditional optimization algorithms like 
Adam or SGD, which require careful tuning of 
hyperparameters and often struggle with high-
dimensional or noisy data, GROA provides a more 
adaptive and guided approach. While Adam excels 
in computational efficiency, it is prone to overfitting 
in dynamic data environments. GROA, on the other 
hand, integrates global search with guided 
exploitation, making it more robust to dynamic 
changes and better suited for continual learning 
scenarios. 

By integrating GROA into the training pipeline, the 
model achieves superior performance, stability, and 
adaptability. Coupled with techniques like EWC and 
Cosine Annealing for learning rate scheduling, the 
training process ensures the model avoids 
catastrophic forgetting while retaining robust 
generalization capabilities. This cohesive approach 
is designed to handle complex, evolving datasets and 
deliver high performance in dynamic environments. 

4.8 Trend Prediction and Reporting 

The final stage of the framework focuses on 
forecasting future trends and presenting insights in 
an actionable and interpretable format. After training 
the model on diverse and dynamic data streams, the 
prediction pipeline uses its learned representations to 
identify patterns and temporal relationships across 
domains. For example, trends in technology 
adoption are predicted by analyzing patterns 
extracted from news articles, research publications, 
or social media data. The system quantifies these 
predictions with a confidence interval, ensuring a 
high degree of reliability. Only trends surpassing a 
95% confidence threshold are flagged for reporting, 
guaranteeing both precision and robustness. 

The system incorporates advanced techniques like 
Guided Remora Optimization Algorithm (GROA) to 
fine-tune the model's parameters during training, 
enhancing its ability to generalize across evolving 
datasets. Additionally, interpretability mechanisms 
such as SHAP (Shapley Additive Explanations) 
provide insights into the model's decision-making 
process, highlighting key features or temporal 
relationships that influence predictions. Compared 
to traditional forecasting methods like ARIMA or 
machine learning models such as Random Forests, 
the proposed framework excels in handling complex, 
noisy, and multi-modal data, ensuring superior 
performance in dynamic environments. 

Reports generated by the system include trend 
predictions alongside explanations and 

visualizations. For example, a report predicting the 
rise of a technology might include time-series 
graphs, heatmaps, and a textual analysis of 
contributing factors, such as market demands or 
research activities. This ensures that decision-
makers not only receive accurate forecasts but also 
gain insights into the underlying dynamics driving 
the trends. The system also supports periodic 
updates, enabling real-time monitoring and 
adaptability to changing datasets. 

To ensure that our model provides accurate 
predictions of future trends, we rigorously validate 
its performance using multiple evaluation metrics, 
including Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE), on historical data with 
known outcomes. Cross-validation is employed 
across diverse datasets to assess the generalizability 
of predictions. Furthermore, the model's ability to 
consistently achieve high confidence levels and 
align closely with real-world trends demonstrates its 
reliability and robustness. 

In conclusion, this framework represents a 
comprehensive solution for dynamic trend 
prediction and reporting. By combining robust 
optimization techniques, advanced interpretability 
methods, and adaptive learning mechanisms, it not 
only forecasts trends accurately but also ensures that 
stakeholders have access to actionable and 
interpretable insights. This holistic approach equips 
decision-makers with the tools to anticipate future 
developments effectively, making the framework an 
invaluable asset in addressing complex, evolving 
challenges across domains. The Figure 1 shows the 
workflow of the proposed system. 

 

Figure 1: Proposed System Workflow 

Algorithm: Complete Proposed System 

Input: 
 Data Sources D: News Websites, social 

media, e-commerce platforms. 
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 Pre-trained model parameters 𝜃. 
 Initial hyperparameters: learning rate α – 

0.001, batch size B = 32. 
 Replay buffer R, Fisher information Matrix 

F. 
 Confidence Threshold τ = 0.75. 

Output 
 Selected features and predicted trends. 

1: Intialize parameter 𝑡௠௔௫ , 𝑁, 𝛽, 𝐶 
2: Collect data D and preprocess using: 
 2.1: Remove duplicated, HTML tags and 
special characters using regex. 
 2.2: Normalize text by converting to 
lowercase and removing stopwords. 
 2.3 apply tokenization and numerical 
scaling using Min-Max Scaling. 
3: Feature Extraction using generative AI models:
  
 3.1: Textual Features: use BERT and GPT 
to extract semantic relationships: 𝐸௧௘௫௧ =
 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟௧௘௫௧(𝑋௧௘௫௧) 
 3.2: Visual Features: Use Visison 
Transformers(ViT) to capture spatial patterns: 
𝐸௜௠௔௚௘ =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟௜௠௔௚௘(𝑋௜௠௔௚௘) 
 3.3 Temporal Features: Use Temporal 
Convolutional Transformer(TCT) to retain 
sequential dependencies: 𝐸௧௘௠௣௢௥௔௟ =

 𝑇𝐶𝑇(𝑋௧௘௠௣௢௥௔௟) 
4: While 𝑡 ≤  𝑡௠௔௫ 
 4.1: Update the adaptive factor α using the 
PGRO Optimization: 𝛼௧ =  𝛼଴ . 𝐺𝑅𝑂(𝜃, 𝑑௧)  
 4.2: For each feature  in the dataset: 
  4.2.1: Update archive using the 
Penalty-Based Boundary Intersection(PBI) 
scalarization method: 𝑃𝐵𝐼(𝑥) =  𝑑ଵ +  𝜃. 𝑑ଶ 
  where 𝑑ଵ =  ‖𝑥 − 𝑧‖, 𝑑ଶ is the 
distance to the boundary, and 𝑧 is the reference point. 
  4.2.2 Sort archive members in 
descending order based on 𝑃𝐵𝐼(𝑥). 
 4.3: Merge 𝑃௧ =  𝑃௧ +  𝑃௧ିଵ. 
 4.4: Perform non-dominated sorting of 
features to refine 𝑃௧. 
 4.5: If 𝑟 < 0.5: 
  4.5.1: Update  positions using 
Guided HBA: 
   𝑋௧ାଵ =  𝑋௧ +
 𝛽. (𝑋௕௘௦௧ −  𝑋௧) +  𝛼 . (𝑋௥ − 𝑋௧) 

  where 𝛽 controls the 
influence of the best solution, 𝛼 is the 
adaptive factor, and 𝑋௥ is a randomly 
selected neighbor. 

 4.6: Else: 
  4.6.1: Update positions using a 
global search: 

   𝑋௧ାଵ =  𝑋௧ +  𝛼 . ൫𝑋௚ −

 𝑋௧൯, 
   where  𝑋௚ is the global 
best position. 
 4.7: Perform selection using NSGA-III 
 4.8: Apply crossover and mutation: 
  4.8.1: Crossover: 

𝑋஼௥௢௦௦௢௩௘௥ =  𝜆 . 𝑋௉௔௥௘௡௧ଵ + (1 − 𝜆). 𝑋௉௔௥௘௡௧ଶ 
   where 𝜆 is a random 
scalar. 
  4.8.2: Mutation: 
   𝑋௠௨௧௔௧௘ௗ =  𝑋 +
 𝛿 . 𝑟𝑎𝑛𝑑(−1,1) 
   where  𝛿 controls 
mutation strength. 
5: Adaptive learning mechanism: 

5.1: Elastic weight consolidation (EWC) 
for regularization: 

𝜃 =  𝜃 − 𝜆 . 𝐹. (𝜃 −  𝜃௢௟ௗ), 
where F is the Fisher information 
Matrix 

 5.2: Update replay buffer R: Combine prior 
data with new batches. 

5.3: Dynamically adjust thresholds τ: 
 5.3.1: If Precision or Recall < 
0.75: 
  𝜏 =  𝜏 − 0.05 
  Else: 
  𝜏 =  𝜏 + 0.05 
6: Train Temporal model on combined data 
(replay buffer + new) 

 7: Evaluate model performance: 
  7.1: Use metrics: Accuracy(A), 
Root Mean Square Error(RMSE), F1-Score 
  7.2 Save updated parameters if 
performance satisfies: 
   𝐴 > 0.9 𝑎𝑛𝑑 𝑅𝑀𝑆𝐸 <
0.05 
 8: Trend prediction and reporting: 
  8.1: Predict trends surpassing a 
95% confidence threshold. 
  8.2: Generate visualizations and 
explanations using SHAP values. 
   𝜙௜ =  𝜈 ( 𝑆 𝑈 {𝑖}) −
𝜈 (𝑆) 
   where 𝜙௜ is the 
contribution of feature 𝑖, S is a subset of features, and  
𝜈 (𝑆) is the model output for S. 
 9: Stop when the criteria are satisfied. 
 10: Return the selected features and 
predicted trends. 
 

5. PERFORMANCE ANALYSIS AND 
COMPARISON 
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The Feature Extraction Performance highlights the 
effectiveness of the proposed framework in handling 
diverse data modalities, with BERT-base, Vision 
Transformer (ViT-base), and Temporal 
Convolutional Transformer (TCT) outperforming 
competing models in the Table 1. For textual data, 
BERT-base (Proposed) achieves the highest 
accuracy (94.5%) by capturing nuanced contextual 
dependencies, significantly surpassing traditional 
models like TF-IDF (78.3%) and Word2Vec 
(84.7%). While XLNet performs well (92.7%) due 
to its permutational attention mechanism, it lags 
behind BERT-base in both accuracy and efficiency. 

For visual data, ViT-base (Proposed) excels in 
spatial feature extraction with an accuracy of 92.8%, 
outperforming EfficientNet-B4 (90.4%) and 
traditional convolutional models like ResNet-50 
(88.2%). While EfficientNet-B4 demonstrates lower 
latency (35 ms), its accuracy is slightly 
compromised compared to the transformer-based 
approach. MobileNetV2, though efficient, delivers 
the lowest accuracy (85.4%), making it less suitable 
for high-resolution trend prediction. 

In the temporal domain, TCT (Proposed) emerges as 
the most reliable model, achieving an accuracy of 
91.6% by effectively capturing sequential 
dependencies and long-term patterns. It outperforms 
both Transformer XL (89.5%) and traditional 
recurrent models like LSTM (87.3%) and GRU 
(88.1%), which struggle with complex temporal 
relationships. Despite marginally higher latency, 
TCT demonstrates a strong balance between 
performance and computational feasibility. 

Overall, the proposed framework demonstrates 
superior adaptability and performance across 
modalities, leveraging advanced transformer 
architectures to achieve state-of-the-art results while 
maintaining reasonable latency. This makes it an 
ideal choice for applications requiring robust, multi-
modal data processing. 

For text, BERT-base outperforms traditional 
methods like TF-IDF and Word2Vec, showcasing 
the necessity of context-aware mechanisms in 
capturing nuanced relationships. In visual data, ViT-
base sets a new standard by surpassing convolutional 
models like ResNet-50, emphasizing the shift 
towards attention-based architectures for spatial 
understanding. Similarly, in temporal data, TCT 
demonstrates superior accuracy compared to LSTM 
and GRU by effectively handling long-term 
dependencies without the gradient issues of 
recurrent models. While traditional techniques 

remain useful in resource-constrained settings, the 
table underscores that transformer-based approaches 
are indispensable for achieving robust, high-
precision results in dynamic, multi-modal 
environments. 

Table 1: Feature Extraction Performance comparing 
proposed framework with other related techniques.  

Data 
Type 

Model/Tec
hnique 

Featu
res 
Extra
cted 

Accur
acy 
(%) 

Late
ncy 
(ms) 

Text BERT-base 
(Proposed) 

768 94.5 45 

 XLNet 768 92.7 45 
 TF-IDF 200 78.3 25 
 Word2Vec 300 84.7 30 

Imag
es 

 

Vision 
Transforme
r (ViT-
base) 
(Proposed) 

768 
 

92.8 
 

50 
 

 EfficientNe
t-B4 

1792 90.4 35 

 ResNet-50 2048 88.2 40 
 MobileNet

V2 
1280 85.4 30 

Temp
oral 

Temporal 
Convolutio
nal 
Transforme
r (TCT) 
(Proposed) 

512 91.6 60 

 Transforme
r XL 

1024 89.5 70 

 LSTM 256 87.3 50 
 GRU 256 88.1 45 

 

The results in the Table 2 demonstrate that the 
Proposed PGRO framework is the most effective 
optimization technique, achieving the highest 
accuracy (94.5%) and F1-Score (93.2%), while also 
converging in the shortest time (20 epochs). These 
outcomes align directly with the aim of the proposed 
work, "A Generative AI Approach to Dynamic 
Trend Prediction," by ensuring that the model can 
adapt quickly to evolving data and generate precise 
trend predictions in real-time. The high F1-Score 
indicates a strong balance between precision and 
recall, making PGRO especially valuable for 
dynamic and imbalanced datasets, where identifying 
nuanced trends is critical. 
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In contrast, other techniques, such as Bayesian 
Optimization, while competitive with a high 
accuracy of 93.0% and F1-Score of 91.9%, are 
computationally heavy and less suitable for the fast-
paced nature of trend prediction. Traditional 
optimizers like SGD, RMSProp, and Momentum 
exhibit lower accuracy (88.7%–90.5%) and F1-
Scores, reflecting their inability to adapt effectively 
to complex, multi-modal data distributions. 
Similarly, population-based techniques like Particle 
Swarm Optimization and Genetic Algorithm 
perform reasonably well but converge slower, which 
limits their practicality for dynamic, real-time 
applications. 

The PGRO framework's superior performance 
directly supports the aim of dynamic trend prediction 
by enabling quick, accurate, and reliable insights 
across multi-modal data streams. Its ability to 
efficiently adapt to changing patterns and maintain 
robust generalization ensures that emerging trends 
can be identified and acted upon with precision, 
making it an indispensable tool for real-world 
applications in industries such as market analysis, 
social media monitoring, and technology 
forecasting. 

Table 2: Proposed Optimization algorithm (PGRO) 
Method With 10 Other Optimization Techniques. 

Technique Accurac
y (%) 

F1-
Scor
e 
(%) 

Convergenc
e Time 
(epochs) 

Proposed 
(PGRO) 

94.5 93.2 20 

Adam 
Optimizer 

91.8 90.5 25 

SGD 88.7 87.0 40 
RMSProp 89.2 87.9 35 
AdaGrad 87.3 85.5 45 
Momentum 90.5 89.3 30 
Particle 
Swarm 
Optimizatio
n 

92.0 91.1 30 

Genetic 
Algorithm 

91.5 90.2 35 

Hyperband 89.8 88.6 40 
Bayesian 
Optimizatio
n 

93.0 91.9 25 

 

The graph in the Figure 2 highlights the exceptional 
performance of the Proposed PGRO method, which 

achieves the lowest training loss (0.015) and 
validation loss (0.020) among all techniques. This 
indicates its ability to learn effectively from the 
training data while maintaining excellent 
generalization on unseen validation data. In contrast, 
traditional methods like SGD and AdaGrad show 
higher loss values, reflecting their slower adaptation 
to dynamic and complex datasets. Bayesian 
Optimization and Particle Swarm Optimization 
perform competitively, but their slightly higher 
validation losses indicate less efficient 
generalization compared to PGRO. The increasing 
gap between training and validation losses for 
methods like Grid Search highlights their tendency 
to overfit, making them less suitable for dynamic 
trend prediction tasks. 

The consistent low loss values for PGRO align 
directly with the aim of dynamic trend prediction, as 
they ensure accurate and robust learning even in 
rapidly evolving environments. By converging 
efficiently with minimal loss, PGRO demonstrates 
its superiority in handling multi-modal data and 
achieving real-time predictions. 

The Mean Squared Error (MSE) was employed to 
calculate both the training loss and validation loss. 
Training Loss was computed on 80% of the dataset, 
which was used for training the model and 
Validation Loss was calculated on the remaining 
20% of the dataset, ensuring that the validation data 
was not used during training to provide an unbiased 
assessment of model generalization. 

 

Figure 2: Comparation of training loss and validation loss 
across various techniques  

The Trend Prediction Confidence Table 3 highlights 
the exceptional reliability and precision of the 
Proposed PGRO framework, achieving the highest 
confidence score (96.5%) and Predicted vs Actual 
Match (95.3%). These results demonstrate the 
model's ability to accurately predict dynamic trends, 
such as AI adoption, while maintaining high 
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certainty in its outputs. PGRO’s performance 
showcases its adaptability to evolving patterns and 
its robustness in generating actionable insights for 
real-world scenarios. 

In comparison, models like Bayesian Optimization 
and Particle Swarm Optimization deliver 
competitive results (93.0% and 92.7% match scores, 
respectively) but fall short of PGRO in terms of 
precision and computational efficiency. Traditional 
optimizers like Adam and Momentum exhibit 
moderate reliability, while SGD and AdaGrad 
struggle with lower confidence and accuracy, 
making them less effective for rapidly changing 
trends. Techniques such as Grid Search and 
Hyperband lag significantly, as they fail to handle 
complex datasets efficiently, further validating the 
need for a more adaptive framework like PGRO. 

The analysis confirms that PGRO’s superior 
prediction accuracy and high confidence levels align 
perfectly with the goal of dynamic trend prediction, 
making it the optimal choice for scenarios requiring 
fast, accurate, and reliable insights. 

Table 3: Trend Prediction (Trend 1 (AI Adoption)) 
Confidence Comparing The Proposed Model With 10 

Other Models. 

Trend 
Name 

Model Predic
ted 
Value 

Confid
ence 
Score 
(%) 

Predic
ted vs 
Actua
l 
Match 
(%) 

Trend 
1 (AI 
Adopti
on) 

Propose
d 
(PGRO) 

0.85 96.5 95.3 

 Adam 
Optimiz
er 

0.82 92.3 91.0 

 SGD 0.78 89.0 86.5 
 RMSPro

p 
0.79 89.5 87.0 

 AdaGra
d 

0.75 87.0 84.2 

 Moment
um 

0.80 91.0 89.4 

 Particle 
Swarm 
Optimiz
ation 

0.83 94.5 92.7 

 Genetic 
Algorith
m 

0.81 93.0 91.5 

 Hyperba
nd 

0.79 90.0 87.8 

 Bayesia
n 
Optimiz
ation 

0.84 95.2 93.0 

 Grid 
Search 

0.76 88.5 85.0 

 

Table 4: Trend Prediction (Trend 2 (Electric Vehicles)) 
Confidence Comparing The Proposed Model With 10 

Other Models. 

Tren
d 
Name 

Model Predic
ted 
Value 

Confid
ence 
Score 
(%) 

Predic
ted vs 
Actual 
Match 
(%) 

Tren
d 2 
(Elect
ric 
Vehic
les) 

Propose
d 
(PGRO) 

0.88 95.8 94.7 

 Adam 
Optimiz
er 

0.84 91.5 90.2 

 SGD 0.80 88.5 85.0 
 RMSPro

p 
0.81 89.8 86.7 

 AdaGrad 0.78 87.2 84.5 
 Moment

um 
0.82 91.8 89.7 

 Particle 
Swarm 
Optimiz
ation 

0.86 94.2 92.5 

 Genetic 
Algorith
m 

0.85 93.0 91.8 

 Hyperba
nd 

0.80 90.5 88.0 

 Bayesian 
Optimiz
ation 

0.87 95.0 93.2 

 Grid 
Search 

0.79 89.0 85.7 

 

Table 5: Trend Prediction (Trend 3 (Remote Work)) 
Confidence comparing the proposed model with 10 other 
models. 
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Tren
d 
Nam
e 

Model Predic
ted 
Value 

Confide
nce 
Score 
(%) 

Predic
ted vs 
Actual 
Match 
(%) 

Trend 
3 
(Rem
ote 
Work
) 

Proposed 
(PGRO) 

0.87 96.2 94.9 

 Adam 
Optimize
r 

0.83 92.0 90.5 

 SGD 0.79 88.7 86.0 
 RMSPro

p 
0.80 89.2 86.4 

 AdaGrad 0.76 87.3 84.8 
 Moment

um 
0.82 91.5 89.2 

 Particle 
Swarm 
Optimiza
tion 

0.85 94.2 92.5 

 Genetic 
Algorith
m 

0.83 93.2 91.3 

 Hyperba
nd 

0.81 89.5 87.0 

 Bayesian 
Optimiza
tion 

0.86 95.0 93.2 

 Grid 
Search 

0.78 88.0 85.0 

 

Table 6: Trend Prediction (Trend 4 (5G Technology)) 
Confidence Comparing The Proposed Model With 10 

Other Models. 

Trend 
Name 

Model Predi
cted 
Value 

Confid
ence 
Score 
(%) 

Predi
cted 
vs 
Actua
l 
Matc
h (%) 

Trend 
4 (5G 
Technol
ogy) 

Propose
d 
(PGRO) 

0.89 96.7 95.6 

 Adam 
Optimiz
er 

0.85 92.8 91.4 

 SGD 0.81 89.3 86.7 

 RMSPr
op 

0.82 89.8 87.3 

 AdaGra
d 

0.79 87.5 84.7 

 Moment
um 

0.84 91.9 89.5 

 Particle 
Swarm 
Optimiz
ation 

0.87 94.8 93.0 

 Genetic 
Algorith
m 

0.86 93.5 91.8 

 Hyperba
nd 

0.82 90.7 88.3 

 Bayesia
n 
Optimiz
ation 

0.88 95.5 93.8 

 Grid 
Search 

0.80 88.8 85.5 

 

Table 7: Trend Prediction (Trend 5 (E-Commerce 
Growth)) Confidence Comparing The Proposed Model 

With 10 Other Models. 

Trend 
Name 

Model Predic
ted 
Value 

Confid
ence 
Score 
(%) 

Predic
ted vs 
Actua
l 
Match 
(%) 

Trend 
5 (E-
comm
erce 
Growt
h) 

Propose
d 
(PGRO) 

0.92 97.0 96.0 

 Adam 
Optimiz
er 

0.87 93.2 92.0 

 SGD 0.83 89.7 86.8 
 RMSPro

p 
0.84 90.0 87.5 

 AdaGra
d 

0.80 88.5 85.0 

 Moment
um 

0.86 92.5 90.7 

 Particle 
Swarm 
Optimiz
ation 

0.89 95.0 93.5 
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 Genetic 
Algorith
m 

0.88 94.2 92.8 

 Hyperba
nd 

0.84 91.2 89.0 

 Bayesia
n 
Optimiz
ation 

0.91 96.0 94.5 

 Grid 
Search 

0.82 89.0 85.3 

 

The analysis of the Trend Prediction Confidence 
Table 4, Table 5, Table 6, Table 7 reveals that the 
Proposed PGRO framework consistently delivers 
superior performance across all five trends, 
achieving the highest confidence scores and 
Predicted vs Actual Match percentages. This 
demonstrates the robustness and adaptability of 
PGRO in accurately capturing dynamic and evolving 
trends. Techniques such as Bayesian Optimization 
and Particle Swarm Optimization perform 
competitively but fall short in terms of 
computational efficiency and precision. Traditional 
methods like SGD and AdaGrad struggle with lower 
accuracy and confidence, making them less effective 
for fast-changing trends such as AI Adoption and E-
commerce Growth. 

The ability of PGRO to achieve consistent high 
confidence and accuracy directly supports the aim of 
the proposed work: “A Generative AI Approach to 
Dynamic Trend Prediction.” By effectively 
generalizing across diverse data patterns and 
evolving scenarios, PGRO ensures timely and 
reliable trend predictions, crucial for real-world 
applications such as market forecasting, consumer 
behaviour analysis, and technological 
advancements. The framework’s capability to 
outperform competing techniques underscores its 
potential to revolutionize trend prediction by 
combining accuracy, adaptability, and 
computational efficiency. 

The Figure 3 shows the point graph for Epochs vs 
Accuracy highlights the performance of different 
algorithms in terms of accuracy relative to the 
number of training epochs. The Proposed PGRO 
framework achieves the highest accuracy (94.5%) in 
only 20 epochs, demonstrating superior efficiency 
and precision compared to all other models. 
Algorithms like Bayesian Optimization and PSO 
show competitive accuracy (93.0% and 92.0%, 
respectively) but require more epochs (25 and 30), 
indicating slower convergence. Traditional methods 

like SGD and AdaGrad underperform significantly, 
with lower accuracy (88.7% and 87.3%) and longer 
training durations (40+ epochs). 

This analysis emphasizes that the Proposed PGRO 
framework achieves the best trade-off between 
accuracy and efficiency, making it an optimal choice 
for tasks requiring both high performance and faster 
convergence, aligning directly with the goals of 
dynamic trend prediction. 

 

Figure 3: Epochs vs Accuracy 

The Figure 4 illustrates the relationship between the 
number of epochs and the time required per epoch 
for various optimization techniques. Our proposed 
model, PGRO, demonstrates a distinct advantage 
with the lowest time per epoch, even with 
competitive epoch counts. This indicates a 
significant improvement in computational 
efficiency, making it a highly scalable and resource-
friendly approach. 

In contrast, other techniques like Grid Search and 
AdaGrad, while achieving similar epoch numbers, 
incur much higher time costs, making them less 
suitable for dynamic trend prediction tasks. 
Techniques like Bayesian Optimization and Adam 
Optimizer also perform relatively well but still lag 
behind PGRO in efficiency. 

This performance is directly aligned with the aim of 
the proposed work, which focuses on dynamic trend 
prediction. By reducing computation time, PGRO 
enables faster adaptability to trends, thus addressing 
real-time prediction needs effectively. This balance 
between reduced time and competitive performance 
reinforces PGRO’s suitability for generative AI 
applications in dynamic environments. 
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Figure 4: Epochs Vs Time 

The Figure 5 illustrates the relationship between 
epochs and Mean Squared Error (MSE) across 
various models. Our proposed PGRO model 
achieves the lowest MSE at 0.015 with minimal 
epochs, demonstrating superior accuracy and 
efficient training. This highlights PGRO’s ability to 
converge quickly with minimal error, making it 
well-suited for precise trend prediction. 

Other models, such as Grid Search and AdaGrad, 
exhibit higher MSE despite longer training times, 
reflecting inefficiencies in error minimization. 
Techniques like Bayesian Optimization and Adam 
Optimizer perform moderately but are still 
outperformed by PGRO. 

This analysis reinforces that PGRO’s optimization 
process aligns with the goal of dynamic trend 
prediction by minimizing error effectively, ensuring 
reliable and real-time generative AI predictions. 

 

Figure 5: Epochs vs Mean Square Error (MSE) 

The generated graph in the Figure 6 highlights the 
performance progression of the Proposed (PGRO) 

model over 24 epochs. Initially, the accuracy 
increases consistently, indicating the model's ability 
to learn and adapt effectively during training. This 
growth continues up to epoch 20, where the accuracy 
reaches a maximum value of 94.5%, demonstrating 
the efficiency of the model in achieving high 
performance. 

Beyond epoch 20, the accuracy stabilizes at 94.5%, 
signifying that the model has converged and further 
training does not lead to any significant 
improvement. This stabilization suggests that the 
model has effectively captured the underlying 
patterns in the data, avoiding overfitting or 
unnecessary adjustments. 

This progression aligns with the aim of the proposed 
work, which focuses on dynamic trend prediction. 
The stable accuracy after 20 epochs ensures reliable 
and consistent predictions, validating the robustness 
and efficiency of the proposed approach. 

 

Figure 6: Accuracy Progression Across Epochs for 
Proposed (PGRO) 

The graphs shown in Figure 7 illustrate the training 
and testing accuracy, as well as the loss of the 
proposed method over 20 epochs. The accuracy 
graph on the left shows a steady increase, with 
training accuracy rising from approximately 60% to 
nearly 100%, while testing accuracy follows a 
similar trend, reaching above 90%. The gap between 
training and testing accuracy remains moderate, 
indicating effective learning with minimal 
overfitting. The loss graph on the right exhibits a 
sharp decline in both training and testing loss during 
the initial epochs, dropping from around 2.2 to 
below 0.5 by epoch 7 and stabilizing at 
approximately 0.1 after epoch 10. The similarity in 
training and testing loss curves suggests that the 
model generalizes well to unseen data. Overall, the 
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proposed method demonstrates strong learning 
capability, effective optimization, and good 
convergence behaviour. 

 

 

Figure 7: Training And Testing For Accuracy And Loss 
Of Proposed Method 

The time-series heatmap of trends shown in the 
Figure 8 provides a comprehensive visualization of 
prediction confidence across five key domains E-
commerce, Entertainment, Finance, Healthcare, and 
Technology over a defined period. The color 
gradient represents prediction confidence levels, 
where higher values (depicted in red) indicate strong 
certainty, while lower values (shown in blue) 
suggest weaker confidence. A detailed analysis 
reveals that E-commerce and Technology exhibit 
relatively stable and high confidence trends 
throughout the year, with peak values exceeding 0.9 
in multiple instances. E-commerce, in particular, 
demonstrates strong predictive confidence during 
March to May 2023, whereas Technology maintains 
high confidence in March, September, and 
December 2023. Conversely, Finance displays 
noticeable fluctuations, oscillating between high 
(0.98, 0.97) and low confidence values (0.52, 0.53), 
indicating potential market volatility or external 
disruptions impacting predictive stability. Similarly, 
Entertainment and Healthcare exhibit substantial 
variability, with Entertainment showing lower 
confidence levels (<0.6) in several months, except 
for sharp increases in March and August 2023. 
Healthcare follows a similar pattern, despite an 
initial strong confidence level of 0.92 in January 
2023, with subsequent inconsistencies. These 
fluctuations highlight the dynamic nature of certain 
domains, suggesting that external factors, data 
distribution shifts, or evolving market conditions 
contribute to variations in predictive certainty. This 
analysis underscores the importance of robust 
adaptive learning mechanisms to enhance the 

generalization and stability of predictive models in 
dynamic environments. 

 

 

Figure 8: Time-Series Heatmap Of Trends On Small 
Portion Of Data Present In Dataset 

Our proposed framework aims to predict emerging 
trends using multi-modal data (text, images, time-
series) while ensuring adaptability across different 
domains. The Radar Chart (Spider Chart) is crucial 
for evaluating the model’s generalization across 
diverse domains. The framework uses Domain-
Adversarial Neural Networks (DANN) for cross-
domain generalization. A well-balanced radar shape 
indicates consistent performance across all domains. 

he radar chart shown in Figure 9 illustrates the cross-
domain generalization performance of the model 
across multiple industries, including Technology, 
Healthcare, Finance, E-commerce, Education, 
Manufacturing, and Retail. The four key evaluation 
metrics Accuracy, Precision, Recall, and F1-Score 
demonstrate the model's effectiveness in 
maintaining consistent performance across diverse 
domains. The nearly uniform distribution of the 
plotted values, all closely clustered near the outer 
ring, suggests that the model achieves high 
predictive reliability across sectors, with minimal 
performance variation. 

Technology and Finance exhibit slightly higher 
scores, particularly in Precision and F1-Score, 
indicating the model’s strength in making accurate 
predictions while balancing recall and precision 
effectively. In contrast, Education and Retail show 
marginally lower values, suggesting potential 
challenges in generalizing predictions within these 
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domains, likely due to more dynamic or less 
structured data distributions. 

The chart confirms the model’s ability to generalize 
effectively across various industries, with 
consistently strong recall and precision scores. The 
balance between these metrics indicates robustness 
in identifying true positives while minimizing false 
positives and negatives. The minimal performance 
variance suggests that the applied optimization 
techniques and domain adaptation strategies 
effectively enhance generalization, making the 
model well-suited for dynamic, cross-domain 
applications 

 

Figure 9: Cross-Domain Generalization Performance 
Radar Chart 

A Temporal Dependency Visualization (Attention 
Map) is crucial in understanding how the model 
learns dependencies in time-series data.   This 
insights into how different attention heads focus on 
various time steps when making predictions. 

The attention map visualization in the Figure 10 
shows the temporal dependencies captured by 
different attention heads within the model. Each row 
represents an attention head, while the columns 
denote different time steps, providing insights into 
how the model distributes its attention across 
sequential inputs. The intensity of the color, as 
indicated by the scale on the right, corresponds to the 
attention weight assigned to each time step, with 
higher values (yellow) signifying stronger focus and 
lower values (purple) indicating diminished 
importance. 

From the visualization, it is evident that attention is 
dynamically allocated across different time steps. 
For instance, attention head 1 assigns a high weight 
(0.94) to the first time step, suggesting that initial 
data points significantly influence the model’s 
predictions. Similarly, attention head 4 exhibits peak 
attention at time steps 7 and 9, with weights reaching 
1.00 and 0.98, respectively, indicating the model’s 
reliance on these points for key decision-making. 
Conversely, some regions, such as time step 7 in 
attention head 2, receive minimal attention (0.00), 
suggesting that this particular input holds little 
significance in the model's learned dependencies. 

The structured yet varied distribution of attention 
weights across different heads reflects the model’s 
ability to capture both short-term and long-term 
dependencies in sequential data. The presence of 
multiple attention peaks across different heads 
highlights the benefits of multi-head attention, 
ensuring that diverse temporal patterns are 
accounted for. This visualization confirms that the 
model effectively learns temporal relationships, 
making it well-suited for applications requiring 
sequential reasoning, such as financial forecasting, 
healthcare diagnostics, and time-series analysis. 

 

 

Figure 10: Attention Heads versus Time Steps 

Table 8 demonstrate the effectiveness of our 
proposed framework, we present a comparative 
analysis against various models and also the models 
discussed in the literature. While previous sections 
have detailed performance improvements at various 
stages of the pipeline, this final comparison provides 
a holistic evaluation of our model’s overall accuracy, 
recall, and F1-score relative to existing approaches. 
The comparison includes traditional statistical 
models, machine learning-based methods, deep 
learning architectures, and transformer-based 
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models. The Table aaa summarizes the overall 
performance of our model against existing 
approaches, demonstrating its advantages in 
predictive accuracy, recall, and F1-score while 
ensuring robustness and adaptability in dynamic 
environments. 

Table 8: Performance Comparison of Trend Prediction 
Models 

Categ
ory 

Model Acc
urac
y  

Prec
isio
n  

 
Re
cal
l  

F1
-
Sc
or
e  

R
M
SE 

       
Propo
sed 
Model 

Propo
sed 
Model 

94.8 93.5 94.
2 

93
.8 

0.0
72 

Deep 
Learni
ng 
Model
s 

      

 LSTM 87.3 86.9 87.
1 

87
.0 

0.1
56 

 GRU 88.1 87.6 87.
9 

87
.7 

0.1
48 

 Bi-
LSTM 

88.9 88.2 88.
7 

88
.4 

0.1
43 

 Vanill
a 
Transf
ormer 

89.5 88.7 89.
1 

88
.9 

0.1
34 

Hybri
d 
Deep 
Learni
ng 
Model
s 

      

 CNN-
LSTM 

90.2 89.6 89.
9 

89
.7 

0.1
27 

 CNN-
GRU 

89.8 89.1 89.
5 

89
.3 

0.1
31 

 Attent
ion-
LSTM 

91.3 90.8 91.
1 

90
.9 

0.1
18 

Hybri
d 
Model
s with 
Optim
ization 

      

 LSTM
-PSO 

91.8 91.2 91.
5 

91
.3 

0.1
12 

 GRU-
GA 

91.5 90.9 91.
2 

91
.0 

0.1
15 

 Transf
ormer-
ACO 

92.4 91.8 92.
1 

91
.9 

0.0
98 

 

The comparative evaluation highlights the 
superiority of the proposed model over existing deep 
learning, hybrid, and optimization-enhanced 
approaches. Achieving an accuracy of 94.8%, a 
recall of 94.2%, and an F1-score of 93.8%, our 
model outperforms traditional deep learning models 
such as LSTM (87.3%), GRU (88.1%), and Bi-
LSTM (88.9%), which often struggle with long-term 
dependencies and lack interpretability. Transformer-
based architectures like Vanilla Transformer 
(89.5%) show slight improvements but remain 
limited by their computational complexity and lack 
of adaptive optimization strategies. 

Hybrid deep learning models that integrate 
convolutional layers, such as CNN-LSTM (90.2%) 
and CNN-GRU (89.8%), demonstrate better feature 
extraction capabilities, yet they fail to fully optimize 
sequential dependencies. Attention-based models 
like Attention-LSTM (91.3%) improve performance 
by refining temporal dependencies but still fall short 
compared to our proposed approach. 

Optimization-enhanced hybrid models, including 
LSTM-PSO (91.8%), GRU-GA (91.5%), and 
Transformer-ACO (92.4%), achieve significant 
improvements by leveraging heuristic-based 
optimization techniques for weight tuning. 
However, these methods can be sensitive to 
hyperparameter settings and require extensive 
tuning. 

Our proposed model, surpasses all competing 
models in terms of accuracy, robustness, and 
explainability. The reduced RMSE (0.072) further 
indicates improved predictive stability, minimizing 
error propagation. This confirms the model’s ability 
to handle complex, multimodal, and dynamic data 
while maintaining high performance and 
transparency, making it particularly suitable for real-
world, high-stakes applications. 

6. DISCUSSION   

 The related work section analyses some of 
the recent algorithms. These studies attained high 
performance, including drawbacks like scalability 
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across different data domains and also some studies 
have faster training times but compromised 
accuracy. The proposed method have better 
performance of accuracy with faster training.  

Later on in related study stability in training is 
achieved but with manual tuning of 
hyperparameters. Later on combining transformers 
with GANs for improved feature extraction is 
proposed. This work showed promising results on 
financial datasets but failed to generalize well across 
different domains. A scalable framework using 
distributed computing and federated learning 
improved efficiency but struggled with accuracy 
across diverse data sources. A novel self-attention 
mechanism excelled in trend prediction for 
structured data but faced challenges with multimodal 
inputs and real-time updates. Lightweight models 
designed for edge deployment enhanced efficiency 
but resulted in reduced accuracy compared to larger 
models. The proposed method addressed this 
challenge by introducing the novel guided remora 
optimization algorithm to avoid manual tunning at 
same time with better accuracy and also achieving 
generalization across different domains. 

Advancements in trend prediction improved 
efficiency, accuracy, and adaptability but faced 
trade-offs in computational cost. Hybrid and cross-
domain approaches showed promise but required 
significant fine-tuning and resources. While our 
proposed system is able balance well between high 
accuracy, less time need, low Error rate, automatic 
weight updation and also achieving generalization 
across different domains.  

Although the proposed framework demonstrates 
strong performance, several limitations remain. 
High computational requirements for transformer 
models could hinder large-scale deployment. 
Additionally, performance on low-resource domains 
and less-structured data types may require further 
refinement. The current interpretability methods, 
while advanced, may not yet be fully accessible to 
non-technical users. These limitations guide our 
future enhancements. 

7. CONCLUSION 

This study proposed a Generative AI-driven 
framework for dynamic trend prediction that 
integrates transformer-based architectures, adaptive 
learning mechanisms, and the Proposed Guided 
Remora Optimization Algorithm (PGROA). In line 
with our core research objectives, the framework 
was designed to address critical challenges observed 

in existing models  including overfitting, limited 
interpretability, and inadequate handling of 
multimodal and cross-domain data. 

Experimental validation strongly supports the 
effectiveness of the proposed framework. The model 
achieved a high accuracy of 94.8%, an F1-score of 
93.8%, and an RMSE of just 0.072, outperforming 
several state-of-the-art deep learning and hybrid 
models. These outcomes directly align with our goal 
to improve predictive precision and robustness 
across dynamic and heterogeneous datasets. The use 
of incremental learning and domain-adversarial 
techniques demonstrated superior adaptability, 
fulfilling our objective of real-time, cross-domain 
trend generalization. 

Moreover, the incorporation of interpretability 
methods such as SHAP, attention visualization, and 
counterfactual analysis addressed the often-
overlooked need for transparency in AI-driven 
forecasting, making the results more understandable 
and actionable for stakeholders. This aligns with our 
objective of not just prediction, but explainable 
prediction. 

The PGROA component played a pivotal role in 
dynamically optimizing model parameters with 
reduced computational cost—demonstrating our 
contribution toward efficient, scalable learning in 
contrast to manually tuned traditional models. 

Despite these achievements, limitations remain. The 
computational complexity of transformer-based 
models still poses a challenge for real-time 
deployment on edge devices, and further 
improvement is needed for performance consistency 
in low-resource or noisy domains. Additionally, 
while interpretability was enhanced, simplifying 
explanation outputs for non-technical users remains 
an open research problem. 

Future work will extend the framework by 
integrating reinforcement learning for continuous 
policy updates, incorporating broader multimodal 
datasets, and streamlining inference speed for large-
scale, real-time applications. By addressing both 
performance and practical usability, this research 
provides a significant step toward a transparent, 
scalable, and adaptive AI solution for dynamic trend 
prediction in complex environments. 

Compared to incremental advancements seen in 
recent studies—such as slight tuning of existing 
models—this framework introduces a fundamentally 
new combination of adaptive optimization, multi-
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modal generalization, and interpretability. This 
contributes a deeper, systemic advancement toward 
real-time, explainable AI systems for trend 
prediction. 

Future directions include developing lightweight 
transformer architectures for resource-constrained 
deployment, improving interpretability for non-
experts, and addressing adversarial robustness. 
There is also a need for enhanced domain adaptation 
techniques to further reduce fine-tuning 
requirements for new data environments. 
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