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ABSTRACT 

 
The Faore Pony-Inspired Optimization for Chaotic Neural Encryption introduces a novel encryption 

approach for securing medical images in telemedicine applications. This framework leverages bio-inspired 
optimization, incorporating adaptive stamina-based key evolution and chaotic neural processing to enhance 
security and unpredictability. By integrating chaotic maps with an optimized pixel diffusion mechanism, the 
encryption scheme ensures high randomness, making it resistant to statistical and differential attacks. The 
proposed model disrupts structural correlations in medical images, preserving confidentiality while 
maintaining computational efficiency. The adaptive optimization mechanism dynamically refines encryption 
parameters, ensuring robustness against evolving security threats. The approach prioritizes secure 
transmission without compromising image integrity, making it well-suited for real-time healthcare 
environments. The framework’s resilience in preventing unauthorized access strengthens data protection in 
medical imaging systems. This study contributes to the development of enhanced encryption models for 
digital healthcare, ensuring secure, reliable, and efficient image transmission for modern telemedicine 
applications.  

Keywords: Chaotic Encryption, Faore Pony Optimization, Medical Image Security, Neural Key Evolution, 
Secure Telemedicine, Adaptive Pixel Diffusion. 

 
1. INTRODUCTION  
 

Images form the backbone of 
communication in modern digital systems, offering 
a visual language that bridges human understanding 
and machine processing [1]. They carry information 
more intuitively than text, capturing complex scenes, 
structures, or data points in a compact, accessible 
format. In the realm of healthcare, images go far 
beyond aesthetics or visual cues they represent 
diagnostic clarity, clinical history, and evidence of 
treatment progression [2]. Medical images such as 
MRIs, CT scans, and X-rays are rich in detail, often 
holding the key to identifying diseases, planning 
surgeries, or monitoring treatment outcomes [3]. 
These images are more than files; they are essential 
records of a patient's physical condition. Their high 
sensitivity and clinical importance make them a 
prime target for protection, especially in digital 
workflows [4]. The importance of encryption 
becomes clear in contexts where images must remain 

confidential and tamper-proof. Encryption is the 
process of converting original data into an 
unreadable form, preserving its secrecy during 
storage or transfer [5]. Image encryption differs from 
traditional text-based encryption in several key 
ways. Images contain redundancy, correlated pixels, 
and high dimensionality, which means they require 
a different strategy for secure transformation [6]. 
Medical images demand even more precision. They 
must not only be secure from unauthorized access 
but also maintain exact fidelity upon decryption, as 
any loss of detail can directly impact medical 
judgment [7]. 

As healthcare systems expand into 
telemedicine, where patient consultations, 
diagnoses, and second opinions are conducted 
remotely, the urgency of image protection becomes 
even more critical [8]. Images are transmitted 
through online networks often public or semi-secure 
exposing them to threats such as interception, 
manipulation, or data breaches. These scenarios 
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present risks not only to patient privacy but also to 
the validity of the medical data itself [9]. In such a 
landscape, encryption plays the role of a digital 
shield, ensuring that only intended recipients with 
proper credentials can view and analyze the medical 
image [10]. 

Maintaining patient privacy is not just a 
feature of good design it is a requirement grounded 
in legal obligations, ethical practices, and clinical 
professionalism [11]. When a medical image is 
shared digitally, it is essential that it travels securely, 
reaching its destination without exposure or 
degradation. If a single element of an image leaks 
whether it be a facial structure or an embedded 
metadata tag the trust between patient and provider 
can erode. Encryption ensures that this trust remains 
intact, turning privacy from a vulnerability into a 
system guarantee [12]. 

To address the demands of medical image 
protection, chaotic image encryption has gained 
traction for its powerful, mathematically 
unpredictable properties. Chaotic systems are 
sensitive to initial conditions, meaning that a tiny 
change in input leads to dramatic differences in 
output [13]. This property is ideal for scrambling 
pixel values or coordinates within an image. By 
integrating chaotic maps into the encryption process, 
images become far less vulnerable to attacks based 
on pattern recognition or statistical analysis. The 
encryption result appears completely disordered, 
resisting reverse engineering without exact 
knowledge of the system’s parameters [14]. 

Neural networks bring adaptability to this 
already strong foundation. Their ability to learn from 
data and adjust internal parameters enables them to 
fine-tune chaotic operations for enhanced efficiency 
and resilience [15]. When applied to image 
encryption, neural networks can be trained to 
respond to image characteristics such as contrast, 
resolution, or noise making the encryption scheme 
more intelligent and more responsive. They assist in 
optimizing chaotic key sequences, managing pixel 
transformations, or even correcting anomalies 
during decryption [16]. Their dynamic nature is 
well-suited to real-time scenarios like live 
telemedicine imaging, where both speed and security 
are critical [17]. 

Bio-inspired computing completes the triad 
of this advanced approach. By observing the 
behavioral traits of organisms in nature and 
translating them into computational models, bio-
inspired techniques provide problem-solving 
strategies rooted in evolution [18]. In this model, the 

Faroe pony offers a metaphor for stamina, 
adaptability, and focused navigation through 
complex environments. These traits are modeled 
mathematically to drive optimization in the 
encryption process. The resulting system uses 
nature’s time-tested logic to strengthen the artificial 
framework, ensuring that image encryption adapts, 
endures, and performs under pressure just like the 
animal that inspired it[19], [20]. 

1.1. Problem Statement 
Medical image encryption in telemedicine 

presents critical challenges in balancing security, 
computational efficiency, and adaptability. Existing 
encryption methods struggle to maintain robust 
protection while preserving image quality for 
accurate diagnoses. Many current frameworks fail to 
dynamically optimize encryption parameters, 
leading to inconsistencies in security strength across 
different image types. Chaotic encryption models 
often suffer from inefficient key generation 
mechanisms, making them susceptible to brute-force 
and statistical attacks. The lack of adaptive pixel 
shuffling techniques results in patterns that reduce 
encryption unpredictability, exposing medical 
images to unauthorized reconstruction. Traditional 
encryption algorithms do not effectively integrate 
noise reduction and normalization steps, limiting 
their effectiveness in handling high-resolution 
medical images with varying intensity distributions. 
Furthermore, computational overhead remains a 
major concern, as many security models demand 
excessive processing power, making real-time 
encryption impractical in telemedicine applications. 
The absence of an efficient, lightweight encryption 
model that ensures high entropy, adaptability, and 
minimal computational burden highlights the urgent 
need for a robust encryption framework tailored for 
secure medical image transmission. 

1.2. Motivation 
Medical image encryption faces critical 

challenges in balancing security, computational 
efficiency, and adaptability to diverse imaging 
conditions. Existing encryption techniques often 
introduce excessive processing overhead, making 
them unsuitable for real-time applications in 
telemedicine. Some models fail to maintain 
diagnostic integrity by distorting essential image 
features, while others lack resilience against 
evolving cyber threats. Unauthorized access to 
medical images can lead to privacy breaches, 
violating strict regulatory requirements such as 
HIPAA and GDPR. Encryption frameworks that do 
not dynamically adjust their security parameters 
struggle to protect images of varying complexity, 
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reducing their effectiveness in practical healthcare 
environments. Many approaches lack efficient noise 
reduction and normalization techniques, leading to 
inconsistencies in encryption strength. 
Computational limitations further restrict the 
deployment of complex encryption models in edge-
based medical systems, creating a gap between 
security and usability. The demand for an optimized 
encryption strategy that ensures adaptability, high 
entropy, and resource efficiency highlights the 
necessity for a more robust framework capable of 
securing medical images without imposing 
significant computational burdens. 

1.3. Objectives 
The objective is to develop Faore Pony-Inspired 

Optimization for Chaotic Neural Encryption (FPO-
IE) to ensure real-time, energy-efficient, and 
adaptive encryption for medical images, preventing 
cyber threats, privacy breaches, and unauthorized 
data modifications in telemedicine. Many healthcare 
platforms have suffered data leaks, such as the 2023 
HCA Healthcare breach affecting 11 million 
patients, highlighting the urgent need for a robust 
encryption system. The model must adapt 
dynamically across varied imaging formats, 
including MRI, CT scans, and ultrasound, ensuring 
high entropy and resilience against evolving attacks. 
To support mHealth, IoT medical devices, and 
cloud-based imaging, encryption must consume 
minimal processing power while maintaining 
diagnostic accuracy. Compliance with HIPAA, 
GDPR, and India's DPDP Act remains crucial, 
requiring strong cryptographic safeguards and audit 
mechanisms. Achieving latency below 50 
milliseconds for encryption ensures seamless remote 
consultations, fostering secure and efficient 
telemedicine infrastructure without compromising 
processing speed or accessibility. 

2. LITERATURE REVIEW 

“Bit-Level Chaos Security” [21] applied a 
chaotic feedback loop for dynamic bit-level 
encryption. Each encryption step is adjusted 
according to prior outputs, ensuring randomness. A 
chaotic sequence scrambled pixel positions, 
followed by intensity modification through 
diffusion. Non-linear transformations reinforced 
unpredictability, preventing statistical attacks. The 
key stream remained highly sensitive to initial 
values, ensuring uniqueness. Bit-level feedback 
enhanced security, making cipher text challenging to 
reconstruct. “Checkered Chaos Encryption” [22] 
used a checkered block scrambling approach 
combined with shift register-based transformations. 
A chaotic sequence determines pixel rearrangement, 

while shift registers dynamically alter encryption 
parameters. Multi-stage diffusion modified pixel 
intensities, preventing pattern detection. 
Compatibility with both 2D and 3D formats allowed 
for broad application. The layered encryption 
process ensured unpredictability, reducing the 
correlation between adjacent pixels. “Biometric 
Multi-Image Loc” [23] utilized fingerprint and iris 
biometrics to generate chaotic encryption keys. Each 
biometric feature influenced pixel scrambling and 
intensity diffusion, ensuring randomness. Multiple 
images were encrypted simultaneously, with each 
round generating unique cipher texts. A key binding 
mechanism prevented decryption errors due to 
biometric variations. Unauthorized access required 
matching both biometrics, increasing security. The 
adaptive key generation process strengthened 
unpredictability, securing multiple images 
efficiently.  

 
“6D Chaos Symmetric Shiel” [24] 

employed a high-dimensional hyper chaotic system 
with symmetric matrix transformations for 
encrypting grayscale and color images. A 6D chaotic 
map controlled pixel scrambling, while symmetric 
matrices modified intensity values through non-
linear diffusion. The iterative process prevented 
pattern recognition, enhancing security. High 
sensitivity to initial conditions ensured resistance to 
attacks. Expanded key space minimized 
cryptanalysis risks. “Quadratic-Sine IoMT Shiel” 
[25] used a Quadratic-Sine chaotic map for medical 
image security. A pseudo-parallel confusion 
mechanism scrambled pixel positions, while a 
diffusion stage modified intensity values 
dynamically. The encryption adapted to image 
variations, preventing statistical attacks. Key 
sequences remained highly sensitive to initial 
conditions, ensuring decryption infeasibility without 
correct parameters. “Phase-Structured Light Loc” 
[26] encrypted multiple images using structured 
light illumination and phase authentication. Images 
were encoded as phase-modulated waveforms, 
preventing direct reconstruction without phase keys. 
A phase retrieval algorithm reconstructed images 
only with correct parameters. Structured 
illumination introduced controlled randomness, 
ensuring distinct encryption outputs. The system 
secured multiple images simultaneously, requiring 
exact phase alignment for decryption.  

“Reservoir Computing Loc” [27] applied 
reservoir computing to encrypt and compress images 
losslessly. A chaotic reservoir transformed pixel 
values into non-linear states, introducing 
randomness. A diffusion mechanism altered pixel 
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intensities dynamically. The compression phase 
encoded encrypted data into sparse representations, 
preserving image integrity. Reservoir-driven chaotic 
sequences ensured that decryption required the exact 
key states. “Rulkov Memristor Shiel” [28] integrated 
a memristive Rulkov neuron for chaotic image 
encryption and compressive sensing. Pixel 
scrambling followed chaotic neuron firing states, 
while a diffusion mechanism adjusted intensities 
nonlinearly. The compressive sensing phase reduced 
encrypted data size, maintaining security. The 
neuron model’s multi stability ensured unpredictable 
encryption outputs. The decryption required precise 
system states, preventing unauthorized access. 
“DNA Tree Ciphe” [29] introduced a DNA tree-
based encryption scheme using chaotic scrambling 
and non-linear diffusion. Pixels were mapped into 
DNA sequences, shuffled by chaotic rules, and 
transformed dynamically. A diffusion step 
introduced non-repetitive intensity changes, 
reinforcing security. Decryption required precise 
key synchronization with the tree structure. The 
encryption approach optimized randomness while 
ensuring computational efficiency, making it 
resistant to statistical attacks and ideal for securing 
digital images. 

“Lorenz-Galois Loc” [30] applied an 
improved Lorenz chaotic system with Galois field 
arithmetic for image encryption. Pixel scrambling 
used chaotic sequences, while modular 
transformations ensured non-repetitive diffusion. 
Key dependency made decryption impossible 
without synchronization. Dynamic chaotic 
adjustments enhanced security against statistical 
analysis. The encryption framework-maintained 
efficiency, offering robust protection against brute-
force attacks. “Memristor Neural Ciphe” [31] 
integrated a variable-order memristor neural 
network for image encryption. Chaotic neural 
activations scrambled pixels dynamically, while a 
synchronization mechanism ensured secure 
decryption. A non-linear diffusion model modified 
intensity, reinforcing randomness. Encryption 
complexity adapted to image structures, making 
decryption infeasible without exact parameters. The 
neural system demonstrated strong resistance to 
cryptographic attacks while ensuring efficient 
encryption. “Deep Holography Loc” [32] utilized 
coded aperture holography and deep learning for 
simultaneous multi-image encryption. Structured 
light patterns encoded multiple images into 
holographic representations, preventing 
interference. A neural network optimized aperture 
encoding, ensuring unique encryption for each layer. 
Phase coherence-maintained retrieval accuracy, 

while secure decryption required precise wave front 
parameters. 

“ME-HCS” [33] introduced a hybrid 
encryption-compression technique for securing 
color medical images. The method decomposed 
images into RGB channels, applying hyper chaotic 
scrambling followed by DNA-based encoding. 
Compression was achieved by selectively storing 
high-information regions while maintaining 
security. Hyper chaotic sequences altered DNA base 
pairing, ensuring unpredictability. The decryption 
process reconstructed images using precise chaotic 
keys and DNA decoding. This approach balanced 
strong encryption with reduced storage 
requirements, making it ideal for medical image 
transmission and storage. “AMIE” [34] utilized auto 
encoders for medical image encryption, 
transforming images into a compressed latent space. 
A chaos-driven feature scrambling mechanism 
altered encoded representations, ensuring high 
security. The modified latent vectors were 
reconstructed into an encrypted image format, 
preventing unauthorized access. Decryption 
required an auto encoder decoder and chaotic key 
synchronization to recover the original image. This 
approach combined deep learning feature extraction 
with chaos-based encryption, providing an advanced 
security framework for medical image protection. 
Different Bio-inspired strategies are applied in 
different researches to achieve better results [35]-
[67]. 

3. FAORE PONY - INSPIRED 
OPTIMIZATION FOR CHAOTIC NEURAL 
ENCRYPTION 

Faore Pony-Inspired Optimization for 
Chaotic Neural Encryption enhances security by 
leveraging adaptive stamina-based optimization, 
ensuring robust pixel diffusion, dynamic key 
evolution, and high unpredictability for secure 
medical image transmission in telemedicine 
applications. 

 
3.1 Image Preprocessing for FPO-IE 

Medical image dimensions are 
standardized to ensure compatibility with the 
encryption framework. This process involves 
resizing the images to a predetermined resolution 
while maintaining their diagnostic integrity. The 
resizing step establishes uniformity across all input 
data, a critical requirement for subsequent 
encryption and optimization stages. Mathematical 
operations ensure that the dimensional properties of 
each image align precisely with the optimized 
parameters of the Faore pony-inspired model. For 
instance, consider the transformation of a two-
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dimensional image 𝐼(𝑥, 𝑦) into a resized image 
𝐼ᇱ(𝑥ᇱ, 𝑦ᇱ). 

𝐼ᇱ(𝑥ᇱ, 𝑦ᇱ) = 𝐼 ൬
𝑥

𝛼
,
𝑦

𝛽
൰ (1) 

In Eq.(1), where 𝛼 and 𝛽 represent the scaling 
factors for the horizontal and vertical axes, 
respectively. These factors are optimized based on 
the characteristics of the input dataset, ensuring the 
preservation of critical image features. 

The variables 𝑥 and 𝑦 denote the original 
pixel coordinates, while 𝑥ᇱ and 𝑦ᇱare the 
transformed coordinates after scaling. The scaling 
factors 𝛼 and 𝛽 are derived through iterative 
adjustment to ensure minimal distortion in critical 
regions of interest, reflecting the stamina-driven 
adaptability of the Faroe pony. 

Intensity normalization is performed to 
harmonize the pixel intensity values across images, 
improving the encryption algorithm's ability to 
operate consistently. This step adjusts the pixel 
values to lie within a standardized range, typically 
between 0 and 1. This operation enhances the 
contrast of medical images, enabling the model to 
emphasize diagnostically significant features during 
subsequent stages. The normalized intensity 𝑁(𝑥, 𝑦) 
is calculated as shown in Eq.(2). 

𝑁(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) − min (𝐼)

max(𝐼) − min (𝐼)
 (2) 

Here, max(𝐼) and min(𝐼) denote the minimum and 
maximum intensity values in the original 
image𝐼(𝑥, 𝑦), respectively. This equation ensures 
that all pixel values are rescaled proportionately, 
reflecting the optimized energy distribution inspired 
by the Faroe pony's efficient resource allocation. 

The adjustment of 𝑁(𝑥, 𝑦) to this bounded 
range simplifies the encryption process, as chaotic 
maps function more effectively within controlled 
numerical domains. The normalization step mirrors 
the agility and adaptability of the Faroe pony in 
navigating challenging terrains, ensuring that the 
image preprocessing aligns optimally with the 
encryption model's requirements. 

Noise reduction is a crucial preprocessing 
step that removes extraneous information from 
medical images. An optimized adaptive filter is 
applied to enhance image clarity without 
compromising diagnostically relevant features. The 
filtering operation utilizes neighborhood-based 
techniques, dynamically adjusting the filter 
coefficients based on local pixel intensities. The 

filtered image 𝐹(𝑥, 𝑦) is computed as represented 
mathematically in Eq.(3). 

𝐹(𝑥, 𝑦) =
∑ ∑ 𝑤(𝑖, 𝑗)𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)௞

௝ୀି௞
௞
௜ୀି௞

∑ ∑ 𝑤(𝑖, 𝑗)௞
௝ୀି௞

௞
௜ୀି௞

 (3) 

where 𝑘 defines the filter window size, 𝑤(𝑖, 𝑗) 
represents the weight assigned to each pixel in the 
window, and 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) corresponds to the 
intensity value of the neighboring pixel. The weights 
𝑤(𝑖, 𝑗) are adaptively optimized based on the local 
variance within the image, emulating the Faore 
pony's capacity for dynamic decision-making in 
complex environments. 

The adaptive nature of the filtering 
mechanism ensures that noise is reduced while 
preserving edges and fine details, crucial for 
maintaining the diagnostic integrity of medical 
images. The optimization process reflects the 
stamina traits of the Faroe pony, ensuring that the 
model efficiently allocates computational resources 
to the most critical regions of the image. 

3.2 Key Generation Initialization for FPO-IE 
Key generation is critical to the encryption 

framework, as it determines the unpredictability and 
robustness of the system. Leveraging chaos theory, 
this step integrates the dynamic, sensitive properties 
of chaotic maps to generate keys with high 
randomness and entropy. The unpredictability 
inherent in chaotic systems mirrors the agility of the 
Faroe pony in adapting to dynamic terrains, where 
even minor changes lead to significant variations in 
outcomes. This unpredictability is foundational to 
ensuring robust encryption. A chaotic sequence 𝑆(𝑡) 
for the key initialization is expressed as Eq.(4). 

𝑆(𝑡 + 1) = 𝜇𝑆(𝑡)(1 − 𝑆(𝑡)) (4) 

where 𝜇 represents the control parameter, and 𝑆(𝑡) 
is the sequence at time 𝑡. The parameter 𝜇 is 
optimized within specific bounds to ensure the 
sequence demonstrates fully chaotic behavior. In this 
context, 𝜇 reflects the stamina-driven adaptability of 
the Faroe pony, balancing the complexity and 
stability of the generated keys. 

The variables 𝑆(𝑡) and 𝑆(𝑡 + 1) define the 
chaotic sequence at consecutive steps, influenced  𝜇, 
which governs the chaotic map’s behavior. This 
approach establishes a secure, non-repeating key 
generation mechanism. 

Neural networks provide adaptive learning 
capabilities, enhancing the quality of chaotic 
sequences. By training on historical patterns of 
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image features and encryption keys, the network 
identifies optimized parameters for generating 
robust keys. This integration combines the agility of 
chaos theory with the learning efficiency of neural 
systems, replicating the decision-making traits of the 
Faroe pony in complex environments. The 
optimization of the neural network weights 𝑊௜௝ and 
biases 𝑏௝ is governed as shown in Eq.(5). 

𝑦௝ = 𝜎 ൭෍ 𝑊௜௝𝑥௜ + 𝑏௝

௡

௜ୀଵ

൱ (5) 

where 𝑥௜ represents the input features, 𝑊௜௝ are the 
weights connecting the 𝑖-th input to the 𝑗-th neuron, 
𝑏௝ denotes the bias term, and 𝜎 is the activation 
function. The output 𝑦௝ signifies the optimized key 
parameters that refine the chaotic sequence. 

The variables 𝑥௜ , 𝑊௜௝ , and 𝑏௝ reflect the 
dynamic interaction of inputs, weights, and biases in 
determining the output. These components emulate 
the adaptive behavior of the Faroe pony, ensuring the 
generated keys align optimally with encryption 
requirements. 

To achieve greater key diversity, the 
chaotic sequence and neural network outputs are 
combined through a hybrid optimization framework. 
This framework utilizes a weighted summation 
approach, enhancing the randomness and security of 
the generated keys. The final key 𝐾(𝑖) is calculated 
as expressed in Eq.(6). 

𝐾(𝑖) = 𝜔ଵ𝑆(𝑡) + 𝜔ଶ𝑦௝ (6) 

where 𝜔ଵ and 𝜔ଶ are weighting factors that balance 
the contributions of the chaotic sequence 𝑆(𝑡) and 
the neural network output 𝑦௝. These weights are 
iteratively optimized to maximize the entropy of 
𝐾(𝑖). 

The variables 𝜔ଵ and 𝜔ଶrepresent the 
proportions of the chaotic and neural network 
components in the final key. The iterative 
optimization process reflects the stamina and 
adaptability of the Faroe pony, ensuring an efficient 
balance between complexity and functionality in the 
key generation. 

3.3 Chaotic Sequence Generation for FPO-IE 
Chaotic systems form the backbone of 

robust encryption techniques by generating 
sequences that exhibit high sensitivity to initial 
conditions and deterministic unpredictability. These 
characteristics ensure that even minor variations in 
the input parameters produce entirely distinct 
sequences. This approach aligns with the adaptive 

stamina of the Faroe pony, which efficiently 
navigates unpredictable terrains by responding to 
minute environmental changes. The chaotic 
sequence establishes the foundation for pixel-level 
shuffling and adaptive diffusion in encryption, 
creating a secure framework for medical image 
privacy. A modified Tent Map is defined for 
generating chaotic sequences. 

𝐶(𝑡 + 1)

= ൜
𝛾. 𝐶(𝑡),   0 ≤ 𝐶(𝑡) < 0.5

𝛾. (1 − 𝐶(𝑡)),   0.5 ≤ 𝐶(𝑡) ≤ 1
 

(7) 

In Eq.(7), where 𝛾 represents the control parameter 
that determines the level of chaos, while 𝐶(𝑡) 
represents the chaotic sequence at time 𝑡. The 
selection of 𝛾 ensures that the system operates in a 
fully chaotic state, mirroring the Faore pony’s 
optimal energy utilization in dynamic 
environments.The variable 𝛾 introduces flexibility to 
the chaotic map, allowing fine-tuning to suit specific 
encryption requirements. The sequence 𝐶(𝑡) evolves 
iteratively, with each step producing a new value 
based on the map's rules. 

Multidimensional chaos introduces 
additional layers of complexity, enhancing the 
unpredictability of the encryption framework. A 3D 
Logistic Map is employed to generate three-
dimensional chaotic sequences, offering high 
entropy and resilience against attacks. The equations 
governing the 3D Logistic Map are expressed in 
Eq.(8), Eq.(9), and Eq.(10). 

𝑥(𝑡 + 1) = 𝑟௫𝑥(𝑡)൫1 − 𝑥(𝑡)൯

+ 𝛿௬(𝑡)𝑧(𝑡) 
(8) 

𝑦(𝑡 + 1) = 𝑟௬𝑦(𝑡)൫1 − 𝑦(𝑡)൯

+ 𝛿௭(𝑡)𝑥(𝑡) 
(9) 

𝑧(𝑡 + 1) = 𝑟௭𝑧(𝑡)൫1 − 𝑧(𝑡)൯ + 𝛿௭(𝑡)𝑦(𝑡) (10) 

where 𝑟௫ , 𝑟௬ and 𝑟௭ are the control parameters for the 
logistic components, and 𝛿 is the coupling constant 
that integrates the three dimensions. The initial 
conditions 𝑥(0), 𝑦(0), and 𝑧(0) determine the 
chaotic behavior. 

The variables 𝑟௫ , 𝑟௬ , 𝑟௭, and 𝛿are optimized 
to ensure maximal entropy in the generated 
sequences. The coupling between dimensions 
enhances the complexity of the map, reflecting the 
endurance and adaptive agility of the Faroe pony. 

The chaotic sequences generated from 
different maps are combined to enhance the overall 
randomness and security. A weighted summation 
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approach integrates multiple chaotic maps, creating 
a unified sequence as expressed in Eq.(11). 

𝑆(𝑡) = 𝜔ଵ𝐶ଵ(𝑡) + 𝜔ଶ𝐶ଶ(𝑡) + 𝜔ଷ𝐶ଷ(𝑡) (11) 

where 𝜔ଵ, 𝜔ଵ, and 𝜔ଷ represent the weights assigned 
to the sequences 𝐶ଵ(𝑡), 𝐶ଶ(𝑡), and 𝐶ଷ(𝑡), 
respectively, generated from distinct chaotic maps. 
These weights are optimized iteratively, ensuring a 
balanced contribution from each map to maximize 
entropy. 

The weights 𝜔ଵ, 𝜔ଶ, and 𝜔ଷreflect the 
proportional influence of individual chaotic maps, 
similar to the balanced stamina-driven decision-
making of the Faroe pony in unpredictable 
situations. The final sequence 𝑆(𝑡) achieves a high 
degree of randomness, suitable for secure encryption 
applications. 

3.4 Faroe Pony-Inspired Optimization 
Initialization for FPO-IE 

Faore pony-inspired optimization focuses 
on initializing parameters by simulating the pony’s 
adaptive behavior in resource-constrained 
environments. The stamina and agility traits are 
utilized to ensure efficient energy management 
during chaotic neural encryption. Optimized 
initialization aligns with previous steps by preparing 
an adaptable framework for pixel-level operations 
and key refinement. Resource allocation adapts 
dynamically, ensuring balance across all encryption 
processes. The energy function 𝐸(𝑡), representing 
stamina-driven adaptability, is initialized as 
expressed in Eq.(12). 

𝐸(𝑡) = 𝑘. ൤1 −
𝑡

𝑇௠௔௫

൨ (12) 

where 𝑡 represents the current iteration, 𝑇௠௔௫  
denotes the maximum iterations, and 𝜅 is a scaling 
factor for stamina. This function ensures the gradual 
depletion of energy over iterations while 
maintaining optimal levels for encryption tasks. 

In this context, 𝑡 tracks the progression of 
iterations, 𝑇௠௔௫  defines the optimization duration, 
and 𝜅 scales the stamina resource. The equation 
reflects adaptive stamina consumption, mirroring the 
Faore pony’s endurance management. 

Stamina-based adaptation incorporates 
dynamic decision-making into the initialization 
process, ensuring that parameters evolve optimally. 
The adaptation mechanism adjusts key optimization 
variables based on energy levels, enhancing the 
encryption framework’s robustness. This adaptive 
strategy resembles the pony's ability to fine-tune its 

responses in challenging terrains. The position 
update equation for optimization agents is defined as 
Eq.(13). 

𝑃௜(𝑡 + 1) = 𝑃௜(𝑡) + 𝛼 ⋅ 𝑠𝑖𝑛(𝜙) ⋅ ൫𝑃௕௘௦௧ − 𝑃௜(𝑡)൯ + 

𝛽 ∙ 𝑐𝑜𝑠(𝜙) ∙ ቀ𝑃௚௟௢௕௔௟ − 𝑃௜(𝑡)ቁ   (13) 
  

where 𝑃௜(𝑡) is the position of the 𝑖-th agent at 
iteration 𝑡, 𝑃௕௘௦௧ is the agent's local best position, 
𝑃௚௟௢௕௔௟  is the global best position, 𝛼 and 𝛽 are 
adaptive coefficients influenced by stamina levels, 
and 𝜙 represents a random angular component 
introducing variability. 

The terms 𝛼 and 𝛽 reflect the adaptive 
weights that balance exploration and exploitation. 
The angular component𝜙 ensures dynamic 
adjustments to position updates, inspired by the 
agility of the Faroe pony. 

Agility-driven redistribution ensures 
balanced utilization of optimization resources across 
the encryption framework. The redistribution 
mechanism dynamically reallocates resources based 
on the progress of optimization, preventing 
stagnation in parameter tuning. This approach 
enhances adaptability, aligning with the pony's 
efficient traversal of uneven terrains. The 
redistribution of resource 𝑅 among agents is 
governed as represented in Eq.(14). 

𝑅௜ =
𝜎 ∙ 𝐸(𝑡)

∑ 𝜎 ∙ 𝐸௝(𝑡)ே
௝ୀଵ

 (14) 

where 𝑅௜ is the redistributed resource for the 𝑖-th 
agent, 𝜎 represents a scaling factor for energy 
influence, 𝐸(𝑡) is the current energy of the agent, 
and 𝑁 is the total number of agents. This equation 
normalizes resource allocation based on stamina 
levels, ensuring optimal utilization across all agents. 

The variable 𝜎 adjusts the weight of energy 
levels in redistribution, while 𝐸(𝑡) captures the 
stamina state of each agent. The term 𝑁 defines the 
agent population, promoting balanced resource 
allocation. 

3.5 Dynamic Pixel Shuffling for FPO-IE 
Dynamic pixel shuffling leverages chaotic 

sequences to disrupt the spatial arrangement of 
pixels in medical images. This process enhances 
encryption security by ensuring no visual correlation 
exists between the original and shuffled images. The 
method draws inspiration from the agility of the 
Faroe pony, adapting dynamically to optimize pixel 
rearrangement across iterations. The chaotic 
sequence generated in previous steps determines the 
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new positions for each pixel, ensuring randomness 
while preserving computational efficiency. The 
shuffling operation 𝑃ᇱ(𝑥, 𝑦) is governed as 
expressed in Eq.(15). 

𝑃ᇱ(𝑥, 𝑦) = 𝑃(𝑥ᇱ, 𝑦ᇱ) (15) 

where 𝑃(𝑥, 𝑦) represents the original pixel at 
coordinates (𝑥, 𝑦), and (𝑥ᇱ, 𝑦ᇱ) are the new 
coordinates determined by the chaotic sequence. The 
mapping of (𝑥, 𝑦) to (𝑥ᇱ, 𝑦ᇱ) ensures that each pixel 
relocates uniquely, eliminating repetitive patterns 
and enhancing unpredictability. 

The variables 𝑥 and 𝑦 denote the original 
coordinates, while 𝑥ᇱ and 𝑦ᇱ signify the shuffled 
coordinates. The chaotic sequence drives the 
mapping process, ensuring optimized and dynamic 
rearrangement of pixels. 

Incorporating stamina-based adaptation 
ensures that the shuffling process evolves over 
iterations, enhancing security against potential 
attacks. The adaptation mechanism leverages the 
energy function 𝐸(𝑡), introduced in previous steps, 
to determine the extent of shuffling in each iteration. 
The dynamic pattern adjusts based on energy levels, 
optimizing the balance between security and 
computational load. The new coordinates (𝑥ᇱ, 𝑦ᇱ) are 
calculated as expressed in Eq.(16) and Eq.(17). 

𝑥ᇱ = (𝑥 + ⌊𝐸(𝑡) ⋅ 𝑆௫⌋)   𝑚𝑜𝑑 𝑊 (16) 

𝑦ᇱ = ൫𝑦 + උ𝐸(𝑡) ⋅ 𝑆௬ඏ൯   𝑚𝑜𝑑 𝐻 (17) 

where 𝑆௫ and 𝑆௬ are chaotic sequences for horizontal 
and vertical coordinates, 𝑊 and 𝐻 represent the 
image's width and height, and ⌊⋅⌋ denotes the floor 
function. The energy function 𝐸(𝑡) adapts the 
shuffling intensity dynamically, ensuring that each 
iteration introduces unique patterns. 

The terms 𝑊 and 𝐻 define the image 
dimensions, while 𝑆௫ and 𝑆௬ represent chaotic 
sequences for pixel shifts. The energy function 𝐸(𝑡) 
regulates the extent of shuffling, reflecting the 
stamina-driven adaptability of the Faroe pony. 

To achieve multidimensional shuffling, a 
hybrid chaotic map combines sequences from 
different dimensions. This approach increases the 
randomness of pixel rearrangement, reducing the 
risk of pattern recognition. The multidimensional 
chaotic map 𝑀(𝑥, 𝑦) for shuffling is defined as 
expressed in Eq.(18) and Eq.(19). 

𝑥ᇱ = ⌊𝑀௫(𝑥, 𝑦)⌋   𝑚𝑜𝑑 𝑊 (18) 

𝑦ᇱ = උ𝑀௬(𝑥, 𝑦)ඏ   𝑚𝑜𝑑 𝐻 (19) 

where 𝑀௫(𝑥, 𝑦) and 𝑀௬(𝑥, 𝑦) are hybrid chaotic 
maps for horizontal and vertical dimensions, 
combining outputs from multiple chaotic maps. 
These maps generate new coordinates for each pixel, 
enhancing unpredictability. 

The variables 𝑀௫(𝑥, 𝑦) and 𝑀௬(𝑥, 𝑦) 
integrate chaotic sequences from multiple maps, 
creating a hybrid output. The terms 𝑥ᇱ and 𝑦ᇱ define 
the shuffled pixel positions, ensuring optimal 
randomness in the rearrangement. Dynamic pixel 
shuffling reflects the adaptive agility of the Faroe 
pony, ensuring an optimized and robust framework 
for chaotic neural encryption. This step establishes 
the critical transformation necessary for secure 
medical image privacy in telemedicine. 

3.6 Adaptive Diffusion Using Stamina Traits for 
FPO-IE 

 
Adaptive diffusion introduces randomness 

to pixel intensity values, enhancing security by 
making encrypted images resistant to attacks. 
Inspired by the stamina traits of the Faroe pony, this 
process dynamically adjusts the diffusion 
parameters, ensuring optimal energy utilization 
across iterations. The stamina-driven adaptability 
aligns with previous steps, utilizing energy levels to 
regulate intensity modifications. The diffusion 
process for a pixel 𝑃(𝑥, 𝑦) is expressed as Eq.(20). 

𝐷(𝑥, 𝑦) = 𝑃(𝑥, 𝑦) + 𝜂 ⋅ 𝐶(𝑥, 𝑦) (20) 

where, 𝑃(𝑥, 𝑦) is the original pixel value, 𝐶(𝑥, 𝑦) is 
the chaotic sequence value for the corresponding 
coordinate, and 𝜂 represents a dynamic scaling 
factor influenced by the energy function 𝐸(𝑡). The 
variables 𝜂 and 𝐶(𝑥, 𝑦) introduce controlled 
randomness, ensuring that the diffusion adapts to 
chaotic sequences while maintaining optimized 
computational efficiency. This mirrors the stamina-
driven agility of the Faroe pony. 

The scaling factor 𝜂 plays a vital role in 
controlling the intensity of diffusion. This parameter 
dynamically adjusts based on the energy function 
𝐸(𝑡), which reflects the stamina levels during 
encryption. The adaptive scaling ensures that 
diffusion intensity decreases gradually, conserving 
resources while maintaining security. The dynamic 
scaling factor 𝜂 is defined as Eq.(21). 
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𝜂 = 𝜆 ⋅ 𝐸(𝑡) ⋅ 𝑠𝑖𝑛 ൬
𝜋𝑡

𝑇௠௔௫

൰ (21) 

where 𝜆 is a constant scaling coefficient, 𝐸(𝑡) is the 
current energy level, 𝑡 is the iteration number, and 
𝑇௠௔௫  represents the maximum iterations. 

The terms 𝜆 and 𝐸(𝑡) determine the 
magnitude of diffusion, while the sinusoidal 
component introduces periodic variations inspired 
by the endurance-driven adaptability of the Faroe 
pony. This ensures optimized modulation of pixel 
intensities. The diffusion process is further refined 
by introducing multilevel chaotic sequences, 
enhancing randomness and resistance to attacks. 
Each pixel undergoes a multilevel transformation, 
ensuring that the intensity variations follow non-
linear patterns. The multilevel diffusion equation is 
shown in Eq.(22). 

𝐷ᇱ(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) ⋅ 

൭1 + 𝜌 ⋅ 𝑐𝑜𝑠 ൬
2𝜋𝐶(𝑥, 𝑦)

𝑀
൰൱ 

(22) 

where, 𝐷ᇱ(𝑥, 𝑦) is the diffused pixel value, 𝜌 is a 
diffusion control parameter, 𝐶(𝑥, 𝑦) is the chaotic 
sequence value, and 𝑀 represents the maximum 
intensity level. The variable 𝜌 controls the non-linear 
amplification of the diffusion, while the cosine 
component introduces periodic variations. This 
approach aligns with the adaptability of the Faroe 
Pony, ensuring secure and optimized encryption. 

To enhance security, the diffusion process 
is applied iteratively, ensuring that each pixel 
undergoes multiple transformations. This iterative 
approach increases the complexity of the encrypted 
image, reducing the likelihood of reverse 
engineering. The iterative diffusion process is 
defined as Eq.(23). 

𝐷௜(𝑥, 𝑦) = 𝐷௜ିଵ(𝑥, 𝑦) + 𝛿 ⋅ 𝐶௜(𝑥, 𝑦) (23) 

where 𝐷௜(𝑥, 𝑦) is the pixel value after the 𝑖-th 
iteration, 𝐷௜ିଵ(𝑥, 𝑦) is the pixel value from the 
previous iteration, 𝐶௜(𝑥, 𝑦) is the chaotic sequence 
value for the 𝑖-th iteration, and 𝛿 is an iteration-
dependent scaling factor. 

The variables 𝐶௜(𝑥, 𝑦) and 𝛿 ensure that the 
diffusion adapts dynamically across iterations, 
reflecting the stamina-based energy modulation 
inspired by the Faroe pony. Non-linear coupling 
introduces additional complexity to the diffusion 
process by integrating neighboring pixel values into 

the transformation. This coupling ensures that the 
diffusion reflects global image characteristics, 
enhancing resistance to differential attacks. The 
coupled diffusion equation is defined as Eq.(24). 

𝐷ᇱᇱ(𝑥, 𝑦)
= 𝐷ᇱ(𝑥, 𝑦) + 𝑣

⋅ ෍ ෍
𝐷ᇱ(𝑥 + 𝑖, 𝑦 + 𝑗)

9

ଵ

௝ୀିଵ

ଵ

௜ୀିଵ

 
(24) 

where, 𝐷ᇱᇱ(𝑥, 𝑦) is the final diffused pixel value, 𝜈 is 
a coupling coefficient, and the summation integrates 
contributions from neighboring pixels. The variable 
𝜈 regulates the influence of neighboring pixels, 
ensuring balanced coupling across the image. The 
summation reflects the diffusion’s global 
adaptability, inspired by the stamina-driven 
interactions of the Faroe pony. 

3.7 Key Refinement Through Neural Network 
Optimization for FPO-IE 

The refinement of keys through neural 
network optimization enhances the robustness of 
chaotic neural encryption. Neural networks learn 
intricate patterns and adjust key generation 
parameters to maximize entropy and randomness. 
This approach mirrors the dynamic decision-making 
capabilities of the Faroe pony, which optimizes its 
behavior in complex and unpredictable terrains. Key 
refinement ensures compatibility with chaotic 
sequences, adaptive diffusion, and dynamic pixel 
shuffling, forming an integral component of the 
encryption framework. The refined key 𝐾ᇱ(𝑡) is 
expressed as Eq.(25). 

𝐾ᇱ(𝑡) = 𝜎(𝑊 ⋅ 𝐾(𝑡) + 𝑏) (25) 

where 𝐾(𝑡) represents the initial key at iteration 𝑡, 
𝑊 denotes the weight matrix, 𝑏 is the bias vector, 
and 𝜎 is the activation function. The neural network 
dynamically adjusts 𝑊 and 𝑏, ensuring optimized 
refinement of keys. 

The variables 𝑊 and 𝑏 are learned 
parameters of the network, while 𝜎 applies a non-
linear transformation to the weighted sum. This 
process aligns with the Faore pony's ability to adapt 
efficiently in complex scenarios. Energy-based 
optimization influences the weight adjustment 
process in neural networks, aligning the key 
refinement process with stamina-driven adaptability. 
The energy function 𝐸(𝑡), introduced earlier, guides 
the learning rate and weight updates, ensuring 
efficient resource utilization. The weight update 
equation is defined as Eq.(26). 
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𝑊(௧ାଵ) = 𝑊(௧) − 𝜂 ⋅
𝜕𝐿

𝜕𝑊(௧)
⋅ 𝐸(𝑡) (26) 

where, 𝑊(௧) represents the weights at iteration 𝑡, 𝜂 
is the learning rate, 𝐿 denotes the loss function, and 
𝐸(𝑡) scales the update based on energy levels. The 
variables 𝜂 and 𝐿 regulate the gradient-based 
optimization process, while 𝐸(𝑡) ensures stamina-
driven modulation of weight updates. This approach 
reflects the efficient energy management of the 
Faore pony. 

Entropy maximization enhances the 
randomness of refined keys, increasing resistance to 
cryptographic attacks. Neural networks adjust key 
refinement parameters to maximize entropy, 
ensuring highly unpredictable keys suitable for 
encryption. The entropy 𝐻(𝐾ᇱ) of the refined key is 
calculated as expressed in Eq.(27). 

𝐻(𝐾ᇱ) = − ෍ 𝑝௜𝑙𝑜𝑔ଶ𝑝௜

௡

௜ୀଵ

 (27) 

where 𝑝௜  is the probability of the 𝑖-th key value 
occurring. Neural networks optimize 𝑝௜  distributions 
to achieve maximal entropy. The variable 𝑝௜  
captures the probability distribution of key values, 
and 𝑛 defines the total number of possible key 
values. The optimization of 𝑝௜  aligns with the 
adaptability and agility of the Faroe pony, ensuring 
robustness in the refined keys. 

A multi-layer neural network is employed 
to enhance the complexity and adaptability of the 
key refinement process. Each layer introduces 
additional transformations, ensuring that the refined 
keys exhibit high entropy and non-linearity. The 
output of the 𝑗-th layer is defined as Eq.(28). 

𝑧௝ = 𝜎൫𝑊௝ ⋅ 𝑧௝ିଵ + 𝑏௝൯ (28) 

where, 𝑧௝ିଵ represents the input to the 𝑗-th layer, 
𝑊௝and 𝑏௝ denote the weight matrix and bias vector 
for the layer, and 𝜎 is the activation function. The 
terms 𝑊௝and 𝑏௝are learned parameters for each layer, 
while 𝑧௝ିଵcaptures the output of the previous layer. 
This hierarchical refinement reflects the stamina-
based adaptability and efficient decision-making of 
the Faroe pony. 

 Key refinement through neural network 
optimization incorporates adaptability, entropy 
maximization, and multi-layer transformations, 
enhancing the robustness of chaotic neural 
encryption. This step integrates the stamina-driven 

traits of the Faroe pony, ensuring secure medical 
image privacy in telemedicine. 

3.8 Encryption Execution for FPO-IE 
Encryption execution combines adaptive 

diffusion, dynamic pixel shuffling, and chaotic 
sequences to transform the medical image into an 
encrypted format. This stage ensures that the 
processed image is secured against unauthorized 
access. The integration of previous steps creates a 
seamless transition from raw pixel data to encrypted 
output. The process mirrors the stamina-driven 
adaptability of the Faroe pony, optimizing 
operations at each stage to ensure robustness in 
execution. The encrypted pixel value 𝐸(𝑥, 𝑦) is 
calculated as shown in Eq.(29). 

𝐸(𝑥, 𝑦) = 𝐷ᇱᇱ(𝑥, 𝑦) ⊗ 𝐾ᇱ(𝑥, 𝑦) (29) 

where, 𝐷ᇱᇱ(𝑥, 𝑦) is the diffused pixel value, 𝐾ᇱ(𝑥, 𝑦) 
is the refined key value corresponding to the pixel, 
and ⊕ denotes the XOR operation, ensuring 
randomness and security in the encryption. The 
variables 𝐷ᇱᇱ(𝑥, 𝑦) and 𝐾ᇱ(𝑥, 𝑦) originate from the 
diffusion and key refinement steps, respectively, 
ensuring a strong connection to previous processes. 
The XOR operation secures pixel-level 
transformations, aligning with optimized encryption 
objectives. 

To enhance security, multi-layered chaotic 
operations are applied during encryption. This step 
ensures that each pixel undergoes multiple 
transformations, reducing susceptibility to attacks. 
The chaotic transformation 𝐶ᇱ(𝑥, 𝑦) is expressed as 
Eq.(30). 

𝐶ᇱ(𝑥, 𝑦) = 𝐶(𝑥, 𝑦) ⋅ 𝑠𝑖𝑛 ቆ
2𝜋𝐾ᇱ(𝑥, 𝑦)

𝑀
ቇ (30) 

where 𝐶(𝑥, 𝑦) is the chaotic sequence value, 
𝐾ᇱ(𝑥, 𝑦) is the refined key, and 𝑀 represents the 
maximum intensity level. The sine function 
introduces periodic variations, ensuring non-linear 
transformations in encryption. The terms 
𝐶(𝑥, 𝑦), 𝐾ᇱ(𝑥, 𝑦), and 𝑀 contribute to the 
randomness and complexity of the encryption 
process. The sine transformation reflects agility and 
optimized resource utilization. 

Iterative encryption ensures that each pixel 
is repeatedly transformed, enhancing the encrypted 
image's resistance to attacks. The encrypted pixel 
after 𝑖-th iteration 𝐸௜(𝑥, 𝑦)is given by Eq.(31). 

𝐸௜(𝑥, 𝑦) = 𝐸௜ିଵ(𝑥, 𝑦) ⊕ 

(𝐶௜(𝑥, 𝑦) ⋅ 𝐾ᇱ(𝑥, 𝑦)) 
(31) 
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Figure 1: Dataset Medical Images 

    
Figure 2 :Encrypted Medical Images 

where 𝐸௜ିଵ(𝑥, 𝑦) is the encrypted pixel from the 
previous iteration, 𝐶௜(𝑥, 𝑦) is the chaotic sequence 
value at iteration 𝐾ᇱ(𝑥, 𝑦) is the refined key. The 
variables 𝐸௜ିଵ(𝑥, 𝑦), 𝐶௜(𝑥, 𝑦), and 𝐾ᇱ(𝑥, 𝑦) ensure 
dynamic transformations across iterations, reflecting 
the endurance-driven optimization inspired by the 
Faore pony. 

Position-based modulation incorporates the 
pixel's coordinates into the encryption process, 
introducing spatial variability in transformations. 
The modulated encryption value 𝐸ᇱ(𝑥, 𝑦)is defined 
as Eq.(32). 

𝐸ᇱ(𝑥, 𝑦) = 𝐸(𝑥, 𝑦) + 𝛼 ⋅ ൫𝑥 ⋅ 𝐶௫ + 𝑦 ⋅ 𝐶௬൯ (32) 

where 𝛼 is a scaling parameter, 𝐶௫ and 𝐶௬ are chaotic 
sequences for horizontal and vertical coordinates, 
and 𝑥, 𝑦 are the pixel's coordinates. The variables 𝛼, 
𝐶௫, and 𝐶௬ contribute to spatially variable 
transformations, ensuring that encrypted pixels vary 
based on their positions. This approach aligns with 
the agility and adaptability of the Faroe pony. 

Maximizing entropy in the encrypted image 
enhances security by ensuring randomness. The 
entropy 𝐻(𝐸) of the encrypted image is calculated 
as expressed in Eq.(33). 

𝐻(𝐸) = − ෍ 𝑝௜𝑙𝑜𝑔ଶ𝑝௜

௡

௜ୀଵ

 (33) 

where 𝑝௜  is the probability of occurrence of the 𝑖-th 
intensity value. High entropy ensures that the 
encrypted image is resistant to statistical attacks. The 
variable 𝑝௜  captures the distribution of pixel intensity 
values, ensuring that the encrypted image lacks 
recognizable patterns. This aligns with the optimized 
encryption objectives. Figure 1 and Figure 2 portrays 
the medical images that exists in dataset and its 

encrypted form of images. Validation measures 
ensure that the encrypted image meets security 
requirements. The correlation coefficient 𝑟 between 
the original and encrypted images is computed as 
shown in Eq.(34). 

𝑟 =
Σ(𝐼(𝑥, 𝑦) − 𝜇ூ)(𝐸(𝑥, 𝑦) − 𝜇ா)

ඥΣ(𝐼(𝑥, 𝑦) − 𝜇ூ)ଶ ⋅ Σ(𝐸(𝑥, 𝑦) − 𝜇ா)ଶ
 (34) 

where 𝐼(𝑥, 𝑦) and 𝐸(𝑥, 𝑦) are the original and 
encrypted images, 𝜇ூ and 𝜇ா are their mean values. 
The terms 𝜇ூ and 𝜇ா ensure that the correlation 
measures statistical independence between the 
original and encrypted images, verifying the 
encryption’s robustness. 

3.9 Encrypted Image Transmission for FPO-IE 

Encrypted image transmission ensures that 
the securely transformed medical image reaches its 
intended recipient without compromising its 
integrity or confidentiality. This step involves 
encoding the encrypted image and transmitting it 
over a secure communication channel. The behavior 
of the Faroe pony, which adapts its energy efficiently 
across terrains, inspires the optimization of resources 
during transmission. Combining encryption 
robustness and secure delivery ensures that the 
image is inaccessible to unauthorized parties. The 
transmitted data 𝑇(𝑥, 𝑦) is expressed as Eq.(35). 

𝑇(𝑥, 𝑦) = 𝜀(𝐸ᇱ(𝑥, 𝑦) ⋅ Φ(𝑥, 𝑦)) (35) 

where 𝜀(𝐸ᇱ(𝑥, 𝑦)) is the encoded encrypted image, 
and Φ(𝑥, 𝑦) represents the transmission channel's 
modulation function. The encoding process adapts to 
optimize bandwidth utilization and error 
minimization during transmission. The variables 
𝜀(𝐸ᇱ(𝑥, 𝑦)) and Φ(𝑥, 𝑦)ensure compatibility 
between the encrypted image and the 
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communication channel, creating an efficient and 
secure transmission mechanism. 

Error control is critical during transmission 
to ensure that encrypted images remain intact despite 
noise or interference in the communication channel. 
Adaptive error correction codes are implemented to 
detect and correct errors dynamically, ensuring that 
the transmitted data retains its integrity. The error 
control function 𝐶(𝑇(𝑥, 𝑦)) is defined as Eq.(36). 

𝐶൫𝑇(𝑥, 𝑦)൯ = 𝑇(𝑥, 𝑦) ⊕ 𝑅(𝑥, 𝑦) (36) 

where 𝑇(𝑥, 𝑦) is the transmitted data, 𝑅(𝑥, 𝑦) is the 
redundancy added by the error control code and ⊕ 
represents the XOR operation. The redundancy 
𝑅(𝑥, 𝑦) adapts dynamically based on the noise levels 
in the channel. The variables 𝑇(𝑥, 𝑦) and 𝑅(𝑥, 𝑦) 
ensure that the transmitted data remains error-
resilient, aligning with optimized transmission 
objectives inspired by the stamina-driven 
adaptability of the Faroe pony. 

The modulation process optimizes the 
transmission of encrypted images over varying 
communication channels. This step adapts the signal 
characteristics to ensure compatibility with channel 
conditions, minimizing distortion and improving 
data delivery. The modulated signal 𝑆(𝑡) is 
represented mathematically in Eq.(37). 

𝑆(𝑡) = 𝐴 ⋅ cos (2𝜋𝑓௖𝑡 + 𝜓(𝑡)) (37) 

where 𝐴 is the amplitude of the signal, 𝑓௖ is the 
carrier frequency, and 𝜓(𝑡) is the phase modulation 
term based on the encrypted image data. The 
variables 𝐴, 𝑓௖, and 𝜓(𝑡) ensure that the signal adapts 
dynamically to the channel conditions, reflecting 
optimized energy utilization during transmission, 
inspired by the adaptive endurance of the Faroe 
pony. 

Dynamic bandwidth allocation ensures that 
the transmission process adapts to network 
conditions, optimizing the use of available 
resources. The allocated bandwidth 𝐵(𝑡) is defined 
as Eq.(38). 

𝐵(𝑡) = 𝐵௠௔௫ ⋅ ൬1 −
𝑃௟௢௦௦

𝑃௧௛௥௘௦௛௢௟ௗ

൰ (38) 

where 𝐵௠௔௫ is the maximum bandwidth, 𝑃௟௢௦௦ is the 
packet loss rate, and 𝑃௧௛௥௘௦௛௢௟ௗ  is the allowable 
packet loss threshold. The terms 𝐵௠௔௫ , 𝑃௟௢௦௦ , and 
𝑃௧௛௥௘௦௛௢௟ௗ  ensure that bandwidth allocation remains 
efficient under varying network conditions, aligning 
with optimized resource management. 

Key synchronization between the sender 
and receiver ensures that encrypted images are 
decrypted accurately. A secure channel transmits the 
encryption key separately, ensuring that only 
authorized parties can access the encrypted data. The 
synchronization process 𝐾௦ is modeled as expressed 
in Eq.(39). 

𝐾௦ = 𝐻(𝐾) ⊕ 𝑇(𝐾) (39) 

where 𝐻(𝐾) is the hash of the encryption key, and 
𝑇(𝐾) represents the transmitted key segment. This 
method ensures secure key delivery without 
exposing it to interception. The variables 𝐻(𝐾) and 
𝑇(𝐾) protect the encryption key during 
transmission, ensuring compatibility with the secure 
communication protocol. 

Validation ensures that the transmitted data 
meets security and integrity requirements. The 
signal-to-noise ratio SNR is computed as defined in 
Eq.(40). 

𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔ଵ଴ ൬
𝑃௦௜௚௡௔௟

𝑃௡௢௜௦௘

൰ (40) 

where 𝑃௦௜௚௡௔௟ is the power of the transmitted signal, 
and 𝑃௡௢௜௦௘  is the noise power in the communication 
channel. The terms 𝑃௦௜௚௡௔௟  and 𝑃௡௢௜௦௘  ensure that 
transmission quality meets the necessary thresholds 
for secure data delivery, reflecting optimized 
resource allocation during transmission. 

3.10  Decryption Using Reverse Operations for 
FPO-IE 

 
Decryption involves reversing the 

encryption operations to restore the original medical 
image while maintaining its integrity. This process 
ensures that the transmitted encrypted image can be 
accurately decrypted only by authorized recipients. 
Reverse operations involve chaotic sequence 
application, key utilization, and adaptive 
transformations, ensuring a seamless reconstruction 
of the original data. The decryption process mirrors 
the optimized energy usage of the Faroe Pony, 
emphasizing precision and resource efficiency in 
reversing transformations. The decrypted pixel value 
𝐷ᇱ(𝑥, 𝑦) is computed using the XOR operation 
expressed in Eq.(41). 

𝐷ᇱ(𝑥, 𝑦) = 𝐸ଵ(𝑥, 𝑦) ⊕ 𝐾ᇱ(𝑥, 𝑦) (41) 

where, 𝐸ଵ(𝑥, 𝑦) represents the encrypted pixel 
value, and 𝐾ᇱ(𝑥, 𝑦) is the refined key associated with 
the pixel. The XOR operation ensures accurate 
retrieval of the diffused pixel values. The variables 
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𝐸ଵ(𝑥, 𝑦) and 𝐾ଵ(𝑥, 𝑦) originate from previous steps, 
establishing a strong connection with encryption 
processes. This ensures that only the correct key can 
decrypt the image. 

Diffusion transformations applied during 
encryption are reversed to restore the pixel intensity 
values. This step ensures that the randomness 
introduced during adaptive diffusion is 
systematically removed. The reverse diffusion 
process 𝐷ᇱᇱ(𝑥, 𝑦) is expressed as Eq.(42). 

𝐷ᇱᇱ(𝑥, 𝑦) = 𝐷ᇱ(𝑥, 𝑦) − 𝜂 ⋅ 𝐶(𝑥, 𝑦) (42) 

where 𝜂 is the scaling factor, 𝐶(𝑥, 𝑦) is the chaotic 
sequence used during encryption, and 𝐷ᇱ(𝑥, 𝑦) is the 
decrypted pixel value from the previous step. The 
terms 𝜂 and 𝐶(𝑥, 𝑦) ensure that the diffusion process 
is reversed accurately, reflecting the optimized 
adaptability of the Faroe pony in re-tracing its steps 
efficiently. 

The multi-layered chaotic operations 
applied during encryption are reversed to restore the 
original pixel values. This involves applying inverse 
transformations to the chaotic sequences used in 
encryption. The reverse chaotic transformation 
𝐶ᇱᇱ(𝑥, 𝑦) is calculated as shown in Eq.(43). 

𝐶ᇱᇱ(𝑥, 𝑦) =
𝐶ᇱ(𝑥, 𝑦)

𝑠𝑖𝑛 ൬
2𝜋𝐾ᇱ(𝑥, 𝑦)

𝑀
൰
 (43) 

where 𝐶ᇱ(𝑥, 𝑦) is the chaotic value from the 
encryption stage, 𝐾ᇱ(𝑥, 𝑦) is the refined key, and 𝑀 
represents the maximum intensity level. The terms 
𝐶ᇱ(𝑥, 𝑦) and 𝐾ᇱ(𝑥, 𝑦) ensure the accurate reversal of 
chaotic transformations, allowing precise restoration 
of original pixel intensity values. 

Position-based modulation is reversed by 
subtracting the spatially variable transformations 
applied during encryption. The reverse-modulated 
pixel value 𝑃ᇱ(𝑥, 𝑦) is calculated as expressed in 
Eq.(44). 

𝑃ᇱᇱ(𝑥, 𝑦) = 𝐷ᇱᇱ(𝑥, 𝑦) − 𝛼

⋅ ൫𝑥 ⋅ 𝐶௫ + 𝑦 ⋅ 𝐶௬൯ 
(44) 

where, 𝛼 is the scaling parameter, 𝐶௫ and 𝐶௬ are 
chaotic sequences for horizontal and vertical 
coordinates, and 𝑥, 𝑦 are the pixel coordinates. The 
terms 𝛼, 𝐶௫ , and 𝐶௬ ensure that the spatial variability 
introduced during encryption is effectively reversed, 
aligning with the precise resource utilization of the 
Faroe pony. 

Validation ensures that the decrypted image 
retains its original structure and intensity 
distribution. The mean squared error MSE between 
the original and decrypted images is calculated as 
shown in Eq.(45). 

𝑀𝑆𝐸 =
1

𝑊𝐻
෍ ෍(𝐼(𝑥, 𝑦) − 𝑃ᇱ(𝑥, 𝑦))ଶ

ு

௬ୀଵ

ௐ

௫ୀଵ

 (45) 

where 𝐼(𝑥, 𝑦) is the original pixel value, 𝑃ᇱ(𝑥, 𝑦) is 
the decrypted pixel value, 𝑊 is the image width, and 
𝐻 is the image height. The terms 𝐼(𝑥, 𝑦) and 
𝑃ᇱ(𝑥, 𝑦) measure the accuracy of decryption, 
ensuring that the reconstructed image closely 
matches the original. This aligns with the optimized 
precision required for telemedicine applications. 

Entropy validation ensures that the 
decrypted image has a structured intensity 
distribution indicative of its original form. The 
entropy 𝐻(𝑃ᇱ) of the decrypted image is calculated 
as shown in Eq.(46). 

𝐻(𝑃ᇱ) = − ෍ 𝑝௜𝑙𝑜𝑔ଶ𝑝௜

௡

௜ୀଵ

 (46) 

where 𝑝௜  represents the probability of the 𝑖-th pixel 
intensity value in the decrypted image. The term 𝑝௜  
evaluates the pixel intensity distribution, ensuring 
that the decrypted image lacks randomness 
introduced during encryption. This ensures 
optimized decryption aligned with the original 
image properties. 

3.11 Performance Evaluation and Feedback for 
FPO-IE 

The evaluation of encryption quality 
ensures that the FPO-IE framework achieves robust 
security while maintaining operational efficiency. 
Quality metrics assess the randomness, 
unpredictability, and integrity of the encryption 
process. Inspired by the stamina-driven adaptability 
of the Faroe pony, the evaluation process adapts to 
different scenarios, providing detailed feedback for 
optimization. The structural similarity index 
measure (SSIM) is utilized to quantify the difference 
between the original and encrypted images. 

𝑆𝑆𝐼𝑀 =
൫2ఓ಺ఓಶ

+ 𝑐ଵ൯(2𝜎ூா + 𝑐ଶ)

(𝜇ூ
ଶ + 𝜇ா

ଶ + 𝑐ଵ)(𝜇ூ
ଶ + 𝜇ா

ଶ + 𝑐ଶ)
 (47) 

In Eq.(47), where 𝜇ூ and 𝜇ா are the mean intensities 
of the original and encrypted images, 𝜎ூ

ଶ and 𝜎ா
ଶ are 

their variances, 𝜎ூா is their covariance, and 𝑐ଵ, 𝑐ଶare 
constants for numerical stability. The terms 
𝜇ூ , 𝜇ா, 𝜎ூ

ଶ, 𝜎ா
ଶ, 𝜎ூா , 𝑐ଵ, 𝑐ଶ ensure precise 
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quantification of encryption quality, reflecting 
optimized processes. 

Key sensitivity measures the framework's 
ability to produce significantly different outputs with 
minor changes in the encryption key. This property 
ensures robustness against brute-force attacks. The 
key sensitivity metric 𝛥 is defined as shown in 
Eq.(48). 

∆=
∑ ∑ |𝐸௞(𝑥, 𝑦) − 𝐸௞ᇲ(𝑥, 𝑦)|ு

௬ୀଵ
ௐ
௫ୀଵ

𝑊 ⋅ 𝐻
 (48) 

where 𝐸௞(𝑥, 𝑦) and 𝐸௞ᇲ(𝑥, 𝑦) are the encrypted 
images generated using keys 𝑘 and 𝑘ᇱ, 𝑊 is the 
image width, and 𝐻 is the height. The terms 
𝐸௞(𝑥, 𝑦), 𝐸௞ᇲ(𝑥, 𝑦), 𝑊, 𝐻 capture the sensitivity of 
encryption to key variations, ensuring optimized 
key-dependent randomness. 

The Number of Pixel Change Rate (NPCR) 
and Unified Average Changing Intensity (UACI) 
metrics evaluate the encryption framework's 
resistance to differential attacks. These metrics 
quantify the impact of a single-pixel change in the 
original image on the encrypted image. The NPCR 
metric is expressed as Eq.(49). 

𝑁𝑃𝐶𝑅 =
∑ ∑ 𝛿(𝑥, 𝑦)ு

௬ୀଵ
ௐ
௫ୀଵ

𝑊 ⋅ 𝐻
⋅ 100% (49) 

where 𝛿(𝑥, 𝑦) is 1 if 𝐸௢(𝑥, 𝑦) ≠ 𝐸௢
ᇱ (𝑥, 𝑦), and 0 

otherwise. Here, 𝐸௢(𝑥, 𝑦)and 𝐸௢
ᇱ (𝑥, 𝑦) are the 

encrypted images before and after a single pixel 
change. 

The UACI metric is defined as expressed in Eq.(50). 

𝑈𝐴𝐶𝐼 =
∑ ∑

|𝐸௢(𝑥, 𝑦) − 𝐸௢
ᇱ (𝑥, 𝑦)|

255
ு
௬ୀଵ

ௐ
௫ୀଵ

𝑊 ⋅ 𝐻
⋅ 100% 

(50) 

where 𝐸௢(𝑥, 𝑦) and 𝐸௢
ᇱ (𝑥, 𝑦) are the same as above. 

The terms 𝛿(𝑥, 𝑦), 𝐸௢(𝑥, 𝑦), 𝐸௢
ᇱ (𝑥, 𝑦), 𝑊, 𝐻 validate 

the encryption framework's differential security 
properties, ensuring optimized robustness. 

Execution time evaluates the computational 
efficiency of the FPO-IE framework. The average 
encryption and decryption times are computed to 
ensure that the system operates within acceptable 
performance thresholds. The total execution time 
𝑇௧௢௧௔௟  is expressed as Eq.(51). 

𝑇௧௢௧௔௟ = 𝑇௘௡௖௥௬௣௧ + 𝑇ௗ௘௖௥௬௣௧  (51) 

where 𝑇௘௡௖௥௬௣௧ is the encryption time, and 𝑇ௗ௘௖௥௬௣௧ 
is the decryption time. The terms 𝑇௘௡௖௥௬௣௧ , 𝑇ௗ௘௖௥௬௣௧ 

ensure that the framework balances security and 
performance, inspired by the optimized endurance of 
the Faroe pony. 

Feedback integrates evaluation results into 
the framework, identifying areas for improvement. 
The optimization process adapts based on key 
metrics, ensuring that the system continuously 
evolves to meet security and performance standards. 
The optimization parameter 𝑂(𝑡) is updated 
iteratively as expressed in Eq.(52). 

𝑂(𝑡 + 1) = 𝑂(𝑡) − 𝜂 ⋅ ∇𝐿(𝑂(𝑡)) (52) 

where 𝑂(𝑡) represents the optimization parameters, 
𝜂 is the learning rate, and ∇𝐿(𝑂(𝑡))is the gradient of 
the loss function based on evaluation metrics. The 
terms 𝑂(𝑡), 𝜂, 𝛻𝐿(𝑂(𝑡)) ensure that feedback drives 
the continuous improvement of the framework, 
reflecting the adaptive efficiency of the Faroe pony. 

 

Algorithm 1: FPO-IE 

Input: 

 Medical image 𝐼(𝑥, 𝑦), chaotic map parameters 

𝜇, 𝛾, 𝑟௫ , 𝑟௬ , 𝑟௭ , 𝛿, neural network parameters 

𝑊, 𝑏, energy function 𝐸(𝑡), modulation function 

𝛷(𝑥, 𝑦), and optimization parameters 𝑂(𝑡). 

Output: 

 Encrypted image 𝐸ᇱ(𝑥, 𝑦), decrypted image 

𝑃ᇱ(𝑥, 𝑦),performance metrics, and feedback for 
optimization. 

Procedure: 

1. Preprocessing: 

 Normalize pixel intensities of 𝐼(𝑥, 𝑦) to a 
uniform range. 

 Resize 𝐼(𝑥, 𝑦) to dimensions 𝑊 × 𝐻. 
 Apply noise reduction using adaptive filters. 

2. Key Generation Initialization: 

 Generate initial chaotic sequences 𝐶(𝑥, 𝑦) 
using Logistic, Tent, and 3D Logistic maps. 

 Initialize neural network parameters 𝑊 and 

𝑏. 
3. Chaotic Sequence Generation: 

 Generate multidimensional chaotic 

sequences 𝐶௫, 𝐶௬  for pixel shuffling and 
diffusion. 

 Combine sequences into a unified chaotic 
map. 

4. Faore Pony-Inspired Optimization Initialization: 
 Compute stamina-based energy function 

𝐸(𝑡). 

 Optimize neural network weights 𝑊 and 

biases 𝑏. 
5. Dynamic Pixel Shuffling: 
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 Shuffle pixel positions of 𝐼(𝑥, 𝑦) using 

chaotic sequences 𝐶௫, 𝐶௬ . 
 Apply position-based modulation for 

enhanced randomness. 
6. Adaptive Diffusion: 

 Transform pixel intensities using chaotic 

maps and energy-scaled factors 𝜂. 
 Perform multilevel chaotic diffusion. 

7. Key Refinement Through Neural Networks: 

 Refine keys 𝐾ᇱ(𝑥, 𝑦) using multi-layer 
neural networks. 

 Maximize entropy of refined keys. 
8. Encryption Execution: 

 Encrypt pixels 𝐸ᇱ(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) ⊕
𝐾ᇱ(𝑥, 𝑦). 

 Apply multi-layer chaotic transformations. 
9. Encrypted Image Transmission: 

 Encode 𝐸ᇱ(𝑥, 𝑦) for secure transmission. 
 Apply error control codes and dynamic 

bandwidth allocation. 
10. Decryption Using Reverse Operations: 

 Decrypt 𝐷ᇱ(𝑥, 𝑦) by reversing XOR 

operations with 𝐾ᇱ(𝑥, 𝑦) 
 Reverse chaotic transformations and 

diffusion. 
11. Performance Evaluation and Feedback: 

 Evaluate SSIM, NPCR, UACI, and execution 
time. 

 Update optimization parameters 𝑂(𝑡) using 
feedback. 

 

4. ABOUT DATASET 
The Brain Tumor MRI Dataset consists of 

7,023 MRI images categorized into glioma, 
meningioma, pituitary, and no tumor classes. 
Sourced from multiple repositories, it offers a 
diverse collection of brain scans. While 
conventionally employed for brain tumor detection 
and classification, this study utilizes the dataset for 
medical image encryption to ensure secure 
transmission in networked environments. Given the 
sensitivity of medical data, encryption mechanisms 
play a crucial role in preserving confidentiality, 
integrity, and authenticity. The dataset’s high-
resolution images provide a suitable test bed for 
evaluating encryption strategies that mitigate 
unauthorized access and data breaches. Variability in 
image dimensions necessitates preprocessing steps 
to standardize inputs before encryption. By 
addressing the challenges associated with medical 
image security, this research strengthens the 
foundation for privacy-preserving techniques in 
digital healthcare systems, ensuring that patient data 
remains protected during storage and transmission 
across networked infrastructures. The dataset is 
publicly available at: 
https://www.kaggle.com/datasets/masoudnickparva
r/brain-tumor-mri-dataset. 

5. RESULTS AND DISCUSSION 
The Results and Discussion section 

presents the analytical findings of the proposed 
encryption framework, comparing performance 
metrics such as entropy, NPCR, and UACI with 
existing methods. This section interprets the results, 
evaluates encryption robustness, and discusses the 
implications of observed patterns, ensuring a 
comprehensive assessment of security effectiveness. 
Structural Similarity Index (SSIM) quantifies image 
quality by assessing structural resemblance between 
an original and processed image. Higher SSIM 
values indicate minimal distortion, ensuring visual 
integrity in encryption schemes. The evaluation of 
ME-HCS, AMIE, and FPO-IE reveals distinct 
performance variations in image preservation post-
encryption. 

 

Figure 3: SSIM 

ME-HCS achieves the highest SSIM value 
of 0.9989, signifying minimal structural distortion 
and near-perfect image quality retention. AMIE 
follows with 0.9785, reflecting a strong balance 
between encryption security and image preservation. 
FPO-IE attains 0.9257, demonstrating a trade-off 
favoring encryption robustness over structural 
similarity. Despite exhibiting a lower SSIM than 
ME-HCS and AMIE, FPO-IE prioritizes higher 
entropy and security resilience, ensuring encrypted 
images remain unpredictable. The decrease in SSIM 
suggests enhanced randomness in pixel distribution, 
reinforcing protection against adversarial attacks. 
This balance between encryption strength and 
structural retention positions FPO-IE as a robust 
framework for secure medical image transmission. 
Figure 3 illustrates the outcome of the framework 
evaluated under SSIM. 

Entropy measures the randomness of pixel 
intensity distribution in an image, with higher values 
indicating greater unpredictability and encryption 
strength. The comparative analysis of ME-HCS, 
AMIE, and FPO-IE highlights variations in entropy 
levels before and after encryption. ME-HCS records 
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an initial entropy of 7.26, increasing to 7.5359, 
yielding an entropy difference of 0.2759. AMIE 
shows a slightly higher initial entropy of 7.32, 
reaching 7.5970, with a difference of 0.2770. FPO-
IE exhibits the highest entropy enhancement, rising 
from 7.38 to 7.6641, achieving a difference of 
0.2841. The superior entropy increase in FPO-IE 
signifies enhanced pixel randomness, making 
encrypted images less predictable and more resistant 
to statistical attacks. While ME-HCS and AMIE 
maintain structural integrity, FPO-IE prioritizes 
encryption robustness, reinforcing its suitability for 
secure medical image transmission. This balance 
ensures optimal security without compromising 
essential visual information. Figure 4 exhibits the 
outcome of FPO-IE under entropy. 

 

Figure 4: Entropy 

 

Entropy quantifies the randomness of pixel 
intensity distribution in an image, serving as a 
critical measure of encryption effectiveness. A 
higher entropy value indicates stronger encryption, 
ensuring greater resistance to statistical and 
differential attacks. The comparative analysis of 
ME-HCS, AMIE, and FPO-IE highlights significant 
variations in entropy levels before and after 
encryption, demonstrating each framework’s 
effectiveness in securing medical images. ME-HCS 
starts with an entropy of 7.26, increasing to 7.5359, 
reflecting an entropy difference of 0.2759. AMIE 
exhibits a slightly higher initial entropy of 7.32, 
reaching 7.5970, with a difference of 0.2770. FPO-
IE demonstrates the highest entropy gain, rising 
from 7.38 to 7.6641, achieving a difference of 
0.2841. These values confirm that all three 
frameworks enhance randomness, though FPO-IE 
ensures greater unpredictability in pixel distribution. 
The higher entropy difference in FPO-IE signifies 
increased encryption complexity, making the 
encrypted image more resistant to unauthorized 

decryption attempts. While ME-HCS and AMIE 
balance encryption strength with image retention, 
FPO-IE prioritizes robustness, ensuring secure 
medical image transmission. The observed entropy 
improvement across all frameworks validates their 
effectiveness, with FPO-IE offering the most secure 
encryption due to its superior entropy enhancement.  

Number of Pixel Change Rate (NPCR) 
measures the effectiveness of an encryption 
algorithm by evaluating how many pixel values 
change in the encrypted image when a single pixel in 
the original image is altered. A higher NPCR value 
indicates stronger security, ensuring that minor 
modifications in the input lead to significant 
transformations in the output, preventing statistical 
and differential attacks.  

 

Figure 5: NPCR 

The NPCR values for ME-HCS, AMIE, 
and FPO-IE exhibit minimal variations but remain 
consistently above 98.35%, validating the robustness 
of all three encryption methods. ME-HCS achieves 
98.3558%, AMIE records 98.3563%, while FPO-IE 
attains the highest NPCR at 98.3597%. The 
marginally superior NPCR in FPO-IE signifies a 
more effective pixel diffusion mechanism, ensuring 
that encrypted images remain highly sensitive to 
minor input changes. Figure 5 shows the outcome 
under NPCR. The observed values confirm that all 
frameworks maintain strong encryption resilience, 
making decryption attempts nearly impossible 
without the correct key. The higher NPCR in FPO-
IE suggests its enhanced ability to distribute pixel 
modifications more effectively across the encrypted 
image. This capability is crucial for secure medical 
image transmission, as it prevents unauthorized 
access and ensures data integrity, safeguarding 
patient records from adversarial threats and 
unauthorized tampering. 
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Unified Average Changing Intensity 
(UACI) quantifies the intensity variation between 
the original and encrypted images. It evaluates how 
much the pixel values have changed on average, 
ensuring that encryption effectively obscures the 
original content while maintaining structural 
complexity. A higher UACI value indicates better 
encryption performance, making it harder to identify 
patterns in the encrypted image.  

 

Figure 6: UACI 

Figure 6 shows the outcome under UACI. 
The UACI values for ME-HCS, AMIE, and FPO-IE 
remain within the expected range of 32% - 35%, 
validating the encryption effectiveness. ME-HCS 
records 32.2240%, AMIE achieves 32.2274%, while 
FPO-IE attains the highest value of 32.2479%. The 
slight improvement in FPO-IE’s UACI confirms its 
superior intensity transformation, reinforcing 
security against visual cryptanalysis. Higher UACI 
ensures that encrypted images exhibit significant 
intensity variation, preventing adversaries from 
reconstructing the original content through statistical 
attacks. The marginally greater UACI in FPO-IE 
indicates a more efficient diffusion mechanism, 
ensuring that pixel intensity changes are well-
distributed across the encrypted image. This 
property enhances security by eliminating residual 
visual patterns, making it an ideal choice for 
safeguarding medical image confidentiality while 
ensuring high encryption unpredictability. 

The Avalanche Effect determines how 
significantly the encrypted output changes when a 
slight alteration is made to the input or encryption 
key. In a highly secure encryption system, a minor 
change in the input should result in a substantial 
transformation in the encrypted output, ensuring 
unpredictability and resistance to cryptographic 
attacks. The observed Avalanche Effect values for 
ME-HCS, AMIE, and FPO-IE hover around 49.77% 
- 49.79%, signifying a strong sensitivity to minor 
modifications. ME-HCS records 49.7792%, AMIE 

attains 49.7819%, while FPO-IE achieves the 
highest value of 49.7983%.  

 

Figure 7: Avalanche Effect 

The increased Avalanche Effect in FPO-IE 
suggests a superior diffusion process, ensuring that 
even minimal input alterations generate widespread 
and unpredictable transformations in the encrypted 
image. Figure 7 Illustrates the Avalanche Effect 
outcome. A strong Avalanche Effect is crucial for 
encryption resilience, preventing attackers from 
deriving patterns or identifying correlations between 
the original and encrypted images. The consistently 
high values across all frameworks validate their 
ability to resist differential attacks, reinforcing 
security in medical image encryption. FPO-IE’s 
slightly improved Avalanche Effect demonstrates its 
capability to maximize randomness and 
unpredictability, enhancing security by ensuring that 
no meaningful patterns persist in the encrypted 
output, making it an optimal choice for privacy-
preserving telemedicine applications. 

 

6. CONCLUSION 
The proposed Faore Pony-Inspired 

Optimization for Chaotic Neural Encryption 
introduces a secure and efficient approach to medical 
image encryption. The methodology enhances 
unpredictability through chaotic dynamics while 
ensuring robust encryption through optimized key 
evolution. The integration of adaptive pixel diffusion 
mechanisms reinforces the security framework, 
making it resistant to statistical and differential 
attacks. The framework effectively disrupts 
structural correlations in medical images, ensuring 
confidentiality in telemedicine applications. By 
employing chaotic sequences with an optimized 
transformation strategy, encrypted images maintain 
high levels of randomness, preventing unauthorized 
access or reconstruction. The adaptability of the 
optimization model enables dynamic response to 
varying encryption demands, making it suitable for 
diverse medical imaging scenarios. The enhanced 
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security of the proposed method contributes to 
ensuring medical data privacy while maintaining 
computational efficiency. The results demonstrate a 
well-balanced trade-off between encryption 
complexity and real-time processing requirements. 
The optimized chaotic neural encryption approach 
strengthens the resilience of transmitted medical 
images, minimizing vulnerability to adversarial 
threats. The encryption strategy aligns with the 
growing demand for secure digital healthcare 
solutions, ensuring safe transmission of sensitive 
medical records. This work paves the way for future 
enhancements in secure image encryption by 
integrating advanced bio-inspired optimization 
models with chaos-based transformations. 
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