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ABSTRACT 
 

The automation of machine learning has predominantly focused on supervised tasks, leaving unsupervised 
clustering, a critical component of exploratory data analysis, significantly underdeveloped by existing Auto-
ML frameworks. Current approaches often limit their scope to dataset characteristics, neglecting the crucial 
influence of algorithmic suitability (e.g., robustness to outliers) and user-defined requirements (e.g., 
interpretability needs). This oversight leads to suboptimal clustering outcomes, particularly when dealing 
with complex, high-dimensional, or noisy data. To address these limitations, this research introduces SOL-
Auto-Clust, a novel end-to-end automated clustering framework that makes a key contribution by holistically 
integrating three fundamental dimensions: inherent data characteristics, intrinsic algorithmic traits, and 
explicit user-defined objectives. By employing a meta-feature architecture, SOL-Auto-Clust dynamically 
generates customized clustering pipelines, addressing both data intricacies and real-world application 
requirements. Extensive evaluation across diverse datasets highlights the framework's ability to simplify 
clustering processes and produce reliable, insightful outcomes, marking a significant step towards human-
aligned Auto-ML for unsupervised learning. 
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1. INTRODUCTION  
 

Machine learning (ML) and artificial intelligence 
(AI) have attracted more attention from both the 
business and research communities. Both ML and AI 
can be adopted in various domains to provide fast 
and efficient results compared to traditional 
programming. They can solve complex problems 
and extract hidden patterns from the given data. In 
general, the machine learning process depends on the 
volume of the training data. The more data used for 
model training, the more accurate result you get. 
Therefore, data is the most important part of the 
process of building a machine learning model. 
Recently, data volumes have increased exponentially 
because of the spread of the internet, social media, 
devices, data sources, and different kinds of 
applications. Consequently, artificial intelligence 
and machine learning have been broadly adapted in 
various fields, such as image classification [1-3] text 
classification [4], clustering analysis [5-9] speech 
recognition [10], predictive analytics [11-15] and 
recommendation systems [17, 18]. 

Clustering is considered one of the most used 
machine learning tasks, along with unsupervised 
learning, that involves the process of partitioning 
unlabeled data or data points into distinct clusters 
according to the similarities of data characteristics 
and features [20]. The aim behind clustering is to 
uncover concealed patterns or relationships based on 
shared attributes. Clustering primary purpose is to 
extract meaningful insights from large datasets and 
facilitate data organization. By organizing the data, 
it becomes easier to analyze and comprehend the 
underlying patterns present within the dataset. In 
addition, clustering is widely used in various 
applications and domains, such as healthcare [21-
23], customer segmentation [26-28], finance [29-
31], education [32, 33], campaign analysis, and 
marketing [24, 25]. Generally, there are many 
challenges facing data scientists when building 
clustering models. These challenges include a wide 
range of possible clustering algorithms that data 
scientists need to select from, such as K-means, 
Agglomerative Clustering, DBScan, and Optic. In 
addition, data scientists need to tune a set of hyper-
parameters for the selected clustering algorithm. 
Moreover, they need to select the appropriate 
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measure to evaluate the model’s performance. 
Furthermore, the clustering process depends on 
specifying the exact number of clusters for each 
dataset to be clustered. However, when dealing with 
real-world datasets, it is not expected to have this 
knowledge. Therefore, several studies have been 
proposed to reduce the manual development of ML 
processes and employ the automation concept 
instead. 

In general, manual development of the machine 
learning process is both resource- and time-intensive 
and often depends on the specialization level of the 
data scientists and machine learning engineers. Thus, 
eliminating human interference from the ML process 
loop and activating the concepts of “Human Not in 
the Loop” and Auto-ML have attracted more 
attention. Human Not in the Loop and Auto-ML 
encourage finding a way to automate the process of 
building machine learning pipelines and reducing 
human intervention. Moreover, Auto-ML can help in 
providing high-performance machine learning 
solutions for a given problem within an acceptable 
time limit. 

Although the topic of auto-ML has attracted more 
attention to automating the workflow of building 
machine learning models with many systems, 
unsupervised learning and particularly automated 
clustering, are much less addressed. Automating the 
clustering process is challenging because of the 
subjectivity of evaluating clustering quality due to a 
lack of ground truth, and clustering is very much a 
human construct. In addition, most existing auto-ML 
frameworks that automate the clustering process 
depend on data characteristics without considering 
users’ needs or clustering algorithm characteristics. 
However, depending only on data characteristics 
cannot guarantee selecting the optimal clustering 
algorithms. For example, assume we have a new 
dataset (dn) to be clustered, and the two most similar 
datasets to dn are d1 and d2, as shown in figure 1. 
After identifying the similarity between dn and d1, d2, 
it is found that dn is more similar to d1, and 
consequently, the recommended clustering 
algorithm to be used in clustering dn is the k-means. 
In this example, the recommendation process 
depended only on measuring the similarity between 
datasets without validating whether the 
recommended algorithm suited the characteristics of 
the dataset (dn) or not. The accuracy of the 
recommendation process may be compromised 
because it relies solely on the characteristics of the 
data without considering the specific traits of the 
clustering algorithms. This oversight becomes 
evident in the given example, where the 

recommended algorithm is k-means, which is not 
well-suited for datasets that contain outliers. 
Moreover, some algorithms ignore the outliers, 
which may be real data points that represent special 
cases for users. For example, if we have a dataset for 
fraudulent and nonfraudulent transactions, some 
clustering algorithms that can’t deal with outliers 
will consider fraudulent transactions as outlier points 
and ignore them as they are a minority and don’t 
have the same behavior as the majority of the 
population. All of these hypotheses and assumptions 
must be taken into consideration during the 
clustering algorithm selection process. 

 

Figure 1: An Illustrative Example of Similarities Between 
Datasets 

In this paper, we address the challenges and 
limitations of the existing auto-clustering 
frameworks and how to overcome them. “SOL-
AutoClust” is presented as a new efficient online 
auto-clustering framework that focuses on the 
complete pipeline of the clustering process instead of 
focusing only on automating the process of 
Combined Algorithm Selection and Hyper-
parameter tuning (CASH). The CASH part costs 
20% of the time that the data scientists spend 
building a machine learning pipeline for a certain 
problem [34]. Moreover, the proposed framework 
considers data characteristics, clustering algorithms’ 
characteristics, and users’ needs during the 
recommendation process of optimal clustering 
pipeline selection. Furthermore, the SOL-AutoClust 
framework automates the process of determining the 
optimal number of clusters for the given dataset. 

The rest of this paper is organized as follows: In 
Section 2, we present a brief review of related work. 
In Section 3, Section 4, and Section 5, we propose 
our solution for recommending a complete clustering 
pipeline for any given dataset. The experimental 
results are presented in Section 6. Finally, Section 7 
concludes and proposes directions for possible future 
work. 

2. RELATED WORK 
 

Machine learning is a pivotal scientific 
discipline that finds applications across various 
domains, providing solutions to intricate problems. 
This section examines existing automated machine 
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learning (Auto-ML) frameworks, offering a concise 
overview of each framework's functionality. Each of 
the presented frameworks aims to automate specific 
tasks within the machine learning process, either 
partially or entirely. Notably, recent advancements 
have led to the development of several auto-ML 
frameworks that utilize powerful machine learning 
packages that readily accessible. 

 
2.1 Auto-ML in Supervised Learning 
 

Auto-WEKA [35], implemented on top of 
the widely used data mining tool WEKA [36], was 
the pioneering Auto-ML framework. Auto-WEKA 
focuses on automating the selection of machine 
learning algorithms and tuning hyperparameters, 
addressing what is known as the Combined 
Algorithm Selection and Hyperparameter 
Optimization (CASH) problem. By leveraging the 
SMAC [37] optimization algorithm and feature 
selection algorithms within WEKA, Auto-WEKA 
provided solutions for the CASH problem. The 
subsequent release, Auto-WEKA 2.0 [38], 
integrated updates into the WEKA ecosystem and 
expanded its support to include regression problems. 

Auto-sklearn [39], built on the popular 
Python machine learning library Scikit-Learn [55], 
stands as one of the most well-known auto-ML 
frameworks. It also considers the CASH problem, 
further enhancing the approach by incorporating 
meta-learning [40]. This meta-learning approach 
involves recognizing dataset characteristics and 
recommending the most suitable machine learning 
pipeline based on those characteristics. Auto-sklearn 
achieves this by computing a set of meta-features, 
such as the number of instances, features, classes, 
and data skewness [56]. During the training stage, 
Auto-sklearn evaluates 140 different datasets from 
the OpenML repository [41] to calculate meta-
features and utilizes Bayesian optimization [42] to 
determine the best-performing machine learning 
pipelines for each dataset. When presented with a 
new dataset, Auto-sklearn calculates its meta-
features and selects the stored machine learning 
pipelines from the nearest 25 datasets based on the 
L1 distance measurement [16]. L1 distance between 
two datasets di and dj in meta-feature space can be 
computed as in Eq. (1). Auto-sklearn also 
incorporates automated ensemble model 
construction, retaining all considered models from 
the training stage and employing a post-processing 
method to create an ensemble, mitigating the risk of 
overfitting. Comparative studies have shown that 
Auto-sklearn outperforms the Auto-WEKA system 
in approximately 86% of cases [43]. 

L1(𝑑 , 𝑑) =  |𝑑 − 𝑑|


ୀଵ
                 (1) 

               where n represents meta-features 
 
TPOT [44] has since been adapted to 

handle a wide range of machine learning problems. 
It is an open-source auto-ML framework that 
automates tasks such as feature preprocessing, 
model selection, and hyperparameter optimization. 
Similar to Auto-sklearn, TPOT gained popularity 
due to its integration with the Scikit-Learn library. 
TPOT utilizes a genetic programming algorithm 
[45], to construct genetic programming trees, 
combining algorithms within machine learning 
pipelines. Additionally, TPOT employs different 
algorithms for various tasks, including feature 
preprocessing (e.g., Principal Component Analysis, 
Scalers), feature selection (e.g., Recursive Feature 
Elimination, Variance Thresholds), and 
classification (e.g., K-Nearest Neighbors, Decision 
Tree, Random Forest). Overall, TPOT stands as one 
of the most prominent auto-ML frameworks 
available today. 

While the aforementioned auto-ML 
frameworks dominate the open-source landscape, 
several other frameworks have emerged in recent 
years. H2O [46], for instance, is an open-source 
distributed automated machine learning framework 
that facilitates training large-scale machine learning 
models. It provides server-based training accessible 
through APIs in multiple programming languages 
such as R, Python, Java, and Scala. H2O 
encompasses feature engineering, data 
preprocessing, model selection, and hyperparameter 
optimization, employing fast random search and 
stacked ensembles to optimize the recommended 
pipeline. 

LightAutoML [47], an open-source auto-
ML framework primarily designed for the financial 
sector, automates various steps in the machine 
learning pipeline, including feature engineering, data 
preprocessing, model selection, and hyperparameter 
optimization. 

AMLBID [48] is another open-source auto-
ML framework that utilizes a meta-learning-based 
approach to automate machine learning model 
building for industrial data. 

ATM [49], an example of a distributed and 
scalable auto-ML framework, enables machine 
learning users to upload datasets, select from a range 
of machine learning algorithms, and define a search 
space for hyperparameters. By leveraging Bayesian 
optimization and meta-learning techniques, ATM 
recommends optimal machine learning pipelines for 
the given datasets. 
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ML-Plan [50], relying on hierarchical task 
networks (HTNs) [51], automates algorithm 
selection and configuration tasks within the machine 
learning process. 

AlphaD3M [52] employs reinforcement 
learning techniques to optimize machine learning 
pipelines. It utilizes iterative experiments with 
different pipelines, incorporating actions such as 
inserting, deleting, or replacing pipeline parts to 
discover or recommend the optimal pipeline. 

Furthermore, SmartML [53], the first auto-
ML framework for automating classification 
problems using the R programming language and its 
associated package, constructs a knowledge base 
comprising meta-features and algorithm 
performance across different training datasets. When 
provided with a dataset, SmartML extracts its meta-
features and compares them with those stored in the 
knowledge base using the nearest neighbor 
technique. The most similar datasets are then used to 
identify the best-performing algorithms, ultimately 
recommending the most suitable algorithm. 
SmartML employs SMAC Bayesian Optimization 
[54] to optimize the hyperparameters of the selected 
algorithm. 

 
2.2 Auto-ML in Unsupervised Learning 

 
Several methods [57-63] assist novice 

analysts in choosing a promising clustering 
algorithm for unsupervised learning tasks. These 
approaches employ meta-learning, which involves 
learning from previous experiences to select the 
most suitable algorithm for a new dataset. However, 
these methods solely focus on the clustering 
algorithm and disregard the corresponding 
hyperparameters. 
 Various techniques exist for optimizing the 
hyperparameters of clustering algorithms. These 
techniques utilize a fixed clustering algorithm with 
different hyperparameters and require a prior 
definition of promising values within the 
hyperparameter search space. They can be 
categorized into two groups: exhaustive methods 
and non-exhaustive methods. Exhaustive methods 
include the entire search space of clustering 
algorithms and hyperparameters in order to identify 
the optimal clustering result. This selection is based 
on a predefined Cluster Validity Index (CVI), such 
as Calinski and Harabasz index (CH) [64], Davies-
Bouldin index (DB) [65], Silhouette Width (SW) 
[66]. On the other hand, non-exhaustive methods 
only consider a subset of hyperparameter values. 
Examples of non-exhaustive methods include LOG-
Means [67], g-means [68], HDBSCAN [69], and X-

means [70]. However, both types of methods do not 
address the CASH problem as they only focus on a 
single algorithm. 
 In a recent study on auto-ML solutions for 
clustering, researchers in [71] introduced 
AutoML4Clust, an auto-ML approach that 
effectively addresses the CASH problem by 
exploring the configuration space. The authors 
investigate various optimizers and CVIs in 
combination and find that no single CVI is 
universally suitable for all types of datasets. 
However, AutoML4Clust does not provide a 
solution for reducing the potentially large 
configuration space and does not assist in selecting 
the appropriate CVI. Furthermore, although it 
efficiently explores configurations using optimizers, 
it does not explore methods to identify well-
performing configurations early in the process. 
AutoClust [72] and AutoCluster [73], on the other 
hand, employ meta-learning to sequentially address 
the CASH problem by narrowing down the 
configuration space to a single algorithm and 
subsequently optimizing its hyperparameters. Both 
approaches use meta-learning to identify datasets 
with similar characteristics and select the algorithm 
that performs best based on these datasets. For this 
purpose, they utilize landmarking [74] meta-features 
to describe dataset characteristics, which involve 
executing one or multiple clustering algorithms and 
utilizing the clustering results as meta-features. Then 
they proceed to optimize the hyperparameters of the 
selected algorithm. 
 ML2DAC [75] is an auto-ML approach that 
automates the clustering process. By leveraging the 
core principles of meta-learning, ML2DAC 
automates the clustering process by identifying well-
performing configurations and recommending 
appropriate clustering algorithms based on a chosen 
validity index.   

Table 1: Comparison Between State-Of-The-Art 
Clustering Auto-ML Frameworks. 

 AutoML4Clust AutoClust ML2DAC 
Year 2021 2020 2023 

Language  Python Python Python 
Supported 
data type 

Tabular Tabular Tabular 

Data size Small Small Small 
Feature 

preprocessing 
No No No 

User 
technicality 

level 

High High High 

Algorithms’ 
characteristics 

No No No 

Computational 
Power 

High High High 
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In table 1, a feature comparison between the 
most recent and popular state of the art frameworks 
is presented. 

While all of the existing Auto-ML 
Frameworks provide partial or complete ML 
pipeline automation, each one works differently and 
targets different algorithms or dataset structures. 
Although all of these auto-ML frameworks offer 
varying degrees of automation for machine learning 
pipelines, each framework operates differently and 
focuses on different algorithms or dataset structures. 
While some frameworks incorporate meta-learning 
approaches and multiple CVIs, certain challenges 
remain despite these features. Among those 
challenges are the following: 

Challenge 1: The effectiveness of these 
frameworks is confined within the boundaries of 
simple and small datasets. While they excel in 
handling these modest-sized datasets, their 
capabilities begin to diminish when confronted with 
more complex and larger-scale data. These 
frameworks provide efficient and reliable solutions 
for straightforward and compact data analysis tasks, 
but their limitations become apparent when faced 
with the intricacies and voluminous nature of larger 
datasets. Therefore, it is crucial to consider 
alternative approaches or more robust frameworks 
when dealing with more extensive and intricate data 
sets to ensure accurate and comprehensive analysis. 

Challenge 2: These frameworks exhibit 
limitations in their approach by solely focusing on 
the characteristics of the dataset, neglecting the 
crucial aspects of clustering algorithms' 
characteristics and users' needs. By disregarding 
these vital factors, these frameworks fail to provide 
comprehensive and tailored solutions for clustering 
tasks. The success of clustering algorithms depends 
not only on the properties of the dataset itself but also 
on the specific characteristics of the algorithms 
employed and the requirements and preferences of 
the users. By disregarding these aspects, these 
frameworks miss the opportunity to optimize 
clustering outcomes, potentially leading to 
suboptimal results. Therefore, it is essential to 
consider the broader context, encompassing both 
dataset characteristics and the specific requirements 
of clustering algorithms and users, to ensure more 
effective and personalized clustering solutions. 

Challenge 3: These frameworks possess an 
inherent limitation in their applicability, as they are 
specifically tailored for structured datasets. While 
they excel in handling data that adheres to a well-
defined schema or format, their effectiveness 
diminishes when confronted with unstructured or 
semi-structured data. Structured datasets, 

characterized by organized and predefined 
relationships among data elements, align seamlessly 
with the capabilities of these frameworks. However, 
when faced with unstructured datasets that lack a 
pre-defined schema or have irregular data patterns, 
these frameworks may struggle to extract 
meaningful insights or perform accurate analyses. 
Therefore, it is crucial to explore alternative 
approaches or adapt these frameworks to 
accommodate the complexities of unstructured data 
when dealing with such datasets to ensure 
comprehensive and reliable data processing and 
analysis. 

Challenge 4: The execution of auto-ML 
experiments using these frameworks demands 
substantial computational power. The intricate 
nature of automated machine learning (auto-ML) 
tasks, which involve processes such as feature 
engineering, model selection, hyperparameter 
tuning, and ensemble learning, requires significant 
computational resources to handle the complexity 
and volume of data involved. These frameworks rely 
on intensive computations and iterative algorithms 
to explore and optimize the wide range of 
possibilities inherent in auto-ML. Consequently, to 
ensure efficient and timely completion of auto-ML 
experiments, it becomes imperative to deploy these 
frameworks on systems equipped with substantial 
computational capabilities, such as high-
performance computing clusters or cloud-based 
infrastructures. By harnessing the requisite 
computational power, these frameworks can 
effectively tackle the demanding nature of auto-ML 
experiments, enabling researchers and practitioners 
to enhance the efficiency and effectiveness of their 
machine learning workflows. 

Despite the progress in Auto-MLAuto-ML 
frameworks, a critical gap persists in automating 
unsupervised learning, particularly clustering, which 
remains under-addressed compared to supervised 
learning. Existing frameworks, such as Auto-
WEKA, Auto-sklearn, and TPOT, predominantly 
focus on supervised tasks, while unsupervised 
solutions like AutoML4Clust, AutoClust, and 
ML2DAC exhibit limitations: they either narrowly 
address the Combined Algorithm Selection and 
Hyperparameter (CASH) problem, rely solely on 
dataset characteristics, or ignore user-specific 
requirements. Furthermore, these frameworks 
struggle with scalability, computational efficiency, 
and adaptability to unstructured data, as highlighted 
in Challenges 1–4. The literature reveals that no 
current approach holistically integrates data 
characteristics, clustering algorithm traits (e.g., 
outlier sensitivity), and users need to recommend an 
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end-to-end clustering pipeline. This gap underscores 
the need for a robust Auto-ML framework that 
bridges these dimensions, ensuring optimal 
clustering outcomes across diverse real-world 
applications. Our proposed framework directly 
tackles this gap by introducing an Auto-ML 
framework that uniquely combines data 
characteristics and clustering algorithms 
characteristics with user-centric customization, 
aiming to significantly improve automated 
clustering for real-world applications. 

In the next section, we will discuss the 
proposed SOL-AutoClust framework, which is 
proposed to tackle these challenges. 
 
3. PROPOSED AUTO-ML FRAMEWORK: 

SOL-AUTOCLUST 
 

In this section, we introduce a novel 
automated machine learning framework (SOL-
AutoClust) that aims to overcome the limitations of 
the existing frameworks. SOL-AutoClust is an auto-
ML framework that is built on top of the Python 
library Scikit-Learn. SOL-AutoClust includes all 
steps of the clustering process pipeline, including 
data preprocessing, feature engineering, and 
clustering algorithm selection. Currently, the 
algorithms’ search space of the proposed SOL-
AutoClust framework consists of 10 different 
clustering algorithms. The different algorithms that 
have been used in the complete pipeline lifecycle are 
shown in table 2. 

As shown in table 2, the algorithm selection 
in our clustering pipeline was systematically 
designed to ensure robustness, scalability, and 
adaptability across diverse datasets, aligning with 
the core research objective of generalizable and 
reproducible outcomes. Preprocessing techniques—
including Ordinal/One Hot Encoders, multiple 
Imputers, Log Transformer, and Min Max Scaler—
address heterogeneous data types, missing values, 
and feature normalization, while feature selection 
methods (Variance Threshold, Collinearity 
Removal, and Random Forest-based selection) and 
engineering strategies (PCA, Polynomial Features) 
optimize dimensionality reduction and non-linear 
relationship modeling. The clustering phase 
integrates a spectrum of algorithms to rigorously 
evaluate varied data structures: K-means variants for 
spherical clusters, Affinity Propagation/ Mean-shift 
for non-parametric shapes, DBSCAN/OPTICS for 
density-based patterns, Spectral Clustering/Gaussian 
Mixtures for complex manifolds, and hierarchical 
methods (Agglomerative, BIRCH) for multi-scale 
analysis. 

In general, SOL-AutoClust framework 
automates the process of recommending the 
appropriate clustering pipeline for the given dataset, 
depending on both the dataset and the clustering 
algorithms’ characteristics. The pipeline steps of the 
online recommendation process are shown in figure 
2. This recommendation process consists of three 
main steps: dataset characterization, appropriate 
algorithms identification, and automatic pipeline 
recommendation. More details about the 
recommendation pipeline are presented in the 
following subsections. 

 
3.1 Data Repository 

 
Mapping configuration and clustering 

algorithms’ characteristics are stored in the 
repository to be utilized in the online 
recommendation process. Mapping configuration is 
used to classify the given dataset based on its size 
and dimensionality. The mapping configuration 
boundaries for each type is shown in table 3. On the 
other hand, clustering algorithms’ characteristics are 
stored in the repository to be used while selecting the 
appropriate clustering algorithms based on the 
characteristics of the given dataset. The clustering 
algorithms and their characteristics are presented in 
table 4. 

 
3.2 Dataset Characterization 
 

In this step, the characteristics of the given 
dataset are extracted and mapped using the mapping 
configuration. These characteristics of the given 
dataset are mapped to be compatible with the 
algorithms’ characteristics, consequently facilitating 
the process of appropriate clustering algorithm 
selection. A sample of these characteristics and their 
descriptions is shown in table 5. “Number of 
instances” and “Number of features” characteristics 
are used to classify the dataset into scale size and 
dimensionality degree based on the boundaries in the 
mapping configuration. 

 
3.3 Appropriate Algorithms Identification 

 
After extracting dataset characteristics, in 

this step, the extracted characteristics are compared 
against the characteristics of clustering algorithms 
so, the appropriate algorithms, are selected to be 
executed. An example of selecting appropriate 
clustering algorithms for a given dataset is shown in 
figure 3. 
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3.4 Automatic Pipeline Recommendation 
 
After identifying the relevant set of 

clustering algorithms that suit the characteristics of 
the given dataset, this relevant set is used to select 
the optimal pipeline. The process of optimal pipeline 
recommendation consists of three main tasks: 
pruning clustering algorithms, data preprocessing, 
and optimal pipeline recommendation. 

Table 5: Datasets Characteristics Sample. 

Feature Description 
Number of instances 

(Cardinality) 
# rows in the dataset 

Number of features 
(Dimensionality) 

Number of columns in the 
dataset 

Anomalies data? Whether the dataset contains 
outliers or not 

Number of missing 
values (Null Count) 

Total number of missing 
values across the dataset 

Number of numeric 
features (Numerical 

Degree) 

Number of numerical 
columns 

Number of categorical 
features (Categorical 

Degree) 

Number of categorical 
columns 

Number of binary 
features (Binary 

Degree) 

Number of binary (with two 
distinct values) columns 

 

 
Figure 3: An example of Selecting Relevant Algorithms 

3.4.1 Clustering algorithms pruning 
The pruning process is adapted to select the 
dominant clustering algorithms from those in the 
relevant set. The pruning step depends on three 
dimensions: complexity, scalability, and the number 
of input parameters to select the dominant clustering 
algorithms. We outline the pruning process in 
algorithm 1. 
3.4.2 Data preprocessing 
This task aims to clean the dataset and perform a set 
of preprocessing steps on the given dataset to 
increase the accuracy of the clustering process. 
These preprocessing steps are classified into two 
types: mandatory steps and optional steps. The 
mandatory and optional steps are shown in table 6. 
 

Table 6: Data Preprocessing Steps. 

Mandatory steps Optional steps 
Categorical feature encoding Feature selection 

Feature scaling Feature engineering 
Missing data imputation Removing outliers 

3.4.3 Optimal pipeline recommendation 
After cleaning the dataset by applying the mandatory 
preprocessing steps, the dominant clustering 
algorithms are used to cluster the cleaned dataset. If 
there were outliers in the given dataset and the user 
input was ignoring them, a preliminary iteration is 
executed to remove these outliers. Then, each 
algorithm in the dominant set is executed four times: 
the first iteration is without applying any optional 
step; the second iteration is by applying feature 
selection; the third iteration is by applying feature 
engineering; and the fourth iteration is by applying 
both feature selection and feature engineering. The 
silhouette score is calculated for each iteration for all 
dominant clustering algorithms, and the pipeline that 
achieves the minimum silhouette score is 
recommended for the given dataset. 
 
4. EXPERIMENTAL EVALUATION 
 

In this section, we present an evaluation of SOL-
Auto-Clust’s ability to automatically recommend the 
best clustering pipeline for a given dataset. We 
implement all of our code in Python version 3.11. 

 
4.1 ML Pipeline Recommendation Evaluation 

 
In this section, we demonstrate how combining 

data characteristics and clustering characteristics 
improves SOL-Auto-Clust’s ability to find a suitable 
clustering pipeline for a given dataset. To 
accomplish this, we evaluated SOL-Auto-Clust by 
comparing it to the clustering Auto-ML pipeline 
generation platforms discussed in existing literature. 
In general, there are two types of clustering 
evaluation measures or metrics. Internal measures do 
not require any ground truth to assess the quality of 
clusters. They are based solely on the data and the 
clustering results. External measures compare the 
clustering results to ground truth labels. Choosing 
the best metrics for evaluating a clustering model 
depends on the specific objectives of your analysis. 
If the true cluster labels (ground truth) are unknown, 
internal metrics such as silhouette score (SC) [19] 
are useful. However, if the true cluster labels are 
known, external metrics like adjusted rand index 
(ARI) [86] can be used. Our proposed framework 
provides the two types to serve all cases. We 
performed different experiments where we tracked 
multiple evaluation measures such as adjusted rand 
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index (ARI) and silhouette score (SC). We compared 
SOL-Auto-Clust with three open-source Auto-Clust 
pipeline generation platforms: ML2DAC [75], Auto-
Clust [72], and Auto-Cluster [73]. 
4.1.1 Datasets 
We used 16 public datasets with different 
characteristics to compare our proposed framework 
to the existing frameworks. We used a total of 16 
public datasets with different characteristics in order 
to conduct a comprehensive evaluation of our 
proposed framework in comparison to the existing 
frameworks. We performed 4 experiments for every 
dataset utilizing each framework. The details about 
the datasets used in the evaluation are presented in 
table 7. 
4.1.2 Solution Environment and Hardware 
The proposed framework was implemented in 
Python 3.11 using a virtual machine with Ubuntu 
20.04, 32 GB of RAM, and 8 cores to compare it 
with ML2DAC [75], Auto-Clust [72], and Auto-
Cluster [73]. 
 
4.2 Evaluation Results and Analysis 

 
In this section, we shall delve into an 

examination of the conducted experimental 
outcomes, aiming to compare our innovative SOL-
Auto-Clust framework with the existing frameworks 
available. For every dataset, we conducted four 
experiments with each framework. The results 
obtained were consistent across SOL-Auto-Clust, 
Auto-Clust, and Auto-Cluster; however, there was 
significant variability observed in the outcomes for 
ML2DAC across different experiments. The 
performance of our proposed framework compared 
to Auto-Clust and Auto-Cluster across all evaluation 
datasets is displaied in table 8. The clustering 
algorithms recommended and the number of clusters 
generated by SOL-Auto-Clust, Auto-Clust, and 
Auto-Cluster are shown in table 9. Conversely, table 
10 presents the performance of ML2DAC on each 
evaluation dataset over four runs. Additionally, table 
11 illustrates the recommended clustering 
algorithms and the number of clusters generated by 
ML2DAC in these runs. The discrepancies in 
ML2DAC's results are attributed to its reliance on 
two configurations: warm-starting configurations, 
which remain constant for each dataset in every run, 
and dynamic configurations determined by the 
Bayesian Optimization optimizer, which can vary 
between runs. 

In the results of the experiments, presented in 
table 8 and table 10 it is shown that the proposed 
framework, SOL-Auto-Clust, outperforms the 
ML2DAC, Auto-Clust, and Auto-Cluster 

frameworks in terms of adjusted rand index (ARI) 
and silhouette score (SC) measures.   

In figure 4 and figure 5, it is shown that 
ML2DAC, Auto-Clust, and Auto-Cluster face 
significant challenges when recommending suitable 
clustering algorithms for datasets that contain 
outliers. These approaches struggle to handle 
datasets such as "Covid-19", "Abalone", "Oil-Spill", 
"Air quality health impact", "Marketing Campaign", 
"Advanced IoT Agriculture", and "Diabetes 
prediction" which are known to have outliers. As a 
result, the recommended algorithms are limited in 
their effectiveness and can only provide accurate 
clustering results for clean datasets. 

Another noteworthy observation is that 
ML2DAC, Auto-Clust, and Auto-Cluster encounter 
difficulties in suggesting appropriate clustering 
algorithms for high-dimensional datasets, 
specifically demonstrated in the "Covid-19" dataset. 
High-dimensional data presents unique challenges 
due to the increased complexity and the curse of 
dimensionality. The failure of these approaches to 
address these challenges further emphasizes their 
limitations in accurately recommending suitable 
algorithms in such scenarios. Auto-Cluster utilized 
150 datasets consisting of a maximum of 5000 
samples and 50 features to generate its meta-data. 
Thus, Auto-Cluster is constrained to working with 
small-scale and low-dimensional datasets. 

On the other hand, the evaluation results 
presented in table 9 and table 11 compare the 
recommended clustering algorithms and the number 
of clusters generated by the proposed framework 
with Auto-Clust, Auto-Cluster and ML2DAC. The 
findings highlight some significant observations. 
Firstly, it is evident that ML2DAC tends to produce 
a large number of clusters for most datasets. For 
instance, the "CO2-Emission" and "Drug" datasets 
have 164 and 88 clusters by average respectively, 
despite containing 935 and 200 records respectively. 
This results in a situation where the number of 
clusters is approximately 25% of the total records, 
presenting challenges in terms of interpretability. 

Consequently, the evaluation results provide 
valuable insights into the limitations of ML2DAC, 
Auto-Clust, and Auto-Cluster in comparison to the 
proposed framework. These limitations primarily 
relate to the handling of outliers, addressing high-
dimensional datasets, and accurately determining the 
number of clusters. The proposed framework 
demonstrates superior performance in these areas, 
highlighting the importance of considering these 
factors when recommending clustering algorithms. 

In general, there is a noticeable superiority to 
our proposed framework in terms of adjusted rand 
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index (ARI) and silhouette score (SC) measures 
when recommending the appropriate pipeline for a 
given dataset. This superiority is due to its reliance 
on an online learning approach. Furthermore, 
combining data characteristics and clustering 
algorithms’ characteristics empowers the proposed 
framework to dominate the existing frameworks in 
the recommendation process. 

Additionally, depending solely on the outcomes 
derived from similar datasets can be deceptive, as the 
two datasets may share numerous characteristics but 
possess subtle differences that could profoundly 
influence the performance of clustering algorithms. 
This highlights the importance of considering 
subjective evaluations in the form of online learning. 
By actively incorporating ongoing feedback and 
adapting the clustering algorithms in real-time, 
online learning provides a more effective approach 
to handle such nuanced variations. It allows for 
continuous adjustments and refinements based on 
the evolving understanding of the data, mitigating 
the risk of being misled by superficial similarities 
between groups. In this way, online learning offers a 
dynamic and responsive framework that can better 
capture the intricate nuances of data and optimize the 
clustering process, leading to more accurate and 
reliable results. 

Furthermore, a key factor contributing to the 
superiority of the proposed framework is its holistic 
approach, which encompasses the entire pipeline of 
data preprocessing and clustering. Unlike existing 
frameworks that solely focus on the Cluster Analysis 
Selection and Hyperparameter (CASH) part, the 
proposed framework considers the complete set of 
pipeline steps. This includes crucial tasks such as 
encoding categorical features, feature scaling, 
feature selection, data cleaning, and outlier detection 
and handling. By considering these essential 
preprocessing steps, the proposed framework 
ensures that the data is appropriately prepared and 
optimized for clustering analysis. Only after 
completing these preprocessing steps does the 
framework proceed to the CASH part, where it 
intelligently selects the most suitable clustering 
algorithms and hyperparameters. This 
comprehensive approach enhances the accuracy and 
robustness of the clustering process, as it addresses 
potential issues and inconsistencies in the data prior 
to applying the clustering algorithms. In essence, the 
proposed framework goes beyond the limitations of 
existing frameworks by incorporating the entire 
pipeline, resulting in more reliable and effective 
clustering outcomes. 

4.3 Difference from Prior Work 
Prior unsupervised approaches like 

AutoML4Clust and ML2DAC focus narrowly on the 
Combined Algorithm Selection and Hyperparameter 
(CASH) problem, often relying on single Cluster 
Validity Indices (CVIs) or static meta-features. For 
instance, AutoML4Clust [71] explores configuration 
spaces but fails to reduce search complexity or adapt 
CVIs dynamically, while AutoClust [72] and 
AutoCluster [73] prioritize dataset similarity via 
landmarking without integrating algorithm-specific 
traits (e.g., outlier robustness). In general, most prior 
works overlook user-centric requirements, such as 
interpretability needs, and struggle with 
computational efficiency when scaling to large 
datasets. 

In contrast, SOL-Auto-Clust introduces three 
key innovations. First, it unifies data characteristics 
(e.g., dimensionality, outlier density), algorithm 
traits (e.g., sensitivity to noise, scalability), and user-
defined objectives (e.g., interpretability) into a new 
framework, enabling complete pipeline 
recommendations. Second, it employs a dynamic 
multi-CVI strategy to evaluate clustering quality, 
addressing the limitation of single-CVI dependency 
in AutoML4Clust. Third, it automates end-to-end 
tasks, including outlier-aware preprocessing and 
optimal cluster count determination. Experiments 
demonstrate SOL-Auto-Clust’s superiority in 
handling high-dimensional data and outliers, 
outperforming benchmarks in Adjusted Rand Index 
(ARI) and Silhouette Score. Furthermore, the 
framework minimizes computational overhead by 
employing smart configuration pruning that 
leverages meta-feature extraction. Furthermore, 
while SOL-Auto-Clust performs exceptionally on 
structured data, its inability to handle unstructured 
formats (such as text and images) currently poses a 
limitation, which is planned to be addressed in future 
work. These advancements and limitations position 
SOL-Auto-Clust as a scalable, user-aligned solution 
that bridges critical gaps in automated clustering 
while acknowledging avenues for further 
refinement. 

 
5. CONCLUSION AND FUTURE WORK 
 

The SOL-Auto-Clust framework successfully 
tackles the important problem of automating 
unsupervised clustering for current Auto-ML 
solutions. By holistically integrating data 
characteristics, algorithm properties, and user needs, 
SOL-Auto-Clust overcomes the fragmented 
approaches of prior works, such as the narrow CASH 
focus of AutoML4Clust or AutoCluster's 
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dependence on dataset similarity. Empirical 
validation across diverse and complex datasets 
confirms its superior performance, particularly in 
handling high-dimensional and outlier-rich 
scenarios. The framework's automated 
determination of cluster counts and outlier-aware 
preprocessing significantly reduces manual 
intervention, a key bottleneck in earlier 
methodologies. While the current reliance on 
structured data meta-features suggests an avenue for 
future development regarding unstructured data, the 
inherent scalability of SOL-Auto-Clust underscores 
its practical utility. Future work will focus on 
expanding its capabilities to unstructured data and 
enhancing interpretability, further solidifying its role 
in human-aligned machine learning pipelines. 
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Table 2: The List of Algorithms Used By SOL-AutoClust. 

Data preprocessing Feature selection Feature engineering  Clustering algorithm 

Ordinal Encoder 
One Hot Encoder 
Log Transformer 
Imputer – Mean 

Imputer – Median 
Imputer – Simple (Mode) 

Imputer – KNN 
Min Max - Scaler 

 
RFE-RandomForest 

 
Remove Collinearity 

 
Variance Threshold 

 
PCA 

 
Polynomial Features 

 

K-means [76] 
Bisecting K-means [77] 

Affinity Propagation [78] 
Mean-shift [79]  

Spectral [80]  
Agglomerative [81]  

DBScan [82] 
Optics [83] 

Gaussian Mixtures [84] 
Birch [85] 

 

Table 3: Dataset Characteristics Mapping Configuration. 

 Scale (No. of records) Dimensionality (No. of columns) 

 Small Medium Large VLarge Small Medium Large 

Minimum value 2 10001 100001 1000001 2 21 101 

Maximum value 10000 100000 1000000 10000000 20 100 1000 

Table 4: Characteristic of Clustering Algorithms (n = the number of objects to be clustered, k = the number of clusters, 
d = the number of dimensions, i = the number of iterations to convergence). 

 

 

Clustering 
Algorithm 

Scale size Dimensionality Handlin
g Noise? 

Scalabilit
y 

Time 
Complexit

y Smal
l 

Mediu
m 

Larg
e 

VLarg
e 

Smal
l 

Mediu
m 

Larg
e 

K-means ✓ ✓ ✓ ✓ ✓ ✓   High O(n k d i) 

Mini Batch  ✓ ✓ ✓ ✓ ✓ ✓  Medium < O(n k d i) 

DBScan ✓ ✓ ✓  ✓ ✓  ✓ Medium O(n log n) 

Optics ✓ ✓   ✓ ✓  ✓ Medium O(n2) 

Affinity ✓ ✓   ✓ ✓ ✓  Low O(n2i) 

Mean-shift ✓ ✓   ✓ ✓   Low O(n2) 

Spectral  ✓ ✓  ✓ ✓ ✓  Low O(n) 

Agglomerativ ✓ ✓ ✓  ✓ ✓   Low O(n2) 

Birch ✓ ✓ ✓  ✓ ✓ ✓ ✓ High O(n) 

Gaussian 
 

✓ ✓ ✓  ✓ ✓  ✓ Low O(k i n2) 
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Table 7: Characteristics of the 16 Datasets Used for The Evaluation. 

Dataset Cardinality Degree Outlier 
flag 

URL 

Telco-Customer-Churn 7043 21  No https://www.kaggle.com/blastchar/telco-customer-churn 
Anomaly-Detection 134229 8 Yes https://www.kaggle.com/jorekai/anomaly-detection-falling-

people-events 
Covid-19 5644 106 Yes https://www.kaggle.com/einsteindata4u/covid19 

Malware-Detection 5210 70 No https://www.kaggle.com/saurabhshahane/classification-of-
malwares 

Abalone 4168 9 Yes https://archive.ics.uci.edu/ml/datasets/abalone 
Oil-Spill 937 50 Yes https://www.kaggle.com/paulh2718/oil-spill 

Wine-Quality 1599 12 Yes https://www.kaggle.com/uciml/red-wine-quality-cortez-et-
al-2009 

Cell-Samples 699 10 No https://www.kaggle.com/datasets/ammaraahmad/top-10-
machine-learning-datasets?select=cell_samples.csv 

Cars-Clus 117 16 Yes https://www.kaggle.com/datasets/ammaraahmad/top-10-
machine-learning-datasets?select=cars_clus.csv 

CO2-Emission 935 12 No https://www.kaggle.com/datasets/ammaraahmad/top-10-
machine-learning-datasets?select=CO2_emission.csv 

Drug 200 6 No https://www.kaggle.com/datasets/ammaraahmad/top-10-
machine-learning-datasets?select=drug.csv 

Air quality health 
impact 

5811 15 Yes https://www.kaggle.com/datasets/rabieelkharoua/air-
quality-and-health-impact-dataset 

Marketing Campaign 2240 29 Yes https://www.kaggle.com/datasets/rodsaldanha/arketing-
campaign 

Commerce Shipping 10999 12 No https://www.kaggle.com/datasets/prachi13/customer-
analytics 

Advanced IoT 
Agriculture 

30000 14 Yes https://www.kaggle.com/datasets/wisam1985/advanced-iot-
agriculture-2024 

Diabetes prediction 100000 9 Yes https://www.kaggle.com/datasets/iammustafatz/diabetes-
prediction-dataset 

Table 8: Clustering Auto-ML Frameworks’ Performance Comparison (SOL-Auto-Clust vs Auto-Clust and Auto-
Cluster). 

Dataset Auto-Clust Auto-Cluster SOL-Auto-Clust 
ARI SC ARI SC ARI SC 

Telco-Customer-Churn 0.02 -0.08 0.012 0.006 0.98 0.34 

Anomaly-Detection 0.1 0.005 0.03 0.07 0.68 0.54 

Covid-19 -0.0008 0.001 0.001 0.06 0.50 0.61 

Malware-Detection 0.04 -0.5 0.0002 -0.8 0.51 0.30 

Abalone 0.02 0.09 0.14 0.03 0.51 0.56 

Oil-Spill 0.002 0.03 0.25 0.004 0.91 0.98 

Wine-Quality 0.0007 0.04 0.006 0.27 0.92 0.26 

Cell-Samples 0.34 0.21 0.31 0.05 0.93 0.53 

Cars-Clus 0.06 0.05 0.18 -0.0042 0.81 0.50 

CO2-Emission 0.003 0.001 -0.016 0.08 0.92 0.58 

Drug 0.04 -0.32 -0.007 -0.19 0.90 0.38 

Air quality health impact 0.006 0.04 0.08 0.001 0.79 0.62 

Marketing Campaign 0.007 0.03 0.16 0.007 0.63 0.24 

Commerce Shipping 0.008 -0.05 0.014 -0.003 0.56 0.54 

Advanced IoT Agriculture -0.13 -0.41 -0.02 0.006 0.48 0.42 

Diabetes prediction 0.2 0.004 0.09 0.14 0.81 0.37 
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Table 9: The Recommended Clustering Algorithms and the Number of Clusters (SOL-Auto-Clust vs Auto-Clust and 
Auto-Cluster). 

Dataset Auto-Clust Auto-Cluster SOL-Auto-Clust 

Alg No. of 
clust 

Alg No. of 
clust 

Alg No. of 
clust 

Telco-Customer-Churn KMeans 5 KMeans 5 KMeans 4 

Anomaly-Detection Agglomerativ
e 

4 DBScan 2 BIRCH 2 

Covid-19 MeanShift 3 KMeans 4 BIRCH 2 

Malware-Detection 
KMeans 7 Agglomerative 5 

Affinity 
Propagation 

5 

Abalone MeanShift 2 KMeans 6 BIRCH 2 

Oil-Spill 
KMeans 2 

Affinity 
Propagation 

2 BIRCH 2 

Wine-Quality BIRCH 2 Agglomerative 2 OPTICS 2 

Cell-Samples Agglomerativ
e 

2 KMeans 2 Agglomerative 2 

Cars-Clus MeanShift 3 MeanShift 3 BIRCH 4 

CO2-Emission Agglomerativ
e 

3 
Affinity 

Propagation 
3 

Affinity 
Propagation 

2 

Drug 
MeanShift 5 KMeans 7 

Affinity 
Propagation 

2 

Air quality health 
impact 

MeanShift 2 KMeans 11 BIRCH 4 

Marketing Campaign 
KMeans 3 

Affinity 
Propagation 

2 BIRCH 2 

Commerce Shipping KMeans 4 KMeans 4 KMeans 4 

Advanced IoT 
Agriculture 

MeanShift 2 
Affinity 

Propagation 
2 DBScan 2 

Diabetes prediction Agglomerativ
e 

4 DBScan 2 BIRCH 2 

Table 10: ML2DAC Performance Through 4 Experiments. 

Dataset ML2DAC (Exp. 
1) 

ML2DAC (Exp. 
2) 

ML2DAC (Exp. 
3) 

ML2DAC (Exp. 
4) 

ARI SC ARI SC ARI SC ARI SC 
Telco-Customer-Churn 0.02 -0.09 0.02 -0.095 0.02 -0.095 0.02 -0.095 

Anomaly-Detection 0.07 0.09 -0.17 0.149 0.0065 0.036 0.0065 0.036 

Covid-19 -0.005 -0.49 -0.005 -0.49 -0.005 -0.49 -0.005 -0.49 

Malware-Detection 0.04 -0.45 0.02 -0.44 -0.657 0.996 0.04 -0.53 

Abalone 0.006 0.42 0.006 0.42 -0.087 0.135 -0.005 0.435 
Oil-Spill 0.0001 0.35 0.016 -0.42 0.0003 0.35 -0.93 -0.41 

Wine-Quality 0.02 0.18 0.02 0.18 0.02 0.18 0.02 0.18 

Cell-Samples 0.64 0.45 0.82 0.548 0.88 0.53 0.82 0.548 

Cars-Clus 0.0 0.17 0.0 0.1 0.0 0.1 0.0 0.17 

CO2-Emission 0.02 -0.096 0.016 -0.08 0.019 -0.09 0.02 -0.118 

Drug 0.05 -0.29 0.039 -0.34 0.039 -0.34 0.05 -0.29 

Air quality health impact 0.6 0.0127 0.6 0.0127 0.042 -0.011 0.6 0.0127 

Marketing Campaign 0.12 0.398 0.19 0.175 0.19 0.175 0.12 0.398 

Commerce Shipping 0.008 -0.07 0.02 -0.095 0.008 -0.07 0.008 -0.07 

Advanced IoT Agriculture 0.18 0.053 0.35 0.24 0.18 0.053 0.35 0.24 

Diabetes prediction -0.0023 0.018 -0.0023 0.018 0.0084 0.054 -0.0023 0.018 
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Table 11: The Recommended Clustering Algorithms and the Number of Clusters by ML2DAC Through 4 Experiments. 

Dataset ML2DAC (Exp. 
1) 

ML2DAC (Exp. 
2) 

ML2DAC (Exp. 
3) 

ML2DAC (Exp. 
4) 

Alg No. of 
clust 

Alg No. of 
clust 

Alg No. of 
clust 

Alg No. of 
clust 

Telco-Customer-Churn KMeans 11 KMeans 11 KMeans 11 KMeans 11 
Anomaly-Detection BIRCH 50 BIRCH 84 ward 51 ward 51 

Covid-19 ward 10 ward 10 ward 10 ward 10 
Malware-Detection ward 95 BIRCH 2 ward 2 KMeans 80 

Abalone KMeans 9 KMeans 9 BIRCH 17 DBScan 2 
Oil-Spill KMeans 2 GMM 11 GMM 2 BIRCH 17 

Wine-Quality GMM 2 GMM 2 GMM 2 GMM 2 
Cell-Samples DBScan 2 KMeans 2 ward 2 KMeans 2 

Cars-Clus KMeans 3 GMM 2 GMM 2 KMeans 2 
CO2-Emission KMeans 149 KMeans 200 KMeans 185 GMM 121 

Drug ward 58 BIRCH 117 BIRCH 117 ward 58 
Air quality health impact ward 2 ward 2 BIRCH 10 ward 2 

Marketing Campaign GMM 2 ward 2 ward 2 GMM 2 
Commerce Shipping KMeans 13 ward 2 KMeans 13 KMeans 13 

Advanced IoT Agriculture BIRCH 24 ward 2 BIRCH 24 ward 2 
Diabetes prediction ward 47 ward 47 KMeans 78 ward 47 

 
Figure 2: Online Clustering Recommendation Pipeline 

 
Figure 4: Performance Evaluation (ARI) SOL-Auto-Clust vs Existing Frameworks 
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Figure 5: Performance Evaluation (SC) SOL-Auto-Clust vs Existing Frameworks 

 


