
 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4437

REVIEW ON PROGRAMMING LANGUAGE LEARNING
MODELS AND INSTRUCTIONAL APPROACHES: CURRENT

TRENDS AND FUTURE DIRECTIONS

SANAL KUMAR T S1 AND R THANDEESWARAN1*

1School of Computer Science Engineering and Information Systems, Vellore Institute of Technology (VIT),
Vellore, 632014, Tamil Nadu, India.

*Corresponding author. E-mail: rthandeeswaran@vit.ac.in;

Contributing author: thesanals@gmail.com

ABSTRACT

Programming has become a fundamental subject in the academic curriculum, but the learning process
presents unique challenges. It requires not only systematic study and dedication but also the application of
logical thinking and problem-solving skills in practical contexts. This complexity makes programming
particularly difficult for beginners, who often face challenges in understanding foundational concepts like
sequencing, decision-making, and looping. As a result, various pedagogical methods have evolved to address
the difficulty in programming learning. To better understand the recent developments in programming
educational approaches, we aim to provide a detailed review of learning models and instructional approaches
in programming learning. Following this, we explore the cognitive factors influencing the learner and the
essential aspects of the learner’s learning style and preferences in programming education. Finally, we
conclude the review by discussing how these techniques can be combined to formulate future pedagogical
approaches in programming instruction. Consequently, this review proposes integrating the learning style
model with adaptive e-learning environments (ALE) in a blended learning approach as a better solution to
address the hurdles of programming learning difficulty. Given this, the review paper provides a
comprehensive overview of the programming learning environments, strategies, instructional approaches,
cognitive factors, and learning styles leveraged in programming education, which future researchers can
utilize.
Keywords: Programming Education; Difficulty In Programming; Instructional Methods; Learning Style

Models; Adaptive Learning Environments.

1. INTRODUCTION

Programming has become an essential part of
primary and higher education, extending beyond
traditional computer science fields to basic
sciences and management. Despite its
importance, learning to program poses unique
challenges, as it demands not only theoretical
understanding but also practical application of
concepts through logical thinking and problem-
solving. Core programming constructs like
sequencing, decision-making, and looping are
particularly challenging for beginners, who often
struggle to grasp these foundational elements.
This difficulty has led to high dropout and failure
rates in introductory programming courses, which

has, in turn, sparked significant research into
better instructional methods for programming
education [1].

In response to these challenges, researchers have
proposed various teaching and learning methods
to make programming more accessible,
incorporating diverse learning models and
instructional strategies. Although some methods
have shown promising results, there is still a lack
of consensus on the most effective approaches [2].
This review investigates current trends in
programming education, exploring the impact of
different learning models, instructional
approaches, and cognitive factors that shape how
students learn programming. By analyzing these
elements, the review aims to clarify which

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4438

approaches have the greatest potential to improve
learning outcomes and student retention in
programming courses.

This review differs from previous works in both
motivation and approach. While prior studies
have focused on evaluating isolated techniques or
proposing specific frameworks, this work aims to
provide a comprehensive evaluation of existing
learning models and instructional strategies in
programming education. Unlike earlier reviews
that primarily catalog methodologies, this study
emphasizes the individual preferences and
cognitive barriers faced by learners and highlights
how these factors influence learning outcomes.
Furthermore, it explores the integration of
adaptive learning technologies with traditional
methods to better address the diverse needs of
learners.

The primary objective of this study is to examine
existing models and methods used to teach
programming and assess their effectiveness
within current educational trends. Additionally,
this review aims to identify the key challenges in
programming instruction, such as cognitive and
motivational barriers, and propose directions for
future research. This includes exploring
integrative instructional strategies that may
address the limitations of existing models and
meet the diverse needs of learners in a rapidly
evolving digital environment. In doing so, the
review provides insights into how programming
education can be improved to support students
more effectively, potentially reducing dropout
rates and fostering a deeper understanding of
programming principles.

1.1. Programming Learning Difficulty

Difficulty in learning programming is a universal
scenario. Researchers reported several causes for
difficulty in programming learning. The most
critical issue is the lack of problem-solving
abilities, which most students lack. Learning and
writing computer programs can be particularly
difficult for students who have not been properly
introduced to the fundamental concepts and skills
required. Without a strong foundation, students
may struggle with understanding the syntax and
logic of programming languages, debugging
errors, and applying theoretical knowledge to
practical problems. The lack of skilled instructors

to teach programming is an issue, as well as a lack
of scientific methods or techniques to learn the art
of programming [3]. Instructors who teach
programming language subjects have less
pedagogical support to prepare and practice
computer programming, especially when the
teacher needs to teach it as an introductory course.
Researchers propose different methods to address
these problems, which may vary depending on the
learner’s learning capability.

Learning programming can be challenging for
several reasons. First, programming requires a
strong foundation in logic and problem-solving
skills, which can take time for beginners to
develop. The abstract nature of programming
concepts, such as algorithms, data structures, and
syntax, often leads to confusion and frustration.
Additionally, debugging and troubleshooting
code demand patience and a systematic approach,
skills that take time to cultivate. A learning curve
focuses on programming learning, which
estimates a learner’s performance over time. The
steep learning curve is further compounded by the
need to understand the intricacies of different
programming languages and tools. Finally, the
lack of immediate feedback and personalized
guidance in traditional learning environments can
hinder progress, making it hard for students to
identify and correct their mistakes promptly.
These factors combined make programming a
demanding subject for mastery [3].

1.2. Objective of The Study

a. To analyze and understand diverse learning
models, instructional strategies, and cognitive
elements that influence programming education,
focusing on approaches that support novice
learners and enhance programming
comprehension and retention.

b. To identify and assess key gaps in the literature
related to existing instructional methods, learner
engagement strategies, and adaptive learning
models in programming, particularly those that
fail to account for individual learning preferences
and the unique challenges posed by programming
for beginners.

c. To propose future directions and improvements
by integrating insights from recent technological
advancements, such as adaptive and blended

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4439

learning approaches, that address the limitations
found in current programming instruction and
better support diverse learner needs and cognitive
differences.

1.3. Outline

This paper is organized as follows: Section I
covers the significance and challenges of
introductory programming courses. Section II
provides an in-depth review of the literature on
learning environments, strategies, instructional
approaches, and cognitive factors relevant to
programming education, while also highlighting
traditional learning style models. Section III

identifies gaps within the existing research, and
Section IV outlines the research methodology
used in this study. Section V presents current
trends and suggests future directions. Section VI
discusses several critical challenges remain
unaddressed in programming education, followed
by limitation in the study, and finally, Section VI
offers the conclusion. The schematic arrangement
is depicted in Fig.1.

2. LITERATURE REVIEW

In this study, a selective review of the existing
literature has been conducted in alignment with
the research framework’s objectives. This

Figure 1: The schematic arrangement of this paper

approach aids in identifying unresolved gaps
within the selected research area and offers
suggestions for future research directions.

2.1. Programming Learning Environments

Researchers and developers build various
learning tools and interfaces to address the
difficulties in learning programming. The aim is

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4440

to ease the learning process and increase student
success rate. Text-based, Block-based, game-
based, and visual programming are programming
environments designed to teach and facilitate
coding skills, particularly for beginners or young
learners [4]. Both text-based and block-based
programming environments are educational tools
that cater to different learning stages and
preferences. Block-based programming is often
used in introductory programming courses for
children and beginners, as it visually represents
the flow of logic without requiring detailed
knowledge of syntax. Text-based programming,
on the other hand, is used for more advanced
programming education and professional
development, requiring learners to understand
and use the precise syntax of a programming
language [2].

Game-based programming involves learning to
code through interactive and engaging game
scenarios. These environments are designed to
teach programming concepts by integrating them
into game design and gameplay [5]. This method
is highly motivational for learners, as it combines
the fun of gaming with the educational aspects of
coding. It helps learners understand programming
logic and problem-solving skills within a
gamified context. On the other hand, visual
programming environments allow users to create
programs by manipulating elements graphically
rather than writing code textually. These
environments are designed to simplify the coding
process by enabling users to drag and drop visual
elements that represent code structures and logic.
Moreover, visual programming benefits
beginners, young learners, and those who benefit
from a more intuitive and visual approach to
understanding programming concepts with ease
[6]. In the following sub-sections, we summarized
different studies related to Text-based, Block-
based, game-based, and visual programming
environments.

2.1.1. Text-based programming

In the early days, only text-based programming
languages were used to teach programming.
Programming learning with High-level
programming languages started with text-based
procedure-oriented languages such as Fortran,
Cobol, and Algol [2]. Text-based programming

environments can be either text editors or IDEs
(Integrated development environments). Because
of its unfriendly nature, it was difficult for the
average student to learn and write programs
legitimately. The lack of pedagogical methods
made the process very cumbersome. Novice
learners are not expected to learn programming
with text-based programming environments since
their first experience confirms it. Simpler
programming languages and environments are
advisable because they are more approachable.
Nowadays, programming starts in the early stages
of education. The complicated and sophisticated
programming constructs confuse the novice
programmer and negatively affect the learning
process.[2].

2.1.2. Block-based programming

Traditional programming instruction often relies
on text-based programming environments.
However, the syntactic and semantic challenges
associated with text-based coding have driven the
development of block-based and game-based
programming approaches. For novice learners,
block-based programming languages are more
convenient and easy to learn, moreover, they help
them to reduce the programming learning barrier
[7]. The first modern block-based programming
language was AgentSheets [4], designed for kids
to learn programming hassle-free. It is a game-
based learning platform that uses a block-based
programming method. AgentSheet was designed
by Dr. Alexander Repenning as a research product
to enhance computational thinking among
children [3]. StarLogo is a visual and 3D
environment that uses block coding to help novice
learners model simple games and learn
programming quickly. Scratch is another block-
based visual programming environment that
allows students to develop interactive media-rich
projects. Scratch is getting much attention among
online coding platforms for kids and young
students. It is designed as a single-window, multi-
pane interface that makes it much more user-
friendly to novice programmers and ensures that
all major components are easily accessible. All
commands are readily accessible from the
command palette, which includes different
categories like Motion, Looks, Sound, control,
etc. [3]. Scratch is also used in Dynamic
Programming (DP) to solve large problems that

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4441

computer science students worldwide find hard to
understand. The problem with pure block-based
programming learners is that writing text-based
programs requires additional effort and time,
which are significantly different from the block-
based environment. Block-C is another block-
based language based on C programming
language that empowers novice students to learn
programming by focusing only on logic rather
than complicated syntax. The advantage of Block
C is that the transition facility from textual C to
Block C and Block C to textual C is
straightforward. Most educators suggest Block C
because all other introductory Block-based
languages like Scratch and Star Logo are treated
as toy-like structures without real connection with
C, Java, or Python [7]. Due to its ease of use and
reduced complexity, instructors often choose
block-based programming environments as a
starting point for novice learners.

2.1.3. Game-based programming

Game-based programming involves learning to
code by immersing students in interactive and
engaging game scenarios. This method leverages
the mechanics and elements of games to teach
programming concepts in a way that is both
enjoyable and educational. These studies [5, 8–
14] collectively explore the integration and
impact of game-based learning (GBL) in
programming education across various levels. In
this paper [8], the’ PROBSOL’ application was
introduced to enhance problem-solving skills in
novice programmers, and survey results show
positive feedback from both genders,
emphasizing the applications’ user-friendliness
and efficiency. Another study [9] focuses on
GBL’s potential to improve student engagement
and programming skills, with findings supporting
the effectiveness of educational games in
fostering enjoyment and learning. In this work
[10], they aim to enhance a Python programming
course by combining innovative game modules
with traditional teaching methods, emphasizing
motivation and competency improvement.
Another study [11] explores the integration of
game-based learning and game design as a novel
teaching method for programming in primary and
secondary schools. The study aims to fill the gap
in information regarding game design’s specific
role in teaching programming, focusing on novice

learners. In this study [5], they developed
ZTECH, a proprietary game-based learning tool
designed to enhance students’ understanding of
object-oriented programming. This role-playing
game offers an interactive environment with
quests and challenges, fostering self-motivation
and an engaging learning experience for object-
oriented programming concepts.’ Programmer
Adventure Land,’ a game-based learning
courseware [12], employs a problem-based
strategy to enhance college students’
understanding of computer programming. The
results indicate that the problem-based learning
approach improves satisfaction, enjoyment,
motivation, and user interface in learning
computer programming. Additionally, initiatives
like’ CODING4GIRLS’ [13] use game
development for programming skill cultivation,
showing positive acceptance among students in
lower secondary education. Lastly, a study [14]
examines the intentions of younger adolescents
toward game-based programming learning,
identifying key factors and moderating effects of
gender and grade level on students’ attitudes.
Overall, these studies underscore the valuable role
of GBL in diverse programming education
contexts. However, game-based programming
can be challenging because it requires good game
design. At the same time, it can distract from core
programming concepts and may not work for all
learning styles.

2.1.4. Visual programming

Visual programming environments (VPEs) allow
users to create programs by manipulating
graphical elements instead of writing text-based
code. These environments provide a user-friendly
interface where visual icons, blocks, or diagrams
represent programming concepts. NetsBlox is a
visual programming environment designed for
learning distributed programming principles,
offering accessible abstractions like message
passing and Remote Procedure Calls. The study
[15] examined the effectiveness of a Visual
Programming Language (VPL) intervention,
finding that it significantly improved students’
grasp of fundamental programming concepts,
particularly benefiting those without a computer
science background. This paper [16] conducts a
meta-analysis of 29 studies, revealing the positive
impact of block-based visual programming tools

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4442

on students’ academic achievement, with
influencing factors identified. This article [17]
investigates challenges in programming
education, focusing on object-oriented
programming, and suggests the need for a
comprehensive learning environment. In this
work [18], they emphasize the importance of
addressing algorithmic thinking and problem-
solving in programming education,
recommending Scratch as a suitable visual
programming language for beginners. This
research [6] focuses on teaching programming to
primary school children through online
interactive environments, demonstrating positive
attitudes and improved problem-solving skills.
The study [19] explores the impact of teachers’
pedagogical perspectives on integrating visual
programming in early formal education,
emphasizing the potential promotion of
constructivist pedagogy. Lastly, the study [20]
investigates the correlation between students’
satisfaction levels with visual learning
environments (Greenfoot and Alice) and their
academic performance in programming courses,
revealing a significant positive correlation and

highlighting the impactful role of these
environments in improving students’ outcomes
compared to traditional methods. While VPEs
simplify complex concepts by using graphics and
visual blocks instead of traditional text-based
syntax, they may not cater to all learning styles
effectively. VPEs are particularly beneficial for
visual learners who process information best
when it is presented in a graphical format, as well
as for kinesthetic learners who benefit from
hands-on, interactive tasks. Therefore, while
VPEs can be valuable for introducing
programming concepts, they might need to be
supplemented with other instructional methods to
accommodate the diverse needs of all learners.

2.2. Programming Learning Strategies and
Instructional Approaches

Researchers have developed a variety of
innovative instructional approaches to teach
programming effectively. This section examines
several instructional methods for programming
education (Fig. 2), organized into distinct
categories as outlined below.

Figure 2: Learning strategies and Instructional approaches

2.2.1. Peer programming (Peer assisted
learning) strategy

Peer-assisted learning [21] is a concept to help
students each other in the learning process. The
learning group consists of two students who are
”coach” and ”learner” with instructor support at
any time. In this study [22], mobile, agile peer
assisted learning was used to overcome the
difficulties of programming learning. They
designed a platform to support programming
learning using C++. Here [23], students learned
an introductory course on Arduino, which uses a
peer-based learning technique. A peer learning
agent [21] acts as an aid to learning programming

and analyzes the learning levels of the student.
They used the Bayesian network and
programming pedagogical methods to simulate
this system. [24] used the C programming
language PAL (Peer-assisted learning
environment) to learn programming and tested it
with experimental and control groups. All the
above work systematically claims that peer-
assisted learning improves the interest and
learning capability of the students. The main
drawback of this technique is the inability of the
peer learning agent to understand learner specific
preferences and learning characteristics of the
learner.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4443

2.2.2. Group-based or Collaborative learning

Collaborative learning, or group-based learning,
is a student-centric approach that empowers
students to participate actively in the course
material and with each other [25]. It involves
students working in teams or groups, promoting
interaction, discussion, and joint problem-
solving. Through this active engagement, students
enhance their understanding of content and
develop crucial interpersonal and teamwork
skills, taking ownership of their learning journey
[26].

This paper [27] discusses redesigning an
introductory programming course using the
community of inquiry learning framework and
design patterns from online communities and
team-based learning. An experimental evaluation
involving 562 students indicates that the
experimental groups outperformed the control
group, with the CoL (community of inquiry
learning framework) and TBL (team-based
learning) methodology leading to higher levels of
understanding due to increased participation
rates. A real-time collaboration version of MIT
App Inventor (MAI) was proposed [28] to
facilitate cross-region and multi-user
collaborative software development. An
empirical study compared self-efficacy and
collaborative behavior of learners using MAI with
and without real-time collaboration, finding that
engagement in joint behavior increased with real-
time collaboration, particularly among CS-major
groups. In this study [29], they aim to improve
computer programming skills through
collaborative learning with a problem-based
practice strategy. Results from testing with two
classes show that the proposed strategy enhances
students’ programming skills in a collaborative
learning environment. In this paper [30], they
introduce a novel computer-supported
collaborative learning group designed for
problem-based collaborative learning in computer
programming education. The system enables
learners and tutors from different locations to
collaboratively address programming challenges
using synchronous and asynchronous tools within
a shared workspace. The study outlines the
groupware’s functionalities and conducts an
experimental evaluation, applying the unified
technology acceptance theory, to assess learners’

Behavioral Intention (BI) within the context of
Algerian higher education. The primary limitation
of this collaborative learning is its inflexibility to
recognize and adapt to personalize learner
demands and requirements.

2.2.3. Pair programming

Pair programming is a teamwork approach where
two individuals share a computer while working
together to develop software. While it has been
employed in industry, its popularity has grown
significantly in educational contexts [31]. In
introductory programming courses, pair
programming is commonly utilized because there
is substantial evidence that it enhances students’
learning of programming concepts. Studies [31,
32] indicate that pair programming offers
advantages such as improved success rates in
introductory courses, higher retention within
majors, enhanced software quality, increased
student confidence in solutions, and better
learning outcomes. Additionally, evidence
suggests that women, in particular, benefit from
pair programming. Furthermore, the transition
from paired to solo programming appears to be
straightforward for students, although scheduling
and partner compatibility remain significant
challenges.

2.2.4. Mind mapping teaching

A mind map is a diagram that organizes
information into a hierarchy, revealing
relationships among various elements. It can be
used to assist novice learners in teaching
programming. Mind maps are helpful for
creativity, understanding programming
challenges, and designing solutions. The
integration of mind mapping into programming
education has garnered substantial attention,
yielding valuable insights across diverse contexts
[33]. An experimental study explored the
effectiveness of using Mind Maps as a
brainstorming and conceptualization tool for
programming. The results were compelling:
employing mind maps within text- and block-
based programming environments significantly
improved student’s learning outcomes. Moreover,
researchers explicitly used Scratch to investigate
the impact on computational thinking (CT) skills
when integrating mind mapping into
programming language instruction [34].

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4444

Comparing two mind mapping approaches-
construct-on-scaffold (COS-MM) and construct-
by-self (CBSMM)-the study [35] revealed that
COS-MM was more effective in enhancing
student’s CT skills. Furthermore, in the context of
primary school instruction, mind mapping
facilitated programming comprehension and
promoted creativity among students engaged in
the Scratch course. Beyond primary education, a
study in Malaysia explored the effects of mind
mapping combined with cooperative learning
(MMCL) versus traditional cooperative learning
(CL). The striking results: MMCL significantly
improved programming performance and
enhanced students’ metacognitive knowledge
[36]. Lastly, an experimental study [37] focused
on modern programming languages, concluding
that incorporating mind-mapping tools enhances
undergraduate students’ critical thinking and
problem-solving skills. In summary, mind
mapping is a versatile pedagogical approach
fostering creativity, cognition, and collaboration
in the dynamic landscape of programming
education. A limitation of mind mapping is that it
doesn’t account for basic learning habits or
individual preferences, making it difficult for
learners to select learning materials that align with
their understanding styles.

2.2.5. Tangible user interface

Tangible User Interfaces (TUIs) represent an
innovative interface paradigm that effectively
addresses the limitations of traditional Graphical
User Interfaces (GUIs). Unlike GUIs, which rely
on mouse and keyboard input, TUIs allow users
to interact with systems by manipulating real-life
physical objects. Research indicates that the
tangibility and hands-on manipulation of physical
elements enhance performance, learning,
decision-making, and user retention, leading to a
more substantial learning gain. Furthermore,
using tangible interfaces injects playfulness into
problem-solving, making the learning experience
more engaging [38]. This section explores the
potential of tangible user interfaces (TUI) to
enhance the learning of abstract programming
concepts, focusing on a study [38] that
investigated the usability of a TUI system
designed for teaching basic Java programming.
The researchers developed a prototype using
Processing and ReacTI Vision and assessed its

usability with the System Usability Scale. While
the system showed acceptable usability, identified
limitations highlight areas for further
improvement in TUI-based programming
education. Addressing the growing demand for
programming skills starting at a young age, this
study [39] examines the impact of tangible
programming interfaces compared to traditional
visual methods, particularly for children around
six. The study showcases the” Follow Your
Objective” (FYO) platform, a cost-effective
tangible programming solution featuring an
intuitive programming board, puzzle-based
tangible blocks, and a mobile robot. Preliminary
experiments with FYO demonstrated enhanced
programming skills among children, indicating
the effectiveness of tangible puzzle-based
platforms for early programming education. This
work [40] discusses strategies to facilitate the
learning of recursion, a complex programming
technique, especially in functional languages. A
proposed solution involves an interactive
interface based on a tangible block world with
augmented reality and software feedback, using
stack blocks as analogies for list data structures.
The goal is to enable students to intuitively grasp
recursive concepts and transition to writing
recursive programs in sequential Erlang,
promoting effective recursion learning within
programming education. TUIs are mainly
designed to support visual and kinesthetic
learners, providing interactive, hands-on learning
experiences. However, they often overlook the
preferences and learning styles of traditional,
more text-based learners.

2.2.6. Flipped classroom-based collaborative
learning

A Flipped Classroom (FC) reverses the traditional
learning model by having students review
instructional materials at home and engage in
interactive, hands-on activities in class. The
efficacy of the FC teaching method in computer
programming education has been the subject of
several research studies. Here is an overview of
these studies and their key findings: Research
studies have extensively examined the efficacy of
the FC teaching method in computer
programming education. One study combined FC
with Problem-based Learning (PBL), finding
significant improvements in students’

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4445

understanding of programming concepts,
particularly benefiting weaker students and
making learning enjoyable for mature students
[41]. Another mixed-method study revealed that
students in a flipped classroom exhibited higher
academic achievements and more positive
attitudes toward programming. However,
challenges such as technological requirements
and low attendance were noted [42]. Additional
research demonstrated that an adapted FC
approach positively impacted programming
success and self-efficacy, although it did not
significantly affect attitudes toward programming
[43]. A study focusing on self-regulation found
varying levels of self-regulated learning skills
among students, emphasizing the potential of
problem-based activities in flipped learning [44].
Another investigation showed a positive change
in students’ acceptance of programming after
implementing the FC model, with students
agreeing that it improved their learning
experience [45]. Furthermore, a comparative
study revealed that students in a flipped classroom
achieved higher test scores and had positive
perceptions of in-class activities [46]. Lastly,
research exploring students’ perspectives on
enriching programming and algorithm teaching
with the FC approach found that most students
had positive views, highlighting its potential
effectiveness in programming courses [47]. These
studies [41-47], collectively suggest that the
flipped classroom approach holds promise for
improving programming education outcomes,
enhancing student engagement, and fostering
positive attitudes toward programming. However,
problems such as technology integration and
attendance must be solved to fully realize this
teaching technique’s benefits.

2.2.7. Programming using e-learning

Programming education is crucial for students in
various disciplines, necessitating effective
learning strategies and motivation. Several
studies have explored innovative approaches and
e-learning systems to enhance motivation and
learning outcomes in programming courses.
Here’s an overview of these studies: The study
[48] investigates motivating factors influencing
undergraduate students’ learning in computer
programming courses. The study highlights the
Programming Assignment aSsessment System

(PASS), an e-learning infrastructure to support
programming education. Key motivating factors
include individual attitude, clear direction, and
reward/recognition. The study suggests that well-
facilitated e-learning environments can enhance
motivation and self-efficacy. This study [49]
addresses challenges in distance and e-learning
for programming subjects by proposing virtual
pair programming (VPP). The research focuses on
asynchronous VPP and assesses its effectiveness
in teaching object-oriented programming at Open
University Malaysia (OUM). Positive feedback
from learners suggests the potential of
asynchronous VPP, with suggestions for further
enhancements. This study [50] highlights the need
for improving conceptual learning in basic
computer programming using personalized e-
learning environments. The study incorporates
personalized information like learning problems,
styles, and performance levels to tailor the
learning experience. Results indicate that students
using the personalized e-learning environment
demonstrated improved understanding and
positive attitudes toward programming.

The work [51] develops a PROBSOL application
to enhance novice programmers’ problem-solving
skills in introductory programming courses. The
study compares web-based and mobile app
versions of PROBSOL and assesses their impact
on student engagement and learning outcomes.
Results show improved cognitive gains, logic
capabilities, and reduced attrition rates using
PROBSOL. The study [52] proposes an e-
learning model for programming instruction to
secondary school students to enhance motivation
and understanding. The model emphasizes
collaborative learning to address the challenges of
learning ICT subjects. The study aims to meet the
demand for informatics competencies in
secondary school curricula. This study [53]
introduces interactive multimedia e-learning to
help undergraduate students grasp the
fundamental concepts of logic and algorithms in
programming. The study addresses the limitations
of traditional e-learning systems and focuses on
enhancing independent learning through
multimedia materials and interactive exercises.
This study [54] explores the impact of interactive
instructions in e-learning on the effectiveness of a
programming course, particularly during the
COVID-19 pandemic. The study assesses

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4446

usability and efficacy using a questionnaire-based
evaluation method to improve e-learning systems
for programming education. These studies [51-
54] underscore the importance of motivation and
innovative e-learning approaches in programming
education. Personalized e-learning environments,
virtual pair programming, and problem-solving
applications demonstrate promising outcomes for
improving student engagement, understanding,
and learning outcomes in programming courses.
Further research and enhancements are required
in e-learning systems focusing on integrating
learning styles and preferences in programming
learning, which can significantly contribute to
effective programming education.

2.2.8. Adaptive e-learning environments
(ALEs)

ALEs customize educational content and
activities to match each learner’s preferences,
pace, and learning style for a personalized
experience. This section presents various adaptive
learning systems tailored for computer
programming instruction. This study [55] is based
on the Revised Bloom Taxonomy (RBT) learning
theory, incorporates fuzzy weights to convert
students’ knowledge levels, and employs rule-
based decision-making to offer personalized
learning activities in a C# programming language
course. This work [56] introduces an adaptive
algorithm for Java programming learners, guiding
them through teaching materials and practical
tasks, with an analysis demonstrating its potential.
This study [57], FuzKSD, utilizes fuzzy cognitive
maps and overlays to model and update a
student’s knowledge level dynamically, offering
individualized adaptive advice in web-based
education. ELaCv2 [58] integrates a 4-parameter
student model for personalized adaptation in e-
training for programming and C. This work [59],
an Intelligent Tutoring System (ITS), combines
fuzzy logic and machine learning to adapt
learning material and sequences based on student
knowledge. It shows improved personalized
learning experiences and reduced dropout rates
through evaluation. A major drawback in existing
studies [55-59] is the lack of a novel learning style
model tailored to meet the unique demands of
programming and problem-based learning.

2.2.9. Blended learning

Blended learning has emerged as a transformative
approach in programming education, especially
amidst the challenges posed by the COVID-19
pandemic. This educational model combines
traditional face-to-face instruction with online
learning components to optimize learning
outcomes and enhance students’ engagement and
flexibility. The research papers discussed herein
explore various aspects of blended learning in
programming education, from analyzing student
behaviors and performance to redesigning
courses and evaluating the effectiveness of
blended learning models. Each study contributes
unique insights and methodologies that shed light
on the implementation and impact of blended
learning strategies in diverse educational
contexts.

Research studies have explored various aspects of
blended learning in programming education,
revealing insightful findings on its efficacy and
challenges. [60] analyzed students’ test scores and
online learning behaviors in a blended
programming environment, identifying distinct
student types and suggesting a negative
correlation between online time and test scores.
This study concludes that long-term online
learning stabilizes test scores and provides
personalized guidance for educators. In [61], they
introduced a personalized course model using
Bayesian networks in Python programming
education, demonstrating its effectiveness and
emphasizing high satisfaction and success rates
during COVID-19. In [62], they adapted
Hadjerrouit’s model to identify the construction
phase of blended learning as significantly
impacting student outcomes. The work [63]
addressed the challenges of the COVID-19
pandemic by discussing evidence-based
pedagogical approaches in blended learning,
highlighting the benefits of face-to-face
interactions and online flexibility. [64] explored
professional development for teachers in
programming education, finding that a blended
PD program supports collaborative learning and
transformation in teaching practices. [65]
described redesigning an introductory computer
science course using blended learning, reporting
increased student engagement, lower dropout
rates, and improved exam results. It also

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4447

highlighted the integration of face-to-face and
online learning in a specific course, showing that
the blended model enhances students’ control
over their learning and improves academic
achievements. [66] examined students’ opinions
on a blended learning environment, noting
positive feedback on learning facilitation,
interaction opportunities, and supportive course
materials while addressing challenges such as
insufficient teaching time and technical issues.
Blended learning, while beneficial, falls short in
delivering personalized learning objects that align
with individual learning preferences. Current
research lacks examples of blended approaches
that incorporate video-based learning objects
designed with learner style models in mind. This
gap highlights the need for a more tailored
approach that combines blended learning with
adaptive content delivery based on learning
styles.

In conclusion, various programming learning
strategies and instructional approaches have been
outlined above. A key limitation across these
methods is the lack of capability to identify and
adapt to individual learner preferences and unique
learning characteristics. These approaches
assume a one-size-fits-all method, overlooking
that learners have distinct ways of absorbing
information, varying levels of prior knowledge,
and unique cognitive and perceptual strengths.
Without accounting for these differences, these
technique fails to provide tailored support that
could enhance learner engagement,
comprehension, and retention. Consequently, it
may not effectively address diverse learning
needs, which can hinder students’ overall
understanding and performance, especially in
complex subjects like programming where

adaptability to individual learning styles could be
highly beneficial (table 1). Addressing these
shortcomings offers a significant opportunity to
improve the effectiveness and personalization of
programming education.

2.3. Cognitive Factors in Learning
Programming

In programming education, understanding the
cognitive factors influencing learning is crucial
for designing effective instructional methods and
supporting student success [67, 68]. Cognitive
processes play a fundamental role in how
individuals acquire and apply programming
knowledge, ranging from problem-solving
strategies to developing algorithmic thinking
skills. Mastering programming skills requires
memorizing syntax and engaging in complex
cognitive processes [1, 69]. This section delves
into the mental aspects of learning to program,
exploring how factors like problem-solving,
mental models, and prior knowledge influence a
student’s ability to grasp and apply programming
concepts. By understanding these cognitive
factors, educators can develop more effective
teaching strategies and learning environments
that foster successful programmers.

Extensive research [1, 15, 67-73] has investigated
the impact of cognitive factors on academic
achievement, with particular emphasis on first-
year students. This focus is driven by findings
indicating that many students leave university
within their first academic year or before their
second due to poor academic performance. Such
attrition is a significant concern for academic
institutions. Studies have identified various
cognitive factors that affect academic success,
including

Table 1: Research Gaps In Different Programming Learning Instructional Approaches.

Authors Programming Learning Strategies Research Gaps
[21-24] Peer Programming strategy Inability to adapt to learner-specific preferences and individual

learning characteristics.
[25-30] Group-Based or Collaborative

Learning
Inflexibility to recognize and adapt to personalize learner demands
and requirements.

[31,32] Pair Programming The transition from paired to solo programming is relatively
straightforward for students, significant drawbacks include
challenges related to scheduling and ensuring partner
compatibility.

[33-37] Mind Mapping Teaching Inability to account for basic learning habits and individual
preferences, making it challenging for learners to choose materials
that suit their understanding styles.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4448

[38-40] Tangible user interface Primarily designed to support visual and kinesthetic learners by
offering interactive, hands-on experiences, they often neglect the
preferences and learning styles of traditional text-based learners.

[41-47] Flipped classroom-based
collaborative learning

Technology integration and attendance need to be addressed to
fully harness the benefits of this teaching technique.

[48-54] Programming using E-learning Limited integration of learning styles and preferences, hindering
their effectiveness in programming education.

[55-59] Adaptive e-learning
environments (ALEs)

The absence of a novel learning style model specifically designed
to address the unique requirements of programming and problem-
based learning.

[60-66] Blended Learning Lacks blended approaches using video-based learning objects
designed with learner style models, highlighting the need for
adaptive content delivery tailored to learning styles.

mental models, self-efficacy beliefs, motivation,
and personality traits. Self-efficacy and
motivation have consistently emerged as strong
predictors of academic performance. Research,
such as that referenced in [70], underscores that
students with high self-efficacy are likelier to
achieve academic success than those with lower
self-efficacy. Additionally, [15] emphasizes the
influential role of self-efficacy, positing that
individuals’ beliefs about their capabilities shape
their anticipatory behaviors and mental
rehearsals.

Investigations into these factors, such as that
detailed in [71], have shown that mathematics
self-efficacy is a crucial predictor of problem-
solving ability. However, [71] did not explore the
combined effects of these factors. In line with this,
[72] suggests that self-efficacy tends to increase
with prior experience. A separate study by [73]
examined the influence of self-efficacy, mental
models, and prior programming experience,
revealing a significant increase in self-efficacy
among students with previous programming
exposure during their first-year programming
course. As a result, this illustrates the complex
interplay between cognitive factors and academic
performance in higher education settings.

2.4. Learning Style Models

Learning style is a crucial element of personalized
learning, as it identifies learners’ characteristics
and their preferred ways of learning in predefined
dimensions or classes. Programming can be
particularly challenging for beginners due to
various factors. Today, online e-learning
platforms offer programming courses, but they
often deliver content in a uniform manner,
assuming all learners progress at the same pace.
However, each learner has their learning speed,

which conventional e-learning platforms typically
overlook. According to [74], learning style is
defined as the ”attitudes and behaviors which
determine an individual’s preferred way of
learning.” Researchers have proposed various
models to address learning styles. Among the 71
identified learning styles, the Felder-Silverman
Learning Style Model(FSLSM), the VARK
(Visual, Auditory, Read/Write, and Kinesthetic)
model, the Myers-Briggs Type Indicator (MBTI)
Test, and Honey and Mumford’s Learning Style
are most commonly used by researchers. In this
discussion, we will explore these different
learning style models and their application in
personalized learning.

2.4.1. FSLSM

The Felder-Silverman Learning Style Model [75,
76] is a well-regarded theoretical framework
developed by Felder and Silverman. This model
not only categorizes students based on how they
receive and process information but also aligns
teaching styles with specific instructional
methods suitable for different groups of students.
FSLSM proposes dimensions of learning and
teaching styles, matching preferred learning
styles with corresponding teaching styles. It
characterizes learners along the following
dimensions: 1. Active and Reflective: Active
learners engage with learning materials actively,
enjoy communicating and discussing in groups.
Reflective learners, however, prefer to focus on
the learning materials alone or with small groups,
processing information internally. 2.Sensing vs.
Intuitive: Sensing learners follow standard
learning materials and procedures to solve
problems, showing patience and attention to
detail. Intuitive learners, in contrast, are more
innovative, preferring abstract learning materials
and focusing on the theoretical underpinnings of

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4449

topics. 3.Visual-Verbal: Visual learners
understand and remember concepts through
diagrams, videos, and flowcharts. Verbal learners,
on the other hand, prefer conversations, written
documents, and verbal explanations. 4.Sequential
and Global: Sequential learners grasp concepts
incrementally, following a logical flow of
understanding. Global learners, however, absorb
information in a holistic manner, often skipping
steps in the conventional sequential process.
FSLSM can be effectively applied in web-based
personalized e-learning platforms to tailor
educational experiences to individual learning
preferences. This model enhances the alignment
between teaching methods and student learning
styles, potentially improving educational
outcomes [77].

2.4.2. VARK

The VARK model [78], developed by Neil
Fleming in 1987, is a learning style framework
designed to understand a learner’s characteristics
through a set of 16 questions. In online learning,
VARK helps cater to different learning
preferences through four primary modalities: 1.
Visual (V): Learners with a visual preference
absorb information best through graphical
formats such as diagrams, maps, graphs,
flowcharts, and designs. This does not include
static pictures of real-world entities. 2.
Aural/Auditory (A): Aural learners thrive on
spoken information. They learn effectively
through lectures, speaking, group discussions,
informal talks, chats, and colloquial examples. 3.
Read/Write (R): This modality is suited for
learners who prefer written documents. They
favor text-based materials like reports, lecture
notes, assignments, PowerPoint presentations,
and textbooks. 4. Kinesthetic (K): Kinesthetic
learners excel through hands-on experiences.
They prefer learning with concrete
representations, simulations, case studies, and
other experiential learning methods. VARK’s
modalities help tailor online learning
environments to accommodate diverse learning
preferences, enhancing the effectiveness of
educational content delivery.

2.4.3. Myers-Briggs Type Indicator test

The Myers-Briggs Type Indicator [79], based on
Carl Jung’s psychological types, categorizes

individuals into four main dimensions: 1.
Extraversion (E) or Introversion (I): This
dimension describes how individuals interact
with the external world. Extraverts are outgoing
and energized by social interaction, while
introverts are more reserved and gain energy from
solitary activities. 2. Sensing (S) or Intuition (N):
This dimension focuses on how people perceive
and gather information. Sensors rely on concrete,
factual information, and details, whereas
Intuitives prefer abstract concepts and ideas. 3.
Thinking (T) or Feeling (F): This dimension
relates to decision-making processes. Thinkers
prioritize logic and objective criteria, while
feelers prioritize personal values and their impact
on others. 4. Judging (J) or Perceiving (P): This
dimension describes how individuals approach
the external world. Judgers prefer structure,
planning, and decisiveness, whereas perceivers
are more flexible, spontaneous, and adaptable.
MBTI combines these preferences to form 16
distinct personality types, such as ISTP, which
stands for Introversion, Sensing, Thinking, and
Perceiving. These personality types can provide
insights into learning preferences and can be used
to tailor educational approaches accordingly.

2.4.4. Mumford learning model

The Mumford Learning Model [74], uses the
Learning Style Questionnaire (LSQ) to categorize
learners into four distinct groups: 1. Activists:
These learners prefer hands-on experiences and
learn best by engaging in experiments and
projects. 2. Theorists: Theorists focus on
understanding theories and hypotheses, requiring
specific goals and a structured approach to their
learning process. 3. Pragmatists: Pragmatist
learners are interested in the practical application
of concepts, always thinking about how to
implement what they have learned in real-world
scenarios. 4. Reflectors: Reflectors take time to
observe and consider different aspects of the
concepts they encounter, analyzing them from
various perspectives before drawing conclusions.
This model helps educators tailor their teaching
strategies to match the diverse learning
preferences of their students, enhancing the
overall effectiveness of the educational
experience.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4450

3. RESEARCH GAP

The literature under investigation has been
thoroughly reviewed. However, several gaps were
identified during the review. Researchers
proposed various programming language learning
strategies and instructional approaches to assist
learners in overcoming the hurdles in
programming. However little effort and work has
been done to address individual learning
preferences and in effect to set up a personalized
learning environment exclusively for
programming learning.

The main research gap found while analyzing the
learning style models and instructional
approaches are

a. Programming is particularly challenging for
novice learners, with studies highlighting high
dropout rates in introductory programming
courses at universities worldwide [1-3]. Although
researchers have proposed various instructional
methods, the blended learning approach has
shown promising results [60]. Blended learning, a
method that combines traditional classroom
instruction with e-learning support, has been
found to outperform conventional classroom
teaching [61-66]. Despite the demonstrated
effectiveness of blended learning in enhancing
learning outcomes, it is not widely implemented
in introductory programming courses. Many
institutions still rely on traditional teaching
methods, possibly due to limited awareness of
blended learning’s benefits, resource constraints,
or a lack of tailored materials that address the
specific challenges of programming. This
underutilization represents a significant missed
opportunity, as blended learning offers a
structured yet flexible environment where
foundational programming skills could be taught
with personalized support.

b. Individual learner characteristics are crucial in
programming instruction. In traditional learning
models, however, instructors often assume all
students have the same cognitive abilities. It is
widely recognized that this adaptive approach can
enhance learners’ performance and improve the
overall quality of the learning experience [55, 56,
58]. Adaptive e-learning is a teaching approach
that tailors instructional content to match the
unique learning styles or preferences of each

student. ALEs are tailored to accommodate
learners’ unique styles, recognizing that
individuals vary in how they engage with and
process new information. However, no research
was conducted to propose a learning style model
exclusively for programming learning. The
existing learning style models [74, 75, 78, 79]
were designed generally to identify the learner’s
learning preferences. Moreover, a significant
limitation of current learning style models is that
they rely on questionnaires to determine learning
preferences. Being older frameworks, these
models have not evolved to address recent
advancements in online and e-learning needs.

c. Instructional video-based e-learning
environments have been thoroughly leveraged in
the post-COVID time. As a result, Universities
and EdTech platforms offering e-learning courses
often deliver content through instructional videos,
which help learners absorb information more
effectively. While there is extensive research [80-
90] on the impact of instructional videos on
teaching and learning, a key limitation is the lack
of attention to individual learner attributes-
specifically, learning styles and preferences. Most
studies have assumed a uniform learning
preference among students, designing
instructional videos under the assumption that all
learners share a single learning preference and
learning style.

Furthermore, a broad range of research methods
could be employed to address the difficulty in
programming by analyzing how a blended
approach helps in assimilating programming
instruction, how ALEs work with learning style
models, especially for programming, and how
personalized instructional videos, tailored to
individual learning styles, can accommodate
diverse learning paces and cognitive differences.

4. RESEARCH METHODOLOGY

This study emphasizes the careful selection of
relevant past research. To examine various
programming language learning models,
instructional approaches, current trends, and
future directions in programming education, a
thorough review of relevant studies was
conducted. Key articles and papers were selected
that provide a comprehensive discussion of these
topics, focusing on their significance to the field

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4451

of programming education. These studies were
reviewed in detail to identify insights into
effective teaching strategies, challenges, and
innovative approaches specific to programming.
Citations from these sources have been carefully
integrated into the study, ensuring a strong
alignment with the objectives of the current
research area. This approach provides a solid
foundation for understanding the evolution of
programming education and highlights areas for
potential development in future instructional
methodologies.

A thorough literature review has been conducted
by examining articles, books, journals, case
studies, and conference papers, gathering relevant
information and data spanning from 2014 to 2023.
The selection process was conducted with careful
precision. Several guidelines are typically
followed in systematic reviews, particularly in
fields like medicine and education. The initial
phase, identification, involved searching for
research items most relevant to the study’s
predefined objectives. Next, in the screening
phase, a list of potential research items was
analyzed for content that precisely aligned with
the study’s objectives. Finally, the disclosure step
involved presenting the final review sample,
ensuring transparency by fully listing all research
items used. This three-step approach ensured the
review sample aligned with key attributes-
structure, transparency, and comprehensiveness.

To locate relevant items, databases like Google
Scholar and Crossref were employed, with
keywords and related terms used to identify,
categorize, and filter the studies. Titles, abstracts,
and main article content were examined carefully
for relevance, resulting in a final selection of
approximately 95 studies. These studies were
organized into themes including learning
environments, strategies, instructional
approaches, learning style models, cognitive
factors, and current trends in instructional
approaches for programming education.

While the review process was extensive, some
limitations were noted. This study primarily
focused on learning models and instructional
approaches within programming education,
leaving certain areas less explored. Specifically, a
deeper examination of various implementation

techniques and a comparative analysis of machine
learning and deep learning methods applied to
address cutting-edge challenges were not
covered. Future studies should consider these
aspects to provide a more comprehensive
understanding of programming education and
enhance the methodological rigor of systematic
reviews in this field. This expanded approach
would allow for a clearer perspective on emerging
technologies and their potential applications in
improving programming instruction.

5. TRENDS AND FUTURE DIRECTIONS

Existing educational technologies and
pedagogical methods were disrupted during the
post-COVID period, and new normal
technological advancements replaced them partly
or entirely. Blending multiple instructional
approaches evolved in online and/or e-learning
learning modes. The blended learning approach is
notable in the post-COVID period. It harnesses
the advantages of classroom teaching and the e-
learning mode of instructional delivery.
Subsequently, a noteworthy change in the
instructional video-based learning platforms also
increased exponentially. It gave birth to adaptive
environments that deliver instructional material
according to the learner’s preferences or choices.

5.1. Blended ALEs

Blended learning, a teaching approach that
integrates traditional classroom instruction with
online and mobile activities to support continuous
learning, offers distinct advantages over relying
solely on one mode of instructional delivery. This
formal education model incorporates digital and
online media while granting students some degree
of control over aspects such as timing, location,
pathway, or pace of learning. In traditional
programming courses, which often focus heavily
on theory with limited hands-on practice, teaching
beginners can be challenging due to the complex
nature of programming, varying student
characteristics, and standard teaching methods.
Implementing a blended learning approach offers
a promising solution to overcome these obstacles
in programming education. [91].

Blended learning has gained traction among
institutions and students seeking to enhance
programming education. Research indicates that

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4452

blended learning surpasses traditional
instructional methods in effectiveness and can
significantly enrich students’ educational
experiences [92]. Despite these benefits, a notable
gap exists in understanding and implementing
blended learning within introductory
programming courses considering learners’
learning preferences. To address this, integrating
Adaptive e-learning with blended teaching is a
better pedagogical technique that can be adopted
in programming learning. It provides flexibility
for learners at different paces when programming
is introduced. Adaptive e-learning involves
tailoring instructional content to match learners’
styles or preferences. These systems create
models based on each learner’s needs. This
adaptive approach is widely recognized for
enhancing learners’ performance and the overall
quality of the learning process [93]. Typically, an
adaptive e-learning environment includes three
key models: a) the Content model, which outlines

the structure of instructional material and learning
outcomes; b) the Instructional model, which
identifies and delivers personalized instructional
content; and c) the Learner model; which tracks
learner characteristics and responses to refine the
system [77]. continuously.

5.2. Learning style enabled instructional video
ALEs

Learning style is essential while designing and
delivering learning materials to learners. The
diverse nature of human beings is reflected in
their adoption of different learning preferences
and receptive perspectives. Learning style refers
[74] to how each person prefers to learn and
process information. It’s about understanding the
best way for an individual to acquire knowledge
and retain it. In e-learning, understanding your
learning style can impact how you process and
apply information effectively.

Figure 3: A General Model Of Learning Style Enabled Instructional Video Ales

In conventional adaptive learning environments,
the Instructional model delivers personalized
learning objects (LOs) that more or less match the
learner’s preference. LOs are usually presentation
slides, lecture notes, or textbook materials for ease
of construction. After the COVID-19 pandemic,
pedagogical approaches shifted, and conventional
LOs gave way to online and pre-recorded
instructional videos. According to the cognitive
paradigm of multimodal learning, visual and
auditory engagement plays a significant role in
assimilating educational information. Meta-

analyses have demonstrated that integrating
complementary information through auditory and
visual channels significantly enhances learning
outcomes compared to relying on a single channel
[94]. As a result, dual-channel processing allows
learners to absorb and retain information more
effectively, as the brain can handle verbal and visual
information simultaneously without overloading
one cognitive channel. Therefore, many e-learning
environments, particularly those focused on
programming education, leverage video content to
deliver instructional material [95]. Videos are

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4453

preferred over traditional text and audio-based
approaches because they combine visual elements
like code demonstrations and graphical
explanations with auditory instructions, creating a
richer, more engaging learning experience. This
multimodal approach helps learners understand
complex programming concepts more thoroughly
and retain information longer.

Existing literature [80-90] overlooked a crucial
learner attribute: each student’s learning style and
preference. These studies assumed that all students
shared a uniform learning preference while
watching and learning from instructional videos.
This assumption neglects the diverse ways in which
students absorb and process information. Different
learners may prefer visual aids, textual
explanations, auditory guidance, or a combination
of these methods. By not considering these varied
preferences, the studies fail to address students’
individual needs, potentially limiting the
effectiveness of instructional videos for a
significant portion of the learning audience.

Integrating individual learning preference
instructional videos in an ALE presents a highly
effective approach to personalized education [96,
97]. This method acknowledges the diverse ways
students process and absorb information, offering a
customized educational experience that adjusts to
each student’s unique preferences (Fig.3). For
instance, some students could gain more from
visual aids like diagrams and animations. In
contrast, others might find textual explanations or
auditory instructions more understandable within
the video learning mode. By incorporating these
varying instructional styles into an adaptive e-
learning platform, the system can dynamically
adjust the content delivery to match the specific
learning preferences of each student.

These integrations enhance learners’ engagement
and retention rates by providing a more intuitive
and accessible learning experience. Instead of a
one-size-fits-all approach, students receive content
in the format that best suits their cognitive and
perceptual strengths, leading to more effective
learning outcomes. This personalized approach can
also increase motivation and reduce frustration as
students interact with instructional materials that
resonate with their preferred learning style. Overall,
implementing individual learning preference

instructional videos within an adaptive e-learning
environment can significantly improve the quality
of education and student success rates.

6. OPEN RESEARCH ISSUES

Despite significant advancements in programming
education, several critical challenges remain
unaddressed, presenting numerous open research
opportunities. As learners come from diverse
backgrounds with varying cognitive abilities,
preferences, and motivations, existing instructional
methods often fail to provide personalized and
effective learning experiences. Key areas requiring
further exploration include the integration of
adaptive learning technologies, the development of
interdisciplinary curricula, the creation of
personalized learning materials, and the
improvement of collaborative and peer-assisted
learning methods. Addressing these open issues is
essential to overcome current limitations and
improve the overall effectiveness of programming
education.

6.1. Adaptive and personalized learning models

AI and machine learning have the potential to
revolutionize education by creating truly adaptive
learning systems that personalize the learning
experience based on the needs, preferences, and
progress of individual students. These systems can
dynamically adjust content, pace, and feedback to
match learners’ cognitive abilities and learning
styles. Machine learning algorithms can analyze
large datasets of student interactions to predict
difficulties, recommend appropriate resources, and
tailor assessments. Effective frameworks for
integrating adaptive systems with traditional
teaching should combine human expertise with AI-
driven insights. This ensures that educators
maintain control over the instructional process. At
the same time, they can benefit from real-time
analytics and personalized interventions provided
by AI. Hybrid models, where AI supports teachers
by automating routine tasks such as grading and
tracking progress, allow educators to focus on more
complex aspects of teaching, such as fostering
critical thinking and creativity. In addition, the
frameworks should emphasize transparency and
interpretability, allowing teachers and students to
understand how adaptive recommendations are
made, thus fostering trust in the system.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4454

6.2. Human-AI collaboration in programming
learning

The optimal balance between automated systems
and human educators lies in leveraging the
strengths of both to create a more effective and
engaging learning environment. Automated
systems excel at providing personalized content,
providing instant feedback, and analyzing large
amounts of student data to identify learning patterns
and potential difficulties. They can handle routine
tasks such as grade and progress tracking, allowing
educators to focus on higher-order skills such as
critical thinking, creativity, and emotional support.
However, human educators play a crucial role in
motivating learners, fostering a sense of
community, and adapting to nuanced social and
emotional cues that machines cannot fully interpret.
Achieving this balance involves integrating AI as a
supportive tool rather than a replacement, ensuring
that automation enhances, rather than diminishes,
the educator's role. Collaborative frameworks
should also provide educators with intuitive
interfaces to interpret AI-driven insights and allow
them to make informed decisions, maintaining a
human-centered approach to learning. Learning
Classifier Systems (LCS) can be utilized to
generate dynamic rules to achieve the optimal
balance, human-centered informed decisions
between automated systems and human educators.

6.3. Learner specific programming learning
video creation

Creating learner-specific programming learning
videos tailored to individual preferences poses
significant challenges for educators, making it an
open research question. Personalizing video
content requires adapting factors such as teaching
style, personalized examples, and difficulty level to
align with each learner's cognitive style, prior
knowledge, and learning speed. Producing such
customized videos manually from scratch is time-
consuming and resource-intensive. This highlights
the need for automated or semi-automated systems
that dynamically generate or adapt video content
based on learner profiles. Future research could
focus on developing AI-driven frameworks that use
natural language processing, video synthesis, and
machine learning to create personalized
instructional videos. Such systems could enable
educators to input high-level content, which the AI

would transform into tailored videos. Finally,
addressing the learners' specific needs while
significantly reducing the workload on educators.

7. LIMITATIONS

This section presents a few limitations that need to
be considered for contextualizing its findings. First,
the scope of the review is limited to programming
learning, which narrows its applicability to other
fields of education. While programming education
has its unique set of challenges and instructional
needs, the findings and proposed approaches may
not directly translate to other disciplines, such as
mathematics or language learning. Future research
should explore how the proposed methods might be
adapted or expanded for broader educational
contexts. Second, despite being generally
acknowledged in the field of education, learning
styles could not always precisely represent the
actual preferences or aptitudes of certain students.
Learning styles alone are insufficient for predicting
how a student learns best, as they can oversimplify
complex cognitive processes. As a result, while this
study identifies learning styles as one of the
potential path for improving programming
education, their usefulness in developing
personalised learning experiences may be limited if
they are used without accompanying cognitive or
behavioural data. Third, the availability of research
that integrates learning styles specifically with
programming education is relatively limited. This
lack of extensive prior work constrains the review’s
ability to draw robust conclusions and propose
well-supported frameworks. The study, therefore,
mainly compiles existing, isolated works rather
than synthesizing well-established models. Further
research is needed to build a comprehensive
understanding of how learning styles can be
effectively leveraged in programming pedagogy.
Lastly, the nature of this review is primarily a plain
literature survey, aimed at consolidating existing
research rather than providing a detailed critical
analysis. While this approach helps to map the
current landscape of programming education and
identify research gaps, it does not delve deeply into
evaluating the strengths and weaknesses of specific
methods. A more critical evaluation, which could
assess the comparative effectiveness of different
approaches and offer in-depth critiques, would
provide greater value for guiding future research
efforts. Addressing these limitations in future

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4455

studies could enhance the overall impact of
research on programming education by offering
more comprehensive insights and practical
solutions.

8. CONCLUSION

This review examines recent advancements in
programming learning models and instructional
approaches, providing an in-depth analysis of
programming learning environments, including
text-based, block-based, game-based, and visual
programming formats. A thorough evaluation of
instructional methods and learning style models has

also been conducted, highlighting the importance of
integrating various approaches to enhance learner
engagement, retention, and overall learning
experiences. Our findings suggest that combining
adaptive video learning environments with
individualized learning styles can significantly
improve online and e-learning formats for
programming education. Future work could extend
this review to explore specific techniques, such as
the learning style model for programming and
personalized instructional video models, which
promise to improve programming instruction and
learner outcomes.

REFERENCES

[1]. Mutanga MB. The Effect of Cognitive
Factors in Determining students’ Success in
Computer Programming. Journal of
Theoretical and Applied Information
Technology. 2020;98(17):3606–3618.

[2]. Weintrop D, Wilensky U. How block-based,
text-based, and hybrid block/text modalities
shape novice programming practices.
International Journal of Child-Computer
Interaction. 2018 Sep;17:83–92.
https://doi.org/10. 1016/j.ijcci.2018.04.005.

[3]. Repenning A. Moving Beyond Syntax:
Lessons from 20 Years of Blocks Programing
in AgentSheets. Journal of Visual Languages
and Sentient Systems. 2017 Jul;3(1):68–91.
https://doi.org/10.18293/vlss2017-010.

[4]. Repenning A, Sumner T. Agentsheets: a
medium for creating domain-oriented visual
languages. Computer. 1995 Mar;28(3):17–
25. https://doi.org/10.1109/2.366152.

[5]. Wong YS, Hayati MYM, Tan WH. A
propriety game-based learning game as
learning tool to learn object-oriented
programming paradigm. In: Serious Games:
Second Joint International Conference, JCSG
2016, Brisbane, QLD, Australia, September
26-27, 2016, Proceedings 2. Springer; 2016.
p. 42–54.

[6]. Asad K, Tibi M, Raiyn J. Primary School
Pupils’ Attitudes toward Learning
Programming through Visual Interactive
Environments. World Journal of Education.
2016 Oct;6(5). https://doi.org/10.5430/wje.
v6n5p20.

[7]. Weintrop D. Block-based programming in
computer science education.
Communications of the ACM. 2019
Jul;62(8):22–25.
https://doi.org/10.1145/3341221.

[8]. Malik SI, Al-Emran M, Mathew R, Tawafak
RM, Alfarsi G. Comparison of E-Learning,
M-Learning and Game-based Learning in
Programming Education – A Gendered
Analysis. International Journal of Emerging
Technologies in Learning (iJET). 2020
Aug;15(15):133. https://doi.org/10.3991/
ijet.v15i15.14503.

[9]. Mathrani A, Christian S, Ponder-Sutton A.
PlayIT: Game based learning approach for
teaching programming concepts. Journal of
Educational Technology & Society.
2016;19(2):5–17.

[10]. M P, N NM, Dakshina R, S S, R BS.
Learning Analytics: Game-based Learning
for Programming Course in Higher
Education. Procedia Computer Science.
2020;172:468–472.
https://doi.org/10.1016/j.procs.2020.05.143.

[11]. Rugelj J, Lapina M. Game design based
learning of programming. In: Proceedings of
SLET-2019–International Scientific
Conference Innovative Approaches to the
Application of Digital Technologies in
Education and Research; 2019. p. 20–23.

[12]. Chang CS, Chung CH, Chang JA. Influence
of problem-based learning games on
effective computer programming learning in
higher education. Educational Technology
Research and Development. 2020
Jun;68(5):2615–2634. https://doi.org/10.
1007/s11423-020-09784-3.

[13]. Holenko Dlab M, Hoic-Bozic N.
Effectiveness of game development-based
learning for acquiring programming skills in
lower secondary education in Croatia.
Education and Information Technologies.
2021 Mar;26(4):4433–4456.
https://doi.org/10. 1007/s10639-021-10471-
w.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4456

[14]. Hu Y, Su CY, Fu A. Factors influencing
younger adolescents’ intention to use
gamebased programming learning: A
multigroup analysis. Education and
Information Technologies. 2022
Mar;27(6):8203–8233. https:
//doi.org/10.1007/s10639-022-10973-1.

[15]. Tsai CY. Improving students’ understanding
of basic programming concepts through
visual programming language: The role of
self-efficacy. Computers in Human Behavior.
2019 Jun;95:224–232. https://doi.org/10.
1016/j.chb.2018.11.038.

[16]. Hu Y, Chen CH, Su CY. Exploring the
Effectiveness and Moderators of Block-
Based Visual Programming on Student
Learning: A Meta-Analysis. Journal of
Educational Computing Research. 2020
Jul;58(8):1467–1493.
https://doi.org/10.1177/0735633120945935.

[17]. Batiha Q, Sahari N, Aini N, Mohd N.
Adoption of Visual Programming
Environments in Programming Learning.
International Journal on Advanced Science,
Engineering and Information Technology.
2022 Sep;12(5):1921.
https://doi.org/10.18517/ ijaseit.12.5.15500.

[18]. Iskrenovic-Momcilovic O. Choice of visual
programming language for learning
programming. International Journal of
Computers. 2017;2.

[19]. Kesler A, Shamir-Inbal T, Blau I. Active
Learning by Visual Programming:
Pedagogical Perspectives of Instructivist and
Constructivist Code Teachers and Their
Implications on Actual Teaching Strategies
and Students’ Programming Artifacts.
Journal of Educational Computing Research.
2021 Jun;60(1):28–55.
https://doi.org/10.1177/
07356331211017793.

[20]. Dina NZ, Wuryanto E, Marjianto RS.
Evaluation on the Effectiveness of Visual
Learning Environment on Programming
Course From Students’ Perspectives. IIUM
Engineering Journal. 2019 Jun;20(1):100–
107. https://
doi.org/10.31436/iiumej.v20i1.993.

[21]. Han KW, Lee E, Lee Y. The Impact of a
PeerLearning Agent Based on Pair
Programming in a Programming Course.
IEEE Transactions on Education. 2010
May;53(2):318–327.
https://doi.org/10.1109/te.2009.2019121.

[22]. Ngatirin NR, Zainol Z, Fang WC. Mobile
Agile Peer Assisted Learning. In: 2016 3rd
International Conference on Computer and
Information Sciences (ICCOINS). IEEE;
2016. Available from: http://dx.doi.org/10.
1109/iccoins.2016.7783191.

[23]. Mart´ın-Ramos P, Lopes MJ, Lima da Silva
MM, Gomes PEB, Pereira da Silva PS,
Domingues JPP, et al. First exposure to
Arduino through peer-coaching: Impact on
students’ attitudes towards programming.
Computers in Human Behavior. 2017
Nov;76:51–58. https://doi.org/10.1016/j.chb.
2017.07.007.

[24]. Altintas T, Gunes A, Sayan H. A peerassisted
learning experience in computer
programming language learning and
developing computer programming skills.
Innovations in Education and Teaching
International. 2014 Dec;53(3):329–337.
https://doi.org/10.1080/
14703297.2014.993418.

[25]. Webb NM, Ender P, Lewis S.
ProblemSolving Strategies and Group
Processes in Small Groups Learning
Computer Programming. American
Educational Research Journal.
1986;23(2):243. https://doi.org/10.2307/
1162957.

[26]. Wang XM, Hwang GJ. A problem
posingbased practicing strategy for
facilitating students’ computer programming
skills in the team-based learning mode.
Educational Technology Research and
Development. 2017 Nov;65(6):1655–1671.
https://doi.org/10. 1007/s11423-017-9551-0.

[27]. Cabrera I, Villalon J, Chavez J. Blending
Communities and Team-Based Learning in a
Programming Course. IEEE Transactions on
Education. 2017 Nov;60(4):288–295. https:
//doi.org/10.1109/te.2017.2698467.

[28]. Hsu TC, Abelson H, Patton E, Chen SC,
Chang HN. Self-efficacy and behavior
patterns of learners using a real-time
collaboration system developed for group
programming. International Journal of
Computer-Supported Collaborative
Learning. 2021 Dec;16(4):559–582.
https://doi. org/10.1007/s11412-021-09357-
3.

[29]. Irwan I, Susanti W, Desnelita Y,
Gustientiedina G, Wongso F, Fudholi A.
Problem-based Collaborative Learning
Strategy in Computer Programming. SAR

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4457

Journal - Science and Research. 2022 Mar;p.
40–45. https://doi. org/10.18421/sar51-05.

[30]. Chorfi A, Hedjazi D, Aouag S, Boubiche D.
Problem-based collaborative learning
groupware to improve computer
programming skills. Behaviour &
Information Technology. 2020
Jul;41(1):139–158. https:
//doi.org/10.1080/0144929x.2020.1795263.

[31]. Bowman NA, Jarratt L, Culver KC, Segre
AM. How Prior Programming Experience
Affects Students’ Pair Programming
Experiences and Outcomes. In: Proceedings
of the 2019 ACM Conference on Innovation
and Technology in Computer Science
Education. ITiCSE ’19. ACM; 2019.
Available from:
http://dx.doi.org/10.1145/3304221.3319781.

[32]. Wei X, Lin L, Meng N, Tan W, Kong SC,
Kinshuk. The effectiveness of partial pair
programming on elementary school students’
Computational Thinking skills and self-
efficacy. Computers & Education. 2021
Jan;160:104023. https://doi.org/10.
1016/j.compedu.2020.104023.

[33]. Liu Y, Tong Y, Yang Y. The application of
mind mapping into college computer
programming teaching. Procedia Computer
Science. 2018;129:66–70.

[34]. Zhao L, Liu X, Wang C, Su YS. Effect of
different mind mapping approaches on
primary school students’ computational
thinking skills during visual programming
learning. Computers & Education. 2022
May;181:104445. https://doi.org/10.1016/j.
compedu.2022.104445.

[35]. Su YS, Shao M, Zhao L. Effect of Mind
Mapping on Creative Thinking of Children in
Scratch Visual Programming Education.
Journal of Educational Computing Research.
2021 Dec;60(4):906–929. https://doi.org/10.
1177/07356331211053383.

[36]. Ismail MN, Ngah NA, Umar IN. The Effects
of Mind Mapping with Cooperative Learning
on Programming Performance, Problem
Solving Skill and Metacognitive Knowledge
among Computer Science Students. Journal
of Educational Computing Research. 2010
Jan;42(1):35–61. https://doi.org/10.2190/ec.
42.1.b.

[37]. Gul S, Asif M, Nawaz Z, Haris Aziz M,
Khurram S, Qaiser Saleem M, et al.
Sustainable Learning of Computer
Programming Languages Using Mind
Mapping. Intelligent Automation & Soft

Computing. 2023;36(2):1687–1697.
https://doi.org/10. 32604/iasc.2023.032494.

[38]. Nathoo A, Gangabissoon T, Bekaroo G.
Exploring the Use of Tangible User
Interfaces for Teaching Basic Java
Programming Concepts: A Usability Study.
In: 2019 Conference on Next Generation
Computing Applications (NextComp). IEEE;
2019. Available from:
http://dx.doi.org/10.1109/
nextcomp.2019.8883563.

[39]. Caceres PC, Venero RP, Cordova FC.
Tangible programming mechatronic interface
for basic induction in programming. In: 2018
IEEE Global Engineering Education
Conference (EDUCON). IEEE; 2018.
Available from: http://dx.doi.org/10.1109/
educon.2018.8363226.

[40]. Vidarte JDT, Rinderknecht C, Kim JI, Kim
H. A Tangible Interface for Learning
Recursion and Functional Programming. In:
2010 International Symposium on
Ubiquitous Virtual Reality. IEEE; 2010.
Available from:
http://dx.doi.org/10.1109/isuvr.2010.18.

[41]. Chis AE, Moldovan AN, Murphy L, Pathak
P, Muntean CH. Investigating flipped
classroom and problem-based learning in a
programming module for computing
conversion course. Journal of Educational
Technology & Society. 2018;21(4):232–247.

[42]. Ta¸spolat A, Ozdamli F, Soykan E. Pro- ¨
gramming Language Training With the
Flipped Classroom Model. SAGE Open.
2021 Apr;11(2):215824402110214. https://
doi.org/10.1177/21582440211021403.

[43]. Ozyurt H, ̈ Ozyurt ̈ O. Analyzing the effects
of ¨ adapted flipped classroom approach on
computer programming success, attitude
toward programming, and programming self-
efficacy. Computer Applications in
Engineering Education. 2018;26(6):2036–
2046.

[44]. C¸ akıro˘glu U, ¨ Ozt¨urk M. Flipped class-
¨ room with problem based activities:
Exploring self-regulated learning in a
programming language course. JSTOR;
2017. .

[45]. Yan OS, Cheng G. Exploring the impact of
flipped classroom on students’ acceptance of
programming in secondary education. In:
2017 IEEE 6th International Conference on
Teaching, Assessment, and Learning for
Engineering (TALE). IEEE; 2017. Available

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4458

from: http://dx.doi.org/10.1109/
tale.2017.8252341.

[46]. Ozyurt ¨ O, ¨ Ozyurt H. A qualitative study ¨
about enriching programming and algorithm
teaching with flipped classroom approach.
Pegem Egitim ve Ogretim Dergisi.
2017;7(2).

[47]. Pattanaphanchai J. An Investigation of
Students’ Learning Achievement and
Perception using Flipped Classroom in an
Introductory Programming course: A Case
Study of Thailand Higher Education. Journal
of University Teaching and Learning
Practice. 2019 Dec;16(5):36–53.
https://doi.org/10.53761/ 1.16.5.4.

[48]. Law KMY, Lee VCS, Yu YT. Learning
motivation in e-learning facilitated computer
programming courses. Computers &
Education. 2010 Aug;55(1):218–228. https:
//doi.org/10.1016/j.compedu.2010.01.007.

[49]. Zın AM, Idrıs S, Subramanıam NK.
Improving learning of programming through
elearning by using asynchronous virtual pair
programming. Turkish Online Journal of
Distance Education. 2006;7(3):162–173.

[50]. Chookaew S, Panjaburee P, Wanichsan D,
Laosinchai P. A Personalized E-Learning
Environment to Promote Student’s
Conceptual Learning on Basic Computer
Programming. Procedia - Social and
Behavioral Sciences. 2014 Feb;116:815–
819. https://doi.
org/10.1016/j.sbspro.2014.01.303.

[51]. Malik SI, Mathew R, Al-Nuaimi R, Al-
Sideiri A, Coldwell-Neilson J. Learning
problem solving skills: Comparison of E-
learning and M-learning in an introductory
programming course. Education and
Information Technologies. 2019
Mar;24(5):2779–2796. https:
//doi.org/10.1007/s10639-019-09896-1.

[52]. Tundjungsari V. E-learning model for
teaching programming language for
secondary school students in Indonesia. In:
2016 13th International Conference on
Remote Engineering and Virtual
Instrumentation (REV). IEEE; 2016.
Available from: http://dx.doi.
org/10.1109/rev.2016.7444477.

[53]. Mutiawani V, Juwita. Developing e-learning
application specifically designed for learning
introductory programming. In: 2014
International Conference on Information
Technology Systems and Innovation
(ICITSI). IEEE; 2014. Available from:

http://dx.doi.org/10.
1109/icitsi.2014.7048250.

[54]. Nariman D. In: Impact of the Interactive e-
Learning Instructions on Effectiveness of a
Programming Course. Springer International
Publishing; 2020. p. 588–597. Available
from: http://dx.doi.org/10.1007/ 978-3-030-
50454-0 61.

[55]. Troussas C, Krouska A, Sgouropoulou C. A
Novel Teaching Strategy Through Adaptive
Learning Activities for Computer
Programming. IEEE Transactions on
Education. 2021 May;64(2):103–109.
https://doi.org/10. 1109/te.2020.3012744.

[56]. Gavrilovi´c N, Arsi´c A, Domazet D, Mishra
A. Algorithm for adaptive learning process
and improving learners’ skills in Java
programming language. Computer
Applications in Engineering Education. 2018
Aug;26(5):1362–1382. https://doi.org/10.
1002/cae.22043.

[57]. Chrysafiadi K, Virvou M. Fuzzy Logic for
Adaptive Instruction in an E-learning
Environment for Computer Programming.
IEEE Transactions on Fuzzy Systems. 2015
Feb;23(1):164–177. https://doi.org/10.1109/
tfuzz.2014.2310242.

[58]. Chrysafiadi K, Virvou M, Sakkopoulos E.
In: Optimizing Programming Language
Learning Through Student Modeling in an
Adaptive Web-Based Educational
Environment. Springer International
Publishing; 2019. p. 205–223. Available
from: http://dx.doi.org/ 10.1007/978-3-030-
13743-4 11.

[59]. Chrysafiadi K, Virvou M, Tsihrintzis GA,
Hatzilygeroudis I. An Adaptive Learning
Environment for Programming Based on
Fuzzy Logic and Machine Learning.
International Journal on Artificial
Intelligence Tools. 2023 Aug;32(05).
https://doi.org/10.1142/
s0218213023600114.

[60]. Luo J, Wang T. Analyzing Students’
Behavior in Blended Learning Environment
for Programming Education. In: Proceedings
of the 2020 The 2nd World Symposium on
Software Engineering. WSSE 2020. ACM;
2020. Available from: http://dx.doi.org/10.
1145/3425329.3425346.

[61]. Tadlaoui MA, Chekou M. A blended
learning approach for teaching python
programming language: towards a post
pandemic pedagogy. International Journal of
Advanced Computer Research. 2021

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4459

Jan;11(52):13–22. https://
doi.org/10.19101/ijacr.2020.1048120.

[62]. Mabni Z, Shamsudin N, Aliman S, Abdul
Latif R. Factors Influencing Students’
Performance in the First Computer
Programming Course Taught Using Blended
Learning Approach. Environment-Behaviour
Proceedings Journal. 2020 Dec;5(SI3):181–
186.
https://doi.org/10.21834/ebpj.v5isi3.2559.

[63]. Srivatanakul T. Emerging from the
pandemic: instructor reflections and students’
perceptions on an introductory programming
course in blended learning. Education and
Information Technologies. 2022
Nov;28(5):5673–5695. https://doi.org/10.
1007/s10639-022-11328-6.

[64]. Murai Y, Muramatsu H. Application of
creative learning principles within blended
teacher professional development on
integration of computer programming
education into elementary and middle school
classrooms. Information and Learning
Sciences. 2020 Jun;121(7/8):665–675.
https://doi.org/ 10.1108/ils-04-2020-0122.

[65]. F¨orster A, Dede J, Udugama A, F¨orster A,
Helms D, Kniefs L, et al. A blended learning
approach for an introductory computer
science course. Education Sciences.
2021;11(8):372.

[66]. Ya˘gci M. A Web-based Blended Learning
Environment for Programming Languages:
Students’ Opinions. Journal of Education and
Training Studies. 2017 Feb;5(3):211.
https://doi.org/10.11114/jets.v5i3.2118.

[67]. Hwang GJ, Sung HY, Chang SC, Huang XC.
A fuzzy expert system-based adaptive
learning approach to improving students’
learning performances by considering
affective and cognitive factors. Computers
and Education: Artificial Intelligence.
2020;1:100003. https:
//doi.org/10.1016/j.caeai.2020.100003.

[68]. Msane J, Mutanga B, Chani T. Students’
Perception of the Effect of Cognitive Factors
in Determining Success in Computer
Programming: A Case Study. International
Journal of Advanced Computer Science and
Applications. 2020;11(7). https://doi.org/10.
14569/ijacsa.2020.0110724.

[69]. Dirzyte A, Vijaikis A, Perminas A,
Rimasiute-Knabikiene R, Kaminskis L,
Zebrauskas G. Computer Programming
ELearners’ Personality Traits, Self-Reported
Cognitive Abilities, and Learning Motivating

Factors. Brain Sciences. 2021
Sep;11(9):1205.
https://doi.org/10.3390/brainsci11091205.

[70]. Talsma K, Sch¨uz B, Norris K.
Miscalibration of self-efficacy and academic
performance: Self-efficacy ̸= self-fulfilling
prophecy. Learning and Individual
Differences. 2019 Jan;69:182–195.
https://doi.org/10.1016/j. lindif.2018.11.002.

[71]. Kanaparan G, Cullen R, Mason D. Effect of
Self-efficacy and Emotional Engagement on
Introductory Programming Students.
Australasian Journal of Information Systems.
2019 Jul;23. https://doi.org/10.3127/ajis.
v23i0.1825.

[72]. Ismayilova K, Klassen RM. Research and
teaching self-efficacy of university faculty:
Relations with job satisfaction. International
Journal of Educational Research.
2019;98:55–66. https://doi.org/10.1016/j.
ijer.2019.08.012.

[73]. Aivaloglou E, Hermans F. Early
Programming Education and Career
Orientation: The Effects of Gender, Self-
Efficacy, Motivation and Stereotypes. In:
Proceedings of the 50th ACM Technical
Symposium on Computer Science Education.
SIGCSE ’19. ACM; 2019. Available from:
http://dx.doi.org/10. 1145/3287324.3287358.

[74]. Honey P, Mumford A, et al. The manual of
learning styles. vol. 3. Peter Honey
Maidenhead; 1992.

[75]. Felder RM, Silverman LK, et al. Learning
and teaching styles in engineering education.
Engineering education. 1988;78(7):674–681.

[76]. Chen SY, Wang JH. Individual differences
and personalized learning: a review and
appraisal. Universal Access in the
Information Society. 2021;20(4):833–849.

[77]. Ali N, Eassa F, Hamed E. Personalized
learning style for adaptive e-learning system.
International Journal of Advanced Trends in
Computer Science and Engineering.
2019;8(1):223–230. https://doi.org/10.
30534/ijatcse/2019/4181.12019.

[78]. Fleming N, Mills C. VARK: A guide to
learning styles. 2001;.

[79]. El Bachari E, Abdelwahed E, El Adnani M.
Design of an adaptive e-learning model based
on learner’s personality. Ubiquitous
Computing and Communication Journal.
2010;5(3):1–8.

[80]. Noetel M, Griffith S, Delaney O, Sanders T,
Parker P, del Pozo Cruz B, et al. Video
improves learning in higher education: A

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4460

systematic review. Review of educational
research. 2021;91(2):204–236. https://doi.
org/10.31234/osf.io/kynez.

[81]. Sabli´c M, Mirosavljevi´c A, Skugor A.
Video- ̌ based learning (VBL)—past, present
and future: An overview of the research
published from 2008 to 2019. Technology,
Knowledge and Learning. 2021;26(4):1061–
1077. https: //doi.org/10.1007/s10758-020-
09455-5.

[82]. Hsu FH, Lin IH, Yeh HC, Chen NS. Effect
of Socratic Reflection Prompts via video-
based learning system on elementary school
students’ critical thinking skills. Computers
& Education. 2022;183:104497. https://doi.
org/10.1016/j.compedu.2022.104497.

[83]. Richter E, Hußner I, Huang Y, Richter D,
Lazarides R. Video-based reflection in
teacher education: Comparing virtual reality
and real classroom videos. Computers &
Education. 2022;190:104601.
https://doi.org/10.
1016/j.compedu.2022.104601.

[84]. Kilbury M, B¨ohnke A, Thiel F. Producing
Staged Videos for Teacher Education:
Development and Content Validation of
Video Scripts on the Topic of Handling
Classroom Disruptions. Education Sciences.
2023;13(1):56. https://doi.org/10.
3390/educsci13010056.

[85]. Lin YT, Yeh MKC, Tan SR. Teaching
programming by revealing thinking process:
Watching experts’ live coding videos with
reflection annotations. IEEE Transactions on
Education. 2022;65(4):617–627. https://doi.
org/10.1109/te.2022.3155884.

[86]. Breslyn W, Green AE. Learning science with
YouTube videos and the impacts of Covid19.
Disciplinary and interdisciplinary science
education research. 2022;4(1):1–20. https://
doi.org/10.1186/s43031-022-00051-4.

[87]. Scagnoli NI, Choo J, Tian J. Students’
insights on the use of video lectures in online
classes. British Journal of Educational
Technology. 2019;50(1):399–414.

[88]. Liao CW, Chen CH, Shih SJ. The
interactivity of video and collaboration for
learning achievement, intrinsic motivation,
cognitive load, and behavior patterns in a
digital gamebased learning environment.
Computers & Education. 2019;133:43–55.
https://doi.org/
10.1016/j.compedu.2019.01.013.

[89]. Wachtler J, Hubmann M, Z¨ohrer H, Ebner
M. An analysis of the use and effect of

questions in interactive learning-videos.
Smart Learning Environments. 2016;3(1):1–
16. https:// doi.org/10.1186/s40561-016-
0033-3.

[90]. Kleftodimos A, Evangelidis G. Using open
source technologies and open internet
resources for building an interactive video
based learning environment that supports
learning analytics. Smart Learning
Environments. 2016;3:1–23.
https://doi.org/10.1186/ s40561-016-0032-4.

[91]. Demaidi MN, Qamhieh M, Afeefi A.
Applying blended learning in programming
courses. IEEE Access. 2019;7:156824–
156833. https:
//doi.org/10.1109/access.2019.2949927.

[92]. Alammary A. Blended learning models for
introductory programming courses: A
systematic review. PloS one.
2019;14(9):e0221765. https:
//doi.org/10.1371/journal.pone.0221765.

[93]. Kolekar SV, Pai RM, MM MP. Prediction of
Learner’s Profile Based on Learning Styles in
Adaptive E-learning System. International
Journal of Emerging Technologies in
Learning. 2017;12(6).
https://doi.org/10.3991/ijet. v12i06.6579.

[94]. Mayer RE. Applying the science of learning:
evidence-based principles for the design of
multimedia instruction. American
psychologist. 2008;63(8):760.
https://doi.org/10. 1037/0003-066x.63.8.760.

[95]. Sanal Kumar TS, Thandeeswaran R. A
general model for an instructional video-
based personalized programming learning
environment and its practical implications.
In: 2023 12th International Conference on
Advanced Computing (ICoAC); 2023. p. 1–
6.

[96]. T S SK, Thandeeswaran R. Adapting
videobased programming instruction: An
empirical study using a decision tree learning
model. Education and Information
Technologies. 2024
Jan;https://doi.org/10.1007/ s10639-023-
12390-4. [97] Sanal Kumar TS,
Thandeeswaran R. An improved adaptive
personalization model for instructional
video-based e-learning environments.
Journal of Computers in Education. 2024
Jan;https://doi.org/10.1007/ s40692-023-
00310-x.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4461

ABBREVIATIONS

The following abbreviations are shown in Table.1 are used in this manuscript.

Table 1: Abbreviations

Abbreviations Meaning

BI Behavioral Intention

CBS-MM Construct By Self Mind Mapping

CL Cooperative Learning

CoL Community of inquiry learning framework

COS-MM Construct-On Scaffold Mind Mapping

CS Computer Science

CT Computational Thinking

DP Dynamic Programming

FC Flipped Classroom

FSLSM Felder Silverman Learning Style Model

FYO Follow Your Objective

GBL Game-Based Learning

GUI Graphical User Interface

IDE Integrated Development Environment

ITS Intelligent Tutoring System

LO Learning Object

MAI MIT App Inventor

MBTI Myers-Briggs Type Indicator

MIT Massachusetts Institute of Technology

MMCL Mind Mapping Combined with Cooperative Learning

PAL Peer Assisted Learning

PASS Programming Assignment aSsessment System

PBL Problem-Based Learning

RBT Revised Bloom Taxonomy

TBL Team-Based Learning

TUI Tangible User Interface

VARK Visual, Auditory, Read/Write, and Kinesthetic

VPL Visual Programming Language

VPP Virtual Pair Programming

