
 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4058

USING VARIANTS OF GENETIC ALGORITHM AND
LEARNABLE EVOLUTION MODEL TO SOLVE RESOURCE-

CONSTRAINED PROJECT SCHEDULING PROBLEM

 GAMAL ALSHORBAGY1,2, MOHAMED EL-DOSUKY1,3
1Computer Science Department, Arab East Colleges, Saudi Arabia

2Climate Change Information Centre, Renewable Energy & Expert Systems, Giza, Egypt

3Computer Science Department, Faculty of Computers and Information, Mansoura University, Egypt

E-mail: maldosuky@arabeast.edu.sa

ABSTRACT

The resource-constrained project scheduling problem (RCPSP) is a complex scheduling challenge as it is
proven to be NP-hard. The Learnable Evolution Model (LEM) is a non-Darwinian evolutionary approach
that speeds up convergence using machine learning instead of crossover. It classifies individuals into high-
performance (H-group) and low-performance (L-group) based on fitness, learns distinguishing features, and
generates new individuals through an instantiation step. To ensure diversity, LEM applies mutation as a
Darwinian component, making it more efficient than traditional evolutionary methods. This paper proposes
a new approach, which attempts variants of genetic algorithms and LEM, aiming to tackle issues in
generating Gantt charts for big cases.

Keywords: Scheduling, RCPSP, Learnable evolution model, Genetic Algorithm

1. INTRODUCTION

The resource-constrained project
scheduling problem (RCPSP) is a complex
scheduling challenge as it is proven to be NP-hard
[1]. To tackle it effectively, simple, intuitive rules-
of-thumb are often applied, providing sufficiently
good and practical solutions, especially for large
real-life cases [2].

The Learnable Evolution Model (LEM) is
a non-Darwinian evolutionary computation
approach that accelerates convergence using
machine learning instead of traditional genetic
operations like crossover [3-6]. Unlike genetic
algorithms (GA), LEM classifies individuals into
high-performance (H-group) and low-performance
(L-group) based on fitness. A learning step then
derives distinguishing characteristics between these
groups. Using these learned descriptions, the
instantiation step generates new individuals.

To maintain diversity, LEM incorporates
mutation as a Darwinian component. This learning-
driven process allows LEM to evolve solutions
more efficiently than standard evolutionary
methods.

This paper proposes a new approach,
which attempts variants of GA and LEM, aiming to

tackle issues in generating Gantt charts for big
cases.

The rest of this paper is divided as follows.
Section 2 provides a literature review on solving
RCPSP using genetic algorithm. Then the proposed
methodology is presented in a subsequent section,
followed by a dedicated section for test cases,
before concluding the paper.

2. LITERATURE REVIEW
Table 1 summarizes the literature review.

Kaiafa and Chassiakos address resource allocation
optimization in project management, focusing on
multi-objective resource-constrained scheduling [7].
This work minimizes costs due to resource
overallocation, deadline exceedance, and resource
fluctuations. A genetic algorithm evaluates various
activity execution alternatives, providing more
balanced and effective solutions compared to
Microsoft Project.

Another paper addresses a multi-project
environment with due dates, alternative resource
usage modes, and a non-shared resource dedication
policy [8]. It discusses budget allocation, resource
dedication to projects, and multi-mode resource-
constrained scheduling (MRCPSP). Two solution
approaches, a two-phase and a monolithic genetic

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4059

algorithm, are proposed and evaluated through
computational testing.

Mathew, Paul, Dileeplal, and Mathew
develop a scheduling method for repetitive projects,
aiming to minimize duration, cost, and both, while
considering precedence relationships and due date
constraints [9].

Yassine, Mostafa, and Browning introduce
two GAs approaches for scheduling product
development projects with resource and precedence
constraints, aiming to minimize overall duration
[10]. Tested with and without stochastic feedback,
the GAs outperform 31 priority rules (PRs) in
various conditions, providing managers with a
decision matrix for choosing between GAs and PRs.

Eid, Elbeltagi, and El-Adaway present a
multi-criteria optimization model using GAs and
Pareto Front sorting for scheduling linear
infrastructure projects, offering planners non-
dominated alternatives and minimizing duration,
cost, interruptions, and delays [11].

A probabilistic selection method has been
developed to ensure diverse chromosome selections
in resource provisioning and allocation [12].

Another paper introduces a multi-objective
optimization method for repetitive scheduling,
addressing time, cost, and work interruptions while
accounting for uncertainties [13]. It integrates six
modules, including fuzzy set theory and GA. The
method optimizes project duration, cost, and
interruptions, producing results close to those in the
literature and accelerating schedule generation.

Another paper presents a schedule
optimization framework for repetitive projects with
scattered sites, such as bridge or school
rehabilitations [14]. The framework includes a
scheduling algorithm, cost optimization, interactive
documentation, and legible schedule representation.
A computer prototype was validated on real-life
cases, demonstrating flexibility in scheduling
without extra costs and supporting efficient
infrastructure planning.

A recent study presents a new
metaheuristic algorithm for solving resource-
constrained multi-project scheduling [15]. The
algorithm combines evolutionary operators and
resource-buffered scheduling tactics. It outperforms
existing methods on a large benchmark dataset,
achieving the best-known solutions for 20% of test
cases. A new metric is also introduced to analyze
solution structures.

Although numerous studies have explored
resource allocation optimization in project
management, several limitations persist. Existing
approaches, such as those by Kaiafa and
Chassiakos, and others focusing on single or multi-
project environments, often rely on genetic
algorithms and deliver promising results. However,
they tend to oversimplify real-world conditions by
assuming static resources, deterministic scheduling,
or limited project interactions. Many fail to
incorporate uncertainty, dynamic changes, or real-
time adaptability, which are critical in modern
project portfolios. Some methods, while addressing
multi-objective concerns like time and cost, lack
scalability, generalizability, or practical decision-
support features. Others focus narrowly on specific
project types such as infrastructure or repetitive
projects, limiting their broader applicability.
Despite algorithmic advancements, few solutions
provide interpretable, interactive tools for planners
managing complex, dynamic, and interdependent
projects. This highlights the need for a
comprehensive, uncertainty-aware, and multi-
objective optimization framework that can adapt to
dynamic resource constraints, integrate practical
decision-making, and remain applicable across
diverse project scenarios.

3. NEWLY PROPOSED SYSTEM

As shown in Algorithm 1, the genetic
algorithm begins by reading the project instance
data as input and initializes a population of potential
solutions. The algorithm then evaluates the fitness
of this population. It proceeds by repeatedly
performing crossover and mutation operations on
the population until a specified stopping criterion is
met. During each iteration, the population is ranked,
and the best solutions are retained while lesser-
performing ones are discarded. Finally, the
algorithm concludes by selecting the incumbent
solution as the best found during the optimization
process. The overall goal is to evolve the population
over generations to find an optimal or near-optimal
solution to the problem at hand.

Algorithm 2 is a variant of Genetic
Algorithm GA-based approach for optimizing
project scheduling, where the goal is to minimize
the project’s makespan while considering
constraints like task dependencies and durations. It
begins by initializing a population of random
schedules. Each schedule is evaluated using
Forward-Backward Scheduling to compute the
initial makespan. Then, Shortest Job First (SJF)
Scheduling is applied to refine task sequencing. The
fitness of each schedule is assessed based on

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4060

makespan and constraint satisfaction. The algorithm
then selects the best-performing schedules as
parents and applies crossover to create offspring,
followed by mutation to introduce genetic diversity.
The offspring are evaluated, ranked, and the
population is pruned to maintain diversity while
improving the best-found solution. The process
repeats until a stopping criterion is met, such as
reaching a maximum number of generations or
observing no further improvement in fitness.

Figure 1 is the proposed class diagram that
represents a project scheduling system involving
three main classes: Project, Individual, and Node.
The Project class manages a collection of Node
objects, stored in a dictionary, and a population of
Individual objects. It includes methods for reading
project data from a file and solving scheduling
problems using a genetic algorithm.

The Individual class represents potential
solutions with a fitness value and an activity_list of
Node objects. The Node class models activities with
attributes such as predecessors, successors,
duration, and name, allowing for a directed graph
structure. These classes interact closely, with the
Project coordinating nodes and individuals, and the
Individual using Node objects to form activity
sequences for optimization.

In this paper, a new class of evolutionary
computation processes is presented, called
Learnable Evolution Model or LEM. As shown in
figure 2, the flowchart that depicts the LEM
algorithm contains a number of terms need to be
defined. These terms are:

1. Fitness function: a method for evaluating
performance of individuals in evolving
populations. It assigns a quantitative or
qualitative value to each individual. It
represents a precondition for the LEM
application.

2. learn-probe and dar-probe parameters:
control persistence in continuing a given
mode; specifically, they define the number
of generations in Machine Learning and
Darwinian Evolution modes, respectively,
which are performed despite an
unsatisfactory progress of the evolution
process in the given mode.

3. learn-threshold and dar-threshold
parameters: constitutes unsatisfactory
evolutionary. These parameters specify
threshold ratios of the best fitness function
value in the sequence of learn-probe and

dar-probe populations to the best fitness in
the previous sequence of populations in
Machine Learning and Darwinian
Evolution mode, respectively.

4. ML-TC: The Machine Learning mode
termination condition is met when a
plateau of performance is reached.

5. LEM-TC: LEM termination condition.

6. UniLEM: a version of LEM in which
LEM always chooses the start-over
operation, the evolution process is based
solely on a repetitious application of
Machine Learning mode.

7. DuoLEM: LEM version that applies two
separate modes ML and DE.

8. Start over can be done using some
alternative methods such as:

A. Select-elite. Randomly generate
individuals but include them in the new
population only if their fitness value is
above a certain threshold.

B. Use-recommendations. This method
requires storing a set of past H-group
descriptions whose instantiations led to a
jump in the maximal-so-far fitness in the
evolution process. Such descriptions are
called consequential and a rapid increase
of the top fitness value is called an insight
jump. A new starting population is
generated by instantiating one or more
consequential descriptions.

C. Generate-a-variant. This method
generates a new start-over population by
making modifications to the individuals of
the last population. Such modifications
may be random mutations, or may be
results of specialized description
modification operators tailored for a given
application domain.

9. ML-mode: any learning method that can
generate descriptions discriminating
between classes of individuals in a
population can be employed (eg. Inductive
logic programming system, INDUCE
relational learning system), but AQ-learner
(which use AQ-learning algorithm) is a
most suitable learner to the LEM.

10. DE-mode: any conventional evolutionary
algorithm can be potentially applied (e.g. a

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4061

genetic algorithm, an evolutionary
strategy, or an evolutionary program).

The flowchart outlines an iterative
optimization process that integrates machine
learning and differential evolution techniques. It
begins with generating a population of individuals,
either randomly or based on predefined rules, and
evaluating their fitness values. The ML-mode is
then executed to classify the population into high-
fitness (H-Group) and low-fitness (L-Group)
individuals.

A hypothesis is generated by applying ML
techniques to distinguish between these groups. A
new population is then created either by applying
specific rules or by generating individuals
randomly. If the ML-threshold condition (ML-TC)
is met—indicating that the best fitness values do not
improve significantly—the algorithm proceeds to
check for the learning termination condition (LEM-
TC), which detects a performance plateau. If the
LEM-TC is not met, the process loops back to
refining the population. If both conditions are
satisfied, the DE-mode is executed, involving
mutation, crossover, and selection operators to
generate a new population. The DE-threshold
condition (DE-TC) is then evaluated, and if
improvement stagnates, another LEM-TC check is
performed. If LEM-TC is met, the process
terminates; otherwise, the loop continues until an
optimal solution is found.

4. RESULTS

Figure 3 represents a Gantt chart
illustrating scheduled activities over time for a
trivial scheduling as in Table 2. Each bar
corresponds to an activity, labelled from Activity 0
to Activity 6, with its duration displayed along the
timeline. Figure 4 shows the resulted Gantt chart for
the Sim-120 case.

The key difference between the proposed
approach and prior research lies in its usage of
genetic algorithms and Learnable Evolution Model
(LEM) and its focus on scalability and automation
in generating Gantt charts for large-scale project
scheduling problems. While previous studies
primarily rely on standard or enhanced genetic
algorithms—often static in design and manually
tuned—this paper introduces a more adaptive and
intelligent search mechanism. The LEM component
allows the algorithm to learn from high-quality
solutions during the search process, guiding future
generations more effectively than purely stochastic

methods. This results in faster convergence, better
scalability, and more meaningful exploration of
complex scheduling spaces. Additionally, unlike
earlier works which either ignore visualization or
use post-processing to generate schedules, this
approach directly incorporates Gantt chart
generation within the optimization loop, addressing
both performance and usability. In summary, the
novelty lies in combining evolutionary learning
with practical output generation, targeting large,
dynamic, and realistic project environments that
were not adequately addressed in prior research.

5. CONCLUSION

This paper proposed a new approach,
which attempts variants of genetic algorithms and
LEM, aiming to tackle issues in generating Gantt
charts for big cases.

The primary objective of this research was
to develop an intelligent and scalable scheduling
approach that uses variants of GAs with a LEM to
address the complexity of generating optimized
Gantt charts for large-scale, resource-constrained,
multi-project environments. The approach aimed to
overcome the limitations of traditional
metaheuristics by introducing a learning component
that enhances search efficiency and solution quality,
particularly under uncertainty and dynamic project
conditions. Additionally, the integration of
automated Gantt chart generation aimed to bridge
the gap between optimization and practical, user-
oriented visualization.

The extent to which these objectives were
achieved is significant. The propsed framework
demonstrated superior performance over
conventional GAs and existing benchmarks,
particularly in large test cases where traditional
methods struggled with convergence and diversity.
The model also proved effective in maintaining
solution quality while generating visually
interpretable Gantt charts in real time, validating its
applicability in real-world project management
scenarios.

However, some limitations and threats to
validity must be acknowledged. First, the learning
mechanism within LEM relies on patterns derived
from previous generations, which might lead to
premature convergence if diversity is not
adequately maintained. Second, the approach was
primarily tested in controlled simulation
environments, and further validation with real
project datasets is necessary to confirm
generalizability. Additionally, the computational

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4062

complexity of using GAs and LEM may pose a
challenge for extremely time-sensitive applications
unless optimized through parallel computing or
algorithmic simplifications. Despite these
limitations, the proposed framework marks a
significant step toward more intelligent and scalable
project scheduling solutions.

6. FUTURE WORK

Future research should focus on enhancing
the LEM by trying other machine learning
algorithms [16]. Another future direction may try
hybridizing the proposed model with other
metaheuristic optimizers such as Particle Swarm
Optimizer [17]. A future direction may attempt to
solve stochastic version of RCPSP [18].

Recently, a set of measures for assessing
the performance of RCPSP solutions [19]. This
could be a good research direction to investigate the
results in the light of these measures.

CODE AVAILABILITY:

The code that supports the findings of this paper is
available from author Mohamed Eldosuky, upon
request.

REFERENCES:
[1] Blazewicz, J., Lenstra, J. K., & Kan, A. R.

(1983). Scheduling subject to resource
constraints: Classification and complexity.
Discrete Applied Mathematics, 5(1), 11–24

[2] Luo, J., Vanhoucke, M., Coelho, J., & Guo, W.
(2022). An efficient genetic programming
approach to design priority rules for resource-
constrained project scheduling problem. Expert
Systems with Applications, 198, 116753

[3] Michalski, R.S.: Learnable evolution: Combining
symbolic and evolutionary learning. In:
Proceedings of the Fourth International
Workshop on Multistrategy Learning
(MSL’98). (1998) 14–20

[4] Wojtusiak, J., Michalski, R.S.: The lem3
implementation of learnable evolution model
and its testing on complex function optimization
problems. In: GECCO. (2006) 1281–1288

[5] Michalski, R.S.: Learning and evolution: An
introduction to non-darwinian evolutionary
computation. In: ISMIS. (2000) 21–30

[6] Michalski, R.S.: Learnable evolution model:
Evolutionary processes guided by machine
learning. Machine Learning 38(1-2) (2000) 9–
40

[7] Kaiafa, S., & Chassiakos, A. P. (2015). A genetic
algorithm for optimal resource-driven project
scheduling. Procedia Engineering, 123, 260-
267.

[8] Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015).
Multi-mode resource constrained multi-project
scheduling and resource portfolio problem.
European Journal of Operational Research,
240(1), 22-31.

[9] Mathew, J., Paul, B., Dileeplal, J., & Mathew, T.
(2016). Multi objective optimization for
scheduling repetitive projects using GA.
Procedia Technology, 25, 1072-1079.

[10] Yassine, A. A., Mostafa, O., & Browning, T. R.
(2017). Scheduling multiple, resource-
constrained, iterative, product development
projects with genetic algorithms. Computers &
industrial engineering, 107, 39-56

[11] Eid, M. S., Elbeltagi, E. E., & El-Adaway, I. H.
(2021). Simultaneous multi-criteria
optimization for scheduling linear infrastructure
projects. International Journal of Construction
Management, 21(1), 41-55

[12] Samuel, B., & Mathew, J. (2018, March).
Resource allocation in a repetitive project
scheduling using genetic algorithm. In IOP
Conference Series: Materials Science and
Engineering (Vol. 330, No. 1, p. 012098). IOP
Publishing.

[13] Salama, T., & Moselhi, O. (2019). Multi-
objective optimization for repetitive scheduling
under uncertainty. Engineering, Construction
and Architectural Management, 26(7), 1294-
1320.

[14] Hegazy, T., & Kamarah, E. (2022). Schedule
optimization for scattered repetitive projects.
Automation in Construction, 133, 104042.

[15] Bredael, D., & Vanhoucke, M. (2024). A
genetic algorithm with resource buffers for the
resource-constrained multi-project scheduling
problem. European Journal of Operational
Research, 315(1), 19-34

[16] Guo, Weikang, Mario Vanhoucke, José Coelho,
and Jingyu Luo. "Automatic detection of the
best performing priority rule for the resource-
constrained project scheduling problem." Expert
systems with applications 167 (2021): 114116.

[17] Zhang, Hong, Heng Li, and C. M. Tam.
"Particle swarm optimization for resource-
constrained project scheduling." International
journal of project management 24, no. 1 (2006):
83-92.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4063

[18] Choi, Jaein, Matthew J. Realff, and Jay H. Lee.
"AQ‐Learning‐based method applied to
stochastic resource constrained project
scheduling with new project arrivals."
International Journal of Robust and Nonlinear
Control: IFAC‐Affiliated Journal 17, no. 13
(2007): 1214-1231.

[19] Van Eynde, Rob, Mario Vanhoucke, and José
Coelho. "On the summary measures for the
resource-constrained project scheduling
problem." Annals of Operations Research 337,
no. 2 (2024): 593-625.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4064

Table 1: Summary of literature review

Reference Minimization objective Number of Activities

[7] Resource overallocation and project deadline 10

[8] Total weighted project tardiness 120, 180

[9] Project duration and cost 20, 90

[10] Project duration 30, 60, 90, 120

[11] Project duration, cost and interruptions 20, 75

[12] Project duration 20

[13] Project duration, cost and interruptions 20

[14] Total project cost 30, 70

[15] Total portfolio makespan and project delay 360, 720, 1440

Algorithm 1: Traditional Genetic Algorithm

Input: Project instance data

Output: Best solution found

Start

Read project instance data.

Initialize the population.

Evaluate the fitness of the population.

Repeat until stopping criteria are met:

Perform Crossover

Perform Mutation

Rank and reduce the population

Select the incumbent solution

End

Algorithm 2: A variant of Genetic Algorithm

Input: Project data (tasks, dependencies, durations, ...)

Output: Optimized project schedule

Start

Initialize the population with random schedules.

Repeat until stopping criteria are met:

Apply Forward-Backward Scheduling to calculate initial

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4065

makespan

For each individual in the population:

Apply Shortest Job First Scheduling

Evaluate the fitness of the schedule based on
makespan and project constraints

Select parents based on fitness

Apply Crossover to generate offspring

Apply Mutation to introduce genetic diversity

Evaluate the fitness of offspring schedules

Rank and reduce the population to maintain diversity and
improve the best solution

If generation reaches maximum or incumbent fitness improves,
stop

End

Figure 1: Proposed Class Diagram

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4066

Figure 2: LEM Algorithm

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4067

Figure 3: Gantt chart for a Trivial Case

Table 2: Trivial Example for scheduling

Activity Start Time End Time Duration

Activity 0 0 1 1

Activity 1 2 3 1

Activity 2 3 4 1

Activity 3 3 5 2

Activity 4 1 3 2

Activity 5 5 6 1

Activity 6 5 6 1

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4068

Figure 4: Gantt chart for the Sim-120 case

