
 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4721

A SYSTEMATIC AGILE FRAMEWORK FOR TEST-DRIVEN
ONTOLOGY VALIDATION IN ACADEMIC PERFORMANCE

ANALYTICS AND DECISION-MAKING

MOHD HAFIZAN MUSA 1,2, SAZILAH SALAM 3,4,* ,MOHD ADILI NORASIKIN5,
MUHAMMAD SYAHMIE SHABARUDIN6, UNING LESTARI7

1Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Malaysia

2College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (Segamat), Johor,

Malaysia

3Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Malaysia
4Faculty of Engineering and Physical Sciences, University of Southampton, United Kingdom

5Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Malaysia

6Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Malaysia

7Faculty of Science and Information Technology, Universitas Akprind Yogyakarta, Indonesia

E-mail: 3sazilah@utem.edu.my, 4S.Binti-Salam@soton.ac.uk

ABSTRACT

The rapid growth of educational data from diverse e-learning platforms such as Learning Management
Systems (LMS) and Student Information Systems (SIS) presents challenges for universities in integrating and
analyzing this data to monitor student performance, assess course effectiveness, and optimize faculty resource
allocation. Ontologies provide a robust framework for enabling semantic interoperability and facilitating the
integration of heterogeneous data sources for Learning Analytics (LA) and decision-making purposes. This
study introduces the SPC_Academic_Performance ontology, a domain-specific ontology developed to
consolidate and analyze academic performance data. To ensure the reliability and accuracy of the
SPC_Academic_Performance ontology, we adopt the Test-Driven Development Ontology (TDDOnto2)
methodology. TDDOnto2 systematically integrates validation techniques into the ontology development
process, focusing on consistency checking and property testing. By applying TDDOnto2, this study aims to
address common challenges such as logical inconsistencies and incomplete property definitions, ensuring the
ontology’s robustness for data integration and retrieval. The findings contribute to developing a systematic
ontology validation framework that supports reliable ontology-driven analytics and informed decision-
making in higher education. This approach ensures that the proposed ontology can effectively map and
retrieve data from heterogeneous sources, ultimately enhancing the accuracy and utility of Learning Analytics
in academic performance monitoring and resource management.

Keywords: Learning Analytics, University Ontologies, Data Retrieval Model, Ontologies Evaluation,
Ontologies Validation, Web Semantic Ontology

1. INTRODUCTION

The fast pace of digitalisation brought
advancements to higher education, which
significantly changed the ways in which
educational institutions collect, manage, analyse,
and use data [1], [2], [3]. E-learning platforms,
such as Learning Management Systems (LMS)

and Student Information Systems (SIS), serve as
core tools for facilitating education and producing
vast amounts of heterogeneous data. This data
consists of various metrics, including student
grades, attendance records, course evaluations,
and resource allocations. While the use of such
data can enhance decision-making processing,
there are technical and semantic complexities

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4722

when integrating data across various platforms
[2], [4], [5]. Not only SQL (NoSQL) graph
databases are a type of NoSQL database that is
built to handle data structures that are very
complicated and highly connected [6]. These
databases store the data in the form of nodes,
edges, and properties, which are very convenient
as a relationship within these educational
datasets. By integrating NoSQL graph databases
with ontologies, institutions can enhance their
capacity to manage and query interconnected
data, creating a robust foundation for Learning
Analytics and decision-making [4]. Ontology-
based systems have been seen as the answer to
these problems, providing a way of defining how
data is represented and improving the ability to
integrate data from different systems [1], [4], [7].

The semantic web enriches the integration

process by facilitating a "Web of Data."
Technologies like RDF (Resource Description
Framework) and OWL (Web Ontology
Language) play a critical role in enabling
semantic annotations and logical reasoning over
data [8], [9]. OWL provides formal language
constructs to define classes, properties, and
relationships, enabling precise knowledge
representation [10], [11]. The
SPC_Academic_Performance ontology, designed
within this framework, consolidates data from
multiple e-learning platforms to provide a unified
foundation for analyzing academic performance
and optimizing resource allocation [12], [13].
However, guaranteeing the trustworthiness and
precision of such an ontology is essential for its
effectiveness. Logical inconsistencies,
incomplete property definitions, and inadequate
testing can compromise its effectiveness and
usability [2], [4].

Most conventional approaches to ontology

development lack thorough validation procedures
and typically provide only basic validation
features tools [14], which may result in
undetected errors and reduced stakeholder
confidence [4]. In contrast, TDDOnto2 offers
enhanced accuracy over standard ontology
editors [14] and introduces an agile, test-driven
approach to ontology development. It allows
researchers to create and execute validation tests
before or during the modeling process to ensure
correctness throughout. Meaning that researchers

can iteratively refine their Description Logic
(DL) constructs until all tests are fully passed.
Furthermore, the tool integrates a regression
algorithm which enhances ontology validation
accuracy while producing dependable results.

To address these gaps, this research uses

TDDOnto2, a test-driven development
framework to check the viability of an ontology
known as SPC_Academic_Performance. It is
evaluated for logical content and property
checking to ensure that all class taxonomical
structures, well cardinalities, and object property
connections exactly reflect the semantics of the
relevant domain as stated. The methodology
introduces a systematic structured testing process
that will assess the ontology via consistency
checks, property validations, and individual test
cases to finalise the evaluation. This research
shows how TDDonto2 can be used in practice as
evidenced by the enhancement of the quality of
the ontology by the framework.

The research contributes clear guidelines for

practical ontology validation that offer agile
regression testing to make validation processes
more dependable and manageable. This research
also reveals challenges and effective ways of
employing TDDOnto2 in ontology validation,
thereby providing other scholars and developers
with similar approach. This work moves the field
of ontology engineering forward by breaking the
research down into the design and validation
phases, making certain that the ontologies
produced are correct in their semantics, as well as
effective in the contexts in which they are to be
used. In previous study [15], a variant of Student
Performance and Course Performance (SPC)
OWL ontology named
SPC_Academic_Performance was introduced in
learning analytics (LA) to study the
heterogeneous pattern of student and course
performance. Hence, this paper aims to validate
the SPC_Academic_Performance ontology
developed earlier. The validation will assess the
ontology via consistency checks, property
validations, and individual test cases to finalise
the evaluation.

The following sections of this paper are

structured as follows: Section 1 provides an
overview of some of the ontologies validation

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4723

techniques available, as well as how the DL is
applied to integrate and link all the heterogeneous
data and motivation to use the TDDonto2 in the
study. Section 2 defines the structure of the
SPC_Academic_Performance ontology and the
configuration established for testing. Section 3
presents the results and interpretation of the test,
while Section 4 offers the study's conclusion.

2. LITERATURE REVIEW

2.1 Current Practices in Ontology Validation
With an increasing number of ontologies,

there is an increasing demand for innovative tools
and methodologies to achieve consistency among
various information representations. This is also
applicable to the approach of validating the
ontologies. Researchers employ various tools and
techniques to validate the ontologies. The
assessment may include checking the class and
subclass definition errors, class redundancy errors,
and class linkage errors. The class linkage error
occurs when the relationship or the object properties
set among the Subject, Predicate, and Object are
insufficient to complete the triples.

The tool like OntoAnalyser [16], Onto

Generator [16], OntoClean [16], OntoVal [17],
ONE-T [16], and Ontology Pitfall Scanner! (OOPS!)
[16] are quite common to be used in the validation
process. A study by [16] evaluated the performance
of several commonly available ontology validation
tools. As for OOPS!, it operates by utilising a
predefined catalog of pitfalls, which are categorised
based on their severity: critical, important, and minor
to allow users to prioritise issues effectively [18].
The OOPS! is also quite common to be use in the
area of ontologies that belong to LA domain where
it serves to validate the ontologies for the semantic
representation of syllabuses ontology
(OntoSyllabus) [19], Curriculum Course Syllabus
Ontology (CCSO) [20] and, Ontology for Linked
Open University Data (OLOUD) [21], [22].

To increase the efficiency of the ontologies

produced, some studies implemented the
Competency Question (CQ), which is a set of
questions that are used to evaluate the quality of the
ontology based on the SPARQL result generated
[20], [21], [22], [23]. To determine the accuracy of
the constructed ontology, the results retrieved from
the data retrieval must align with the expectations of
the domain expert. Studies conducted by [24], [25],
[26], [27] proposed an enhanced data retrieval
framework incorporating an additional layer that

leverages SPARQL query generation from RDF-
based ontologies, with performance assessed
through evaluation metrics including accuracy,
precision, recall, and F1-score.

2.2 Description Logic in Semantic Data
Retrieval

To define the structure of data, a data model
is needed for this purpose. The common data model
that we heard about is the Entity Relationship
Diagram (ERD), which is being used widely in
Relational Database Management Systems
(RDBMS). The concept of the ERD is somewhat
analogous to OWL semantic modelling. However,
the ERD and OWL semantic models serve diverse
data representation and knowledge management
functions [28]. ERDs are primarily utilised in
database design to visually depict the relationships
between entities within a system, focusing on the
structure of data and how different entities interact
with one another. In contrast, OWL is a formal
language intended for the representation of intricate
and comprehensive knowledge concerning entities,
collections of entities, and their interrelations inside
the semantic web.

In an OWL, Description Logic (DL)

performs critical support for important reasoning
services in ontology-based systems. For example,
reasoning about class hierarchies, property
characteristics, or the relationships between
instances can be done using DL reasoners, which are
unique algorithms for managing the tough semantics
of DL [29], [30]. These DL reasoners can determine
the satisfiability, entailment, and consistency of
ontologies, which are essential for ensuring the
correctness and reliability of knowledge
representation in OWL [31], [32]. Additionally, it
has been investigated to improve the expressiveness
and application of OWL in various areas by
integrating DL into other computational paradigms,
such as rules and probabilistic reasoning [33], [34].

In the context of OWL, DL serves as the

underlying framework that defines the semantics of
the language. OWL is designed to facilitate the
creation of ontologies that can be shared and reused
across different applications on the Semantic Web.
Specifically, OWL Lite and OWL DL are based on
specific DLs, such as base SHIF(D) and a more
advanced SHOIN(D), respectively [33]. In this
study, all the axioms tested in the TDDOonto2
plugin use the SHIF(D) language.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4724

Table 1: Examples of DL axiom functions with statements

Description DL expression Explanation
Defining a
class

Student ⊑ Person Every Student is a
type of Person (i.e.,
Student is a subclass
of Person)

Class with a
restriction

Student
⊑∃enrolledIn.Cou
rse

Every Student is a
type of Person (i.e.,
Student is a subclass
of Person)

Logical AND GraduateStudent
≡ Student ⊓
hasDegree

A GraduateStudent is
someone who is a
Student and has a
Degree

Logical OR Course ≡
UndergraduateCo
urse ⊔
GraduateCourse

A Course is either an
UndergraduateCours
e or a
GraduateCourse

Cardinality
Restriction

Student ⊑∃
belong_to.Faculty
⊓ ≤ 1
belong_to.Faculty

Every Student belong
to only one Faculty

To execute the validation testing, the

axioms are required to be feed in the TDDonto2
plugin. The complete differences between TBox and
Abox axioms are explained in the study of [35].

2.3 Motivation to validate ontology structures
using TDDonto2 Protégé plugin

TDDonto2 is an extension explicitly
created to improve the process of ontology authoring
using ideas behind Test-Driven Development
(TDD). It functions as a plugin for Protégé, which is
often used to help make creating or modifying an
ontology faster and more precise. According to [36],
[37], several reasoners are available to evaluate the
ontology structure. Using the automated reasoner
can help in the process of ontology authoring faster
while employing a test-last methodology. However,
the comparison conducted in both studies
demonstrates that the TDDOnto2 reasoner is
superior in terms of execution speed, task
completion, and result accuracy.

Furthermore, the study of [14] highlighted

that the algorithms implemented in TDDonto2
significantly improve editing efficiency compared to
standard ontology authoring interfaces. Their
evaluation showed that users were able to complete
tasks more quickly and with fewer errors when using
TDDonto2, particularly in the context of medium
and large ontologies. As in this study, all of the
axioms utilised are followed by the TDDonto2
algorithms suggested by [36], [38].

3. METHODOLOGY

3.1. The SPC_Academic_Performance
The SPC_Academic_Performance outlined

in this study is derived from the aggregation of CQs
collected through interviews with a selected domain
expert. According to [39], [40], the researcher must
first ascertain the desired outcome or expected
answer before constructing the ontology. The class
and the relationship can be extracted and integrated
only by understanding the anticipated response to
construct the ontology and its SPARQL searches.
Figure 1 below illustrates the class and the object
properties relationship of the
SPC_Academic_Performance.an increasing number
of ontologies

Figure 1: Classes and their relationship object properties
of SPC_Academic_Performance

The list of the classes and subclass of the

SPC_Academic_Performance ontology is illustrated
in Figure 2 below. Figure 2 shows the class
hierarchy, showing the structure of a class and
subclass. Starting from the most generic class, owl:
Thing, which serves as the universal superclass
encompassing all entities. Every class that is under
another class is known as a subclass. For instance,
the ‘University’ class is a subclass of the' Person'
class. The class ‘Lecturer’ and ‘Student’ are two
subclasses further divided from class ‘Person.’ The
identical rule applied to the entire class structure.
These components, including their hierarchical
structure and relationships, will be systematically
tested to validate consistency in subsequent stages of
the research using the TDDonto2 tool to ensure the
ontology's effectiveness and reliability.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4725

Figure 2: SPC_Academic_Performance ontology class

hierarchy

The object properties carefully defined and
structured within the SPC_Academic_Performance
ontology, along with their domains and ranges of the
triples, are comprehensively detailed in Table 2
below.

Table 2: List of class (subject, predicate) and
relationship object properties utilised in
SPC_Academic_Performance ontology

Object properties (P) Subject (S)
/ Domain

Object (O) /
Range

1 is_a Person Student
2 is_a Person Lecturer
3 consist_of University Faculty
4 has_attendance Student Attendance
5 has_grade Student Grade
6 has_messagepost Student Messagepost
7 has_semester Student Semester
8 has_semester Course Semester
9 undergraduate_type Student Studylevel

10 undergraduate_type Course Studylevel
11 has_cohort Student Cohort
12 has_cohort Course Cohort
13 enrols Student Course
14 attached_to Student Group
15 belong_to Student Faculty
16 belong_to Lecturer Faculty
17 teach Lecturer Group
18 teach Lecturer Course
19 offer Faculty Course
20 offered_in Course Group
21 has_assessment Course Assessment
22 has_programme Course Programme
23 has_gradecount Course Gradecount
24 optional_to_have Course Prerequisite
21 has_assessment Course Assessment

In the tested relationship object properties,

several object properties: such as ‘is_a’,
‘has_semester’, ‘undergraduate_type’, ‘has_cohort’,
‘belong_to’ and ‘teach’ are used more than once as
the exact relationship is employed to link two
distinct domains to a single range, following OWL
regulations. For instance, using properties such as
‘owl: ObjectProperty’ enables the establishment of
relationships between instances of different classes.
This means that two distinct classes can have
properties that point to the same instance of a third
class, effectively allowing multiple domains to

connect to a single range class. This is particularly
useful in scenarios where different entities share
common characteristics or attributes, facilitating
interoperability and integration across diverse
domains [41], [42]. By utilising TDDonto2, the
ontology was subjected to automated reasoning
processes to detect potential logical conflicts or
inconsistencies arising from incorrect class
hierarchies, improperly defined relationships, or
ambiguous constraints.
3.2. Testing Setup
3.2.1. Consistency Check

In this study, the consistency of the
developed ontology was rigorously evaluated using
the TDDonto2 plugin integrated within Protégé, a
widely used ontology development environment.
The consistency test aimed to ensure that the logical
structure of the ontology adhered to formal
reasoning principles, mainly focusing on the
hierarchical relationships among classes and
subclasses.

Table 3: Example test scenario for consistency check

Consistency
Test

Validation
Formula

Result Comments

Class
Hierarchy

∀x
(Lecturer(x

) →
Person(x))

Consistent Subclass
relationships

valid

Class
Hierarchy

∀x
(Student(x)

→
Person(x))

Consistent Subclass
relationships

valid

Class
Hierarchy

∀x
(University

(x) →
Person(x))

Not
Consistent

Subclass
relationships
are not valid

According to the example in Table 3, two

hierarchy elements are consistent, as indicated in
Figure 2; the class 'Lecturer' and 'Person' are
subclasses of the class 'Person'. Simultaneously, the
University does not constitute a subclass of Person,
indicating a lack of subclass relationship.

3.2.2. Property Validation

Simultaneously, property validation is
conducted to examine the correlation of object
properties defined in the ontology, ensuring that
these properties are accurately defined with suitable
domains, ranges, and characteristics (functional and
cardinality). The cardinality values employed are
determined by the guidelines established during the
interview with the domain expert early in the
ontology's creation. Examples of functionality and
cardinality are illustrated in the following example:

3.2.2.1. Functional

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4726

Table 4: Example test scenario for functional property
validation

Scenario Entities Object Property Relation
1 Lecture →

Person
is_a The lecturer

is a Person
2 Course →

Lecturer
teach Lecturers

teach the
Course

3 Assessment
→ Course

has_assessment The course
has an
Assessment

3.2.2.2. Cardinality

Table 5: Example test scenario for cardinality property
validation

Scenario Description DL Axiom Relation
Minimum
Cardinality

Specifies
the

minimum
number of
instances
allowed

Student ⊑∃
enrols.Course

⊓ ≥ 1
enrols.Course

Each student
may enrol in
a minimum of
one course
per semester

Maximum
Cardinality

Specifies
the

maximum
number of
instances
allowed

Lecturer ⊑∃
belong_to.Fac

ulty ⊓
≤2belong_to.

Faculty

Each lecturer
can belong to
not more than
two faculty

Exact
Cardinality

Specifies
the exact

number of
instances
allowed

Student ⊑∃
belong_to.Fac

ulty ⊓
=1belong_to.

Faculty

Each student
can belong to
only one
faculty

Each tested axiom will be sequentially

incorporated into the TDDonto2 test list,
culminating in a comprehensive evaluation of all
axioms collectively.

Figure 3: TDDonto2 test flow

If the axiom(s) already exists, the tool will
directly ascertain their existence to prevent
redundancy of the textual axioms. If axioms are
logically correct, the result will indicate entailed;
otherwise, it will fail (inconsistent, incoherent,
absent). In TDDonto2 testing, only axiom(s)
"entailed" yield a pass result, while all other cases
produce failures [14].

Given consistent and coherent ontology O,
and an axiom A s.t. Σ(A) ⊆ Σ(O), i.e.,

Then, the result of testing O against A is:

Figure 4: TDDonto2 regression testing logic [14]

In a more straightforward explanation, the axiom(s)
must first be present in the ontology during the pre-
testO(A), including relevant classes, relationships, or
properties, to ensure accurate reasoning and
determine if the results are entailed.

The knowledge or axioms are generated
based on test-based, test-last [43], and test-first
approaches [44] that are often associated with test-
driven development. Some axiom(s) for the tests are
created before the tests are conducted, and there is a
case that some of the axiom(s) are made after the test
is run. If there is an error or missing condition, this
axiom will be added or modified after the test [39].
The testing cycle ends when all test results fulfill the
axioms and entailed.

This study's axiom(s) is tested using the
HermiT 1.4.3.456 reasoner. The researcher must
revise the axiom(s) if an error occurs during the
configuration of the DL and axiom(s). This testing
method is adapted from the study of [39]. The test is
executed based on Figure 3 above.

4. RESULTS AND DISCUSSION

4.1. Result of the Consistency Check
The axioms utilised for testing the

consistency check of the class and subclass
structures within the ontology are comprehensively

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4727

listed in Table 6 below. Additionally, the axioms
outlined in Table 7 are designed to validate the
properties and their relationships within the
ontology. Together, these tests play a critical role in
verifying the structural and semantic correctness of
the ontology, ensuring it adheres to its intended
design principles.

Table 6: List of axioms and results for consistency check

Class
Hierarchy

DL

TDDonto2
Axiom

Relation Result
test:

1 2

1
Student ⊑

Person

Student
SubClassOf

: Person

“Student”
is a

subclass of
“Person”

✓ ✓

2
Lecturer ⊑

Person

Lecturer
SubClassOf

: Person

“Lecturer”
is a

subclass of
“Person”

✓ ✓

3
Attendance
⊑ Student

Attendance
SubClassOf

: Student

“Attendanc
e” is a

subclass of
“Student”

✓ ✓

4
Grade ⊑
Student

Grade
SubClassOf

: Student

“Grade” is
a subclass

of
“Student”

✓ ✓

5
Messagepo

st ⊑
Student

Messagepo
st

SubClassOf
: Student

“Messagep
ost” is a

subclass of
“Student”

✓ ✓

6
Semester ⊑

Student

Semester
SubClassOf

: Student

“Semester”
is a

subclass of
“Student”

✓ ✓

7
Studylevel
⊑ Student

Studylevel
SubClassOf

: Student

“Studylevel
” is a

subclass of
“Student”

✓ ✓

8
Faculty ⊑
University

Faculty
SubClassOf
: University

“Faculty” is
a subclass

of
“University

”

✓ ✓

9
Course ⊑
Faculty

Course
SubClassOf

: Faculty

“Course” is
a subclass

of
“Faculty”

✓ ✓

10
Assessment

⊑ Course

Assessment
SubClassOf

: Course

“Assessme
nt” is a

subclass of
“Course”

✓ ✓

11
Cohort ⊑
Course

Cohort
SubClassOf

: Course

“Cohort” is
a subclass

of “Course”
✓ ✓

12
Gradecount
⊑ Course

Gradecount
SubClassOf

: Course

“Gradecoun
t” is a

subclass of
“Course”

✓ ✓

13
Group ⊑
Course

Group
SubClassOf

: Course

“Group” is
a subclass

of “Course”
✓ ✓

14
Prequisite
⊑ Course

Prerequisite
SubClassOf

: Course

“Prequisite
” is a ✓ ✓

subclass of
“Course”

15
Programme
⊑ Course

Programme
SubClassOf

: Course

“Programm
e” is a

subclass of
“Course”

✓ ✓

Note: Consistent = ✓, not consistent =X

Figure 4: Axioms execution for consistency check

The tests were conducted twice for

consistency check, and both tests demonstrated that
all of the subclass hierarchy of the evaluated
ontology is consistent. Figure 4 shows the result of
the consistency check on the ontology structure, and
as seen from the result, all the subclasses have
‘Entailed’ results with the superclass it links to. The
series of tests will stop once all of the axiom(s)
succeed.

4.2. Result of the property validation
4.2.1. Functional

To test the object properties functionality
between the subject and object for each relationship,
a set of 24 axioms are created and executed, and the
test results are illustrated in Table 7 below.

Table 7: List of axioms and results for functional
property validation

Object
Property

TDDonto2 Axiom Result
test:
1 2

1 is_a
Person SubClassOf:
is_a some Student ✓ ✓

2 is_a
Person SubClassOf:
is_a some Lecturer ✓ ✓

3 consist_of

University
SubClassOf:

consist_of some
Faculty

✓ ✓

4
has_attendance Student SubClassOf:

has_attendance
some Attendance

✓ ✓

5
has_grade Student SubClassOf:

has_grade some
Grade

✓ ✓

6
has_messagepost Student SubClassOf:

has_messagepost
some Messagepost

✓ ✓

7 has_semester
Student SubClassOf:
has_semester some

Semester
✓ ✓

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4728

8 has_semester
Course SubClassOf:
has_semester some

Semester
✓ ✓

9 Undergraduate_type
Student SubClassOf:
undergraduate_type

some Studylevel
✓ ✓

10 Undergraduate_type
Course SubClassOf:
undergraduate_type

some Studylevel
✓ ✓

11
has_cohort Course SubClassOf:

undergraduate_type
some Studylevel

X ✓

12
has_cohort Student SubClassOf:

has_cohort some
Cohort

X ✓

13
enrols Course SubClassOf:

has_cohort some
Cohort

✓ ✓

14
attached_to Student SubClassOf:

enrols some Course ✓ ✓

15
belong_to Student SubClassOf:

attached_to some
Group

✓ ✓

16

belong_to Lecturer
SubClassOf:

belong_to some
Faculty

✓ ✓

17
teach Lecturer

SubClassOf: teach
some Group

✓ ✓

18
teach Lecturer

SubClassOf: teach
some Course

✓ ✓

19
offer Faculty SubClassOf:

offer some Course ✓ ✓

20
offered_in Course SubClassOf:

offered_in some
Group

✓ ✓

21 has_assessment
Course SubClassOf:

has_assessment
some Assessment

✓ ✓

22 has_programme
Course SubClassOf:

has_programme
some Programme

✓ ✓

23 has_gradecount
Course SubClassOf:

has_gradecount
some Gradecount

✓ ✓

24 optional_to_have
Course SubClassOf:

optional_to_have
some Prerequisite

✓ ✓

Note: Pass = ✓, not pass =X

Initially, when the axioms are incorporated
into the TDDonto2 test list, the outcome will be
indicated as ‘Absent’. The relationship must be
added to the active ontology. In the initial Test 1,
both object properties for 'has_cohort' axioms
include spelling errors in the syntax determination.
However, this error has been rectified in Test 2.
Figure 5 below shows the result of the functional of
the ontology structure. The result shows that all the
relationship and cardinality tests have ‘Entailed’
results.

Figure 5: Axioms execution for functional validation

4.2.2. Cardinality
Meanwhile, for the cardinality, all the five

cardinalities tested returned green colour passed but
“Absent” results as illustrated in Table 8 and Figure
6 for Test 1.

Table 8: List of axioms and results for functional
property validation

Object
Property

TDDonto2 Axiom Result
test: 1

1
belong_to Student SubClassOf

belong_to exactly 1
Faculty

✓
(Absent)

2

enrols Student SubClassOf:
enrols some Course

and enrols min 1
Course

✓
(Absent)

3

has_assessment Course SubClassOf:
has_assessment

some Assessment
and has_assessment
min 1 Assessment

✓
(Absent)

4

teach Lecturer
SubClassOf: teach
some Group and

teach min 1 Group

✓
(Absent)

5

teach Lecturer
SubClassOf: teach
some Course and

teach min 1 Course

✓
(Absent)

Note: Pass = ✓, not pass =X

Figure 6: Axioms execution for Test 1 cardinality

validation

Concerning the cardinality test from Test 1,
a specific new individual is created in each of the
axiom(s) classes. This individual is used and acts as
an entity to fulfil the cardinality condition. The same
axiom(s) are tested again in the second test, the result
of which is illustrated in Table 9.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4729

Table 9: List of Test 2 results for cardinality property
validation after modification

Object
Property

TDDonto2
Axiom

Result test:
2

1

belong_to Student
SubClassOf

belong_to exactly
1 Faculty

✓
(Entailed)

2

enrols Student
SubClassOf:
enrols some

Course and enrols
min 1 Course

✓
(Entailed)

3

has_assessment Course
SubClassOf:

has_assessment
some Assessment

and
has_assessment

min 1 Assessment

✓
(Entailed)

4

teach Lecturer
SubClassOf: teach
some Group and

teach min 1 Group

✓
(Entailed)

5

teach Lecturer
SubClassOf: teach
some Course and

teach min 1
Course

✓
(Entailed)

Note: Pass = ✓, not pass =X

Figure 7 below shows the result of the

functional and cardinality of the ontology structure.
The result shows that all the relationship and
cardinality tests have ‘Entailed’ results.

Figure 7: Axioms execution for Test 2 cardinality

validation

4.2.3. Result Summary
The values shown in Table 9 illustrate the

testing outcomes of two sets of testing performed
using TDDonto2, covering the aspect of consistency
check and property validation (functional and
cardinality characteristics). All the 12 consistency
checks were completed in Test 1 and Test 2
successfully with a 100% success rate, hence the
consistency ratio of 1. This indicates that the
ontology's hierarchical and logical structure of
SPC_Academic_Performance is robust and error-
free across iterations. While validating the
properties, the functional aspect included 24 tests in
total. Test 1 yields 22 tests passed on the first try,
while test 2 passed all the 24 tests. This resulted into
Test 1 which yielded a success rate of 95.8% and

Test 2 which had a success rate of 100, and in sum
the average consistency ratio of 0.92. For the
Cardinality aspect, five tests were accomplished as
desired for both set, with a 100% pass rate and 1.0
consistency ratio.

Table 10: Result summary

Validity
Aspect

Total
Test

Test 1
(Pass)

Test 2
(Pass)

SR
(%)

CR

Consistency
Checks

12 12 12 100 1.0

Property
Validations:
Functional

24 22 24 95.8 0.92

Property
Validations:
Cardinality

5 5 5 100 1.0

Note: Success Rate = SR, Consistency Ratio =CR

These results underline the reliability of the
ontology in adhering to logical consistency and
property validation requirements. The incremental
improvement in the functional property validations
demonstrates the effectiveness of iterative
debugging and refinement, which is a hallmark of
test-driven ontology development. The high levels,
success rates, and consistency ratios are a testament
to the ontology capability to cater to real-world LA
applications.

5. CONCLUSION AND FUTURE WORKS

This study tested the proposed

SPC_Academic_Performance ontology
reliability and validity using TDDonto2 based on
two approaches, primarily testing for consistency
checks and property validations (functional and
cardinality aspects). The results have confirmed
the efficiency of the established ontology
structure since all the consistency checks tested
on two sets equal 1, showing that the structure is
logical and consistent. The success rate for
functional property validation also improved
from 95.83% in the first test to 100% in the
second, showcasing the iterative refinement of
the ontology during testing. Cardinality
validation consistently maintained a 100%
success rate across all tests, reflecting a robust
implementation of constraints such as
relationships and cardinality rules. As this
ontology is developed based on the thematic
analysis, with classes and subclasses derived
from the CQ. The data retrieved from this
ontology will be validated by a domain expert to
confirm its alignment with their expectations.
This presents an opportunity to examine the data

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4730

extracted from the proposed ontology with
example data sourced directly from the academic
performance of students and courses at selected
universities. These findings can confirm that the
ontology can meet domain-specific requirements
while ensuring scalability and reliability for real-
world LA applications and data retrieval,
especially in analysing the university student and
course performance. The current study can be
interpreted as the first step in data retrieval
validation. Future research could explore the
accuracy of data retrieval by applying real-world
learner analytics (LA) data and evaluating the
results using a confusion matrix to measure
accuracy, precision, recall, and F1 score of the
data retrieved from the
SPC_Academic_Performance ontology.

The guidelines presented in this study can

offer direction for ontology validation through
agile test-driven methods, addressing consistency
and validity tests, which can be applied not only to
learning analytics but also to other data retrieval
application fields like biological research, artificial
intelligence, banking, and healthcare.

6. ACKNOWLEDGMENT

We express our gratitude to the Ministry of

Higher Education Malaysia for their financial
support of this research (Reference Number:
FRGS/1/2021/ICT06/UTEM/01/1). This
research was conducted by Pervasive
Computing & Educational Technology (PET)
Research Group, Centre for Advanced
Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi
(FTMK), Universiti Teknikal Malaysia Melaka
(UTeM) and in collaboration with College of
Computing, Informatics and Mathematics
Universiti Teknologi MARA, and Web Science
Institute, University of Southampton, United
Kingdom.

REFERENCES:
[1] M. Horridge and S. Bechhofer, “The OWL

API: A Java API for OWL ontologies,”
Semant Web, vol. 2, pp. 11–21, 2011,
[Online]. Available:
https://api.semanticscholar.org/CorpusID:4
990112

[2] J. Z. Pan and E. Thomas, “Approximating
OWL-DL ontologies,” in Proceedings of the
22nd National Conference on Artificial
Intelligence - Volume 2, in AAAI’07. AAAI
Press, 2007, pp. 1434–1439.

[3] A. Wise and Y. Jung, “Teaching with
Analytics: Towards a Situated Model of
Instructional Decision-Making,” Journal of
Learning Analytics, vol. 6, pp. 53–69, Aug.
2019, doi: 10.18608/jla.2019.62.4.

[4] D. Vrandečić and A. Gangemi, “Unit tests
for ontologies,” in Proceedings of the 2006
International Conference on On the Move to
Meaningful Internet Systems: AWeSOMe,
CAMS, COMINF, IS, KSinBIT, MIOS-
CIAO, MONET - Volume Part II, in
OTM’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 1012–1020. doi:
10.1007/11915072_2.

[5] I. Kotorov, Y. Krasylnykova, M. Pérez-
Sanagustín, F. Mansilla, and J. Broisin,
“Supporting Decision-Making for
Promoting Teaching and Learning
Innovation: A Multiple Case Study,”
Journal of Learning Analytics, vol. 11, pp.
21–36, Mar. 2024, doi:
10.18608/jla.2024.8131.

[6] J. Wang, Y. Yang, T. Wang, R. Simon
Sherratt, and J. Zhang, “Big data service
architecture: A survey,” 2020, Taiwan
Academic Network Management
Committee. doi:
10.3966/160792642020032102008.

[7] T. R. Gruber, “A translation approach to
portable ontology specifications,”
Knowledge Acquisition, vol. 5, no. 2, pp.
199–220, 1993, doi:
https://doi.org/10.1006/knac.1993.1008.

[8] T. Helmy and S. Albukhitan, “Framework
for Automatic Semantic Annotation of
Arabic Websites,” Int J Coop Inf Syst, vol.
25, no. 01, p. 1650001, 2016, doi:
10.1142/s0218843016500015.

[9] B. Parsia and P. F. Patel‐Schneider,
“Meaning and the Semantic Web,” 2004,
doi: 10.1145/1010432.1010513.

[10] T. Venetis, G. Stoilos, G. Stamou, and S.
Kollias, “F-DLPs: Extending Description
Logic Programs With Fuzzy Sets and Fuzzy
Logic,” 2007, doi:
10.1109/fuzzy.2007.4295599.

[11] S. Casteleyn, P. Plessers, and O. De Troyer,
“Generating Semantic Annotations During
the Web Design Process,” p. 91, 2006, doi:
10.1145/1145581.1145600.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4731

[12] S. Shrivastava and S. Agrawal, “An
Overview of Building Blocks of Semantic
Web,” Int J Comput Appl, vol. 152, no. 10,
pp. 17–20, 2016, doi:
10.5120/ijca2016911802.

[13] N. Sharma and A. K. Srivastava,
“Ontological Paradigm for Focused
Crawling Based on Lexical Analysis,” Int J
Comput Appl, vol. 62, no. 6, pp. 32–36,
2013, doi: 10.5120/10086-4715.

[14] C. M. Keet, K. Davies, and A. Lawrynowicz,
“More Effective Ontology Authoring with
Test-Driven Development,” arXiv preprint
arXiv:1812.06015, 2018.

[15] M. H. Musa et al., “Integrating and
Retrieving Learning Analytics Data from
Heterogeneous Platforms Using Ontology
Alignment:Graph-Based Approach.,”
MethodsX, p. 103092, 2024, doi:
https://doi.org/10.1016/j.mex.2024.103092.

[16] T. Aruna, K. Saranya, and C. Bhandari, “A
Survey on Ontology Evaluation Tools,” in
2011 International Conference on Process
Automation, Control and Computing, 2011,
pp. 1–5. doi: 10.1109/PACC.2011.5978931.

[17] C. V. S. Avila, G. Maia, W. Franco, T. V.
Rolim, A. de O. da Rocha Franco, and V. M.
P. Vidal, “OntoVal: A Tool for Ontology
Evaluation by Domain Specialists.,” in ER
Forum/Posters/Demos, 2019, pp. 143–147.

[18] M. Poveda‐Villalón, A. Gómez-Pérez, and
M. C. Suárez-Figueroa, “OOPS! (OntOlogy
Pitfall Scanner!),” Int J Semant Web Inf Syst,
vol. 10, no. 2, pp. 7–34, 2014, doi:
10.4018/ijswis.2014040102.

[19] M. , Tapia-Leon, C. , C. J. Aveiga, and
Suárez-Figueroa, “Ontological model for the
semantic description of syllabuses,” In
Proceedings of the 9th International
Conference on Information Communication
and Management, pp. 175–180, 2019.

[20] H. Kondylakis, V. Kostas, and G.
Agathangelos, “Developing an Ontology for
Curriculum & Syllabus,” In The Semantic
Web: ESWC 2018 Satellite Events: ESWC
2018 Satellite Events, Heraklion, Crete,
Greece, pp. 55–59, 2018, [Online].
Available:
www.bbc.co.uk/ontologies/curriculum

[21] R. Fleiner, B. Szász, and A. Micsik,
“OLOUD - an ontology for linked open
university data,” Acta Polytechnica
Hungarica, vol. 14, no. 4, pp. 63–82, 2017,
doi: 10.12700/APH.14.4.2017.4.4.

[22] B. Szász, R. Fleiner, and A. Micsik, “A case
study on linked data for university courses,”
in Lecture Notes in Computer Science
(including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), Springer Verlag, 2017, pp.
265–276. doi: 10.1007/978-3-319-55961-
2_27.

[23] G. Ashour, A. Al-Dubai, and I. Romdhani,
“Ontology-based Course Teacher
Assignment within Universities,” IJACSA)
International Journal of Advanced
Computer Science and Applications, vol. 11,
no. 7, p. 2020, 2020, [Online]. Available:
www.ijacsa.thesai.org

[24] H. J. Cha, S. W. Choi, E. B. Lee, and D. M.
Lee, “Knowledge Retrieval Model Based on
a Graph Database for Semantic Search in
Equipment Purchase Order Specifications
for Steel Plants,” Sustainability
(Switzerland), vol. 15, no. 7, Apr. 2023, doi:
10.3390/su15076319.

[25] K. H. Hwang, H. Lee, G. Koh, D. Willrett,
and D. L. Rubin, “Building and querying
RDF/OWL database of semantically
annotated nuclear medicine images,” J Digit
Imaging, vol. 30, pp. 4–10, 2017.

[26] M. Kharrat, A. Jedidi, and F. Gargouri,
“SPARQL Query Generation based on RDF
Graph.,” in KDIR, 2016, pp. 450–455.

[27] A. Pedro, A.-T. Pham-Hang, P. T. Nguyen,
and H. C. Pham, “Data-driven construction
safety information sharing system based on
linked data, ontologies, and knowledge
graph technologies,” Int J Environ Res
Public Health, vol. 19, no. 2, p. 794, 2022.

[28] A. Borgida, M. Lenzerini, and R. Rosati,
“Description logics for databases,” in The
Description Logic Handbook: Theory,
Implementation, and Applications, USA:
Cambridge University Press, 2003, pp. 462–
484.

[29] D. A. Koutsomitropoulos, D. P. Meidanis,
A. N. Kandili, and T. S. Papatheodorou,
“OWL-based Knowledge Discovery Using
Description Logics Reasoners,” in
International Conference on Enterprise
Information Systems, 2006, pp. 43–50.

[30] G. Cota, R. Zese, E. Bellodi, E. Lamma, and
F. Riguzzi, “A Framework for Reasoning on
Probabilistic Description Logics,” in
Applications and Practices in Ontology
Design, Extraction, and Reasoning, IOS
Press, 2020, pp. 127–144.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4732

[31] B. Motik, “On the properties of
metamodeling in OWL,” Journal of Logic
and Computation, vol. 17, no. 4, pp. 617–
637, 2007.

[32] C. Le Duc, M. Lamolle, and O. Curé, “A
Decision Procedure for with Transitive
Closure of Roles,” in International Semantic
Web Conference, 2013, pp. 264–279.

[33] I. Horrocks and P. F. Patel-Schneider,
“Reducing OWL entailment to description
logic satisfiability,” in International
semantic web conference, 2003, pp. 17–29.

[34] I. Horrocks, P. F. Patel-Schneider, and F.
Van Harmelen, “From SHIQ and RDF to
OWL: The making of a web ontology
language,” Journal of web semantics, vol. 1,
no. 1, pp. 7–26, 2003.

[35] G. De Giacomo and M. Lenzerini, “TBox
and ABox Reasoning in Expressive
Description Logics,” in Proceedings of the
Fifth International Conference on the
Principles of Knowledge Representation
and Reasoning (KR’96), Nov. 1996, pp. 37–
48.

[36] K. Davies, C. Keet, and A. Ławrynowicz,
“TDDonto2: A Test-Driven Development
Plugin for Arbitrary TBox and ABox
Axioms,” Aug. 2017, pp. 120–125. doi:
10.1007/978-3-319-70407-4_23.

[37] K. Davies, C. M. Keet, and A. Lawrynowicz,
“More effective ontology authoring with
test-driven development and the TDDonto2
Tool,” International Journal on Artificial
Intelligence Tools, vol. 28, no. 7, Nov. 2019,
doi: 10.1142/S0218213019500234.

[38] A. Fernández-Izquierdo and R. García
Castro, “Themis: a tool for validating
ontologies through requirements,” Mar.
2019, pp. 573–578. doi:
10.18293/SEKE2019-117.

[39] J. Potoniec, D. Wisniewski, and A.
Ławrynowicz, “Incorporating
presuppositions of competency questions
into test-driven development of ontologies,”
in Proceedings of the International
Conference on Software Engineering and
Knowledge Engineering, SEKE, Knowledge
Systems Institute Graduate School, 2021,
pp. 437–440. doi: 10.18293/SEKE2021-
165.

[40] L. Zemmouchi-Ghomari and A. R. Ghomari,
“Translating Natural Language Competency
Questionsinto SPARQL Queries: a Case
Study,” WEB 2013 : The First International
Conference on Building and Exploring Web

Based Environments, pp. 81–86, 2013,
[Online]. Available:
https://www.researchgate.net/publication/2
73382915

[41] R. Hoehndorf, L. T. Slater, P. N. Schofield,
and G. V Gkoutos, “Aber-Owl: A
Framework for Ontology-Based Data
Access in Biology,” BMC Bioinformatics,
vol. 16, no. 1, 2015, doi: 10.1186/s12859-
015-0456-9.

[42] L. T. Slater, G. Gkoutos, and R. Hoehndorf,
“Towards Semantic Interoperability:
Finding and Repairing Hidden
Contradictions in Biomedical Ontologies,”
2020, doi: 10.1101/2020.05.16.099309.

[43] A. Tahir, S. Counsell, and S. G. MacDonell,
“An Empirical Study Into the Relationship
Between Class Features and Test Smells,”
2016, doi: 10.1109/apsec.2016.029.

[44] S. Gundlach, R. Jung, and W. Hasselbring,
“Facilitating Test-Driven Development via
Domain-Specific Languages in
Computational Science Software
Engineering,” 2023, doi: 10.21203/rs.3.rs-
3753364/v1.

