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ABSTRACT  
 

The resource-constrained project scheduling problem (RCPSP) is a complex scheduling challenge as it is 
proven to be NP-hard.  The Learnable Evolution Model (LEM) is a non-Darwinian evolutionary approach 
that speeds up convergence using machine learning instead of crossover. It classifies individuals into high-
performance (H-group) and low-performance (L-group) based on fitness, learns distinguishing features, and 
generates new individuals through an instantiation step. To ensure diversity, LEM applies mutation as a 
Darwinian component, making it more efficient than traditional evolutionary methods. This paper proposes 
a new approach, which attempts variants of genetic algorithms and LEM, aiming to tackle issues in 
generating Gantt charts for big cases. 
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1. INTRODUCTION  

The resource-constrained project 
scheduling problem (RCPSP) is a complex 
scheduling challenge as it is proven to be NP-hard 
[1]. To tackle it effectively, simple, intuitive rules-
of-thumb are often applied, providing sufficiently 
good and practical solutions, especially for large 
real-life cases [2]. 

The Learnable Evolution Model (LEM) is 
a non-Darwinian evolutionary computation 
approach that accelerates convergence using 
machine learning instead of traditional genetic 
operations like crossover [3-6]. Unlike genetic 
algorithms (GA), LEM classifies individuals into 
high-performance (H-group) and low-performance 
(L-group) based on fitness. A learning step then 
derives distinguishing characteristics between these 
groups. Using these learned descriptions, the 
instantiation step generates new individuals.  

To maintain diversity, LEM incorporates 
mutation as a Darwinian component. This learning-
driven process allows LEM to evolve solutions 
more efficiently than standard evolutionary 
methods. 

This paper proposes a new approach, 
which attempts variants of GA and LEM, aiming to 

tackle issues in generating Gantt charts for big 
cases. 

The rest of this paper is divided as follows. 
Section 2 provides a literature review on solving 
RCPSP using genetic algorithm. Then the proposed 
methodology is presented in a subsequent section, 
followed by a dedicated section for test cases, 
before concluding the paper. 

2. LITERATURE REVIEW 
Table 1 summarizes the literature review. 

Kaiafa and Chassiakos address resource allocation 
optimization in project management, focusing on 
multi-objective resource-constrained scheduling [7]. 
This work minimizes costs due to resource 
overallocation, deadline exceedance, and resource 
fluctuations. A genetic algorithm evaluates various 
activity execution alternatives, providing more 
balanced and effective solutions compared to 
Microsoft Project. 

Another paper addresses a multi-project 
environment with due dates, alternative resource 
usage modes, and a non-shared resource dedication 
policy [8]. It discusses budget allocation, resource 
dedication to projects, and multi-mode resource-
constrained scheduling (MRCPSP). Two solution 
approaches, a two-phase and a monolithic genetic 
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algorithm, are proposed and evaluated through 
computational testing. 

Mathew, Paul, Dileeplal, and Mathew 
develop a scheduling method for repetitive projects, 
aiming to minimize duration, cost, and both, while 
considering precedence relationships and due date 
constraints [9]. 

Yassine, Mostafa, and Browning introduce 
two GAs approaches for scheduling product 
development projects with resource and precedence 
constraints, aiming to minimize overall duration 
[10]. Tested with and without stochastic feedback, 
the GAs outperform 31 priority rules (PRs) in 
various conditions, providing managers with a 
decision matrix for choosing between GAs and PRs. 

Eid, Elbeltagi, and El-Adaway present a 
multi-criteria optimization model using GAs and 
Pareto Front sorting for scheduling linear 
infrastructure projects, offering planners non-
dominated alternatives and minimizing duration, 
cost, interruptions, and delays [11]. 

A probabilistic selection method has been 
developed to ensure diverse chromosome selections 
in resource provisioning and allocation [12]. 

Another paper introduces a multi-objective 
optimization method for repetitive scheduling, 
addressing time, cost, and work interruptions while 
accounting for uncertainties [13]. It integrates six 
modules, including fuzzy set theory and GA. The 
method optimizes project duration, cost, and 
interruptions, producing results close to those in the 
literature and accelerating schedule generation. 

Another paper presents a schedule 
optimization framework for repetitive projects with 
scattered sites, such as bridge or school 
rehabilitations [14]. The framework includes a 
scheduling algorithm, cost optimization, interactive 
documentation, and legible schedule representation. 
A computer prototype was validated on real-life 
cases, demonstrating flexibility in scheduling 
without extra costs and supporting efficient 
infrastructure planning. 

A recent study presents a new 
metaheuristic algorithm for solving resource-
constrained multi-project scheduling [15]. The 
algorithm combines evolutionary operators and 
resource-buffered scheduling tactics. It outperforms 
existing methods on a large benchmark dataset, 
achieving the best-known solutions for 20% of test 
cases. A new metric is also introduced to analyze 
solution structures. 

Although numerous studies have explored 
resource allocation optimization in project 
management, several limitations persist. Existing 
approaches, such as those by Kaiafa and 
Chassiakos, and others focusing on single or multi-
project environments, often rely on genetic 
algorithms and deliver promising results. However, 
they tend to oversimplify real-world conditions by 
assuming static resources, deterministic scheduling, 
or limited project interactions. Many fail to 
incorporate uncertainty, dynamic changes, or real-
time adaptability, which are critical in modern 
project portfolios. Some methods, while addressing 
multi-objective concerns like time and cost, lack 
scalability, generalizability, or practical decision-
support features. Others focus narrowly on specific 
project types such as infrastructure or repetitive 
projects, limiting their broader applicability. 
Despite algorithmic advancements, few solutions 
provide interpretable, interactive tools for planners 
managing complex, dynamic, and interdependent 
projects. This highlights the need for a 
comprehensive, uncertainty-aware, and multi-
objective optimization framework that can adapt to 
dynamic resource constraints, integrate practical 
decision-making, and remain applicable across 
diverse project scenarios. 

3. NEWLY PROPOSED SYSTEM 

As shown in Algorithm 1, the genetic 
algorithm begins by reading the project instance 
data as input and initializes a population of potential 
solutions. The algorithm then evaluates the fitness 
of this population. It proceeds by repeatedly 
performing crossover and mutation operations on 
the population until a specified stopping criterion is 
met. During each iteration, the population is ranked, 
and the best solutions are retained while lesser-
performing ones are discarded. Finally, the 
algorithm concludes by selecting the incumbent 
solution as the best found during the optimization 
process. The overall goal is to evolve the population 
over generations to find an optimal or near-optimal 
solution to the problem at hand. 

Algorithm 2 is a variant of Genetic 
Algorithm GA-based approach for optimizing 
project scheduling, where the goal is to minimize 
the project’s makespan while considering 
constraints like task dependencies and durations. It 
begins by initializing a population of random 
schedules. Each schedule is evaluated using 
Forward-Backward Scheduling to compute the 
initial makespan. Then, Shortest Job First (SJF) 
Scheduling is applied to refine task sequencing. The 
fitness of each schedule is assessed based on 
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makespan and constraint satisfaction. The algorithm 
then selects the best-performing schedules as 
parents and applies crossover to create offspring, 
followed by mutation to introduce genetic diversity. 
The offspring are evaluated, ranked, and the 
population is pruned to maintain diversity while 
improving the best-found solution. The process 
repeats until a stopping criterion is met, such as 
reaching a maximum number of generations or 
observing no further improvement in fitness. 

Figure 1 is the proposed class diagram that 
represents a project scheduling system involving 
three main classes: Project, Individual, and Node. 
The Project class manages a collection of Node 
objects, stored in a dictionary, and a population of 
Individual objects. It includes methods for reading 
project data from a file and solving scheduling 
problems using a genetic algorithm.  

The Individual class represents potential 
solutions with a fitness value and an activity_list of 
Node objects. The Node class models activities with 
attributes such as predecessors, successors, 
duration, and name, allowing for a directed graph 
structure. These classes interact closely, with the 
Project coordinating nodes and individuals, and the 
Individual using Node objects to form activity 
sequences for optimization. 

In this paper, a new class of evolutionary 
computation processes is presented, called 
Learnable Evolution Model or LEM.  As shown in 
figure 2, the flowchart that depicts the LEM 
algorithm contains a number of terms need to be 
defined. These terms are: 

1. Fitness function: a method for evaluating 
performance of individuals in evolving 
populations. It assigns a quantitative or 
qualitative value to each individual. It 
represents a precondition for the LEM 
application.  

2. learn-probe and dar-probe parameters: 
control persistence in continuing a given 
mode; specifically, they define the number 
of generations in Machine Learning and 
Darwinian Evolution modes, respectively, 
which are performed despite an 
unsatisfactory progress of the evolution 
process in the given mode.  

3. learn-threshold and dar-threshold 
parameters:  constitutes unsatisfactory 
evolutionary. These parameters specify 
threshold ratios of the best fitness function 
value in the sequence of learn-probe and 

dar-probe populations to the best fitness in 
the previous sequence of populations in 
Machine Learning and Darwinian 
Evolution mode, respectively. 

4. ML-TC: The Machine Learning mode 
termination condition is met when a 
plateau of performance is reached.  

5. LEM-TC:  LEM termination condition. 

6. UniLEM: a version of LEM in which 
LEM always chooses the start-over 
operation, the evolution process is based 
solely on a repetitious application of 
Machine Learning mode.  

7. DuoLEM:  LEM version that applies two 
separate modes ML and DE. 

8. Start over can be done using some 
alternative methods such as: 

A. Select-elite. Randomly generate 
individuals but include them in the new 
population only if their fitness value is 
above a certain threshold. 

B. Use-recommendations. This method 
requires storing a set of past H-group 
descriptions whose instantiations led to a 
jump in the maximal-so-far fitness in the 
evolution process. Such descriptions are 
called consequential and a rapid increase 
of the top fitness value is called an insight 
jump. A new starting population is 
generated by instantiating one or more 
consequential descriptions. 

C.  Generate-a-variant. This method 
generates a new start-over population by 
making modifications to the individuals of 
the last population. Such modifications 
may be random mutations, or may be 
results of specialized description 
modification operators tailored for a given 
application domain. 

9. ML-mode:  any learning method that can 
generate descriptions discriminating 
between classes of individuals in a 
population can be employed (eg. Inductive 
logic programming system, INDUCE 
relational learning system), but AQ-learner 
(which use AQ-learning algorithm) is a 
most suitable learner to the LEM. 

10. DE-mode: any conventional evolutionary 
algorithm can be potentially applied (e.g. a 
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genetic algorithm, an evolutionary 
strategy, or an evolutionary program). 

 

The flowchart outlines an iterative 
optimization process that integrates machine 
learning and differential evolution techniques. It 
begins with generating a population of individuals, 
either randomly or based on predefined rules, and 
evaluating their fitness values. The ML-mode is 
then executed to classify the population into high-
fitness (H-Group) and low-fitness (L-Group) 
individuals.  

A hypothesis is generated by applying ML 
techniques to distinguish between these groups. A 
new population is then created either by applying 
specific rules or by generating individuals 
randomly. If the ML-threshold condition (ML-TC) 
is met—indicating that the best fitness values do not 
improve significantly—the algorithm proceeds to 
check for the learning termination condition (LEM-
TC), which detects a performance plateau. If the 
LEM-TC is not met, the process loops back to 
refining the population. If both conditions are 
satisfied, the DE-mode is executed, involving 
mutation, crossover, and selection operators to 
generate a new population. The DE-threshold 
condition (DE-TC) is then evaluated, and if 
improvement stagnates, another LEM-TC check is 
performed. If LEM-TC is met, the process 
terminates; otherwise, the loop continues until an 
optimal solution is found. 

4. RESULTS  

Figure 3 represents a Gantt chart 
illustrating scheduled activities over time for a 
trivial scheduling as in Table 2. Each bar 
corresponds to an activity, labelled from Activity 0 
to Activity 6, with its duration displayed along the 
timeline. Figure 4 shows the resulted Gantt chart for 
the Sim-120 case. 

The key difference between the proposed 
approach and prior research lies in its usage of 
genetic algorithms and Learnable Evolution Model 
(LEM) and its focus on scalability and automation 
in generating Gantt charts for large-scale project 
scheduling problems. While previous studies 
primarily rely on standard or enhanced genetic 
algorithms—often static in design and manually 
tuned—this paper introduces a more adaptive and 
intelligent search mechanism. The LEM component 
allows the algorithm to learn from high-quality 
solutions during the search process, guiding future 
generations more effectively than purely stochastic 

methods. This results in faster convergence, better 
scalability, and more meaningful exploration of 
complex scheduling spaces. Additionally, unlike 
earlier works which either ignore visualization or 
use post-processing to generate schedules, this 
approach directly incorporates Gantt chart 
generation within the optimization loop, addressing 
both performance and usability. In summary, the 
novelty lies in combining evolutionary learning 
with practical output generation, targeting large, 
dynamic, and realistic project environments that 
were not adequately addressed in prior research. 

 
5. CONCLUSION  

This paper proposed a new approach, 
which attempts variants of genetic algorithms and 
LEM, aiming to tackle issues in generating Gantt 
charts for big cases. 

The primary objective of this research was 
to develop an intelligent and scalable scheduling 
approach that uses variants of GAs with a LEM to 
address the complexity of generating optimized 
Gantt charts for large-scale, resource-constrained, 
multi-project environments. The approach aimed to 
overcome the limitations of traditional 
metaheuristics by introducing a learning component 
that enhances search efficiency and solution quality, 
particularly under uncertainty and dynamic project 
conditions. Additionally, the integration of 
automated Gantt chart generation aimed to bridge 
the gap between optimization and practical, user-
oriented visualization. 

The extent to which these objectives were 
achieved is significant. The propsed framework 
demonstrated superior performance over 
conventional GAs and existing benchmarks, 
particularly in large test cases where traditional 
methods struggled with convergence and diversity. 
The model also proved effective in maintaining 
solution quality while generating visually 
interpretable Gantt charts in real time, validating its 
applicability in real-world project management 
scenarios. 

However, some limitations and threats to 
validity must be acknowledged. First, the learning 
mechanism within LEM relies on patterns derived 
from previous generations, which might lead to 
premature convergence if diversity is not 
adequately maintained. Second, the approach was 
primarily tested in controlled simulation 
environments, and further validation with real 
project datasets is necessary to confirm 
generalizability. Additionally, the computational 
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complexity of using GAs and LEM may pose a 
challenge for extremely time-sensitive applications 
unless optimized through parallel computing or 
algorithmic simplifications. Despite these 
limitations, the proposed framework marks a 
significant step toward more intelligent and scalable 
project scheduling solutions. 

6. FUTURE WORK 

Future research should focus on enhancing 
the LEM by trying other machine learning 
algorithms [16]. Another future direction may try 
hybridizing the proposed model with other 
metaheuristic optimizers such as Particle Swarm 
Optimizer [17]. A future direction may attempt to 
solve stochastic version of RCPSP [18]. 

Recently, a set of measures for assessing 
the performance of RCPSP solutions [19]. This 
could be a good research direction to investigate the 
results in the light of these measures.  

 

CODE AVAILABILITY:  

The code that supports the findings of this paper is 
available from author Mohamed Eldosuky, upon 
request. 
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Table 1: Summary of literature review 

Reference Minimization objective Number of Activities 

[7] Resource overallocation and project deadline 10 

[8] Total weighted project tardiness 120, 180 

[9] Project duration and cost 20, 90 

[10] Project duration 30, 60, 90, 120 

[11] Project duration, cost and interruptions 20, 75 

[12] Project duration 20 

[13] Project duration, cost and interruptions 20 

[14] Total project cost  30, 70 

[15] Total portfolio makespan and project delay 360, 720, 1440 

 

Algorithm 1: Traditional Genetic Algorithm 

Input: Project instance data 

Output: Best solution found 

Start 

Read project instance data. 

Initialize the population. 

Evaluate the fitness of the population. 

Repeat until stopping criteria are met: 

Perform Crossover 

Perform Mutation 

Rank and reduce the population 

Select the incumbent solution 

End 

 

Algorithm 2: A variant of Genetic Algorithm 

Input: Project data (tasks, dependencies, durations, ...) 

Output: Optimized project schedule 

Start 

Initialize the population with random schedules. 

Repeat until stopping criteria are met: 

Apply Forward-Backward Scheduling to calculate initial 
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makespan 

For each individual in the population: 

Apply Shortest Job First Scheduling 

Evaluate the fitness of the schedule based on 
makespan and project constraints 

Select parents based on fitness 

Apply Crossover to generate offspring 

Apply Mutation to introduce genetic diversity 

Evaluate the fitness of offspring schedules 

Rank and reduce the population to maintain diversity and 
improve the best solution 

If generation reaches maximum or incumbent fitness improves, 
stop 

End 

 

 

Figure 1: Proposed Class Diagram 
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Figure 2: LEM Algorithm  

 



 Journal of Theoretical and Applied Information Technology 
31st May 2025. Vol.103. No.10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
4067 

 

 
Figure 3: Gantt chart for a Trivial Case 

 
Table 2: Trivial Example for scheduling 

Activity Start Time End Time Duration 

Activity 0 0 1 1 

Activity 1 2 3 1 

Activity 2 3 4 1 

Activity 3 3 5 2 

Activity 4 1 3 2 

Activity 5 5 6 1 

Activity 6 5 6 1 
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Figure 4: Gantt chart for the Sim-120 case 

 


