
 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4844 

 

OPTIMIZED TASK SCHEDULING IN FOG-CLOUD 
ENVIRONMENTS USING A COST-AWARE GENETIC 

ALGORITHM 
 

YOUSSEF OUKISSOU 1, HAMZA ELHAOU 2, DRISS AIT OMAR 3, HICHAM ZOUGAGH 4, 

SAMIR ELOUAHAM 5 

1Information Processing and Decision Support Laboratory, University of Sultan Moulay Slimane, Faculty 
of Science and Technologies, Beni Mellal 23500, Morocco 

2Information Processing and Decision Support Laboratory, University of Sultan Moulay Slimane, Faculty 
of Science and Technologies, Beni Mellal 23500, Morocco 

3Information Processing and Decision Support Laboratory, University of Sultan Moulay Slimane, Faculty 
of Science and Technologies, Beni Mellal 23500, Morocco 

4Information Processing and Decision Support Laboratory, University of Sultan Moulay Slimane, Faculty 
of Science and Technologies, Beni Mellal 23500, Morocco 

    5LIST Laboratory, National School of Applied Sciences, Ibn zohr university, Agadir, Morocco 
 

E-mail:  1youssef.oukissou@usms.ma, 2hamza.elhaou@usms.ma, 3d.aitomar@usms.ma, 
4h.zougagh@usms.ma, 5elouahamsamir@gmail.com 

 
 

ABSTRACT 

 
Cloud technology offers flexible computing and storage solutions over the internet. However, for latency-
sensitive applications such as smart healthcare and smart cities, the reliance on centralized cloud data centers 
leads to significant performance issues, particularly in terms of delay. Fog and edge computing paradigms 
aim to address these issues by bringing resources closer to end-users, thus reducing latency and enhancing 
energy efficiency. In this paper, we propose a cost-aware, genetic-based (CAG) task scheduling algorithm 
tailored for fog-cloud environments, which seeks to improve cost efficiency for real-time applications with 
strict deadlines. Our approach is implemented and evaluated using the PureEdgeSim simulator, focusing on 
key performance metrics such as latency, network congestion, and cost. The results demonstrate that the 
proposed algorithm surpasses existing techniques like Round-Robin and Trade-off algorithms, achieving 
superior performance in terms of cost and throughput efficiency. 

These results demonstrate that the CAG algorithm is an effective solution for task scheduling in fog-cloud 
environments, offering better cost and deadline management compared to existing methods. This research 
has significant implications for latency-sensitive IoT applications, such as smart healthcare and smart cities, 
where efficient resource allocation and cost optimization are critical. 

 Keywords: Fog Computing, IoT Scheduling, Edge Computing, Resource Allocation, Task Management 

 
1. INTRODUCTION  
 

The Internet of Things (IoT) [1] represents a major 
technological shift in our digital age. This vast 
network connects billions of smart objects and 
sensors to the Internet, enabling the real-time 
collection and exchange of massive data about our 
physical environment [2], IoT applications are 
ubiquitous, spanning various fields such as smart 
cities, transportation, healthcare, Industry 4.0, home 
automation, precision agriculture, and more. 
According to Gartner, the number of connected IoT 

devices is expected to reach 25 billion by 2025, 
generating an enormous data traffic estimated at 175 
zettabytes per year \cite{bonomi2012fog} This 
explosion of IoT data poses significant challenges in 
terms of network infrastructure, bandwidth, storage 
capacity, and especially the computational power 
needed to process and analyze these data streams in 
a timely manner. 

Initially, cloud computing was seen as the ideal 
solution to host IoT applications and provide on-
demand elastic computing and storage resources. 

L
e
f
t 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4845 

 

However, the inherently centralized nature of the 
cloud makes it unsuitable for meeting the critical 
requirements of latency, responsiveness, privacy, 
and service continuity demanded by many strategic 
IoT applications like smart healthcare and smart 
cities [3]. 

To address these limitations, new decentralized 
paradigms of proximity computing, known as fog 
computing and edge computing, have recently 
emerged. Their principle is to deploy computing, 
storage, and networking capabilities at the edge of 
the cloud, closer to IoT devices, thus enabling data 
processing at the source, in real time, and in a secure 
manner [4], by intelligently and complementarily 
combining fog, edge, and cloud computing, it 
becomes possible to leverage the advantages of each 
layer [5]. 

However, effectively orchestrating heterogeneous 
resources across this distributed hybrid architecture 
presents numerous challenges, particularly regarding 
the efficient scheduling of IoT tasks and data flows. 
It is essential to develop scheduling strategies that 
consider the multiple constraints inherent to various 
IoT applications (deadlines, quality of service, 
energy consumption, operational costs, etc.) to fully 
exploit the benefits offered by the fog-edge-cloud 
computing continuum [6]. 

In this paper, we propose a Cost-Aware Genetic-
based (CAG) task scheduling algorithm, designed 
for fog-cloud environments. The algorithm aims to 
improve cost efficiency, reduce latency, and 
minimize network congestion in real-time 
applications with strict deadlines. We evaluate our 
approach using the PureEdgeSim simulator, 
focusing on key performance metrics such as 
latency, cost, and network congestion. 

The structure of this paper is organized as follows: 
Section 2 discusses the background and related 
works in task scheduling techniques, followed by the 
proposed methodology in Section 3. Section 4 
presents the simulation settings and results, and 
finally, Section 5 concludes the paper with future 
research directions. 

 

 

 

 

 

 

 

2. BACKGROUND AND RELATED WORKS 

 

 

Figure 1: The Classification Of Task Scheduling 
Techniques In Fog Computing. 

 Figure 1 presents an overview of task scheduling 
techniques in fog environments, organizing them 
into four main categories: machine learning, 
heuristic-based approaches, metaheuristic-based 
methods, and deterministic strategies. The articles 
analyzed in this study are placed within these 
categories to highlight their relevance. In the 
sections that follow, we review and compare these 
works, focusing on qualitative parameters to provide 
a comprehensive understanding. 
 
2.1 An Overview of Machine Learning 
Mechanisms 
Conventional approaches are ineffective with large 
data sets [7], [8], Machine learning techniques play 
a crucial role in improving the efficiency and 
precision of fog task scheduling. By examining 
historical data and uncovering patterns, these 
algorithms can forecast future traffic loads and 
strategically optimize task allocation to meet system 
demands effectively. This approach helps minimize 
latency, enhance overall system performance, and 
maximize resource utilization. Furthermore, 
machine learning algorithms can identify anomalies 
or potential system failures early on, enabling 
proactive measures to mitigate issues before they 
escalate. Incorporating machine learning into fog 
task scheduling can greatly improve the efficiency of 
the scheduling process while boosting the overall 
performance of fog computing systems. 
 
In this section, the chosen machine learning-based 
techniques are grouped into three distinct categories. 
The strengths and limitations of these methods are 
thoroughly examined and discussed. 
 
2.1.1 Artificial Neural Network (ANN) Based 
Methods for Task Scheduling 
Arri, al [9] designed an enhanced system for 
managing Task Group Aggregation (TGA) overflow 
in fog computing environments, leveraging neural 
computing techniques. They developed an Artificial 
Neural Network (ANN) based algorithm that detects 
overloaded servers and efficiently redistributes the 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4846 

 

data to Virtual Machines (VMs) within the fog 
computing network. Various factors such as CPU, 
memory, and bandwidth are considered to balance 
VMs. Additionally, the Artificial Bee Colony (ABC) 
algorithm is used to separate services and users 
based on their specific quality requirements. The 
introduced ANN-based overflow handling algorithm 
improves response time and success rate parameters 
compared to current approaches. However, energy 
consumption is not addressed in this paper. 
Considering the computational complexity of ANN 
algorithms, future work could extend this research 
by optimizing the models' computational complexity 
and incorporating energy efficiency considerations 
into the algorithm. 
 
2.1.2 Deep Reinforcement Learning (DRL) 
Based Methods for Task Scheduling 
DRL-based methods offer a promising approach to 
improving task scheduling in fog computing 
environments, with the potential to reduce energy 
consumption and enhance overall system 
performance. These methods learn from past 
experiences and make decisions based on real-time 
data, leading to reduced latency. However, a 
potential drawback is the complexity and 
computational cost of implementing DRL 
algorithms, which may require significant resources. 
 
For instance, Li, al [10] utilized deep learning 
models for fog task scheduling in mobile crowd 
sensing applications. The authors enhanced the 
efficiency of image data processing by deploying 
IoT devices as part of a multilayer structure in a deep 
learning Convolutional Neural Network (CNN) 
model. The simulation results showed that the 
proposed solution minimizes bandwidth costs from 
fog nodes to the cloud layer, thereby reducing cloud 
layer computations. This approach focuses on 
optimizing energy consumption and reducing delay 
by dynamically adjusting the sampling rate of sensor 
data. It also enables proactive measures to prevent 
potential failures by predicting future resource 
availability and adjusting task scheduling 
accordingly. This helps meet execution deadlines 
and improves response times. However, as the 
system scale grows, the proposed model struggles to 
converge, resulting in unstable outcomes. 
 
Gazori, al [11] also employed a DRL-based model 
for fog task scheduling in mobile crowd sensing 
applications. They proposed an efficient task 
scheduling algorithm based on a double deep Q-
learning model. The purpose of this algorithm is to 
reduce service latency and measurement costs within 

the constraints of resources and time limits. 
According to the results presented in the paper, the 
model outperforms simpler techniques in terms of 
delay and task completion time. Additionally, the 
proposed algorithm addresses single-point failure 
problems and fog load balancing issues. However, 
the algorithm reaches a solution at a slow pace and 
faces uncertainty in high-dimensional state-action 
spaces. The article does not provide specific 
information on how the DRL approach performs in 
terms of network bandwidth and energy 
consumption criteria. 
 
Swarup, al [12] and [13] proposed an algorithm 
called Clipped Double Deep Q-learning for IoT task 
scheduling in fog-based environments using deep 
reinforcement learning to address service latency 
and energy efficiency. The proposed model utilizes 
experience replay and target network techniques. 
The authors aim to improve energy efficiency, 
reduce costs, and minimize delays in task 
scheduling. The algorithm clusters IoT devices 
based on their resource requirements and schedules 
tasks for each cluster using deep reinforcement 
learning. A parallel queue is also employed to ensure 
optimal resource utilization without lag. However, 
potential issues with execution time and network 
bandwidth may arise. 
 
 
2.1.3 Graph-Based Deep Learning Methods for 
Task Scheduling 
Graph Neural Networks (GNNs) are a type of neural 
network tailored for working with graph-structured 
data. This approach has attracted considerable 
interest in recent years because of its effectiveness in 
tackling challenges across various fields, including 
social network analysis and privacy-preserving 
machine learning. Recently, GNNs have emerged as 
a promising solution for optimizing task scheduling 
in fog computing by leveraging the power of deep 
learning and graph theory. 
 
Graph-Based Deep Learning Methods use graph-
based models to represent the relationships between 
tasks and resources in the fog computing 
environment. These models can capture complex 
dependencies between tasks and resources, allowing 
for more accurate scheduling decisions. However, 
these methods can be computationally expensive and 
require large amounts of data to train. 
 
For instance, Jamil, al [14] proposed a new 
algorithm called IRATS for online resource 
allocation and task scheduling in a vehicular fog 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4847 

 

network. The algorithm, based on deep 
reinforcement learning, considers both priority and 
deadline constraints of tasks. It first predicts future 
resource requirements using a Long Short-Term 
Memory (LSTM) network. Then, a DRL agent 
allocates resources to tasks based on their priority 
and deadline constraints while considering the 
current state of the network. The DRL agent learns 
from past experiences to make better decisions in the 
future. IRATS can handle dynamic changes in the 
network, prioritize tasks based on their importance, 
and meet task deadlines. However, training the DRL 
agent requires significant computational resources, 
and the accuracy of the LSTM network's predictions 
may be affected by changes in the network 
environment. 
 
Furthermore, Li, al [15] developed a deep-graph-
based reinforcement learning approach for joint 
cruise control and task offloading in aerial EdgeIoT 
systems. This approach uses a GNN to model the 
complex relationships among system components 
and optimize joint control and offloading decisions. 
The proposed method improves system 
performance, reduces energy consumption, and 
enhances reliability. However, it requires significant 
computational resources and may suffer from 
scalability issues in large-scale systems. Overall, the 
paper presents a promising approach for optimizing 
EdgeIoT systems, but further research is needed to 
address its limitations. 
 

Table 1: Summary Of The Task Scheduling In Machine 
Learning Mechanisms. 

Journa
l 

Technique Advantage Weakness 

Arri, 
et al. 

(2021) 

ANN-
based 

overflow 
manageme

nt 
algorithm 

Low 
response 

time 

High 
execution 
time, High 

energy 
consumpti

on 
Li, et 

al. 
(2019) 

DRL-based 
models for 

fog task 
scheduling 
in a mobile 

crowd-
sensing 

application 

Low 
latency, 

Low 
energy 

consumpti
on, Low 
response 

time, Low 
execution 

time 

High 
uncertaint
y, High 

cost, High 
resource 

utilization, 
High 

execution 
time 

Gazori
, et al. 
(2020) 

Double 
deep Q-

Low 
latency, 
Low 

High 
uncertaint
y, High 

learning 
model 

response 
time, Low 
execution 
time 

cost, High 
resource 
utilization, 
High 
execution 
time 

Swaru
p, et 
al. 
(2021) 

Deep 
reinforcem
ent 
learning 

Low 
energy 
consumpti
on, Low 
latency, 
Low cost, 
Low 
resource 
utilization 

High 
execution 
time, High 
bandwidth 

Jamil, 
et al. 
(2023) 

Graph-
based deep 
learning 
model 

Low 
execution 
time 

High 
resource 
utilization, 
High 
uncertaint
y 

Li, et 
al. 
(2022) 

Deep-
graph-
based 
reinforcem
ent 
learning 

Low 
energy 
consumpti
on, Low 
uncertainty 

High 
resource 
utilization, 
Low 
scalability 

 
 
2.2 An Overview of Heuristic Based Mechanisms  
Heuristic-based mechanisms for fog task scheduling 
are methods that use rules of thumb or best practices 
to allocate tasks to devices in a fog computing 
environment. These mechanisms do not rely on 
machine learning techniques but rather on simple 
decision-making rules based on experience or 
intuition. While heuristic-based mechanisms are 
simple and easy to implement, they may not always 
result in optimal task allocation [16]. They also do 
not adapt to changing conditions or learn from past 
experiences as machine learning-based approaches 
do. 
 
The following section reviews several heuristic-
based fog scheduling methods that utilize various 
factors to achieve improved scheduling outcomes. 
For instance, Arisdakessian, al [17] presented 
FoGMatch, an intelligent multi-criteria IoT-Fog 
scheduling approach that uses game theory to 
allocate tasks to fog nodes. FoGMatch considers 
multiple factors such as energy consumption, delay, 
and resource availability in its decision-making 
process. The authors compare FoGMatch with other 
scheduling approaches and show that it outperforms 
them in terms of task completion time and energy 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4848 

 

consumption. The advantage of FoGMatch is its 
ability to adapt to changing conditions and learn 
from past experiences, as well as considering 
multiple criteria in its decision-making process, 
which can lead to better task allocation. However, 
the disadvantage is that it relies on complex 
algorithms and may require more computational 
resources than simpler heuristic-based mechanisms. 
 
Furthermore, Azizi, al [18] formulated the task 
scheduling problem with the objective of reducing 
the overall energy consumption of fog nodes while 
meeting the various qualitative requirements of IoT 
tasks. The proposed model aims to minimize 
deadline violation time. The authors mapped IoT 
tasks to fog nodes using two semi-greedy 
algorithms: Priority-aware Semi-Greedy (PSG) and 
PSG with Multi-start method (PSG-M). According 
to the results, the proposed algorithms increase the 
percentage of tasks that meet their deadlines, reduce 
the total time of deadline violations, and optimize the 
energy consumption of fog resources and system 
makespan compared to existing algorithms. The time 
complexity analysis in the paper suggests that this 
algorithm is a suitable solution for real-time 
scheduling of IoT tasks in fog computing systems. 
 
In addition, Hosseini, al [19] presented a dynamic 
scheduling algorithm based on the Priority Queue, 
Fuzzy, and Analytical Hierarchy Process 
(PQFAHP). The PQFAHP algorithm combines 
multiple priorities and can perform multi-criteria 
prioritization. The authors implemented dynamic 
scheduling based on various criteria, including 
completion time, energy consumption, RAM, and 
deadline. The outcomes revealed that the multi-
criteria PQFAHP outperforms benchmark 
algorithms in terms of waiting time, delay, service 
level, response time, number of scheduled tasks, and 
energy consumption. 
 
Xu, al [20] proposed an algorithm based on adaptive 
dynamic programming to find the best path for 
processing data with different priorities at fog nodes. 
The goal of the proposed algorithm is to reduce time 
delay and energy consumption for priority-based 
tasks. Simulation results showed that the proposed 
algorithm increases efficiency and reliability while 
reducing power consumption. 
 
Table 2: Summary Of The Task Scheduling In Heuristic-

Based Mechanisms. 
Journal Technique Advantag

e 
Weakn
ess 

Arisdakess
ian, et al. 

[11] 

Intelligent 
schedulin
g based on 

game 
theory 

Low 
energy 

consumpti
on, Low 

execution 
time 

High 
resourc

e 
utilizati

on 

Azizi, et al. 
[12] 

Semi-
greedy 

algorithm 

Low 
energy 

consumpti
on, Low 

execution 
time, Low 
complexit

y 

 

Hosseini, 
et al. [13] 

Fuzzy and 
analytical 
hierarchy 
process 

Low 
latency, 

Low 
response 

time, Low 
energy 

consumpti
on 

High 
resourc

e 
utilizati

on 

Xu, et al. 
[14] 

Dynamic 
programm

ing 

Low 
energy 

consumpti
on, Low 

cost, Low 
execution 

time 

High 
resourc

e 
utilizati

on 

 
2.3 An Overview of Metaheuristic Based 
Mechanisms 
In meta-heuristic algorithms, a random solution 
space is used for task scheduling. With a few 
modifications, these algorithms can solve various 
optimization problems [21]. Meta-heuristic 
algorithms are problem-independent [22], and using 
them for fog task scheduling has shown promise in 
improving resource utilization and reducing latency 
in distributed fog computing environments. This 
section reviews several studies on meta-heuristic 
task scheduling in the fog environment. 
 
Xu, al [23] proposed a task scheduling approach 
based on Laxity-Based Priority and Ant Colony 
System (LBP-ACS) in a cloud-fog environment. The 
LBP algorithm is applied to determine the priority of 
tasks, and the Constrained Optimization Algorithm 
based on the ACS (COA-ACS) is used for task 
scheduling. Simulation results showed that the 
proposed algorithm outperforms Greedy for Energy 
(GfE), Heterogeneous Earliest Finish Time (HEFT), 
and hybrid ant colony optimization with differential 
evolution algorithms in terms of reducing energy 
consumption and failure rate in scheduling 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4849 

 

dependent tasks with mixed deadlines. However, the 
study only considered associated tasks, not 
independent ones. 
Ghobaei-Arani, al [24] introduced a Moth-Flame 
Optimization (TS-MFO) algorithm for scheduling 
tasks in the fog environment. The main goal of the 
TS-MFO algorithm is to meet the QoS requirements 
of Cyber-Physical System (CPS) applications. 
 
The algorithm identifies the best solutions to locate 
fog nodes. Using the iFogSim simulator, TS-MFO is 
compared with Particle Swarm Optimization (PSO), 
Non-dominated Sorting Genetic Algorithm-II 
(NSGA-II), and Bee Life Algorithm (BLA). Results 
revealed that the TS-MFO algorithm reduces the 
total execution time of tasks. However, the study 
does not consider energy consumption and 
communication cost. 
 
Rafique, al [25] proposed a Novel Bio-Inspired 
Hybrid Algorithm (NBIHA) for efficient task 
scheduling and resource management in the fog 
environment. NBIHA combines Modified Particle 
Swarm Optimization (MPSO) and Modified Cat 
Swarm Optimization (MCSO). The algorithm 
discovers the best match of fog devices for an input 
task based on the requested memory and CPU time. 
Compared to First Come First Serve (FCFS), 
Shortest Job First (SJF), and MPSO, the NBIHA 
algorithm provides better results in terms of 
execution time, energy consumption, and average 
response time. However, this study does not address 
communication cost. 
 
Hosseinioun, al [26] proposed an efficient hybrid 
algorithm based on invasive weed optimization and 
culture algorithms. The goal of this algorithm is to 
minimize energy consumption using Dynamic 
Voltage and Frequency Scaling (DVFS). The results 
confirmed that the proposed DVFS algorithm meets 
real-time requirements in heterogeneous systems. 
 

Table 3: Summary Of The Task Scheduling In 
Metaheuristic-Based Mechanisms 

Journal Techniqu
e 

Advantag
e 

Weakness 

Arisdakess
ian, et al. 

[1] 

Intelligen
t 

schedulin
g based 
on game 
theory 

Low 
energy 

consumpt
ion, Low 
execution 

time 

High 
resource 

utilization 

Xu, et al. 
[2] 

Laxity-
based 

priority 
and Ant 
Colony 
System 

Low 
energy 

consumpt
ion 

High 
execution 

time 

Ghobaei-
Arani, et 

al. [3] 

Moth-
Flame 

Optimiza
tion 

algorithm 

Low 
execution 

time 

High 
energy 

consumpt
ion, High 

cost 

Rafique, et 
al. [4] 

Bio-
inspired 
hybrid 

algorithm 

Low 
execution 

time, 
Low 

response 
time, 
Low 

energy 
consumpt

ion 

High cost 

Hosseinio
un, et al. 

[5] 

Invasive 
Weed 

Optimiza
tion and 
Cultural 
Algorith

m 

Low 
energy 

consumpt
ion, Low 
execution 

time 

 

 
 
2.4 An Overview of Deterministic Mechanisms 
Deterministic mechanisms always produce the same 
output for a given input. Deterministic mechanisms 
for fog task scheduling involve using a predefined 
set of rules and algorithms to allocate tasks to fog 
nodes. An example of a deterministic approach is 
exhaustive search, where the entire search space 
is enumerated to find the optimal plan based on a 
given cost model. These mechanisms do not involve 
any randomness or probabilistic methods. While 
deterministic mechanisms are simple and easy to 
implement, they may not always result in optimal 
resource utilization or latency reduction.  
 
This section discusses deterministic mechanisms for 
fog task scheduling. Kyung [27] presented a 
prioritized task distribution model considering static 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4850 

 

and opportunistic fog nodes with respect to their 
mobility. In this model, delay-sensitive tasks are 
processed in static fog nodes, while delay-insensitive 
tasks are handled in opportunistic fog nodes. The 
results showed that the proposed model performs 
better than traditional models in terms of service 
response delay and outage probability. However, 
ranking fog nodes may not always accurately reflect 
their actual computing capabilities or workload, and 
prioritizing tasks could lead to lower-priority tasks 
being delayed or neglected, impacting overall 
system performance. 
 
Tsai, al [28] proposed a linear transformation model 
to solve the nonlinear task assignment problem in 
cloud-fog systems. Various criteria, including 
execution time and operating costs, are considered 
for optimal task allocation. The model finds the 
optimal solution based on task requirements, nodes’ 
processing speed, and nodes’ resource usage cost. 
Although effective, the computational complexity of 
this approach grows rapidly as the problem size 
increases. 
 
Caminero and Muñoz-Mansilla [29] introduced a 
network-aware scheduling algorithm to select the 
appropriate fog node to execute an application 
within a given deadline. The algorithm, an extension 
of the Kubernetes default scheduler, considers the 
network status in its scheduling decisions. Results 
showed that the algorithm executes all submitted 
tasks within the deadline, reaching an optimal 
solution. Similarly, Yin et al. [30] presented 
container-based task scheduling algorithms in fog 
computing, which improved resource utilization by 
minimizing delay. 
 
Razaque, al [30] proposed an efficient hybrid 
algorithm to decrease energy consumption for the 
Mobile Fog-Based Cloud (MFBC). The algorithm 
uses a voltage scaling factor to reduce energy 
consumption and secures the identity of mobile 
cloud users using blockchain technology. The 
approach includes job-scheduling and machine 
power calculation modules to allocate tasks for 
mobile fog cloud users in a time-series fashion, 
improving throughput and latency. 
 It also proposes a secure key management scheme 
to ensure secure communication between fog nodes 
and the cloud. The performance of this algorithm is 
significantly better than state-of-the-art algorithms 
in terms of security, energy efficiency, throughput, 
and latency. However, the complexity of the 
architecture may require significant resources to 
implement. 

Table 4: Summary Of The Task Scheduling In 
Deterministic Mechanisms. 

Journal Technique Advantage Weaknes
s 

Kyung 
[1] 

Priority-
based Task 
Distribution 

Model 

Low 
response 

time, Low 
uncertaint

y 

High 
complex

ity 

Tsai, et 
al. [2] 

Linear 
Transformat
ion Model 

Low 
latency 

High 
resource 
usage, 
High 

executio
n time 

Camine
ro and 

Munoz-
Mansill

a [3] 

Bio-inspired 
Hybrid 

Algorithm 

Low 
execution 
time, Low 

latency 

High 
complex

ity 

Razaqu
e, et al. 

[4] 

Priority-
based Task 
Distribution 

Model 

Low 
energy 

consumpti
on, Low 

execution 
time, Low 
latency, 

High 
security 

High 
resource 

usage 

 

3. COST-AWARE TASK SCHEDULING 

3.1 Challenges of Cost-Based Planning: 
Before presenting the CAG algorithm in detail, it is 
essential to identify the main challenges associated 
with scheduling in a distributed environment: 
- Latency constraints: Some IoT applications require 
near-instantaneous processing, making it essential to 
take latency into account. 
- Variable costs: fog and cloud resources present 
heterogeneous costs depending on their availability, 
load and energy consumption. 
- Dynamic resource allocation: The heterogeneous, 
dynamic nature of devices requires flexible, scalable 
task allocation. 
 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4851 

 

These challenges justify the use of a genetic 
algorithm to find an optimized solution. 
 
3.2 Rationale for Choosing Genetic Algorithms: 
Genetic algorithms (GA) are chosen for their ability 
to solve complex optimization problems. Compared 
with simpler approaches such as Round-Robin or 
Trade-Off algorithms, GA offers the following 
advantages: 
- Efficient exploration of the search space: identifies 
a solution close to the global minimum. 
- Adaptability: can dynamically adjust to load 
variations and latency fluctuations. 
- Multi-criteria optimization: simultaneously 
minimizes costs and maximizes success rates. 
This algorithm exploits these strengths to allocate 
tasks optimally, while minimizing costs and meeting 
deadlines. 

3.3 Comparison with Other Approaches 
To situate the effectiveness of CAG in relation to 
other scheduling methods, the following table 
summarizes the key features: 
 
Table 5: Comparison Of Task Scheduling Approaches In 

Fog-Cloud Environments 
Appr
oach 

  
Complexit
y 

Cost 
optimi
zation 

Latenc
y 
manag
ement 

Adapta
bility 

Roun
d-

Robin 
[27] 

Linear 
Complexi
ty(O(n)) 

Low Mediu
m 

Low 

Trade
-Off      
[31] 

Log-
Linear 

Complexi
ty (O(n 
log n)) 

Avera
ge 

Good Avera
ge 

CAG 
(prop
osed, 
this 

word) 

Log-
Linear 

Complexi
ty (O(n 
log n)) 

High Excell
ent 

High 

 
Explanation of Complexity Terms: 

- Round-Robin: Linear Complexity 
(O(n)): For example, if you have 10 tasks, 
Round-Robin will take 10 units of time. If 
you have 100 tasks, it will take 100 units of 

time. This makes it less suitable for large-
scale systems. 

- Log-Linear Complexity (O(n log n)): For 
example, for 100 tasks, Trade-Off will take 
around 100 * log(100) time units, which is 
considerably better than Round-Robin for 
large sets of tasks. 

- Log-Linear Complexity (O(n log n)): 
Like Trade-Off, CAG is effective for large 
task sets, but is smarter in the way it 
explores and exploits solutions, making it 
more efficient in terms of latency and cost 
management. 

3.4: Cost-Aware Genetic Algorithm (CAG) 
The cost-based genetic algorithm is a decision-
making process used for task scheduling in 
distributed systems such as fog and cloud 
computing. 
The goal is to optimize the allocation of resources to 
tasks over a defined period, considering multiple 
objectives, including processing cost and meeting 
deadlines for time-constrained tasks. 
 

 
 

Figure 2: System Model Of Scheduling 
 
The figure 2 illustrates the task scheduling process 
in a fog-cloud environment, managed by the 
MasterFogNode. 
 
The scheduling system is managed by a central 
planning node called the MasterFogNode. When a 
task request is received, the MasterFogNode 
executes the scheduling algorithm.  
 
This algorithm estimates the completion time of 
tasks based on the network and processing 
capabilities of available resources and the 
requirements of the tasks. If a task cannot be 
completed on time, it is rejected. Otherwise, it is sent 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4852 

 

to the corresponding resources (fog nodes or cloud 
nodes) for processing. After processing, the results 
are returned to the MasterFogNode and then 
transmitted to the requester. 
 
To provide an optimal solution, the MasterFogNode 
uses a cost-aware genetic algorithm (CAG) to assign 
a set of tasks T={t1,t2,…,tn} to fog and cloud nodes 
D={d1,d2, …,dm}. 
 
The algorithm takes an incoming list of tasks and 
available processing nodes as input. Each task has 
key characteristics such as arrival time, number of 
instructions, upload size, result data size, and 
deadline. The tasks are considered independent (Bag 
of Tasks - BoT) and can be scheduled independently 
of each other. 
 
In the Genetic Algorithm, each possible solution is 
represented by a chromosome (individual). The 
representation of chromosomes is done through 
integer coding, which includes resource 
identifications. A set of chromosomes in a 
generation is called a population. 
 
The CAG algorithm begins with defining the 
representation method (chromosome encoding). It 
randomly generates the initial generation of 
chromosomes (initial population). A fitness function 
is defined to measure the quality of solutions. This 
fitness function is used to determine which 
chromosomes will survive or be reproduced in 
subsequent generations. The search process, based 
on the fitness function, aims to provide the most 
suitable individuals. 
 
The objective of the CAG algorithm is to reduce the 
task execution cost and increase the success rate of 
tasks completed within deadlines. To achieve this, 
the algorithm considers the total cost of computing 
resources and bandwidth used for task execution. 
 
The first generation of chromosomes (initial 
population) is generated randomly. Another 
important step is defining the fitness function, which 
measures the quality of solutions by taking a 
candidate chromosome as input and producing an 
indication of how relevant the solution is relative to 
the problem's objectives. Thus, the fitness function 
determines which chromosomes will survive or be 
reproduced in subsequent generations, and the 
search process based on this fitness function 
attempts to provide the most suitable individuals. 
 

To reduce the cost and increase the success rate, the 
fitness function is defined as follows: 

 Cost représente le coût financier total de 
l'exécution des tâches.  

 SuccessRate indique la fraction des 
tâches qui ont été accomplies avec succès. 

𝑓(𝑥) =
𝐶𝑜𝑠𝑡

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒
          (1) 

 
The fitness function is designed to evaluate solutions 
based on these two criteria, aiming to minimize the 
cost while maximizing the task success rate. 
Chromosomes corresponding to low-cost solutions 
with a high success rate are more likely to be selected 
for reproduction, enabling the algorithm to converge 
towards more effective solutions over generations. 
 
 
 
Figure 3: PSEUDO CODE OF CAG ALGORITHM 

 
 
According to the CAG algorithm illustrated in 
Figure 3, the first step is to define the representation 
method (chromosome encoding). Each possible 
solution in the genetic algorithm is represented by a 
chromosome (individual). To represent the 
chromosomes, integer coding that includes resource 
identifications is used. A set of chromosomes in a 
generation is called a population. 
The first generation of chromosomes (initial 
population) is generated randomly, another crucial 
step is defining the fitness function, which measures 
the quality of solutions by taking a candidate 
chromosome as input and determining how well that 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4853 

 

solution aligns with the problem’s objectives. Thus, 
the fitness function determines which chromosomes 
will survive or be reproduced in subsequent 
generations, and the search process based on this 
fitness function aims to provide the most suitable 
individuals. 
 
To reduce cost and increase the success rate, we 
define the fitness function as follows: 

 Cost represents the total financial 
expenditure dedicated to task execution. 

 SuccessRate indicates the fraction of 
tasks that have been completed 
successfully. 

Latency (TL) and Processing Time (TP) are 
calculated using Equation (2). In this equation, I(ti) 
represent the task size (number of instructions), and 
di denotes the index of the computing node. The 
waiting time (TW) for each task to acquire the 
processor is computed using Equation (3). In this 
equation, ti and tj are executed on the same nodes, 
with tj being executed before ti. For simplicity, we 
assume that each node has a single processor. 
 

𝑇௣(𝑡௜) =
𝐼(𝑡௜)

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒(𝑑௜)
+ 𝑇௪(𝑡௜) (2) 

𝑇௪(𝑡௜)

= ෍ 𝑇௣൫𝑡௝൯

௄

௝ୀଵ

                                                 (3) 

 
To calculate the latency (TL) for task ti, we must 
include the propagation time (PropagationTime) and 
the transmission time TN(ti) as given in Equation (4). 
As commonly defined in communication systems, 
the propagation time is obtained by dividing the 
distance by the propagation speed. Additionally, the 
data transmission time TN(ti) is calculated using 
Equation (5), where Si(ti) and So(ti) represent the size 
of the input and output data for task ti , and Bd 
represents the bandwidth between the two points 
(i.e., master node and destination worker node). 
Thus, the data transmission time depends on the data 
size and bandwidth. 
 

𝑇௅(𝑡௜)
= 𝑇ே(𝑡௜) + 2. 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑡௜)        (4) 

 
𝑇ே(𝑡௜)

=
𝑆௜(𝑡௜)

𝐵ௗ

+
𝑆௢(𝑡௜)

𝐵ௗ

                                        (5) 

 
Incorporating energy consumption into the fitness 
function allows for a comprehensive evaluation of 
each solution.  

Energy consumption is calculated based on the 
energy used by each fog and cloud node to process 
the tasks.  
Thus, optimal solutions minimize latency, financial 
costs, and energy consumption, contributing to more 
sustainable and efficient solutions. 
 
Equation (6) shows that the energy consumed by a 
task on a fog or cloud node is equal to the execution 
time Te(ti) of that task multiplied by the energy 
consumption in idle mode of the fog or cloud device 
PC: 
 
𝐸(𝑡௜) = 𝑇௘(𝑡௜) ⋅ 𝑃஼                                                   (6) 
 
The processing cost is calculated in Equation (7), 
where CP represents the processing cost per unit time 
on the destination node, CB represents the cost of 
network bandwidth and CE represents the cost 
associated with energy consumption. 

Cost = ෍ ቀ𝑇௣(𝑡௜) ⋅ 𝐶௣ + 𝑇௅(𝑡௜)ቁ

௡

௜ୀଵ

⋅ 𝐶஻ + 𝐸(𝑡௜)

⋅ 𝐶ா   (7) 
This equation accounts for the time spent processing 
tasks on the destination node, the network bandwidth 
used for data transmission, and the energy or 
resource costs involved in the execution of the tasks. 
 
The proposed approach in this article is the Multi-
Level IoT Tasks Scheduling (MLITS) model, which 
is an orchestration system for managing and 
allocating IoT tasks over the mist-fog-cloud 
architecture [31]. 
  
 The MLITS model performs IoT tasks based on 
their deadline and the urgency of their execution, and 
it also performs various types of IoT tasks without 
rapidly consuming available sources while 
maintaining the resource usage balanced [32]. 
Additionally, the proposed scheduling model is 
compared with three other scheduling models, 
namely Min-Min, Credit-Based-Scheduling (CBS), 
and Earliest-Feasible-Deadline-First (EFDF), and 
the simulation results show that the MLITS model 
enhances the performance metrics, such as 
turnaround time, waiting time, and throughput [33]. 
 
Table 6: Description Of Parameters Used In Scheduling 
Of Iot Tasks In The Fog. 

Parameter Description 
I(ti) Represents the total 

number of instructions to 
be executed for task ti. 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4854 

 

ProcessingRate(di) Represents the processing 
capacity of a given 
computing node di 

Tw(ti) Calculated for a task ti, it 
is the time the task must 

wait before being executed 
on the same processor as 

other previously scheduled 
tasks. 

PropagationTime(ti

) 
Represents the 

propagation time for a bit 
to travel from the source 

to the destination. 
TN(ti) Represents the time 

required to transmit the 
input and output data of 
task ti based on the data 

size Si(ti) and So(ti), as well 
as the available 
bandwidth Bd. 

Cost Represents the total 
financial cost associated 

with the execution of 
tasks. 

 

E(ti) Represents the total 
energy used to process a 

task. 
 

TL(ti) Measures the total delay 
experienced by a task 

between its sending and 
receiving. 

 
The cost-based genetic algorithm is a decision-
making process used for task scheduling in 
distributed systems such as fog and cloud 
computing. The goal is to optimize the allocation of 
resources to tasks over a defined period, considering 
multiple objectives, including processing cost and 
meeting deadlines for time-constrained tasks. 
 
4. SIMULATION SETTINGS 
 
PureEdgeSim is a simulation framework that enables 
the study of Internet of Things environments at large 
scale, in a distributed, dynamic, and highly 
heterogeneous infrastructure. It also simulates the 
behavior of applications running on these systems. It 
provides realistic infrastructure models for research 
across the edge-to-cloud continuum, enabling 
evaluations of performance, cost, latency, and 
energy metrics. It encompasses all layers of edge 
computing modeling and simulation. It features a 
modular design in which each module addresses a 
particular aspect of the simulation.  

For example, the Datacenters Manager module 
creates data centers, servers, and end devices with 
heterogeneity. The Location Manager handles geo-
distribution and mobility. The Network Module 
manages bandwidth allocation and data transfer.  
In this study, we configured the simulator to evaluate 
the performance of the proposed Cost-Aware 
Genetic (CAG) algorithm. We focused on metrics 
such as success rate, execution delay, cost, and 
energy consumption under various fog node 
configurations. 
 
5. RESULTS AND DISCUSSIONS 
 
To evaluate the performance of the proposed 
algorithm in case of increasing the number of fog 
nodes in simulation experiments, the number of 
cloud nodes are kept constant  
(1 cloud nodes), while number of heterogeneous 
worker fog nodes varies between 200 and 600. The 
characteristics of the workload and nodes are kept 
constant in all simulations.  
Also, to achieve a normal value, each of the 
experiments ran 3 times and the average values are 
provided. 
 Round-Robin (RR) is a simple but well-known 
algorithm that is one of the most common algorithms 
for resource allocation [34]. RR has been used by 
other papers in the literature for comparison [35], 
[36]. In addition to RR, Trade-Off, the algorithm 
divides the given circuit into subsystems such that 
each subsystem cannot exceed its reconfigurable 
capacity.  
The union of the solutions of these subsystems is the 
solution of the whole system. Then, a greedy 
approach is proposed to find the solution for each 
subsystem [37], is used for comparison. In addition, 
to ensure system stability over time, simulations are 
repeated with different simulation duration. 
 
5.1 Simulation Scenario 
To evaluate the performance of the proposed 
algorithm in case of increasing the number of fog 
nodes 
in simulation experiments, the number of cloud 
nodes are kept constant (1 cloud nodes), while 
number of 
heterogeneous worker fog nodes varies between 200 
and 600. The characteristics of the workload and 
nodes 
are kept constant in all simulations. Also, to achieve 
a normal value, each of the experiments ran 3 times 
and the average values are provided. Round-Robin 
(RR) is a simple but well-known algorithm that is 
one of 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4855 

 

the most common algorithms for resource 
allocation[19]. RR has been used by other papers in 
the literature 
for comparison[20], [21]. In addition to RR, Trade-
Off, The algorithm divides the given circuit into 
subsys- 
tems such that each subsystem cannot exceed its 
reconfigurable capacity. The union of the solutions 
of these 
subsystems is the solution of the whole system. 
Then, a greedy approach is proposed to find the 
solution for 
each subsystem [22], is used for comparison. In 
addition, to ensure system stability over time, 
simulations are 
repeated with different simulation durations. 
 
5.2 Evaluation Metrics 
To evaluate the proposed approach, we consider the 
following metrics: 
 

 Success Rate: The fraction of tasks that are 
completed within the deadline. This metric 
is calculated by dividing the number of 
successfully completed tasks by the total 
number of tasks. 

 Cost: The financial cost incurred for the 
execution of tasks. 

 
 
In this section, we investigate the performance of 
CAG algorithm in terms of Success Rate and Failed 
Rate and Average Execution Delay and Average 
Energy Consumption. 
 

Figure 4: Tasks Successfully Executed 
 
The figure 4 shows the number of successfully 
executed tasks as a function of the number of fog 
nodes for three algorithms:  

{ROUND\_ROBIN}(red), 
{ROUND\_ROBIN}(blue) and GENETIC 
ALGORITHM (green). It can be observed that the 
number of executed tasks increases with the number 
of fog nodes for all three algorithms.  
GENETIC ALGORITHM significantly outperforms 
the other algorithms at every node level, 
demonstrating superior performance. 
{ROUND\_ROBIN} ranks second, while 
{TRADE\_OFF} is the least performant. 
 

Figure 5: Tasks Failed (Delay) 
 
The figure 5 presents the number of tasks that failed 
due to deadlines as a function of the number of fog 
nodes for three algorithms: {TRADE\_OFF}(red), 
{ROUND\_ROBIN}(blue), and 
{GENETIC\_ALGORITHM}(green). It can be 
observed that the number of failed tasks increases 
with the number of fog nodes for all three 
algorithms. {GENETIC\_ALGORITHM} shows the 
lowest number of failed tasks, indicating better 
deadline management. {ROUND\_ROBIN} has the 
highest number of failed tasks, while 
{TRADE\_OFF} falls in between the two. 
 

Figure 6: Average Execution Delay 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4856 

 

The figure 6 shows the average execution delay for 
three algorithms ({TRADE\_OFF}, 
{ROUND\_ROBIN}, and 
{GENETIC\_ALGORITHM}) based on the number 
of fog nodes. The {GENETIC\_ALGORITHM} 
provides the best performance, with a slight decrease 
in delay as the number of nodes increases, stabilizing 
at 0.1582 seconds for 600 nodes. In comparison, the 
delay for the {ROUND\_ROBIN} algorithm 
consistently increases, reaching 0.1589 seconds at 
600 nodes. The {TRADE\_OFF} algorithm shows a 
slight decrease in delay at 400 nodes but experiences 
a notable increase to 0.1589 seconds at 600 nodes. 
Thus, {GENETIC\_ALGORITHM} is the most 
effective at minimizing execution delays. 
 

Figure 7: Average Energy Consumption 
 

The figure 7 compares the average energy 
consumption per computing node based on the 
number of fog nodes for three scheduling 
algorithms: {TRADE\_OFF}, {ROUND\_ROBIN}, 
and {GENETIC\_ALGORITHM}. Overall, energy 
consumption decreases as the number of fog nodes 
increases for all three algorithms.  
However, the {GENETIC\_ALGORITHM} stands 
out with significantly lower energy consumption 
compared to the T{RADE\_OFF} and 
{ROUND\_ROBIN} algorithms, indicating better 
energy efficiency. This observation highlights the 
advantage of the genetic algorithm in reducing 
energy consumption in fog-cloud environments. 
 
6. CONCLUSION 
 
The fog computing paradigm continues to reshape 
the execution models of distributed systems, 
especially in scenarios involving IoT and latency-
sensitive services. Efficient task scheduling is a 
critical challenge in a cloud-fog ecosystem. In this 
paper, we addressed the problem of efficient task 

scheduling by proposing a genetic algorithm-based 
method called CAG, where fog nodes collaborate 
with rented cloud nodes to efficiently execute large-
scale offloading applications. We have proposed a 
genetic-based algorithm called CAG, which 
balances the trade-off between throughput and cost 
for hard real-time applications. 
To assess the performance of our proposed 
approach, we made modifications to the iFogSim 
simulator and evaluated CAG under various 
scenarios to examine its impact on performance. The 
results indicate that CAG outperforms the Round-
Robin (RR) and Minimum Response Time 
algorithms in terms of financial cost and success 
rate. 
 
For future work, we aim to extend this approach by 
exploring energy-aware enhancements and 
considering task dependencies (workflow 
scheduling). Additionally, we also plan to evaluate 
the model under realistic workloads, including 
mobility scenarios and dynamic resource 
availability. 
 
REFERENCES: 
[1] Somayya Madakam, R. Ramaswamy, and 

Siddharth Tripathi. Internet of Things (IoT): A 
Literature Review. Journal of Computer and 
Communications, 3(5):164–173, May 2015. 
doi: 10.4236/jcc.2015. 35021. URL 
https://www.scirp.org/journal/paperinformatio
n? Paper id=56616.Number: 5 Publisher: 
Scientific Research Publishing.  

[2]   Jayavardhana Gubbi, Rajkumar Buyya, Slaven 
Marusic, and Marimuthu Swami Palaniswami. 
Internet of things (iot): A vision, architectural 
elements, and future directions.  ArXiv, 
abs/1207.0203,2012. URL 
https://api.semanticscholar.org/CorpusID:204
982032. 

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and 
Sateesh Addepalli. Fog computing and its role 
in the internet of things. In Proceedings of the 
first edition of the MCC workshop on Mobile 
cloud computing, pages 13–16, 2012. 

[4] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, 
and Sateesh Addepalli. Fog computing and its 
role in the internet of things. In MCC ’12, 
2012. URL 
https://api.semanticscholar.org/Corpus ID: 
207196503. 

[5] Ashkan Yousefpour, Ashish Patil, Genya 
Ishigaki, Inwoong Kim, Xi Wang, Hakki C 
Cankaya, Qiong Zhang, Weisheng Xie, and 
Jason P Jue. Fogplan: A lightweight qos-aware 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4857 

 

dynamic fog service provisioning framework. 
IEEE Internet of Things Journal, 6(3):5080–
5096, 2019. 

[6] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K 
Ghosh, and Rajkumar Buyya. ifogsim: A 
toolkit for modeling and simulation of resource 
management techniques in the internet of 
things, edge and fog computing environments. 
Software: Practice and Experience, 
47(9):1275–1296, 2017. 

[7] Amir Masoud Rahmani, Elham Azhir, Saqib Ali, 
Mokhtar Mohammadi, Omed Hassan Ahmed, 
Marwan Yassin Ghafour, Sarkar Hasan 
Ahmed, and Mehdi Hosseinzadeh. Artificial 
intelligence approaches and mechanisms for 
big data analytics: a systematic study. PeerJ 
Computer Science, 7: e488, April 2021. ISSN 
2376-5992. doi: 10.7717/peerj-cs.488. URL 
https://www.ncbi.nlm.nih.gov/pmc/ 
articles/PMC8053021/. 

[8] Amir Masoud Rahmani, Elham Azhir, Morteza 
Naserbakht, Mokhtar Mohammadi, Adil 
Hussein Mohammed Aldalwie, Mohammed 
Kamal Majeed, Sarkhel H. Taher Karim, and 
Mehdi Hosseinzadeh. Correction to: 
Automatic COVID-19 detection mechanisms 
and approaches from medical images: a 
systematic review. Multimedia Tools and 
Applications, 81(20):28799–28800, 2022. 
ISSN 1380-7501. doi: 10.1007/s11042-022-
13374-1. 

[9] Harwant Singh Arri, Ramandeep Singh, Sudan 
Jha, Deepak Prashar, Gyanendra Prasad Joshi, 
and Ill Chul Doo. Optimized task group 
aggregation-based overflow handling on fog 
computing environment using neural 
computing. Mathematics, 9(19):2522, 2021. 

[10] He Li, Kaoru Ota, and Mianxiong Dong. Deep 
reinforcement scheduling for mobile 
crowdsensing in fog 

computing. ACM Transactions On Internet 
Technology (TOIT), 19(2):1–18, 2019. 

 
[11] Pegah Gazori, Dadmehr Rahbari, and Mohsen 

Nickray. Saving time and cost on the 
scheduling of fog-based iot applications using 
deep reinforcement learning approach. Future 
Generation Computer Systems, 110:1098–
1115, 2020. 

[12] Shashank Swarup, Elhadi M Shakshuki, and 
Ansar Yasar. Energy efficient task scheduling 
in fog environment using deep reinforcement 
learning approach. Procedia Computer 
Science, 191:65–75, 2021. 

[13] Elhaou, H., Oukissou, Y., Ait Omar, D. et 
al. Machine learning for user mobility 
management in a mobile fog computing 
environment. Cluster Comput 28, 305 (2025). 
https://doi.org/10.1007/s10586-024-05076-0 

[14] Bushra Jamil, Humaira Ijaz, Mohammad 
Shojafar, and Kashif Munir. Irats: A drl-based 
intelligent priority and deadline-aware online 
resource allocation and task scheduling 
algorithm in a vehicular fog network. Ad hoc 
networks, 141:103090, 2023. 

[15] Kai Li, Wei Ni, Xin Yuan, Alam Noor, and 
Abbas Jamalipour. Deep-graph-based 
reinforcement learning for joint cruise control 
and task offloading for aerial edge internet of 
things (EDGEIOT). IEEE Internet of Things 
Journal, 9(21):21676–21686, 2022. 

[16] Jean-François Cordeau, Michel Gendreau, and 
Gilbert Laporte. A tabu search heuristic for 
periodic and multi-depot vehicle routing 
problems. Networks: An International Journal, 
30(2):105–119, 1997. 

[17] Sarhad Arisdakessian, Omar Abdel Wahab, 
Azzam Mourad, Hadi Otrok, and Nadjia Kara. 
Fogmatch: An intelligent multi-criteria iot-fog 
scheduling approach using game theory. 
IEEE/ACM Transactions on Networking, 
28(4):1779–1789, 2020. 

[18] Sadoon Azizi, Mohammad Shojafar, Jemal 
Abawajy, and Rajkumar Buyya. Deadline-
aware and energy-efficient iot task scheduling 
in fog computing systems: A semi-greedy 
approach. Journal of network and computer 
applications, 201:103333, 2022. 

[19] Entesar Hosseini, Mohsen Nickray, and 
Shamsollah Ghanbari. Optimized task 
scheduling for cost-latency trade-off in mobile 
fog computing using fuzzy analytical hierarchy 
process. Computer Networks, 206: 108752, 
2022. 

[20] Fulong Xu, Zhenyu Yin, Ai Gu, Yue Li, Haoyu 
Yu, and Feiqing Zhang. Adaptive scheduling 
strategy of fog computing tasks with different 
priority for intelligent production lines. 
Procedia Computer Science, 183:311–317, 
2021. 

[21] Elham Azhir, Nima Jafari Navimipour, Mehdi 
Hosseinzadeh, Arash Sharifi, Mehmet Unal, 
and Aso Darwesh. Join queries optimization in 
the distributed databases using a hybrid multi-
objective algorithm. Cluster Computing, pages 
1–16, 2022. 

 
[22] Fatos Xhafa and Ajith Abraham. Computational 

models and heuristic methods for grid 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4858 

 

scheduling problems. Future generation 
computer systems, 26(4):608–621, 2010. 

[23] Jiuyun Xu, Zhuangyuan Hao, Ruru Zhang, and 
Xiaoting Sun. A method based on the 
combination of laxity and ant colony system 
for cloud-fog task scheduling. IEEE access, 
7:116218–116226, 2019. 

[24] Mostafa Ghobaei-Arani, Alireza Souri, 
Fatemeh Safara, and Monire Norouzi. An 
efficient task scheduling approach using moth-
flame optimization algorithm for cyber-
physical system applications in fog computing. 
Transactions on Emerging 
Telecommunications Technologies, 31(2): 
e3770, 2020. 

[25] Hina Rafique, Munam Ali Shah, Saif Ul Islam, 
Tahir Maqsood, Suleman Khan, and Carsten 
Maple. A novel bio-inspired hybrid algorithm 
(NBIHA) for efficient resource management in 
fog computing. IEEE access, 7:115760–
115773, 2019. 

[26] Pejman Hosseinioun, Maryam Kheirabadi, 
Seyed Reza Kamel Tabbakh, and Reza 
Ghaemi. A new energy aware tasks scheduling 
approach in fog computing using hybrid meta-
heuristic algorithm. Journal of Parallel and 
Distributed Computing, 143:88–96, 2020. 

[27] Yeunwoong Kyung. Prioritized task 
distribution considering opportunistic fog 
computing nodes. Sensors, 21(8):2635, 2021. 

[28] Jung-Fa Tsai, Chun-Hua Huang, and Ming-Hua 
Lin. An optimal task assignment strategy in 
cloud-fog computing environment. Applied 
Sciences, 11(4):1909, 2021. 

[29] Agustın C Caminero and Rocıo Munoz-
Mansilla. Quality of service provision in fog 
computing: Network-aware scheduling of 
containers. Sensors, 21(12):3978, 2021. 

[30] Abdul Razaque, Yaser Jararweh, Bandar 
Alotaibi, Munif Alotaibi, Salim Hariri, and 
Muder Almiani. Energy-efficient and secure 
mobile fog-based cloud for the internet of 
things. Future Generation Computer Systems, 
127:1–13, 2022. 

[31] Luxiu Yin, Juan Luo, and Haibo Luo. Tasks 
scheduling and resource allocation in fog 
computing based on containers for smart 
manufacturing. IEEE Transactions on 
Industrial Informatics, 14(10):4712–4721, 
2018. 

[32] Qian Ren, Kui Liu, and Lianming Zhang. Multi-
objective optimization for task offloading 
based on network calculus in fog 
environments. Digital Communications and 
Networks, 8(5):825–833, 2022. 

 
[33] Brahim Syed. Hamm: A hybrid algorithm of 

min-min and max-min task scheduling 
algorithms in cloud computing. International 
Journal of Recent Technology and Engineering 
(IJRTE), 9:209–218, 2020. 

[34] William Stallings. Operating Systems: Internals 
and Design Principles, 9/e. Pearson IT 
Certification, 2018. 

[35] Guoqi Xie, Xiongren Xiao, Hao Peng, Renfa Li, 
and Keqin Li. A survey of low-energy parallel 
scheduling algorithms. IEEE Transactions on 
Sustainable Computing, 7(1): 27–46, 2021. 

[36] Muhammad Usman Sana and Zhanli Li. 
Efficiency aware scheduling techniques in 
cloud computing: a descriptive literature 
review. PeerJ Computer Science, 7: e509, 
2021. 

[37] Shaojun Wei, Xinhan Lin, Fengbin Tu, Yang 
Wang, Leibo Liu, and Shouyi Yin. 
Reconfigurability, why it matters in ai tasks 
processing: A survey of reconfigurable ai 
chips. IEEE Transactions on Circuits and 
Systems I: Regular Papers, 70(3):1228–1241, 
2022. 

 
 
 
 


