
 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4310

EDGE LEVEL COMPLEX EVENT PROCESSING AND
OPTIMISATION BASED FOG LEVEL LOAD BALANCING

MECHANISM IN SOFTWARE DEFINED NETWORK

SARKARSINHA HARSINHA RAJPUT*1, DR. MANOJ EKNATH PATIL2

*1Ph.D. Research Scholar, Department of Computer Engineering, SSBT’s College of Engineering

& Technology, Jalgaon, Maharashtra, 425001, India.
2Associate Professor, Department of Computer Engineering, SSBT’s College of Engineering

& Technology, Jalgaon, Maharashtra, 425001, India.

Email: *1bs.rajput26@gmail.com, 2mepatil@gmail.com

ABSTRACT

This study uses an efficient transmission model based on the Hybrid Meta-heuristic Model to enhance data
transfer by reducing time complexity. Initially, data is moved into the Complex Event Processing (CEP),
which is positioned between the fog layer and the IoT layer. In edge IoT devices, complex event processing
comprises real-time analysis, correlation, and interpretation of continuous data streams generated by sensors
and edge devices. It seeks to identify significant trends or intricate occurrences in various data streams in
order to facilitate quick decisions or immediate reactions. After CEP, a multi-tier priority queue-based model
is used to attain priority-aware task scheduling. After the arrival of all the tasks, each task is sorted into slots
based on its category. High-priority tasks are completed first due to their preference over lower-priority slots.
A software-defined network's optimal resource utilization and task response time are guaranteed by an
effective load-balancing method called Hybrid Pigeon Cat Search Optimization Algorithms (HPC_SOA).
Arranging tasks based on their availability, capacity, proximity, and energy efficiency may optimize the fog
nodes' resource utilization and energy usage. In the evaluation, the proposed approach has consumed 22051
Kw/h of energy.

Keywords: Complex Event Processing, Priority Queue Approach, Pigeon Optimization, Cat Search
Optimization, Software-Defined Network.

1. INTRODUCTION

Large amounts of data are being produced
as industrial processes become more digital, and the
complexity of the data is also growing. The
employees must be backed by technology in order to
extract meaningful information from the massive
amounts of created data, as the complexity of the
data exceeds human comprehension [1]. Automated
techniques for analyzing different types of data
processing were needed for human interpretation.
Due to the necessity of handling a growing volume
of data and promptly responding to data triggers,
real-time analytics is becoming progressively vital
for enterprises and social applications [2]. The real-
time schemes should have the following crucial
features for application in industrial fields: low
latency, high availability and Horizontal scalability
[3]. Intelligent data handling and analysis are

required to achieve near-real-time manufacturing
and logistics process monitoring and control [4].

This led to the development of Complex
Event Processing (CEP), which enables near-real-
time processing of massive data streams [5, 6]. CEP
refers to the tactics, instruments, and processes used
to handle events immediately. CEP's primary
purpose is to detect complex event patterns in data
streams from sensors and other sources [7]. The
basic goal of CEP systems is to create rule forms for
similar occurrences based on semantic and spatial
correlations. CEP engines rely exclusively on these
rules, the vast majority of which are defined by
subject matter experts [8, 9]. The complexity of
defining and deriving rules is influenced by the
industrial procedure and scenario. As a result, one of
the limitations that complicates CEP integration and
implementation is expert-based rule formulation
[10].

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4311

The network structure has become
increasingly important in recent years due to the
rapid growth of traffic rules and network quality,
which has caused the network supplies to move
quickly [11]. Due to their rigidity, traditional
network topologies continue to face challenges in
adapting to the dynamic nature of contemporary
networks and keeping pace with evolving
requirements [12, 13]. Developers created Software-
Defined Networking (SDN) to meet the requirement
for adaptable networks [14]. SDN enables a more
adaptive, scalable, and cost-effective network
architecture by separating the control and data planes
[15]. The control planes' centralized SDN controller
is in charge of packet routing [16]. The data plane is
a layer of infrastructure that includes networked
forwarding devices such as SDN switches [17].
For SDN-related technologies to be applied
effectively, the networking elements must include
software in physical architecture [18]. It is the
perfect environment for load-balancing
implementation because the controller gives
information about the network resources that may be
employed for load optimization [19]. To avoid
network overload, load balancing (LB) is a technique
that uses many resources to handle a single
operation. In general, LB aims to optimize network
traffic without reducing response time and
throughput. Load balancing techniques are reputably
imprecise in modern networks, but in SDN, they are
distinguished by their precision and excellent
efficiency [20].

1.1 Motivation

The rapid expansion of IoT applications
and the increasing demand for real-time data
processing have underscored the importance of
efficient load balancing and CEP in edge and fog
computing environments. Recent literature from
2024 highlights several challenges and
advancements in this domain, justifying the need for
continued research and innovation. Fog computing
serves as an intermediary layer between the cloud
and IoT devices, aiming to reduce latency and
improve response times. However, the limited
resources of fog nodes pose significant challenges in
meeting the demands of resource-intensive
applications. Efficient load balancing is crucial to
prevent overloads and ensure optimal resource
utilization. The dynamic nature of IoT applications,
characterized by fluctuating workloads and diverse
device capabilities, necessitates adaptive scheduling
mechanisms. Traditional static load balancing
approaches are inadequate in such environments,

leading to suboptimal performance and increased
latency.

The incorporation of AI techniques, such as
deep reinforcement learning and hybrid optimization
algorithms, has shown promise in enhancing load
balancing strategies. These approaches enable
systems to learn and adapt to changing conditions,
improving overall efficiency and response times. As
fog computing environments handle sensitive data,
ensuring secure data transmission and processing is
paramount. Additionally, energy efficiency remains
a critical concern, especially for battery-powered
edge devices. Recent studies have proposed models
that address both security and energy consumption,
highlighting the need for holistic solutions.
Given these challenges, there is a pressing need for
advanced load balancing and CEP mechanisms that
can operate efficiently in dynamic, resource-
constrained, and heterogeneous fog computing
environments. The development of hybrid
optimization algorithms, such as the proposed
Hybrid Pigeon Cat Search Optimization Algorithm
(HPC_SOA), aims to address these issues by
combining the strengths of multiple AI techniques.
Such approaches can lead to improved resource
allocation, reduced latency, enhanced security, and
better energy efficiency, ultimately supporting the
growing demands of IoT applications. By building
upon the insights from recent literature, this study
seeks to contribute to the advancement of load
balancing and CEP strategies in fog computing,
ensuring that future systems are more robust,
adaptive, and capable of meeting the evolving needs
of real-time data processing. The main contributions
of the paper are given as follows.

 To introduce an edge-level complex event
processing and optimization-based fog
level load balancing mechanism in SDN

 To present a Complex Event Processing
(CEP) that entails the real-time analysis,
correlation and interpretation of continuous
streams of data produced by sensors and
edge devices.

 To deploy a Multi-tier priority queue-based
model for attaining priority-aware task
scheduling.

 To implement the Hybrid Pigeon Cat
Search Optimization Algorithms
(HPC_SOA) method to build an efficient
load balancing mechanism.
In real-time IoT systems, not all tasks are

equally critical. CEP enables early identification and
categorization of events into simple or complex tasks
based on contextual parameters like soil moisture or

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4312

temperature. To handle dynamic data streams and
maintain processing speed, the CEP module was
designed with rule-based logic focusing on frequent
event patterns relevant to industrial use cases (e.g.,
agriculture, monitoring). Once tasks are classified,
scheduling must ensure that time-sensitive tasks are
prioritized without starving less critical ones. A
multi-tier non-preemptive queue ensures fairness
and deadline sensitivity.

Utilization factor and task characteristics (e.g.,
arrival rate, frequency) were used to assign tasks to
queues. Task aging and queue rotation were used to
prevent starvation and ensure throughput.
Traditional optimization methods struggle with
either convergence speed or solution quality.
HPC_SOA combines the exploration ability of
Pigeon Optimization with the local refinement of Cat
Search to balance tasks across fog nodes efficiently.
Management of Factors: Fitness functions were
carefully formulated to incorporate energy usage,
response time, proximity, and resource availability.
The hybrid algorithm dynamically adjusted
parameters (like search range and memory pool) to
adapt to workload fluctuations. Most prior works
only address specific components (e.g., controller
load balancing, or event filtering). To validate
practicality, experiments were conducted on a real-
world dataset rather than synthetic data, offering
realistic variance in workloads and resource
constraints. Parameters such as CPU usage,
migration time, energy, and response time were
closely tracked across different optimization
techniques (WOA, SMO, GACO) to ensure a fair
comparative analysis.

The paper is organized from Section 1 as
the introduction of SDN, and the literature review is
given in Section 2. In section 3, the proposed
methodology is described, and its evaluation results
are given in section 4. The conclusion and future
scope are provided in the final section 5.

2. RELATED WORK

This section provides a detailed overview
of techniques and drawbacks in the existing works
on designing an edge-level complex event
processing.

For Monitoring the Real-Time IoT, Lan et
al. [21] suggested a Universal Edge-Based Complex
Event Processing Mechanism. To simplify event
modelling, give a defined hierarchical complex
event model made up of raw, simple, as well
as complex events. The paradigm supports complex

time as well as space semantics, allowing
programmers to construct flexible, complicated
events. A CEP system design was established on the
network edge, positioned between cloud
applications and terminal sensing devices. The CEP
rule logic scripts can be linked to the complicated
event description in order to quickly identify any
potential anomalous events. The CEP was tiny
enough for individual usage and operates on a
mobile device.

For Intelligent Agriculture, da Costa
Bezerra et al. [22] introduced a Handling
Complicated Events in Internet of Things Systems
Based on Fog. The new sensor nodes in a network
are connected to a Fog node based on the type of data
as well as Euclidean distance among them, and
utilizing geolocation and context-aware algorithms.
This can run simulations in several situations with
various network designs and densities to assess the
concept. There were some issues on a potential
security basis.

Xu et al. [23] suggested Achieving
Controller Load Balance in Distributed Software-
Defined Networks via Dynamic Switch Migration.
To achieve load balancing between SDN controllers
with minimal migration costs, the balanced
controller (BalCon) as well as BalConPlus SDN
switch migration strategies should be suggested.
BalCon works well in situations when the network
does not need switch requests to be processed in a
serial fashion. BalConPlus migrates a small number
of switches with minimum calculation overhead,
significantly lowering the load imbalance between
SDN controllers.

A software-defined network controller
adaptive load balancing technique was presented by
Priyadarsini et al. [24]. In this study, several
switches are migrated from source controllers to
target controllers using the self-adaptive load
balancing (SALB) technique, which dynamically
balances load among different controllers. The
ability to disperse load under high load conditions
using the estimated distance among target
controllers and switches. This previous study has
significant limitations due to its complexity and cost.

For Several Controllers in Software-
Defined Networking, Li et al. [25] introduced a
Fuzzy Satisfaction-Based Load Balancing Method.
First, the balancing judgment matrix as well as
switch selection degree were introduced to select the
transfer of domain as well as migrating switches for
controller load monitoring. Second, the migration
cost and load balancing rate were considered to be
the key load balancing factors. Third, the model was

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4313

solved in a short amount of time by choosing the
immigration domain using the enhanced ant colony
algorithm. The main limitation of the work was

handling accurate data was impossible. The abstract
view of existing works and their disadvantages are
presented in Table 1.

Table 1: Analysis of existing works and its drawbacks

Author name and

Reference

Approach used

Performance

Disadvantages

Lan et al. [21] Universal Edge-Based
Complex Event

Processing Mechanism

Throughput
achieved by the
approach is 5.88

Mbps

Relatively high cost

da Costa Bezerra et al.
[22]

Euclidean distance and
context-aware technique

Attain 98% accuracy There were some issues on a
potential security basis.

Xu et al. [23] BalCon and BalConPlus

migration strategy
Have 60% of CPU

load
Dramatically reducing the

load imbalance among SDN
controllers.

Priyadarsini et al. [24] SALB Provide 8.2Mbps of
throughput

Complexity and cost were
major limitations in this

existing work.
Li et al. [25] Fuzzy Satisfaction-Based

Load Balancing Method
The average

response time of
controllers by about

0.33 s

Handling accurate data was
impossible.

From the analysis of existing models, these

models have demerits, like relatively high cost in
implementation. Some models have issues on a
potential security basis, and some have dramatically
reduced the load imbalance among SDN controllers.
Moreover, complexity and cost were major
limitations in this existing work. On the other hand,
handling accurate data was impossible. Hence, the
proposed model has been implement to overcome
the existing flaws.

2.1 Research Gap and Problem Statement

Despite the significant advancements in
edge computing, fog computing, and Software
Defined Networking (SDN), several limitations
continue to persist in the existing load balancing and
event processing techniques. Most existing works
focus either on real-time event processing or on load
balancing in SDN-based systems, but seldom
integrate both into a unified framework. This
disjointed approach leads to inefficiencies in task
scheduling and decision-making at the fog and edge
layers.

Techniques like BalCon, SALB, or fuzzy
satisfaction models tend to rely on predefined rules
or lack adaptability, making them ineffective in

highly dynamic environments with fluctuating
workloads and heterogeneous resources.

Although heuristic methods like Ant
Colony or Genetic Algorithms are used, they often
suffer from convergence issues and lack global
optimization capabilities. There is a lack of
comprehensive hybrid meta-heuristic models that
intelligently combine exploration and exploitation
for optimized task distribution.

Existing models do not fully utilize context-
based task categorization for priority-aware
scheduling. This leads to increased task migration,
energy consumption, and delayed response time.
Based on the identified gaps, the central research
question addressed by this study is "How can an
integrated, hybrid optimization-based model
combining Complex Event Processing and priority-
aware scheduling enhance task allocation and load
balancing in a fog-enabled SDN environment to
reduce energy consumption, migration time, and
response delay?" This work addresses the gap by
proposing a novel HPC_SOA integrated with CEP
and a Multi-tier Priority Queue Scheduling system.
This design ensures efficient task categorization,
reduced time complexity, intelligent load balancing,
and optimal resource utilization in dynamic IoT
environments.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4314

3. PROPOSED METHODOLOGY

The rapid development of technology,
along with cheaper costs and more connection
capacity, have contributed to the IoT's enormous rise
in popularity. Infrastructure and data expansion must
be matched by a software architecture that facilitates
their exploitation. It is challenging to find a software
solution that fully utilizes contextual and situational
information processing despite numerous proposals
focusing on the edge and fog levels. This study uses
an efficient transmission model based on the Hybrid
Meta-heuristic Model to enhance data transfer while
reducing time complexity. The schematic
representation of the process flow of the suggested
approach is shown in Figure 1.

A publicly accessible dataset was used to
acquire the data. Initially, the data is moved into the
CEP, which is positioned between the fog layer and
the IoT layer. Alert will be displayed after every
sample of the dataset is processed. In edge IoT
devices, complex event processing entails the real-
time analysis, correlation and interpretation of
continuous streams of data produced by sensors and
edge devices. It seeks to identify significant trends
or intricate occurrences in various data streams in

order to facilitate quick decisions or immediate
reactions. After CEP, a multi-tier priority queue-
based model is used to attain priority-aware task
scheduling. Upon arrival, a task from an application
is sorted into slots based on its category. High-
priority tasks are finished first because they are in
higher-priority slots than lower-priority slots.

Tasks in lower slots are executed only if
upper slots are empty. Task execution follows a non-
pre-emptive approach, ensuring that the current task
is completed before the next one is selected. The
major goal of the load balancing mechanism on a fog
server in a software-defined network is to improve
the fog computing system's performance, efficiency,
and reliability. The system model of the proposed
Fog Level Load Balancing Mechanism is illustrated
in Figure 2.

This system supports a range of IoT
applications that need improved security, high
scalability and low latency. A software-defined
network's optimal resource utilization and task
response time are guaranteed by the HPC_SOA
approach. Arranging tasks based on their
availability, capacity, proximity, and energy
efficiency may optimize the fog nodes' resource
utilization and energy usage. A detailed description
of the approaches is given in the further sections.

Multi-tier priority
queue based model

Task scheduling

Hybrid Pigeon Cat Search
Optimization Algorithms

(HPC_SOA).

Load
balancing

Fog layer

Bitbrains
dataset

Dataset
Complex Event

Processing (CEP)

Simple tasks

Complex task

IoT layer
Cloud
storage

Urgent task

Very Urgent
task

Moderate or
non-urgent

SDN Controller

Figure 1: Schematic Representation Of The Process Flow Of The Proposed Model

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4315

Ed
ge

 tie
r

Fo
g t

ier
Cl

ou
d t

ier

SDN controller

Load balancing

Fog server
manager

Fog nodes

Fog region: Mixed resources

Fog region: storage resources

Fog region: computing
resources

Fog gateway

Fog region: Mixed resources

Fog gateway

Bitbrains
dataset

Figure 2: Proposed System Architecture For Load Balancing In Fog Layer

3.1 Complex Event Processing

The tasks are divided into simple and
complex events using the rules of Complex event
processing (CEP). Complex event processing [26] is
a computing technique that analyses data streams in
real-time to identify and understand the events. It is
event-driven, meaning it is triggered by the receipt
of event data. Consider an agriculture-related event,
which is classified as simple or complicated based
on complex event processing. The production goal in
the agricultural industry is to maximize crop yield at
the lowest possible cost. Making decisions in this
situation is complex since several variables
influence the entire process, with the primary goal of
conserving water for irrigation. To meet the
requirements of the atmosphere, a growing plant
must extract water from the soil.

Evapotranspiration reduces the amount of
water stored in the soil; precipitation or irrigation
takes its place. Therefore, it is important to
characterize the soil features responsible for water
retention. Moisture and matric potential are
intimately tied to the soil's potential, which increases
with humidity. A crop's ability to store enough water
during its development is aided by irrigation. When
managing irrigation, its matric potential is utilized to
choose the kind, quantity, and timing of irrigation.
The soil matric potential containing the highest

concentration of crop roots. Another method for
figuring out when the optimal moisture for irrigation,
or critical moisture is where irrigation should take
place. This metric represents the soil water content
at which crop yields begin to decline with the
potential for a decrease in evapotranspiration.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4316

required for the soil tier which is the most shallow
feature. Based on the given concepts, the rules for
the process are formed. Normally, there are two
types of rules in the CEP such as monitoring rules as
well as critical state rules.

Monitoring rules: The foundation of the first set of
events in the monitoring rule is provided by the
primitives of filtration, aggregation, as well as
projection. Using a portion of its resources, the
projection generates complex events that are handled
by the fog tier. Characteristics that are produced by
filtering and aggregating. The following incidents
made up the first set's rule:

 A low matric potential alert is sent by EV1
(Simple)

 A high matric potential alert is sent by EV2
(Simple)

 A daily matric potential sending alert plus
sensor ID is sent by EV3 (Simple).
The second level of events is made up of

both simple and complex events that are built on the
Fog tier's aggregation, enrichment, and composition
primitives. The gathering of information needed for
computation is referred to as enrichment.
Composition refers to the computations made using
the data that were examined. The following incidents
make up this rule:

 EV5 (complex): daily irrigation water
requirement (IWN)

 EV6 (complex): daily irrigation frequency
verification

 EV4 (complex): matric potential variation.

Critical state rules: The critical state rule consists
of events based on the primitives of enrichment,
composition, negation, and sequencing performed at
the Fog tier. Implementing a sliding time window
with an event identification and a timestamp
integrated will provide the input control required to
use the sequence primitive. The following are the
events that make up this rule:

 EV7 (Complex): maximum water deficit
 EV8 (Complex): essential soil moisture

(perfect for irrigation).
According to the given events, the proposed

rules of the CEP technique for separating simple and
complex events are stated in the pseudocode
provided in Table 2.

Table 2: Pseudocode Of CEP Approach

Start
Initialize the task counts and task
Apply the CEP rules
For task i

If soil humidity 50
 Update as a complex task
Else if wind speed 9< (Km/h)

Update as a complex task
Else if 1.0<field Irrigation

Update as a complex task
Else if 93< (Deg)direction Wind

Update as a complex task
Else if 50<(C) atureAir temper

Update as a complex task
Else if 101.3<Pressure

Update as a complex task
Else

Update as a simple task
 End If
Stop

The CEP of tasks are done in the edge

layers, and the complex tasks are sent to the fog layer
and then scheduled.

3.2 Multi-Tier Priority Queue-Based Model for
Priority Aware Task Scheduling

After separating the complex task using
CEP, the priority task scheduling [27] will take place
to schedule the task by its importance. Initially,

consider the scheduled system mSSSS ,...,, 21 in

which the Poisson distribution method is used to
distribute inter-arrival jobs between two successive
tasks. These distribution is given as

 !/Pr yeyYYF y here e represents

the Euler's No, 0 and Y represents mean
arrival rate. According to the suggested sensor
network design, each gateway device assigns tasks
to four categories: very urgent, urgent, moderate, and
non-urgent. Very Urgent is given high priority since
it aims to assist jobs with short deadlines that must
be finished fast. Soil humidity, air humidity, and air

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4317

temperature are considered to be the most urgent
duties from complicated events, with the remaining
tasks being urgent. Furthermore, basic events are
categorized as moderate or non-urgent occurrences.
To avoid long offloading and downloading periods

in an SDN cloud, workloads are sent to neighbouring
edge devices or fog layers. The architecture of the
Multi-tier priority queue-based model for Priority-
aware task scheduling is provided in Figure 3.

Task from
complex event

processing

1

2

1

3

4

2

11

22

3

4

1122

34

Cloud

Edge nodeFCFS
Global queue

Priority
assignment

Task classifier

Very urgent task

 Urgent task

 Non-urgent task

Moderate task

S1

S2

Figure 3: Architecture Of Multi-Tier Priority Queue-Based Model For Priority-Aware Task Scheduling

Sometimes, a more dependable computing

device is designated especially for these tasks. An
urgent task's structure is essentially equal to that of a
very urgent task; however, an urgent task
necessitates a little extra waiting time. Moderate
tasks have a moderate priority level and a flexible
time limit. These tasks negotiate total latency, which
means that more time may be provided to complete
the task processing in order to meet the deadline, and
these jobs are processed by the cloud server. The
lowest priority is given to the non-urgent tasks,
which are expected to allow time-consuming jobs
with no deadline. These tasks require more
processing power without a priority on reducing
latency. These kinds of tasks are usually offloaded to
a centralized cloud server. In order to facilitate
additional decision-making and minimize
scheduling delays, the gateway devices create non-
preemptive four-level feedback queues. These
queues are said to be Very Urgent (QVU), Urgent
(QU), Moderate (QM), as well as Non-Urgent
(QNU). Work is done on the jobs and queue using a
priority-aware task scheduling methodology. The

task will be removed from any queue if the waiting
time reaches a certain level in order to prevent
starvation. When the extremely urgent task queue is
empty, the task from the urgent task will be moved
to the very urgent task queue.

This scheduling algorithm's main job is to

use the Utilization Factor jUf to classify the

incoming tasks generated by sensor devices and then
assign those jobs to the appropriate queues according

to priority. Each task jT in T is assigned a task

identifier from a collection of emergency
information, such as the task's execution deadline

ed
jT and frequency of arrival

f
jT . Utilization factors

jUf govern the priority of each incoming job and

are expressed as
f

j
ed
jj TTUf / . Then, the tasks

are classified as Very Urgent
vu
jT , Urgent

u
jT ,

Moderate
m
jT or Non-Urgent

nu
jT , depending on

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4318

this usage factor. Sensor device-generated tasks will
be prioritized in the global queue according to the
Gateway's First Come First Served (FCFS) order
(i.e., Raspberry Pi).

The work will be given an additional
priority depending on its utilization factor, and
subsequent tasks will be scheduled into the
appropriate queues in accordance with their Priority
Aware Scheduling Policy. To prevent starvation, a
task will be removed from a queue if its waiting time
in that queue exceeds a certain threshold. Two pairs
of queues were added to the queue model to provide
some variety. One set of queues handled urgent
work, which was subsequently offloaded to the fog
server, and the other pair handled non-urgent
activities, which were handled directly by the cloud's
offload server. Priority assignment and queue
allocation will occur within the gate device. The task
priority is defined by the given definition.

Definition: From the sensor device, the task jT
would arise and be defined as a very urgent task if

4

1
jUf or moderate if

2

1

3

1
 jUf or urgent if

3

1

4

1
 jUf or non-urgent if

2

1
jUf .

Explanation: Assume six sets of tasks that are said

to be 654321 ,,,.,, TTTTTTT j which has set as

 4,41T , 6,42T , 8,33T ,

 9,24T , 2,15T , 5,46T .

According to the utilization factor norms, Task jT

utilization is estimated using the expressions as
1Uf . Similarly, 6.0Uf , 3.0Uf ,

2.0Uf , 5.0Uf and 8.0Uf . Task
4T is

classified as a very urgent task since task priority is
determined by utilization level. According to the

definition, tasks
1T ,

2T and 6T are categorized as

non-urgent, 3T as urgent, and 3T as moderate.

3.2.1 Scheduling task

In order to create a multilevel feedback
Queue model, a Multi-tier priority queue-based
model takes into account four queues. The most
urgent activities are sent to the Very High Priority
queue, which is represented by 1qu . Similar to 1qu
, urgent jobs are routed to 2qu which is a lower-

priority queue. Non-urgent tasks were routed to the
Low Priority Queue 3qu , while moderate tasks

were directed to the queue 4qu with moderate.

()deq is also used to establish a feasible schedule

order for data reception based on priority.

On scheduler 1:

Rule 1: When uqu2 and
u

jj
uuQt

j TquWr ,', task jT need higher

priority than given by pushing in
vu
jT . Replace the

task to a very urgent queue from an urgent queue
based on FCFS, which is expressed as

vuu
j quTdeq)(.

Rule 2: If vuqu1 and vuqu ,)(u
jTdeq

from urgent queue to load directly on fog server
based on FCFS.

Rule 3: If vuqu1 and uqu , according to

the FCFS approach, the task is removed from a very

urgent task using
uvu

j quTdeq)(to load at fog

server by the gateway.

At scheduler 2:

Rule 1: If nuqu4 and
nu

jj
unuQt

j TquWr ,', task jT need higher

priority, that is given by pushing in
m
jT . Replace the

task to moderate queue from non-urgent queue based

on FCFS, which is expressed as
mnu

j quTdeq)(.

Here,
Qt
jWr denotes the time quantum

Rule 2: If mqu3 and nuqu , after that,

offload jT to the cloud using Priority
nu
jT to de-

queue it in FCFS sequence.

Rule 3: If mqu3 and nuqu , offload jT to

the cloud using Priority
m
jT to de-queue it in FCFS

sequence.
The algorithm using a Multi-tier priority queue-
based model for Priority-aware Task Scheduling is
presented in Table 3.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4319

Table 3: Algorithm for Priority-Aware Task
Scheduling

Input: Set of tasks jT , attributes of task

Output: Respective Task schedule

for 1jT to T do

Compute utilization factor
f

j
ed
jj TTUf /

Provide priority for every task jT according to

Uf

Add Every task jT to the priority queue qu

Allocate task for
vuqu uqu mqu and

nuqu by

2

1

3

1
,

3

1

4

1
,

4

1
 jjj UfUfUf and

2

1
jUf

end for

for 1jT to T do

initialize time quantum 0Qt
jWr

prioritize and schedule the task jT

Later certain time quantum)(jTdeq

Update 'quWrWr Qt
j

Qt
j

end for

According to the algorithm, tasks are
scheduled between the fog layer and edge layer,
where the urgent and very urgent tasks are sent to the
fog layer, and moderate or non-urgent tasks are
transferred to the cloud. Then, the load-balancing
approach in the task takes place using the proposed
hybrid Meta heuristic algorithm.

3.3 Load Balancing Using HPC_SOA Approach

The complex tasks from the IoT layer are
balanced to facilitate the equal distribution of
workload on resources. The load balancing approach
is done by Hybrid Pigeon Cat Search Optimization
Algorithms (HPC_SOA). Here, the exploration stage
of both pigeon [28] and cat optimization [29] are
combined together, and the fitness function for load
balancing is defined. Using the function loads i.e.,
the tasks are balanced in the fog layer. Initially, the
population of loads are defined using the equation 1.

 minmaxmindim, BdBdrdBdLig
j (1)

Here, the targets are indicated as
ig
jL dim, , j

represents the initial generation, and the current

dimension is given by dim . The maximum bound

and minimum bound values are denoted by maxBd
and

minBd respectively. The load balancing is done

using the seeking mode strategy of cat optimization.
This mode, which resembles cat sleeping behaviour,
is made up of four important factors: counts of
dimension to change (CDC), seeking range of the
selected dimension (SRD), seeking memory pool
(SMP), as well as self-position consideration (SPC).
SMP determines the amount of cat copies (candidate
places) in the search mode. For example, if SMP is
set to 5, each cat in the searching mode will generate
five random copies, one of which will be selected
and moved to the next position. These random copies
are produced in a manner that is dependent upon
SPC and CDC. The CDC parameter indicates how
many dimensions need to be changed and is between
0 and 1. Finally, SPC is a Boolean variable that
controls if the cat's current location is utilized as one
of the SMP copies. For example, if SPC is set to true
as well as SMP is set to 5, only four random copies
will be made, with the current location displayed.
Assume to be the th5 applicant for the job. The
following are the steps in this mode:

1. Copy a cat's current location i times where

SMPi . If SPC is true, then

1 SMPi and remain a candidate in
current position.

2. The CDC recommends changing a few
random dimensions for every copy. Next,
arbitrary SRD values should be added or
subtracted from the current positions by the
equation (2).

 dim,dim, 1 Ii YSRDrdY (2)

Here, the position of the cat is said to be

dim,iY where i gives the copies of the cat.

3. Estimate the cost value of the candidate
position.

4. Determine each candidate point's selection
probability using the roulette wheel
approach by using equation (3). As a result,
Candidate points with higher fitness costs
stand a higher probability of being chosen.
On the other hand, the selection probability
of every candidate point would be 1 if all
fitness costs were equal.

minmax

Pr
FF

FF cj

j

 (3)

Here, Pr represented the selection
probability and will be the fitness when the objective

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4320

is minimum the value of cF be maxF while

maximum it will be
minF . This fitness function is

calculated by the parameters of nodes.
In the fog layer SDN-based load balancing,

fitness functions are utilized to compute
performance. The major variables used to calculate
fitness based on the HPC_SOA technique are
response time, energy efficiency, resource usage,
and throughput. The following equations are used as
a proposed fitness function.

rocessingstart_of_p-cessingend_of_pro=meResponseti (4)

sumedEnergy_con

loadtotal_work
=Energy_Eff (5)

dtime_perio

ntrequest_senumber_of_
=Throughput (6)

urceslable_resototal_avai

esourcesutilized_r
_ nutilizatioresourse

 (7)

Using the fitness function, the provisioning
and de-provisioning tasks are done optimally, where
the load balance is provided efficiently in the Fog
layer. The results from the fitness values are used to
decide whether the load is overloaded or
underloaded. When the fitness value is above 75%,
it will be said to be overloaded; when the fitness
value is under 25%, it will said to be underloaded.
The evaluation results of the suggested approach are
provided in the further section.

4. RESULT AND DISCUSSION

The proposed approach of the Fog Level
Load Balancing process is implemented using Java
with the iFogSim tool. The system configuration
used for the implementation is shown in Table 4.

Table 4: System configuration

Components Details

Processor
Intel(R) Core(TM) i3-

3245 CPU @
3.40GHz 3.40 GHz

Installed RAM
8.00 GB (7.83 GB

usable)

System type
64-bit operating

system, x64-based
processor

Pen and touch
No pen or touch input

is available for this
display

4.1 Bitbrains Dataset Description

The dataset includes the performance
parameters of 1,750 virtual machines (VMs) from
Bitbrains' scattered datacenter, which provides
business computing and managed hosting of
Numerous large banks (ING), credit card companies
(ICS), insurers (AEGON), etc among the customers.
Apps utilized in the solvency domain are hosted by
Bitbrains providers of apps, including Algorithmic
and Towers Watson. Financial reporting is the usual
purpose for these apps, and it happens mostly at the
end of the fiscal quarter. Every file contains a virtual
machine's performance metrics. The files are
arranged according to traces: Rnd and fastStorage.
1,250 VMs in the first trace and the fast storage are
linked to storage devices via a fast storage area
network (SAN).

The 500 VMs in the second trace, Rnd, are
either connected to faster SAN devices or much
slower Network Attached Storage (NAS) devices.
Considering that storage linked to fast storage
devices performs better than the Rnd trace. The
fastStorage trace includes a larger percentage of
application servers as well as compute nodes. On the
other hand, the larger percentage of management
machines for the Rnd trace need less-performing
storage that is accessed less frequently. The files in
the Rnd directory are arranged into three
subdirectories according to the month in which the
metrics are captured [30].

4.2 Performance Analysis

The performance of the suggested approach
is measured by evaluating several metrics like
Scheduling time, energy consumption, number of
tasks migrated, average migration time, total
migration time, CPU utilization, response time and
simulation time. This is proved by comparing the
results with other current methods that are
implemented.

4.2.1 CPU utilization

CPU utilization is said to be the amount of
work a CPU does to perform the load-balancing
tasks given. The estimation of CPU utilization is
made using the equation below.

consumed CPU-capacity CPU Total=nutilizatio CPU (8)

4.2.2 Response time

Response time is said to be the time taken
to respond to the server and client, which is
estimated by the following equation.

rocessingstart_of_p-cessingend_of_pro= timeResponse (9)

4.2.3 Energy consumption

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4321

Energy consumption is the entire amount of
energy required for a load-balancing operation and
is expressed in kilowatt-hours (kWh). The equation
used for the estimation of energy consumption is
given as follows.

consumedEnergy -Energy Initial=nconsumptioEnergy (10)

4.2.4 Scheduling time

Scheduling time is defined as the time taken
by the proposed technique to schedule the task in the
network.

4.2.5 Number of tasks migrated

The number of tasks migrated refers to the
number of tasks that are migrated from the edge
layer to the fog layer during the CEP and scheduling
processes.

4.2.6 Average of migration time

The average migration time by the
migration nodes for migration from one layer to
another layer.

4.2.7 Total migration time

The total taken for migration time by the
migration nodes for migration from one layer to
another layer.

4.3 Performance Evaluation

The scheduling time of the suggested model
is compared with other models, as shown in Figure
4.

The proposed approach possesses less
scheduling time than other approaches, such as the
Whale optimization algorithm (WOA), Spider
monkey optimization (SMO) and Genetic ant colony
optimization (GACO). The scheduling time taken by
the proposed model is 8.123 sec, while the other
approaches have taken 13.568 sec, 18.254 sec and
20.356 sec. Among the existing works, the given
approach provides minimum time for scheduling due
to the categorization of tasks by using the CEP
module and then scheduling by a Multi-tier priority
queue-based model. The comparative analysis of
average response time by the suggested model is
illustrate in Figure 5.

Figure 4: Scheduling time analysis of the proposed

mechanism

Figure 5: Analysis of average response time by

proposed vs. existing

The average response time for

communication of tasks when using the suggested
approach is less as compared to existing approaches.
The existing approach considers for comparing the
time taken are WOA, SMO and GACO. The average
response time taken by the suggested approach is
81sec while other models were taken about 131.58
sec, 142.556 sec, and 149.25 sec, respectively. The
response time of the suggested approach is less than
that of other existing approach due to its task-
scheduling mechanism. When compared to other
methods, the fog layer stores the most significant
tasks that are appropriately important and take less
time to access. The comparative analysis of the
migration of tasks by the suggested model and the
existing model is presented in Figure 6.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4322

Figure 6: Comparative analysis in migration of
task by the proposed model vs. existing models

Using the suggested approach, most of the
tasks are completed within their scheduled time
without migration. The proposed model has a
migrated task of about 103, while other models have
125 tasks, 134 tasks and 138 tasks, respectively. The
proposed model has less migration tasks due to its
scheduling approach; the task gets completed one by
one in its scheduled timing. The time taken for task
migration using suggested method is compared with
the current one and illustrated in Figure 7.

Figure 7: Analysis of migration time taken by the

proposed model

The amount of time required for a task to be
completed during a migration is referred to as the
migration time. Using the proposed approach, the
task migration time is less due to an efficient task
scheduler. The migration time utilizing the proposed
technique is 8.985 sec, whereas the other models
take 15.584 sec, 18.326 sec, and 20.589 sec. The
categorization of complex and simple tasks makes
the scheduling task easier, where the tasks get
completed earlier at the scheduled time. The average
migration time taken to show the efficiency of the
proposed approach is presented in Figure 8.

Figure 8: Analysis of average migration time taken

by the proposed model

The average migration time is defined as
the amount of time spent on a task without
completion during the migrating process. Using the
proposed approach, the task migration time is less
due to efficient task scheduling. The average
migration time utilizing the proposed technique is
0.08985 sec, whereas the other models take 0.159
sec, 0.175 sec, and 0.185 sec, respectively. The
categorization of complex and simple tasks makes
scheduling tasks easier, allowing tasks to be
completed earlier at the scheduled time. The
evaluation of energy consumption is taken to show
the efficiency of the suggested method, is illustrate
in Figure 9.

Figure 9: Comparative analysis of energy

consumption

The energy consumed by the proposed
strategy in load balancing is less than that of other
models. The energy consumed by the suggested
approach is 22051.788 Kw/h, while the other models
consume 25950.59 Kw/h, 26698.26 Kw/h and
27565.32 Kw/h, respectively. The consumption of

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4323

energy is lower due to the categorization of complex
tasks and schedules by using CEP and a multi-tier
priority queue-based model. The scheduled tasks are
then balanced so that the consumption of energy is
less by the proposed approach. The utilization of the
CPU is also analyzed and depicted in Figure 10.

Figure 10: CPU utilization by the proposed model

vs. existing models

The CPU utilization of the proposed model
is less than that of existing models such as WOA,
SMO, and GACO. The proposed model utilizes a

CPU of about 2723.06MB, while the existing models
use 3598.249 MB, 3859.524 MB and 4058.362 MB,
respectively. The load balancing methodology by
HPC_SOA provides efficient balancing in the fog
layer while CPU usage is less than that of other
models.

4.3.1 Ablation study

The performance of the model with and
without the CEP approach is analyzed, and the
ablation study of the suggested methodology is
presented in Table 5.

In the evaluation of the proposed approach
using CEP and without CEP, there will be a
decrement in the performance of the model. The
Scheduling time of without CEP approach is higher
than with CEP approach due to non-specification
and disorder of tasks. In the evaluation of CPU
utilization without CEP process, the utilization is
higher due to the processing of every task in the fog
layer. For these reasons, the model consumes more
energy than CEP-based methodologies. The
migration time and number of migrations increase in
the absence of a CEP process due to inappropriate
load balancing caused by task non-specification and
disorder in scheduling.

Table 5: Ablation study of the proposed model

Task Schedul
ing time

(sec)

CPU
utilization

(MB)

Average
migration
time (sec)

migration
time (sec)

Response
time
(sec)

Number
of tasks

migrated

Energy
consumption

hkw /
With CEP 8.123 2723.06 81.0 8.985 8.123 103 22051

Without
CEP

8.828 2898.06 0.09560 9.524 90 110 25846.788

4.4 Discussion

Despite the many suggestions that
concentrate on the edge and fog levels of the IoT, it
is a difficult challenge to develop a software solution
that fully uses contextual and situational information
processing at every level as well as two-way
communications between nearby ones. The data is
initially transferred into the CEP. In edge IoT
devices, CEP comprises the real-time correlation,
analysis, and interpretation of continuous data
streams generated by edge devices and sensors. In
order to support prompt judgments or prompt replies,
it looks for noteworthy trends or complex
occurrences in diverse data sources. A multi-tier
priority queue-based approach is employed to
achieve priority-aware task scheduling after CEP.
Upon every task's arrival, a task from an application
is sorted into slots based on its type. Since high-

priority jobs are preferred over lower-priority slots,
they are completed first. HPC_SOA is an efficient
load-balancing technique that ensures the best
possible resource usage and task response time for a
software-defined network. It might maximize the fog
nodes' resource and energy consumption by
allocating jobs according to their capacity,
availability, proximity, and energy efficiency. In the
evaluation, the proposed model has a scheduling
time of 8.123 sec, a response time of 81 sec, and an
average time of migration of 0.08985 sec. Also, the
total time taken by the proposed model of task
migration is evaluated, and the results are 8.985 sec,
and the tasks that are migrated by the proposed
model are 103. The energy consumption of the
proposed model is estimated, which yields 22051

hkw / , and the CPU utilization is checked and

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4324

results as 2723.06 MB. The scores attained by the
proposed approach show that the model would
perform much better than existing models. The
proposed hybrid optimization-based framework for
load balancing and event processing has several
important implications for real-world industrial
applications. In sectors such as smart manufacturing,
precision agriculture, healthcare monitoring, and
autonomous logistics, the timely processing of
sensor-generated data and intelligent task scheduling
are critical. By integrating CEP at the edge level, the
system enables near real-time detection and reaction
to key events (e.g., equipment failure, soil moisture
depletion, abnormal patient vitals), reducing
dependency on centralized cloud processing and
latency. The multi-tier priority-aware scheduling
ensures that urgent and critical tasks are handled
with minimal delay, which is vital in time-sensitive
environments. Furthermore, the HPC_SOA
enhances fog-level resource management, making it
feasible to deploy scalable and energy-efficient IoT
applications even in resource-constrained settings.
Overall, the architecture supports industrial digital
transformation efforts by improving operational
efficiency, energy savings, and decision-making
responsiveness in dynamic, data-intensive
environments. The comparative study of the
proposed model is given in Table 6.

Table 6: Comparative study of the proposed model

Author
name and
Reference

Approach used Response
time

Lan et al.
[21]

Universal Edge-
Based Complex

Event Processing
Mechanism

268.2s

Xu et al.
[23]

(BalCon) and
BalConPlus

migration strategy

370s

Priyadarsini
et al. [24]

SALB -

Proposed HPC_SOA 81s

4.5 Strengths and Limitations of the Study

The proposed study presents a
comprehensive solution that combines CEP,
priority-aware scheduling, and hybrid meta-heuristic
optimization. This integration is a key strength,
addressing the shortcomings of fragmented solutions
in previous works. The Hybrid Pigeon Cat Search
Optimization Algorithm effectively balances
computational load across fog nodes by combining

global search (pigeon-inspired) and local refinement
(cat-inspired) strategies. This reduces energy
consumption and enhances resource utilization.
Tasks are dynamically categorized based on urgency
using multi-tier queues, which improves scheduling
efficiency and minimizes unnecessary migration, as
evident from performance metrics like reduced
scheduling time and response delay.

The model outperforms state-of-the-art
algorithms such as WOA, SMO, and GACO in key
performance indicators including CPU usage,
energy consumption, migration time, and number of
migrated tasks, as shown in the comparative results.
The system is designed to handle real-world
scenarios using a publicly available Bitbrains
dataset, ensuring relevance to industrial IoT and
smart city applications. The integration of CEP,
priority queues, and hybrid optimization increases
system complexity, which might demand higher
initial setup and computational overhead for smaller-
scale deployments. Although effective, the CEP
relies on predefined rules for identifying events. This
could limit adaptability in environments with
evolving event patterns unless periodically updated
by domain experts.

5. CONCLUSION

The increasing demand for real-time
analytics in IoT-driven environments has introduced
complex challenges in task scheduling, resource
optimization, and load balancing across edge and fog
layers. This research was motivated by critical
limitations identified in existing systems—namely,
the lack of integrated models capable of handling
dynamic workloads with contextual intelligence and
efficient resource utilization. Specifically, the study
aimed to answer how can an integrated, intelligent
system improve task scheduling and load balancing
in SDN-enabled fog computing environments while
minimizing response time, energy consumption, and
computational overhead? To address this, we
proposed a novel framework that combines CEP for
real-time task classification, a Multi-tier Priority
Queue model for context-aware scheduling, and a
HPC_SOA for intelligent load balancing. Through
simulation on the Bitbrains dataset using iFogSim,
the proposed approach demonstrated superior
performance across key metrics scheduling time
(8.123 sec), response time (81 sec), migration time
(8.985 sec), energy consumption (22051 kWh), and
CPU utilization (2723.06 MB) when compared with
existing methods such as WOA, SMO, and GACO.
The CEP module enhanced situational

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4325

responsiveness by identifying complex patterns from
data streams, while the priority queue ensured timely
execution of urgent tasks without causing starvation.
HPC_SOA further optimized load balancing by
adaptively distributing tasks across fog nodes based
on real-time fitness evaluations considering energy,
proximity, and resource availability.

This study significantly advances the
current understanding of edge-level task processing
and fog-level load balancing in SDNs. While
previous works have individually addressed either
Complex Event Processing or load balancing using
static or mono-strategy optimizations, this research
offers a holistic and adaptive framework that
combines both. By integrating CEP for intelligent
task categorization, a multi-tier queue for dynamic
priority scheduling, and a HPC_SOA for optimal
load distribution, the proposed model bridges critical
gaps identified in the literature namely, the lack of
real-time responsiveness, energy-aware processing,
and end-to-end task orchestration. The simulation
results on a real-world dataset further substantiate its
superior performance in reducing response time,
energy consumption, and migration overhead
compared to existing models. Thus, the study not
only provides a technically sound model but also sets
a new direction for future research in scalable,
intelligent, and adaptive fog computing within SDN-
enabled IoT environments.

REFERENCES

[1] Munirathinam, S. (2020). Industry 4.0:

Industrial internet of things (IIOT), In Advances
in computers. Elsevier 117(1), 129-164.

[2] Tian, Z., Shi, W., Wang, Y., Zhu, C., Du, X., Su,
S., Sun, Y., Guizani, N. (2019). Real-time
lateral movement detection based on evidence
reasoning network for edge computing
environment, IEEE Transactions on Industrial
Informatics 15(7), 4285-94.

[3] Qi, Q., Tao, F. (2019). A smart manufacturing
service system based on edge computing, fog
computing, and cloud computing, IEEE access
7, 86769-77.

[4] Salaht, F.A., Desprez, F., Lebre, A. (2020). An
overview of service placement problem in fog
and edge computing, ACM Computing Surveys
(CSUR) 53(3), 1-35.

[5] Du, X., Cardie, C. (2020). Event extraction by
answering (almost) natural questions, arXiv
preprint arXiv:2004.13625.

[6] Cortés-Ciriano, I., Lee, J.J., Xi, R., Jain, D.,
Jung, Y.L., Yang, L., Gordenin, D., Klimczak,

L.J., Zhang, C.Z., Pellman, D.S. (2020).
Comprehensive analysis of chromothripsis in
2,658 human cancers using whole-genome
sequencing, Nature genetics 52(3), 331-41.

[7] Subramaniyaswamy, V., Manogaran, G.,
Logesh, R., Vijayakumar, V., Chilamkurti, N.,
Malathi, D., Senthilselvan, N. (2019). An
ontology-driven personalized food
recommendation in IoT-based healthcare
system, The Journal of Supercomputing 75,
3184-216.

[8] Eskandari, M., Janjua, Z.H., Vecchio, M.,
Antonelli, F. (2020). Passban IDS: An
intelligent anomaly-based intrusion detection
system for IoT edge devices, IEEE Internet of
Things Journal 7(8), 6882-97.

[9] Manzoor, S., Mazhar, F., Binaris, A., Hassan,
M.U., Rasab, F., Mohamed, H.G. (2023). An
Adaptive Symmetrical Load Balancing Scheme
for Next Generation Wireless Networks,
Symmetry 15(7), 1316.

[10] Moravejosharieh, A.H., Palmeira, F.C. (2019).
Load-balancing In Software-Defined
Networking: An Investigation on Influential
System Parameters, in 2019 29th International
Telecommunication Networks and Applications
Conference (ITNAC), IEEE 1-6.

[11] Lu, J., Zhang, Z., Hu, T., Yi, P., Lan, J. (2019).
A survey of controller placement problem in
software-defined networking, IEEE Access 7,
24290-307.

[12] Urrea, C., Benítez, D. (2021). Software-defined
networking solutions, architecture and
controllers for the industrial internet of things:
A review, Sensors 21(19), 6585.

[13] Mokhtar, H., Di, X., Zhou, Y., Hassan, A., Ma,
Z., Musa, S. (2021). Multiple-level threshold
load balancing in distributed SDN controllers,
Computer Networks 198, 108369.

[14] Gawade, Y., Harale, A., Ekhe, D., Anjum, S.,
Lokhande, P. (2019). Video streaming over
software defined networking with server load
balancing, Research Journal of Engineering
Technology and Management (ISSN: 2582-
0028) 2(01).

[15] Babbar, H., Rani, S. (2019). Emerging
prospects and trends in software defined
networking, Journal of Computational and
Theoretical Nanoscience 16(10), 4236-41.

[16] Hongvanthong, S., Chunlin, L. (2022). A novel
four‐tier software‐defined network architecture
for scalable secure routing and load balancing,
International Journal of Communication
Systems 35(1), e5020.

 Journal of Theoretical and Applied Information Technology
31st May 2025. Vol.103. No.10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4326

[17] Li, S., Xin, Z., Xu, X., Zhang, Z. (2020). Load
Balancing Algorithm of SDN Controller Based
on Dynamic Threshold, In 2023 3rd Asia-
Pacific Conference on Communications
Technology and Computer Science (ACCTCS),
IEEE 517-520.

[18] Sakthivel, M. (2021). An Analysis of Load
Balancing Algorithm Using Software-Defined
Network, Turkish Journal of Computer and
Mathematics Education (TURCOMAT) 12(9),
578-86.

[19] Albowarab, M., Zakaria, N., Abidin, Z. (2019).
Load balancing algorithms in software defined
network, International Journal of Technology
and Engineering (IJRTE) 7.

[20] Kofi, E.O., Ahene, E. (2023). Enhanced
network load balancing technique for efficient
performance in software defined network, Plos
one 18(4), e0284176.

[21] Lan, L., Shi, R., Wang, B., Zhang, L., Jiang, N.
(2019). A universal complex event processing
mechanism based on edge computing for
internet of things real-time monitoring, IEEE
Access 7, 101865-78.

[22] da Costa Bezerra, S.F., Filho, A.S., Delicato,
F.C., da Rocha, A.R. (2021). Processing
complex events in fog-based internet of things
systems for smart agriculture, Sensors 21(21),
7226.

[23] Xu, Y., Cello, M., Wang, I.C., Walid, A.,
Wilfong, G., Wen, C.H., Marchese, M., Chao,
H.J. (2019). Dynamic switch migration in
distributed software-defined networks to
achieve controller load balance, IEEE Journal
on Selected Areas in Communications 37(3),
515-29.

[24] Priyadarsini, M., Mukherjee, J.C., Bera, P.,
Kumar, S., Jakaria, A.H., Rahman, M.A. (2019).
An adaptive load balancing scheme for
software-defined network controllers,
Computer Networks 164, 106918.

[25] Li, G., Cui, W., Liu, S., Zhao, W. (2022). A
Load Balancing Strategy Based on Fuzzy
Satisfaction Among Multiple Controllers in
Software-Defined Networking, Journal of
Network and Systems Management 30(3), 49.

[26] Kulshrestha, U., Durbha, S. (2020). Edge
analytics and complex event processing for real
time air pollution monitoring and control, In
IGARSS 2020-2020 IEEE International
Geoscience and Remote Sensing Symposium,
IEEE 893-896.

[27] Liao, J.X., Wu, X.W. (2020). Resource
allocation and task scheduling scheme in
priority-based hierarchical edge computing
system, In 2020 19th international symposium
on distributed computing and applications for
business engineering and science (DCABES),
IEEE 46-49.

[28] Cui, Z., Zhang, J., Wang, Y., Cao, Y., Cai, X.,
Zhang, W., and Chen, J. (2019). A pigeon-
inspired optimization algorithm for many-
objective optimization problems. Science
China, Information Sciences 62(7), 70212.

[29] Dehghani, M., Hubálovský, Š., Trojovský, P.
(2021). Cat and mouse based optimizer: A new
nature-inspired optimization algorithm, Sensors
21(15), 5214.

[30] http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-
bitbrains

