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ABSTRACT 
 

Melanoma is one of the deadliest types of skin cancer and one of the most aggressive that may be if caught 
late. While traditional approaches may have their limits, an accurate diagnosis is vital for patient survival. 
Thanks to its capacity to understand intricate patterns from massive datasets, deep learning has evolved as a 
potential method for automated melanoma diagnosis. The challenges persist, including overfitting, 
instability during training, and difficulties in handling nonlinearities, which can hinder accurate predictions. 
To address these challenges, Self-Reliant ResNet (SR-ResNet) has been proposed. This enhanced version 
of ResNet integrates Zoutendijk’s Method, a nonlinear optimization technique, to optimize weight updates 
and improve convergence. SR-ResNet features a series of residual blocks where Zoutendijk’s Method 
refines the learning process, ensuring stability and efficient training, even in deeper networks. The 
network’s architecture has been designed to enhance performance and generalization. The proposed SR-
ResNet has been evaluated using a dataset of 10,000 Melanoma Skin Cancer images. The results 
demonstrate significant improvements in classification accuracy, achieving a high precision rate with 
reduced overfitting. SR-ResNet outperforms traditional models, establishing itself as a robust tool for 
melanoma diagnosis. 
Keywords: Melanoma Skin Cancer, Deep Learning, SR-ResNet, Zoutendijk’s Method, Classification 

Accuracy 
 
1. INTRODUCTION 

Melanoma Skin Cancer has emerged as a 
critical public health concern, recognized for its 
aggressive nature and high mortality rate if not 
diagnosed early. This cancer, originating in 
melanocytes—the cells responsible for producing 
melanin—demands early detection and precise 
diagnosis to improve survival rates[1]. Traditional 
methods, relying on visual examination and biopsy, 
have exhibited limitations, potentially leading to 
delays in treatment. The onset of the COVID-19 
pandemic has further exacerbated this issue, 
disrupting routine healthcare services and causing a 
gradual increase in Melanoma Skin Cancer cases as 
patients have missed early screenings. This surge 
has underscored an urgent need for more reliable 
and advanced diagnostic tools that enhance 
accuracy and accessibility in the post-pandemic 
era[2], [3]. 
 

Figure 1a shows a benign skin lesion, such 
as a mole or benign nevus, which is non-cancerous 
and does not evolve into melanoma. These lesions 
typically do not invade surrounding tissues or 

spread to other parts of the body, making them 
generally harmless.Figure 1b, on the other hand, 
depicts a malignant skin lesion, specifically 
melanoma, a dangerous form of skin cancer[4]. 
Melanoma can grow aggressively, invade nearby 
tissues, and metastasize to distant organs. Accurate 
diagnosis and early intervention are crucial for 
effective treatment of melanoma[4]. 

 
Deep learning has gained prominence as a 

transformative approach in medical imaging, 
revolutionising how melanoma is detected and 
classified. Convolutional Neural Networks (CNNs) 
have emerged as a leading deep learning 
architecture, showing significant promise in 
analyzing complex patterns within medical 
images[5]. Despite these improvements, melanoma 
detection using deep learning models has been quite 
difficult. One of the biggest problems is overfitting, 
which occurs when a model does very well on 
training data but doesn't adapt well to new, 
unknown data. A lack of stability in the training 
process has also been a significant hurdle, often 
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resulting in difficulties with convergence in deeper 
networks. [6], [7]. 

 

Figure 1a. Benign Skin Lesion 
 

Figure 1b. Malignant Skin Lesion 
 

Self-Reliant Residual Network (SR-
ResNet) has been proposed to overcome these 
challenges, representing an advancement over the 
traditional ResNet architecture. SR-ResNet 
integrates Zoutendijk’s Method, a nonlinear 
optimization technique designed to enhance the 
training process. While ResNet is known for its 
powerful architecture, which includes residual 
connections that mitigate the vanishing gradient 
problem in deep networks, SR-ResNet builds upon 
this by optimizing weight updates to improve 
convergence and stability. IntegratingZoutendijk’s 
Method ensures that each training step moves the  
model toward an optimal solution, effectively 
addressing issues related to overfitting and 
instability that have previously hindered deep-
learning models in melanoma detection. 
 

By refining the learning process, SR-
ResNet has established itself as a robust and 
reliable tool for melanoma detection, offering 
significant improvements in accuracy and stability. 
This model’s ability to address the specific 
challenges posed by melanoma data positions it as a 
critical advancement in the field, particularly during 
the COVID-19 pandemic, where the need for early 
and accurate cancer detection has become 
increasingly pressing. The healthcare landscape 
continues to evolve in response to ongoing 
challenges, with SR-ResNet providing a promising 
solution for improving patient outcomes in 

melanoma diagnosis, helping to bridge the gap left 
by traditional methods and ensuring that more 
patients receive timely and accurate care. 

 
Despite advancements in melanoma 

detection, existing models suffer from overfitting, 
unstable convergence, and limited generalization, 
especially in deeper networks. Ensemble and 
transfer learning methods offer improvements but 
lack optimization efficiency and adaptability. 
Current approaches often overlook nonlinear 
optimization within residual blocks. This work 
introduces SR-ResNet, which integrates 
Zoutendijk’s Method to optimize weight updates, 
ensuring stable convergence and improved 
classification accuracy. By addressing a critical gap 
in convergence-optimized deep learning, SR-
ResNet provides a robust solution tailored for 
melanoma detection, outperforming traditional 
models and offering a scalable, precise diagnostic 
framework suitable for clinical deployment. 

 
2. LITERATURE REVIEW 

Ensemble Embeddings Approach [8] has 
explored melanoma detection by integrating an 
ensemble of machine learning models with deep 
feature embeddings, demonstrating significant 
improvements in accuracy. The study highlights the 
advantages of combining traditional machine 
learning algorithms with deep learning features, 
enhancing overall predictive performance. The 
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proposed ensemble method mitigates overfitting 
and increases robustness, making it a promising 
approach for melanoma detection in clinical 
settings. MuSClD System [9] has introduced Multi-
site Cross-organ Calibrated Deep Learning 
(MuSClD), an automated system for diagnosing 
non-melanoma skin cancer. The research 
emphasizes the importance of calibrating deep 
learning models across multiple sites to improve 
generalizability. The proposed model leverages 
cross-organ calibration to enhance the accuracy of 
diagnosis, addressing the challenges associated 
with varying data distributions across different 
clinical settings. Interpretable DL System [10] have 
developed an interpretable deep learning system for 
multi-class segmentation and classification of non-
melanoma skin cancer. Their approach combines 
deep learning with interpretability techniques, 
allowing clinicians to understand the decision-
making process of the model. The study 
demonstrates that interpretable models can achieve 
high accuracy while providing insights into the 
model's behavior, which is crucial for clinical 
adoption. 
 

Grasshopper DL Hybrid [11] have 
proposed a hybrid Grasshopper optimization 
algorithm combined with deep learning for skin 
lesion segmentation and melanoma classification. 
The research integrates evolutionary algorithms 
with deep learning to optimize the segmentation 
process, improving classification accuracy. The 
hybrid approach addresses the limitations of 
traditional deep learning models in segmenting 
complex skin lesions, providing a more reliable tool 
for melanoma diagnosis. Hyperspectral Signature 
Learning [12]has been explored to classify actinic 
keratosis and non-melanoma skin cancers using 
near-infrared hyperspectral signatures. This 
research shows that hyperspectral imaging in 
conjunction with machine learning can effectively 
differentiate between various skin lesions. Their 
technology provides an alternative to invasive 
procedures for early identification of skin cancer, 
which has the potential to greatly improve 
diagnostic accuracy.Deep Learning Classifier 
[13]studied the efficacy of several deep learning 
architectures on datasets consisting of skin lesion 
information in order to identify and categorize skin 
cancers. Findings show that deep learning 
algorithms can detect skin cancer more accurately 
than conventional approaches, suggesting that they 
may eventually replace them. It delves into the 
difficulties encountered by deep learning models, 

including overfitting and the requirement for 
extensive datasets. 

 
Optimized DL Segmentation 

[14]highlights the importance of accurate 
segmentation for better diagnosis accuracy by 
optimizing deep learning methods for skin lesion 
segmentation and skin cancer detection. Their 
research incorporates advanced deep-learning 
architectures tailored to handle the unique 
challenges posed by skin lesion images. The study 
demonstrates that optimized deep-learning models 
can achieve superior performance in skin cancer 
detection, particularly in challenging cases. Hybrid 
DL Framework [15] have introduced a hybrid deep 
learning framework for predicting skin cancer, 
combining various deep learning techniques to 
improve accuracy. The framework integrates 
convolutional neural networks with other deep 
learning methods, resulting in a robust model 
capable of handling diverse skin lesion images. 
Their approach offers a comprehensive solution for 
skin cancer prediction, enhancing the model's 
generalizability across different datasets. 
Polarimetric ML Classifier [16] has used 
polarimetric imaging with machine learning to 
classify non-melanoma skin cancer in mice tissues. 
The study leverages optical parameters derived 
from polarimetric imaging to improve classification 
accuracy. Their findings suggest combining 
polarimetric imaging with machine learning 
provides a novel approach to skin cancer diagnosis, 
potentially offering more accurate results than 
traditional imaging methods. Transfer Learning 
Hybrid[17]identify melanoma skin cancer by using 
transfer learning for segmentation in conjunction 
with hybrid classification. This study aims to 
improve melanoma detection systems by utilizing 
pre-trained models, especially in cases when 
labeled data is few. The work shows that melanoma 
diagnosis may be much improved using transfer 
learning and hybrid classification algorithms, which 
makes it a viable tool for clinical situations. 
 

Ensemble Transfer Learning (ETL) [18]is 
utilizing deep transfer learning and ensemble 
machine learning in a combined effort to classify 
melanoma. In order to improve classification 
accuracy, the study investigates using deep learning 
in conjunction with several machine learning 
models. The ensemble approach addresses the 
challenges of overfitting and model robustness, 
providing a more reliable method for melanoma 
detection. Their findings indicate combining 
traditional and deep learning methods can lead to 
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superior classification performance.DL Meta-
analysis (DLMA)[19]have reviewed and analyzed 
deep learning algorithms for dermoscopy-based 
melanoma diagnosis in a systematic way. In order 
to assess deep learning's efficacy in melanoma 
diagnosis, their study combines results from several 
investigations. While deep learning models have 
demonstrated promising results in increasing 
diagnosis accuracy, the study notes that there is still 
a need for more research into issues like data 
quality and model interpretability.Bio-inspired 
Optimization plays a significant role in different 
research to achieve the best result [20]-[53]. Even 
in skin cancer detection also, bio-inspired 
optimization can be applied. 
 
3. SELF-RELIANT RESIDUAL NETWORK 

 
Self-Reliant ResNet (SR-ResNet) 

represents a substantial advancement over 
traditional ResNet architectures by 
integratingZoutendijk's Method, a sophisticated 
nonlinear optimization technique. By leveraging 
Zoutendijk's Method, SR-ResNet optimizes the 
weight update process during training, significantly 
improving convergence stability and computational 
efficiency. This integration effectively mitigates 
issues such as gradient vanishing and overfitting, 
which are common challenges in deep learning 
models, particularly in complex tasks like 
melanoma detection. The enhanced optimization 
process enables SR-ResNet to achieve more precise 
and reliable predictions for melanoma. It is a 
powerful tool in applications that demand high 
accuracy and robustness in detecting this aggressive 
form of skin cancer. 
3.1. Input Layer 

The first step in SR-ResNet involves the 
input layer, where the raw data, typically an image, 
is fed into the network. The input image can be 
represented as a tensor  of dimensions 

 where  represents the height,  
represents the width and denotes the number of 
channels, usually corresponding to the color 
channels in an RGB image . The 
mathematical formulation of the input tensor can be 
described as: 

 for 
 

(1) 

 
In the initial convolutional layer, the 

input tensor  undergoes a convolution operation 
with a set of filters of kernels, denoted as , 
where  is a four-dimensional tensor of 

dimensions  Here,  and  
denote the height and width of the filter, 
respectively, and  represents the number of filters 
applied. The convolution operation between  and 

 can be mathematically represented as: 

 

(2) 

where is the output feature map resulting from 
the convolution operation at position . The 
above equation computes the weighted sum of the 
input pixel values and the corresponding filter 
weights, producing an output feature map of 
reduced dimensions, which captures the essential 
features from the input image. 
 

A nonlinearity is introduced into the 
model after the convolution process by applying an 
activation function  element-wise to the output 
feature map . The mathematical expression of the 
most used activation function, the Rectified Linear 
Unit (ReLU): 

 (3) 

where is the activated output at position . 
This operation retains positive values and sets all 
negative values to zero, which helps to prevent the 
vanishing gradient problem. 
 

In specific architectures, a max-pooling 
operation follows the activation function, reducing 
the spatial dimensions of the feature maps by 
selecting the maximum value from non-overlapping 
subregions within the feature map. This operation 
can be defined as: 

 for 
 

(4) 

where  is the pooled output, represents 
the size of the pooling window, and  is the 
activated feature map. This pooling process reduces 
the computational complexity and provides spatial 
invariance, thereby setting up the initial feature 
map  for further processing in the subsequent 
layers of SR-ResNet. 
 
3.2. Initial Convolution and Pooling 

The initial feature map undergoes further 
processing through convolutional layers within the 
residual block. The initial feature map  obtained 
after the first convolutional and pooling operations, 
is passed through a series of convolutional layers 
designed to extract deeper features. Let  have 
dimensions. The first convolutional 
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layer within this block applies a set of filters.  
with dimensions  where  
represents the number of filters. The operation is 
defined as: 

 

(5
) 

where  represents the output feature map 
after the first convolutional operation in layer . 

A batch normalization step is applied to 
the output feature map. , which normalizes the 
output to have a mean of zero and a variance of 
one. Let and  represent the mean and 

variance, respectively:  

 

(6) 

where  is a small constant added for numerical 
stability. 
 

Following batch normalization, the 
activation function , typically ReLU, is applied: 

(7
) 

This process is repeated in subsequent 
convolutional layers within the same residual block. 
Consider the next convolutional layer with 
filters.  of dimensions , where 

 is the number of filters in the second 
convolutional layer. The output of this layer is: 

(8
) 

Batch normalization is again applied to   

 

(9) 

Following normalization, the ReLU activation 
function is applied: 

(10
) 

 
In a standard residual block, these 

operations are followed by adding the original input 
 to the final output of the convolutional layers. In 

SR-ResNet, this step incorporates Zoutendijk's 
Method for optimization.The residual function is 
denoted as: 

 (11) 

 
The input  is added to the residual 

function.  yielding the output  of the 
residual block: 

 (12) 

Zoutendijk's Method is then applied to 
optimize , where the feasible direction 

 and step size  are calculated. The update 
step for the parameters  involves moving in the 
direction  by a step size  

 (13) 

 
The optimized output  becomes 

the input to the next block in the SR-ResNet, 
ensuring efficient training and enhanced 
convergence throughout the network. 
 
3.3. Residual Block with Zoutendijk's 
Optimization  

The process continues with stacking 
multiple residual blocks, each incorporating the 
enhanced optimization technique inspired by 
Zoutendijk's Method. The input to each subsequent 
residual block is the output from the previous 
block, optimized to improve training stability and 
convergence. Let  represent the output of the 

residual block, which serves as the input to the 
next block.The input  is first passed through a 
convolutional layer with filters  defined by the 
dimensions  where  is the 
number of channels in  and  is the number of 
filters. The operation is expressed as: 

(14
) 

 
Following this convolution, the batch 

normalization step is applied to the output feature 
map.  with the mean  and variance  

calculated as: 

 

(15) 

 
The output is then passed through the 

activation function, typically ReLU: 

(16
) 
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The process continues with another 
convolutional layer, this time using filters.  with 
dimensions  where  
represents the number of filters in the next layer. 
The convolution operation is given by: 

(1
7) 

 
Batch normalization is again applied: 

 

(18) 

The activated output is then: 

(19
) 

 
This output  serves as the residual 

function  for the next layer. To maintain 
continuity, the original input  is added to this 
residual function, forming the input to the next 
block: 

 (20) 

 
At this stage, Zoutendijk's Method is 

applied again. The objective function  
representing the loss, is optimized by determining a 
feasible direction  and an optimal step size 

 

 (21) 

 
The optimized set of parameters  

updates the weights within the block, ensuring that 
the network continues to learn efficiently. The 
output  becomes the input for the subsequent 
residual block, preserving the gradient flow and 
enhancing the overall network performance.By 
repeating this process, SR-ResNet constructs a deep 
network where each residual block is optimized for 
improved convergence, leading to better model 
accuracy and efficiency in learning complex 
patterns. 
 
3.4. Stacking SR-ResNet Blocks 

The output from the series of residual 
blocks is processed through global average pooling, 
fully connected layers, and the final optimization 
steps to produce the network's output. The input to 
this step is the output from the last residual block, 
denoted as  where  is the index of the final 

residual block in the network.The global average 
pooling operation is applied to  which has 
dimensions The feature maps are 
aggregated into a single value using the global 
average pooling method, which averages all the 
spatial components.This operation is 
mathematically expressed as: 

 

(22) 

where  is the pooled output corresponding to 
the  feature map, and  The result 
is a vector  of length.  

This pooled vector  is then passed to a 
fully connected layer with a weight matrix  and 
bias vector  The fully connected layer computes 
the output as: 

 

(23) 

where  is the output of the  neuron in the fully 
connected layer, and with  being 
the number of neurons in the fully connected layer. 
 

After the fully connected layer, the outputs 
are transformed into probabilities using a softmax 
activation function. The softmax function for the 
th class is defined as: 

 
(24) 

where  represents the predicted probability of the 
 class. 

 
The loss function is determined 

during training by using cross-entropy loss, which 
quantifies the discrepancy between the actual labels 
and the anticipated probabilities .The cross-
entropy loss is given by: 

 

(25) 

where  is the ground truth label for the class. 
 

To optimize the network, Zoutendijk's 
Method is applied, which involves determining the 
feasible direction  and the optimal step size  for 
minimizing the loss function. The weight updates 
for the fully connected layer are performed as: 

 (26) 
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where  represents the weights at iteration  and 

 is the feasible direction determined by 

Zoutendijk's Method. 
 

The back propagation process updates the 
parameters throughout the network, including the 
weights in the convolutional layers and fully 
connected layers, ensuring the optimization of the 
overall objective function  The final output of 
SR-ResNet is the class with the highest probability 
from the softmax layer, representing the network's 
prediction. 
 
3.5. Bottleneck Blocks 

The primary focus is optimizing the entire 
network using Zoutendijk's Method, which is 
integrated with the backpropagation algorithm. The 
optimization process begins with calculating 
gradients for all network parameters, followed by 
determining feasible directions and optimal step 
sizes for weight updates.To initiate the 
optimization, the loss function  where  
represents the entire set of network parameters, is 
computed. Each parameter  is used to represent 
the gradient of the loss function. 

 
(27) 

 
The chain rule is used to compute the 

gradient. for every layer  in the network. 
To minimize the loss, the parameters might be 
modified in the direction indicated by this 
gradient.The gradient at layer  for weight  is 
given by: 

 
(28) 

 
The output of the layer before adding an 

activation function is represented by .Once the 
gradients are calculated, Zoutendijk's Method is 
applied to determine a feasible direction.  for 
each parameter update. This involves solving the 
optimization problem: 

 (29) 

 (30) 

where represents any constraints on the 
parameters and  is the step size. The direction 

is selected to ensure that the loss decreases 
while maintaining feasibility concerning the 

constraints. The optimal step size is determined 
by minimizing the loss along the direction :  

 
(31) 

 
The parameters  for layer,  are then 

updated using the feasible direction  and the 
calculated step size  as follows: 

 (32) 

 
This update rule is applied to all layers, 

ensuring that each set of parameters is optimized 
according to Zoutendijk's Method. The process is 
iterative, with gradients recalculated after each 
update until convergence is achieved, i.e., when the 
loss function  stabilizes at a minimum or near-
minimum value.The back propagation process, in 
conjunction with Zoutendijk's Method, ensures that 
the network's parameters are updated in the 
direction that reduces the loss and optimally within 
the feasible region defined by any constraints. This 
results in a robust and efficient learning process for 
the entire SR-ResNet architecture. 
 
3.6. Downsampling 

The focus is on the iterative process of 
refining the model through repeated application of 
Zoutendijk's Method across multiple training 
epochs. The process ensures that the model 
progressively moves closer to the global or local 
minimum of the loss function  while 
respecting any constraints imposed on the 
parameters. Given the parameter set  at epoch  
the objective is to further minimize the loss 
function by updating the parameters through a 
series of iterations. To get the loss function's 
gradient concerning the parameters, one uses the 
following formula: 

 
(33) 

 
Zoutendijk's Method is then applied to 

determine the feasible direction. that minimizes 
the objective function while ensuring the 
parameters remain within the feasible region. This 
optimization problem can be expressed as: 

 (34) 

 (35) 
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where  represents any constraints, such as non-
negativity or boundedness, that must be satisfied by 
the parameters . 
 

To refine the parameters, the optimal step 
size is determined by minimizing the loss along 
the direction : 

 
(36) 

 
The parameters are then updated for the 

next iteration  using the calculated direction 
and step size: 

 (37) 

 
As training progresses through multiple 

epochs, the gradient  is recalculated 
after each parameter update, ensuring that the 
parameters continually move in the direction most 
effectively reduces the loss function.The iteration 
process continues with updated 
gradients.  and directions  for each 
subsequent epoch: 

 
(38) 

 (39) 

 
The refinement process also involves 

ensuring that the constraints  remain 
satisfied. This requires recalculating the feasible 
region at each iteration and adjusting the step 
size. accordingly to maintain feasibility: 

 (40) 

 
This iterative process continues across 

multiple epochs until the loss function  reaches 
a stable minimum, indicating that the model 
parameters have converged to optimal values. The 
repeated application of Zoutendijk's Method 
throughout this process ensures that the parameter 
updates are effective in reducing the loss and robust 
against potential constraint violations, leading to a 
well-optimized model in the SR-ResNet 
framework. 

 
3.7. Global Average Pooling 

The focus is on evaluating and adjusting 
the model during the training process to ensure the 
convergence and stability of the optimization. This 

step involves monitoring the loss function, 
changing the learning rate, and applying 
regularization techniques to enhance the model's 
generalization capabilities.The primary objective in 
this step is to minimize the loss function  by 
refining the parameters  while ensuring that the 
model does not overfit the training data. The 
process begins by evaluating the loss function after 
each training epoch. The loss function at epoch  is 
denoted as: 

(41
) 

where  represents the number of training samples, 
 is the true label, and  is predicted 

probability for the  sample. 
 
The loss function's gradient concerning the 

parameters  may be determined using the 
following formula: 

(42
) 

 
Applying regularization methods, such as 

L2 regularization, helps avoid overfitting and 
enhances generalization.The L2 regularization term 

 is added to the loss function: 

 (43) 

where  controls the penalty's intensity as a 
regularization parameter. 
 

The total loss with regularization is 
minimized by updating the parameters using the 
gradient descent method with a learning rate.  
that is potentially adjusted during training: 

 (44) 

 
To ensure stable convergence, the learning 

rate  may be adjusted based on the evaluation of 
the loss function over successive epochs. If the loss 
does not decrease as expected, the learning rate is 
reduced: 

 with  (45) 

 
This step also involves monitoring the 

model's performance on a validation set. The 
validation loss  is calculated similarly to the 
training loss. If the validation loss starts increasing 
while the training loss decreases, early stopping 
criteria may be applied to prevent overfitting: 
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If , then stop training (46) 

 
Continuous evaluation of the loss function, 

adjustment of the learning rate, and application of 
regularization ensure that SR-ResNet converges to 
a well-generalized solution that effectively 
performs on training and unseen data.  
 
3.8. Fully Connected Layer 

In Fully Connected Layer, the process 
involves final adjustments and the evaluation of the 
trained model's performance on the test data. This 
step ensures the model generalizes well to new, 
unseen data and evaluates its robustness across 
different scenarios.The trained model parameters 

 obtained after the training process, are used to 
make predictions on the test dataset. For each test 
sample  the model computes the predicted 
probability  for the target class using the 
softmax function: 

 
(47) 

where  denotes the number of classes and  
represents the output of the final layer for the  
test sample. 
 

The predicted class label  for each test 
sample is determined by selecting the class with the 
highest predicted probability: 

 (48) 

 
Next, measures like F1-score, recall, 

accuracy, and precision assess the model's overall 
performance. Using the number of test samples 
divided by the number of properly predicted labels, 
we can determine the accuracy: 

 

(49) 

 
The indicator function  is defined as 1 

when the predicted label is identical to the real label 
and 0 otherwise, with  being the total number 
of test samples. 

 
Precision, recall, and F1-score are calculated to 
provide a more detailed analysis of the model's 
performance, particularly in imbalanced datasets. 
Precision  for a class  is defined as: 

 
(50) 

where  and denote the true positives and 
false positives for class , respectively. Recall  for 
class  is defined as: 

 
(51) 

where denotes the false negatives for class . 
The F1-score for class  is the harmonic mean of 
precision and recall: 

 
(52) 

 
To assess the overall performance across 

all classes, the macro-averaged F1-score is 
calculated: 

 
(53) 

 
After evaluating the performance on the 

test set, if the model's performance metrics meet the 
desired criteria, the model is considered ready for 
deployment. However, if the performance is 
suboptimal, the training process may be revisited, 
and adjustments to the learning rate, regularization, 
or architecture may be made. 

 
3.9. Softmax Activation 

SR-ResNet undergoes refinement through 
fine-tuning, which aims to optimize the network's 
performance on a specific task or dataset. Fine-
tuning involves retraining some or all network 
layers using a lower learning rate while potentially 
adjusting other hyper parameters to enhance 
performance. The fine-tuning process begins by re-
evaluating the loss function  on the target 
dataset, where  represents the current set of 
network parameters. A new calculation is made for 
the loss function's gradient concerning these 
parameters, and it is: 

 
(54) 

In fine-tuning, the learning rate  is 
typically reduced compared to the initial training 
phase to allow for more precise weight adjustments. 
The learning rate at iteration  during fine-tuning is 
expressed as: 

 (55) 

where is the initial learning rate used during fine-
tuning, and  is a decay factor such that  
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The updated learning rate Controls the step size 
in the gradient descent process during fine-tuning. 
 

The parameter update rule during fine-
tuning is given by: 

 (56) 

 
Regularization techniques, such as L2 

regularization, continue to be applied during fine-
tuning to prevent overfitting. The regularized loss 
function  during fine-tuning is expressed as: 

 (57) 

where  is the regularization parameter that 
controls the strength of the penalty applied to the 
model weights. 
 

During fine-tuning, certain layers of the 
network, particularly the earlier layers, may be 
frozen to preserve the learned low-level features. In 
comparison, only the higher or fully connected 
layers are updated. The frozen layers are denoted 
by  and their gradients are set to zero: 

 (58) 

 
The gradients for the layers that are fine-

tuned, denoted by  are computed as usual: 

 
(59) 

 
The fine-tuning process continues until the 

loss function.  converges or achieves a 
minimum value on the target dataset. The final 
parameters  obtained after fine-tuning represents 
the optimized model tailored to the specific task. 
 
 
3.10. Backpropagation with Zoutendijk's 
Optimization 

In this step the model's final evaluation 
and calibration occur, ensuring robustness and 
accuracy before deployment. This step involves 
using calibration techniques to adjust the model's 
probability estimates and further validation across 
diverse datasets to confirm reliability. The 
calibrated probabilities are obtained by adjusting 
the softmax outputs.  of the model to better 
reflect the true likelihood of the classes. One 
common method for calibration is temperature 
scaling, which involves introducing a scalar 
temperature parameter  into the softmax function: 

𝑝𝑖𝑐𝑎𝑙𝜃∗,𝑇=𝑒𝑥𝑝ℎ𝑖(𝜃∗)/𝑇𝑗=1𝐶𝑒𝑥𝑝ℎ𝑗(𝜃∗)/𝑇 (60) 

where  represents the logits for the  class, 
and  is the temperature parameter.  

 
Using a validation set, we minimize the 

negative log-likelihood to find the optimal 
temperature parameter: 

 

(61) 

where  is the number of validation samples and 
 is the true label for the  validation sample. 

 
After obtaining the optimal temperature 

, the model's calibrated probabilities are used to 
assess its performance. Metrics such as Expected 
Calibration Error (ECE) and Maximum Calibration 
Error (MCE) are computed to quantify the 
calibration quality: 

 
(62) 

 (63) 

where denotes the set of samples whose 
predicted confidence falls into bin is 
the accuracy within the bin   is the 
average confidence within the bin  and  is the 
number of bins. 
 

To further ensure robustness, the 
calibrated model is evaluated across multiple test 
datasets, which may vary in domain, distribution, or 
noise levels. The test loss  is computed 
as: 

 

(64) 

where is the number of test samples, and  
represents the true labels for the test dataset. 
 

A model undergoes adversarial testing to 
guarantee it is robust against input data 
perturbations of a modest magnitude. The model's 
resilience to adversarial examples  generated 
using methods like the Fast Gradient Sign Method 
(FGSM), is measured by evaluating the adversarial 
loss: 

 
(65

) 



 Journal of Theoretical and Applied Information Technology 
31st May 2025. Vol.103. No.10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4201 

 

(66
) 

where  is a small perturbation applied to the input 
. 

 
This step culminates in assessing the 

model's generalization capabilities, ensuring high 
performance across varied conditions. The 
combination of calibration and rigorous testing 
confirms the model's readiness for deployment, 
providing confidence in its ability to make reliable 
predictions in real-world applications. 
 
3.11. Output Layer 

The Output Layer focuses on the 
deployment phase, where the model's predictions 
are integrated into a real-world system. This step 
involves converting the trained model into an 
efficient format, optimizing inference speed, and 
implementing the model in a production 
environment.The first task is to convert the trained 
model into a format suitable for deployment. 
This conversion may involve quantization, where 
the model weights and activations are reduced from 
32-bit floating-point to lower precision, such as 8-
bit integers. Quantization is mathematically 
expressed as: 

(67
) 

where  represents the quantized weights,  is the 
number of bits used for quantization, and  
and denote the minimum and maximum 
values of the weights before quantization. 
 

After quantization, the inference speed is 
optimized by applying techniques such as pruning 
and compression. Pruning involves removing 
weights in the network that have minimal impact on 
the output. The pruned weights  are 
determined by setting a threshold : 

 
(68) 

where  is selected based on the desired trade-off 
between model size and accuracy. 
 

Compression further reduces the model 
size by encoding the pruned weights. Huffman 
coding or similar techniques are used to achieve 
this, where the weights are compressed as: 

(69
) 

where  represents the compressed 
model, and  is the probability 

distribution on the pruned weights. 
 

Once the model is optimized, it is 
integrated into the production environment. The 
model receives input data.  in real-time, which 
is passed through the SR-ResNet layers to compute 
the output logits  The softmax 
function is applied to obtain the predicted 
probabilities: 

(70
) 

where represents the 
probability distribution over the classes, and  
indicates the class index. 

The class with the highest probability is 
selected as the final prediction.  

 
(71) 

 
The deployment environment is monitored 

to ensure the model performs well and responds 
appropriately to inputs. The output predictions are 
logged, and any misclassifications are analyzed to 
identify potential areas for model improvement. 
The deployed model may undergo periodic 
retraining to adapt to new data, ensuring continued 
relevance and accuracy. This retraining uses a 
similar process as the original training, where the 
updated weights  are obtained by minimizing 
the loss function on newly collected data: 

 (72) 

where represents the loss on the new 
dataset. The model is then redeployed with these 
updated weights, ensuring continuous learning and 
adaptation in the production environment. 
 
3.12. Evaluation 

This step focuses on shifts with continuous 
monitoring, maintenance, and updating of the 
deployed model to ensure long-term performance 
and adaptability. This step involves periodic 
evaluation, model updating, and adaptation based 
on real-world data to maintain the model's 
effectiveness over time. The first aspect of this step 
is the ongoing evaluation of the model's 
performance. The deployed model's 
predictions  are continuously compared 
against true labels  collected in the production 
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environment. The accuracy of the model is 
recalculated at regular intervals: 

(73
) 

The number of samples analyzed is 
denoted by , and the indicator function  
gives one if the prediction matches the real label 
and 0 otherwise.To ensure the model remains 
relevant, drift detection mechanisms are employed 
to monitor for changes in data distribution. The 
distribution of new data  is compared to the 
original training data distribution  using 
statistical tests, such as the kullback-Leiber (KL) 
divergence: 

(74
) 

where  and represent the 
probability distributions of the training and new 
data, respectively. A significant increase in KL 
divergence may indicate a data shift, necessitating 
model updates. 
 

In response to detected drift or 
deteriorating performance, the model undergoes 
retraining. The retraining process involves 
collecting a new dataset.  and updating the 
model parameters  by minimizing the loss 
function on this new dataset: 

 (75) 

where  represents the loss on the new 
dataset  
 

Regularization is applied during retraining 
to prevent overfitting to the new data, using 
techniques like L2 regularization: 

 (76) 

The updated parameters  are then 
used to redeploy the model, ensuring it remains 
effective under the current data distribution.To 
further enhance robustness, ensemble learning 
techniques may be employed,  are 
trained on different subsets of data or with different 
initializations. The ensemble model's prediction 

 is calculated as: 
where  is the probability output for 

class  by the -th model. 

The ensemble approach helps mitigate the 
risk of performance degradation due to model drift 
or changes in data distribution.Threats to validity, 
including data bias and overfitting, were addressed 
via augmentation and regularization. Evaluation 
metrics accuracy, precision, recall, and F1-
scorewere chosen for their relevance in clinical 
diagnostics, ensuring balanced assessment of model 
performance and robustness in melanoma detection. 
 

Table 1. Attribute and Description of Melanoma 
Skin Cancer Dataset 

Attribute Description 
Total Images 10,000 

Image Dimensions 

Varies (Standardized 
to a standard 
resolution before 
model input) 

Image Format JPEG 

Classes 
2 (Malignant 

Melanoma, Benign 
Melanoma) 

Training Images 9,600 
Testing Images 1,000 

Class Distribution 

Balanced (Ensures 
equal representation of 
malignant and benign 
images in both training 
and testing) 

Data Splitting 
80/20 split for training 

and testing 

Potential Use Cases 

Melanoma detection, 
binary image 
classification, transfer 
learning, fine-tuning of 
pre-trained models 

Preprocessing Steps 

Includes resizing, 
normalization, and 
potential data 
augmentation  

Labelling 
Binary labels (0 for 
benign, 1 for 
malignant) 

 
4. DATASET 

 
Melanoma Skin Cancer Dataset 

[54]contains 10,000 images categorized into 
malignant and benign melanoma. This dataset is 
crucial in developing deep learning models for 
accurate melanoma classification, potentially aiding 
in early detection and treatment. It includes 9,600 
images designated for training and 1,000 images 
reserved for model evaluation. With its 
comprehensive collection of high-quality images, 

 
(77) 
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this dataset provides a valuable resource for 
researchers and developers aiming to create models 
that can precisely distinguish between benign and 
malignant melanoma, ultimately contributing to 
better diagnostic tools in the fight against skin 
cancer.Researchers have relied on this dataset to 
create models to overcome common challenges like 
gradient vanishing and overfitting, particularly in 
complex tasks like melanoma classification. By 
providing a large and well-annotated dataset, the 
Melanoma Skin Cancer Dataset has ensured that 
models trained on it are accurate and robust, 
making it an essential resource in the ongoing 
efforts to improve melanoma detection and 
treatment outcomes.The dataset has also facilitated 
applying advanced optimization techniques, such as 
Zoutendijk’s Method, which has been integrated 
into models to enhance training efficiency and 
stability. 
 
5.. RESULTS AND DISCUSSION 

 
The analysis of performance metrics for 

ETL, DLMA, and SR-ResNet has highlighted their 
effectiveness in melanoma detection. SR-ResNet 
has demonstrated the highest efficacy, showcasing 
exceptional accuracy in correctly identifying 
malignant and benign melanoma cases. The model 
has also minimized errors, reflecting its robustness 
in reducing type I and II errors.DLMA has shown 
moderate performance, with a greater likelihood of 
misclassification than SR-ResNet. ETL has 
displayed significant limitations in classification 
accuracy.SR-ResNet has exhibited superior 
classification capabilities, making it the most 
reliable model among the three for accurate 
melanoma detection. Detailed values for true 
positives, true negatives, false positives, and false 
negatives are provided in Table 2. 

 
Table 2. TP, FP, TN, FN Values. 
 

Variables of 
Performance 

Metrics 
ETL DLMA 

SR-
ResNet 

TP 2542 3161 4772 

TN 2595 3625 4707 

FP 2309 1723 354 

FN 2554 1491 167 

 
 

 

Figure 2. Precision Results 
 
5.1. Precision 

The precision analysis of the melanoma 
detection models has provided critical insights into 
their diagnostic accuracy. Precision, a key 
performance metric, quantifies the proportion of 
true positives (correctly identified malignant cases) 
relative to the total number of positive predictions 
(true positives plus false positives). This metric is 
fundamental in medical diagnostics, where 
minimizing false positives is essential to avoid 
unnecessary treatments and interventions. In the 
comparative analysis, SR-ResNet has exhibited a 
precision of 93.09%, substantially surpassing the 
other models. This high precision indicates SR-
ResNet's superior ability to accurately identify 
malignant melanoma cases while significantly 
reducing the occurrence of false positives. The 
model's integration of Zoutendijk's Method for 
nonlinear optimization has likely contributed to this 
enhanced precision, enabling more reliable 
differentiation between malignant and benign 
lesions. 
 

DLMA, with a precision of 64.72%, has 
shown moderate performance, reflecting a higher 
false positive rate that could compromise its clinical 
applicability. ETL has recorded the lowest 
precision at 52.40%, highlighting a considerable 
risk of misclassification. Such a performance could 
lead to a higher incidence of false positives, which 
may result in overdiagnosis and overtreatment in a 
clinical setting.The precision metrics underscore 
SR-ResNet's effectiveness in achieving highly 
accurate melanoma detection, positioning it as a 
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more reliable tool for clinical diagnostics than 
DLMA and ETL. 

 
5.2. Recall 

The recall rates of melanoma detection 
models reflect their underlying working 
mechanisms and effectiveness in identifying true 
melanoma cases. Recall, or sensitivity, measures 
how well a model detects true positives, a crucial 
factor in clinical accuracy.SR-ResNet, 
incorporatingZoutendijk's Method for nonlinear 
optimization, has achieved a recall rate of 96.62%. 
This high recall results from SR-ResNet's ability to 
optimize weight updates efficiently, enhancing 
convergence and reducing errors during training. 
By refining the learning process and stabilizing 
deep network training, SR-ResNet accurately 
identifies most melanoma cases, making it highly 
reliable in detecting malignancies. 
 

 

Figure 3. Recall Results 
 
DLMA, utilizing deep learning meta-

analysis, has achieved a recall of 67.95%. DLMA 
synthesizes insights from multiple deep-learning 
models, which helps in improving generalization 
across diverse datasets. The meta-analysis 
approachcan still miss some cases due to its 
reliance on aggregated findings, leading to a 
moderate recall rate.ETL, which combines 
ensemble techniques with transfer learning, has 
recorded a recall of 49.88%. While ensemble 
methods generally improve robustness by 
combining multiple models, ETL's lower recall 
suggests that integrating pre-trained models may 
not fully capture the complexity of melanoma 

cases, leading to a significant number of missed 
diagnoses. 
 

 

Figure 4. Classification Accuracy Results 
 
5.3. Classification Accuracy 

The accuracy rates of the melanoma 
detection models, as shown in the table, clearly 
indicate their overall performance in classifying 
malignant and benign cases. Accuracy, a critical 
metric, represents the proportion of correctly 
identified cases—true positives and true 
negatives—relative to the total number of cases. 
SR-ResNet has demonstrated an impressive 
accuracy of 94.79%, surpassing the other models. 
This high accuracy reflects SR-ResNet’s robust 
design, which integrates Zoutendijk’s Method to 
optimize the training process. The method improves 
convergence stability and minimizes errors such as 
overfitting, leading to a model that can reliably 
differentiate between malignant and benign lesions 
across diverse and complex datasets. The 
architecture’s depth and the refinement in its 
residual blocks ensure that SR-ResNet consistently 
makes accurate predictions, making it highly 
suitable for clinical deployment. 
 

DLMA, with an accuracy of 67.86%, 
performs moderately well, balancing its predictions 
across different cases but still falling short in 
capturing the full complexity of melanoma 
diagnosis. DLMA’s meta-analysis approach, which 
aggregates results from various deep learning 
models, enhances generalization but may introduce 
variability that affects overall accuracy.ETL, with 
an accuracy of 51.37%, presents the lowest 
performance among the models. Although 
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ensemble techniques combined with transfer 
learning generally aim to enhance robustness, 
ETL’s lower accuracy suggests that its model 
integration has not fully addressed the intricacies of 
melanoma detection, resulting in a higher rate of 
misclassifications. 

 

 

Figure 5. F-Measure Results 
 
5.4. F-Measure 

The F-Measure results comprehensively 
show how well each melanoma detection model 
balances precision and recall. This is crucial for 
assessing overall performance and identifying true 
cases while minimizing errors.With an F-Measure 
of 94.82%, SR-ResNet demonstrates its advanced 
capability to deliver reliable results. The high F-
Measure reflects SR-ResNet's ability to maintain a 
substantial equilibrium between correctly 
identifying melanoma and reducing 
misclassifications. This success can be attributed to 
SR-ResNet’s sophisticated use of residual 
connections and deep architecture, allowing it to 
capture complex patterns in melanoma data 
effectively. The depth of the network, coupled with 
precise optimization of weight updates, ensures that 
the model remains robust against common 
challenges like overfitting and gradient vanishing, 
resulting in fewer false positives and negatives. 
 

DLMA, achieving an F-Measure of 
66.30%, shows moderate effectiveness. The model 
employs deep learning meta-analysis, which 
leverages insights from multiple algorithms. 
However, while this method enhances overall 
generalization, it may introduce variability that 
affects the delicate balance between precision and 

recall, leading to a lower F-Measure.ETL, with an 
F-Measure of 51.11%, reveals the limitations of its 
ensemble transfer learning approach. Although 
combining multiple models generally aims to 
enhance performance, ETL’s approach may lack 
the depth and fine-tuned integration needed to 
capture the nuances of melanoma detection fully. 
The ensemble method might struggle with 
consistency across different data types, leading to a 
higher misclassification rate. 
 
6. CONCLUSION 

The research has conclusively 
demonstrated that the Self-Reliant Residual 
Network (SR-ResNet) significantly enhances 
melanoma skin disease detection compared to 
traditional deep learning models. By integrating 
Zoutendijk's Method, SR-ResNet optimizes the 
training process, resulting in superior convergence 
stability, reduced overfitting, and heightened 
classification accuracy, achieving an impressive 
accuracy rate of 94.79% on the Melanoma Skin 
Cancer Dataset. The model's advanced architecture, 
including optimized residual connections and 
precise weight updates, allows it to manage the 
complexities of melanoma data adeptly, ensuring 
consistent and accurate performance. SR-ResNet's 
robust and reliable diagnostic capabilities position 
it as a transformative tool in medical imaging, 
offering a more precise and efficient approach to 
early melanoma detection. This advancement 
improves patient outcomes through timely 
interventions and sets a new standard for future 
innovations in medical diagnostics. The model's 
success underscores the critical importance of 
integrating sophisticated optimization techniques in 
deep learning, opening the door to further 
advancements in detecting and diagnosing other 
complex diseases. As SR-ResNet continues to 
evolve, future enhancements could involve refining 
its architecture to handle even more diverse datasets 
and extending its application to other forms of 
cancer or complex medical conditions, paving the 
way for more comprehensive and scalable 
diagnostic tools. This study introduces SR-ResNet, 
combining residual learning with Zoutendijk’s 
Method to enhance convergence, accuracy, and 
robustness in melanoma detection. The approach 
effectively mitigates overfitting and improves 
classification reliability. However, the use of a 
single dataset limits generalizability across diverse 
clinical environments. Future work will focus on 
testing SR-ResNet with multimodal and real-time 
data, improving interpretability through explainable 
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AI, and optimizing deployment for clinical 
integration. 
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