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ABSTRACT 

In the realm of Vehicular Ad Hoc Networks (VANETs), Roadside Units (RSUs) play a pivotal role in 
enhancing communication, data processing, and predictive analytics. This paper introduces a novel hybrid 
design that integrates Ridge Regression and XG-Boost algorithms to optimize the data processing and 
prediction capabilities of RSUs, aimed at improving traffic management and safety applications. The hybrid 
framework with IMFT (inter-intra mod filter) algorithm employs Ridge Regression for robust initial data 
processing, minimizing overfitting and ensuring reliability in the noisy, dynamic environment of vehicular 
data. Feature extraction with IMFT is utilized to encompass the relevant features before utilizing Ridge-
Model for high-accuracy predictions, leveraging its gradient boosting capabilities to facilitate timely 
interventions and optimize traffic flow. Furthermore, the architecture of the RSU is expanded to include 
essential units such as communication modules, data storage, and user interface components, all functioning 
cohesively to create a comprehensive system. With the proposed IMFT design we have incorporated 
extensive simulations with K-fold loss to demonstrate that the proposed IMFT with Ridge Model design 
significantly enhances prediction accuracy and processing efficiency compared to traditional methods 
(Elastic Net.) with more than 98% of improved R2-score. By optimizing the operational capabilities of RSUs 
in VANETs, this work contributes to the development of smarter and safer urban mobility solutions, paving 
the way for more effective traffic management and improved vehicular safety. 

Keywords: Vehicular Ad Hoc Networks (VANETs), Roadside Units (RSUs), Security Protocols, Energy 
Management, ML (Machine Learning), Ridge Regression. 

1. INTRODUCTION 

Vehicular Ad Hoc Networks (VANETs) represent a 
transformative approach to improving road safety 
and traffic management by facilitating 
communication among vehicles and infrastructure. 
At the heart of this system are Roadside Units 
(RSUs), which serve as critical nodes that enable 
data exchange between vehicles, traffic 
management systems, and various services. As 
urban environments grow increasingly complex, the 
demand for efficient communication and real-time 
data processing within VANETs intensifies. RSUs 
are uniquely positioned to bridge the gap between 
vehicles and central traffic management, offering 
opportunities for enhanced road safety, reduced 

 
 

congestion, and optimized traffic flow. Designing 
effective RSU systems involves the integration of 
advanced communication technologies and 
intelligent algorithms that can process large 
volumes of data in real time. Traditional approaches 
often fall short in handling the dynamic and 
heterogeneous nature of vehicular data. This 
necessitates innovative methods that leverage 
machine learning algorithms, enabling RSUs to 
perform predictive analytics and decision-making 
with high accuracy. The incorporation of such 
algorithms can significantly improve the 
responsiveness of traffic management systems, 
ensuring that interventions are timely and 
contextually relevant. 
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Currently in RSU’s the use of machine learning 
algorithms has been proven more effective and 
intuitive models to improve traffic management and 
safety. In these approaches the need for ensemble 
and its criterion’s are more effective and utilized 
with current algorithm’s such as Random Forest 
(hyper-tuned), is a robust ensemble method that 
combines multiple decision trees, making it great 
for handling noisy, complex traffic data. By tuning 
parameters like the number of trees and depth, it 
helps RSUs predict traffic patterns, detect 
anomalies, and manage congestion. Ridge 
Regression (hyper-tuned), on the other hand, uses 
L2 regularization to prevent overfitting and is 
useful for predicting continuous variables like 
vehicle speed or traffic flow. It is effective in 
handling correlated features and ensuring accurate, 
stable predictions, though it assumes linear 
relationships. Similarly, Linear Regression (hyper-
tuned) is simple and interpretable, helping RSUs 
forecast traffic density or vehicle speed, but it may 
struggle with complex, nonlinear data. Lasso 
Regression (hyper-tuned) focuses on selecting the 
most relevant features, which is crucial for efficient 
real-time decision-making in VANETs, although it 
can be unstable with highly correlated features. 
Elastic Net (hyper-tuned) combines the strengths of 
both Lasso and Ridge, making it ideal for situations 
with many correlated features, but it requires 
careful tuning of two parameters and can be  
computationally expensive. 

Each algorithm brings unique strengths to RSU 
designs in VANETs. Random Forest is effective in 
noisy, unpredictable environments, while Ridge 
and Lasso are great for feature selection and 
avoiding overfitting. However, these algorithms 
have their limitations, such as assumptions of 
linearity or computational intensity. The hybrid 
approach, combining Ridge Regression for pre-
processing and XGBoost for prediction, overcomes 
these gaps by first filtering out noise and irrelevant 
features before applying XG-Boost's powerful 
prediction capabilities. This combination provides 
more accurate, efficient traffic management, 
particularly in dynamic and complex environments 
like VANETs, where real-time predictions and 
decision-making are critical for improving road 
safety and optimizing traffic flow. 

1.1 Problem Statement 

In the context of Vehicular Ad Hoc Networks 
(VANETs), Roadside Units (RSUs) are crucial for 
facilitating communication between vehicles and 
traffic management systems to enhance road safety 
and optimize traffic flow. However, the dynamic, 
noisy, and complex nature of traffic data poses 
significant challenges for RSUs in making accurate, 
real-time predictions for traffic management and 
safety interventions. Traditional approaches to 
processing and predicting traffic patterns often fall 
short due to their inability to handle large volumes 
of data, complex interactions, and the 
heterogeneous nature of the information. For 
example, basic regression models may not 
effectively capture nonlinear relationships between 
various traffic factors, and models like Random 
Forest may become computationally expensive 
when dealing with large datasets. Additionally, 
issues like overfitting, data sparsity, and the need 
for real-time decision-making further complicate 
the development of efficient RSU systems. 

To address these challenges, the proposed solution 
is a hybrid model that integrates Ridge Regression 
for robust data pre-processing and XGBoost for 
accurate predictions. The Ridge Regression 
component helps in reducing the complexity of the 
model and preventing overfitting, especially in 
noisy environments, while XGBoost's gradient 
boosting capabilities are leveraged for high-
accuracy traffic predictions. This hybrid approach 
not only enhances the ability of RSUs to process 
and predict traffic conditions but also ensures 
timely and accurate interventions, contributing to 
safer and more efficient traffic management. The 
hybrid model overcomes the limitations of 
traditional machine learning algorithms by 
combining the strengths of Ridge Regression and 
XGBoost, addressing issues such as noise, feature 
selection, and the need for real-time decision-
making in the dynamic context of VANETs. 

1.2 Challenges 
Implementing effective RSU systems within 
VANETs presents several key challenges. First, 
ensuring data privacy and security is paramount, as 
sensitive information is exchanged between 
vehicles and infrastructure. Second, 
communication latency can disrupt the timely 
exchange of critical data, undermining the 
responsiveness of traffic management 
interventions. Lastly, the integration of diverse data 
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sources from various vehicles necessitates 
sophisticated algorithms capable of processing this 
information in real time, which can be a significant 
technical hurdle. 

Even though these challenges effect the design 
constraints the proposed model tend to provide the 
resulting solution with integrated approach with 
two powerful machine learning algorithms: Ridge 
Regression and XGBoost to optimize the data 
processing and prediction capabilities of Roadside 
Units (RSUs) in Vehicular Ad Hoc Networks 
(VANETs). The reason for using these algorithms 
is to address the complex and dynamic nature of 
vehicular data, which can be noisy and 
heterogeneous. 

1.3 Proposed Concept 
The IMFT (Inter-Intra Model Filtering Technique) 
model, integrated with Ridge Regression, 
introduces a novel hybrid machine learning 
approach for optimizing Roadside Unit (RSU) 
performance in Vehicular Ad-hoc Networks 
(VANETs). Unlike conventional RSU deployment 
models that rely on heuristic or static optimization 
techniques, the IMFT model dynamically filters and 
processes traffic, energy, and memory data using a 
two-tier filtering mechanism. Initially, the model 
partitions data into intra-vehicle (D_intra) and 
extra-vehicle (D_extra) datasets, ensuring that 
localized vehicle patterns are analyzed separately 
from broader traffic influences. Ridge Regression is 
then applied to minimize noise, prevent overfitting, 
and improve generalization, allowing the model to 
accurately classify and forecast critical RSU 
parameters such as bandwidth allocation, power 
consumption, and memory utilization. The novelty 
of this approach lies in its dual-layer error filtering, 
where predictions are validated against extra-
vehicle data, and only those within an acceptable 
threshold (ϵ) are retained for further analysis. This 
process significantly enhances data reliability, 
reducing the likelihood of erroneous predictions, 
which is a common issue in purely AI-driven RSU 
optimization models. Additionally, by 
incorporating ensemble learning techniques such as 
stacking and boosting, the IMFT model refines the 
accuracy of Ridge Regression outputs by 
combining them with decision trees and gradient 
boosting models. This ensures a holistic, data-
driven RSU design that not only optimizes real-time 
communication and resource allocation but also 

adapts dynamically to traffic variations, making it 
more robust compared to traditional machine 
learning-based RSU management systems. 

The primary aim of this study is to develop an 
intelligent, scalable, and efficient RSU optimization 
framework that leverages Ridge Regression and 
IMFT filtering to improve data transmission speed, 
battery power utilization, and memory management 
in dynamic vehicular environments. Unlike 
previous studies that focus on isolated machine 
learning models, the proposed hybrid IMFT 
approach enhances forecasting accuracy by filtering 
out high-error predictions, ensuring adaptive and 
real-time RSU decision-making. Outcome 
measures include increased transmission efficiency, 
with RSUs dynamically adjusting bandwidth 
allocation based on forecasted congestion, leading 
to lower latency and improved V2I communication 
reliability. Furthermore, the model extends RSU 
battery life by predicting energy demand and 
optimizing power-saving modes, particularly in 
renewable-energy-powered RSUs. In terms of 
memory management, the IMFT model enhances 
caching efficiency through reinforcement learning-
driven memory prioritization, ensuring that only the 
most relevant vehicular data is stored, preventing 
overload. These advancements establish the novel 
contribution of the study, demonstrating how an 
error-filtered Ridge Regression model, combined 
with ensemble learning, can significantly enhance 
RSU performance. By integrating real-time 
forecasting with adaptive decision-making, the 
proposed system surpasses conventional methods, 
providing a scalable, AI-driven solution for smart 
vehicular infrastructure that ensures efficient, real-
time traffic management and optimized resource 
utilization in VANETs. 

1.4 Objectives 
1. To develop a hybrid design for RSUs that 

integrates machine learning algorithms for 
enhanced data processing and predictive 
capabilities. 

2. To evaluate the performance of Proposed-
IMFT Ridge Regression in real-time 
traffic analysis and decision-making 
within VANETs. 

3. To address data privacy, communication 
latency, and integration challenges to 
create a robust RSU framework that 
supports smarter urban mobility solutions. 
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Outline of the Paper: 
This paper presents a hybrid model design aimed at 
enhancing Roadside Units (RSUs) in Vehicular Ad 
Hoc Networks (VANETs) through a sequence of 
well-defined sections. Section 1 - Introduction 
introduces the concept of VANETs and the pivotal 
role of RSUs in traffic management and safety, 
outlining challenges such as handling dynamic and 
noisy data, along with the objective of improving 
real-time prediction accuracy. In Section 2 - 
Literature Survey, a review of existing methods is 
provided, focusing on algorithms like Random 
Forest, Ridge Regression, and Linear Regression, 
identifying gaps such as overfitting, high 
computational costs, and the inability to model 
nonlinearities. Section 3 - Existing Methods A. 
Algorithms dives deeper into these algorithms, 
explaining their strengths and weaknesses in traffic 
prediction tasks, which motivates the need for a 
more robust approach. Section 4 - Methodology 
presents the proposed hybrid approach, combining 
Ridge Regression for data preprocessing with 
XGBoost for high-accuracy predictions. This 
section elaborates on the benefits of integrating 
these algorithms to overcome the limitations of 
existing methods, ensuring better performance in 
real-time, noisy traffic environments. Section 5 - 
Results and Discussion presents the outcomes of 
simulations, comparing the proposed model with 
existing methods and demonstrating significant 
improvements in prediction accuracy and 
operational efficiency. Finally, the Conclusion and 
Scope section summarizes the effectiveness of the 
proposed model and outlines future opportunities to 
enhance RSU systems for smarter traffic 
management and improved road safety. 
 
2. LITERATURE SURVEY 

In recent years, the deployment and optimization of 
Roadside Units (RSUs) in Vehicular Ad Hoc 
Networks (VANETs) have gained significant 
attention due to their potential to enhance 
communication, safety, and traffic management. Yu 
et al. (2022) [1] propose an RSU deployment 
strategy that aligns with traffic demand, 
highlighting the importance of optimizing 
infrastructure investments while ensuring road 
safety. Their findings emphasize a data-driven 
approach to RSU placement, which can effectively 
mitigate delays and enhance overall network 

efficiency. Gao et al. (2021) [2] explore the optimal 
RSU deployment problem using approximation 
algorithms. They present two greedy algorithms 
that yield tight approximation ratios, showcasing 
the effectiveness of heuristic methods in addressing 
deployment challenges in one-dimensional 
VANETs. Their contributions lie in demonstrating 
how greedy approaches can simplify complex 
optimization problems, providing a practical 
framework for efficient RSU deployment. 

Yang et al. (2020) [3] introduce an analytical model 
for energy-harvesting RSUs with a dynamic service 
radius, addressing the critical aspect of energy 
management in VANETs. By modeling vehicle 
dynamics and battery performance, their findings 
illustrate how strategically deploying energy-
harvesting RSUs can extend service areas and 
improve connectivity. This work underscores the 
potential for integrating renewable energy solutions 
in future vehicular networks. Yadav et al. (2024) [4] 
focus on security within VANETs by presenting an 
improved vehicle-to-fog authentication system. 
Their study emphasizes the need for secure 
communication protocols in road condition 
monitoring, utilizing a robust authentication 
mechanism that balances efficiency and security. 
The proposed system contributes to enhancing trust 
among vehicles and infrastructure, which is crucial 
for the successful implementation of intelligent 
transportation systems. Ud Din et al. (2021) [5] 
propose a caching strategy for vehicular networks 
based on Information-Centric Networking (ICN), 
highlighting the role of caching in enhancing data 
availability and reducing latency. Their findings 
indicate that an efficient caching mechanism can 
significantly improve data retrieval times, 
contributing to safer and more responsive vehicular 
communications. Sepasgozar and Pierre (2022) [6] 
introduce a network traffic prediction model that 
utilizes artificial intelligence methods to account for 
various road traffic parameters. Their approach 
integrates machine learning algorithms to enhance 
the accuracy of traffic predictions, thereby 
facilitating better traffic management and routing 
decisions. This study contributes to the growing 
body of literature that emphasizes the role of 
predictive analytics in optimizing VANET 
operations. 

Zhao et al. (2022) [7] present a collaborative data 
correction method for Vehicle-to-Everything 
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(V2X) communications, focusing on improving 
road safety through accurate data sharing. Their 
findings reveal that collaborative data correction 
can significantly enhance the reliability of safety 
messages, thereby reducing the likelihood of 
accidents caused by incorrect or outdated 
information. Andreou et al. (2023) [8] explore the 
use of UAV-assisted RSUs for V2X connectivity, 
leveraging Voronoi diagrams to optimize the 
coverage of unmanned aerial vehicles in 6G+ 
infrastructures. Their research contributes to the 
integration of aerial networks with terrestrial ones, 
suggesting that UAVs can effectively complement 
traditional RSU deployments, particularly in 
challenging urban environments. Bashir et al. 
(2024) [9] develop a novel Curve Crash Avoidance 
Protocol (2CAP) aimed at minimizing accidents in 
VANETs. Their work underscores the importance 
of intelligent sensing and communication in real-
time accident prevention, contributing to the design 
of safer vehicular environments through advanced 
protocol development.  

Thumbur et al. (2021) [10] present a certificateless 
aggregate signature-based authentication scheme 
that enhances security and efficiency in vehicular 
networks. Their contributions focus on reducing 
computational overhead while ensuring robust 
authentication, addressing a critical barrier to 
widespread adoption of VANET technologies. Ali 
(2023) [11] discusses a fog-based green VANET 
infrastructure that emphasizes energy efficiency 
and sustainable practices. By integrating fog 
computing with RSU design, the study highlights 
the potential for reducing the carbon footprint of 
vehicular networks, paving the way for more 
environmentally friendly solutions in intelligent 
transportation systems. Xia et al. (2023) [12] utilize 
reinforcement learning to develop an information 
dissemination policy in VANETs, demonstrating 
the applicability of advanced machine learning 
techniques in optimizing data transmission 
strategies. Their findings contribute to a better 
understanding of adaptive communication 
protocols in dynamic vehicular environments. Chen 
et al. (2022) [13] introduce a multisignature-based 
emergency reporting scheme, focusing on 
enhancing security and efficiency in accident 
scenarios. Their work emphasizes the necessity of 
reliable and quick communication during 
emergencies, thereby contributing to the overall 
safety mechanisms in VANETs. 

Aman et al. (2021) [14] present a privacy-
preserving authentication protocol tailored for the 
Internet of Vehicles, addressing the critical issue of 
user privacy in vehicular communications. Their 
contributions emphasize the importance of 
balancing security and privacy, providing a 
framework for future protocols that prioritize both. 
Wang et al. (2022) [15] develop an improved 
certificateless conditional privacy-preserving 
authentication scheme with revocation capabilities. 
This work contributes to the growing need for 
flexible and secure authentication methods in 
VANETs, ensuring that vehicles can communicate 
safely while maintaining user anonymity. Ismail et 
al. (2024) [16] investigate resource management 
strategies in UAV-assisted VANETs, focusing on 
line-of-sight communications to enhance 
throughput and reduce interference. Their findings 
underscore the importance of coordinated resource 
allocation in improving overall network 
performance.  

Zhou et al. (2024) [17] propose a cloud-assisted 
authentication key agreement protocol for 
VANETs, addressing the challenges of secure 
communication in highly mobile environments. 
Their study highlights the potential of cloud 
computing to enhance authentication processes, 
contributing to more reliable vehicular 
communications. Liu et al. (2024) [18] introduce an 
anonymous traceable and revocable credential 
system using blockchain technology for VANETs. 
Their findings illustrate how blockchain can 
provide a decentralized approach to authentication, 
addressing privacy concerns while enhancing trust 
in vehicle communications. Tangade et al. (2020) 
[19] explore trust management schemes based on 
hybrid cryptography for secure communications in 
VANETs. Their contributions highlight the 
necessity of establishing trust among vehicles and 
infrastructure, addressing vulnerabilities that can be 
exploited in open communication environments. 

Wang and Liu (2021) [20] present a secure and 
efficient message authentication protocol for 
VANETs, focusing on reducing the risks of 
message forgery and ensuring data integrity. Their 
findings emphasize the importance of reliable 
authentication methods in maintaining the security 
of vehicular communications. Yan et al. (2024) [21] 
introduce an edge-assisted hierarchical batch 
authentication scheme for VANETs, showcasing 
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how edge computing can enhance the efficiency of 
authentication processes. Their research contributes 
to the development of scalable and effective 
security solutions in vehicular networks.  

Al-Shareeda et al. (2020) [22] discuss efficient 
conditional privacy preservation with mutual 
authentication, addressing the dual challenges of 
security and user privacy in VANETs. Their study 
highlights the need for protocols that can provide 
robust authentication without compromising user 
data. Huang and Lai (2020) [23] examine delay-
constrained data offloading in VANETs, utilizing 
multi-access edge computing to improve network 
efficiency. Their findings reveal the potential of 
edge computing architectures to facilitate timely 
data sharing, thereby enhancing the performance of 
vehicular applications. Baza et al. (2022) [24] focus 
on detecting Sybil attacks in VANETs using proofs 
of work and location. Their research underscores 
the importance of reliable identity verification 
mechanisms in preventing malicious activities that 
can undermine the integrity of vehicular networks. 

Finally, Zhang et al. (2022) [25] propose a trust-
based and privacy-preserving platoon 
recommendation scheme, highlighting the role of 
trust in facilitating cooperative manoeuvres among 
vehicles. Their work emphasizes the importance of 
both privacy and security in developing effective 
platooning strategies in VANETs, contributing to 
safer and more efficient transportation systems. 
Collectively, these studies offer a comprehensive 
overview of the advancements in RSU deployment, 
security protocols, and communication strategies in 
VANETs, paving the way for future research and 
implementation in intelligent transportation 
systems. 

Summary: 
The proposed hybrid RSU optimization model, 
integrating Ridge Regression for robust data 
preprocessing and XGBoost for predictive 
analytics, significantly improves upon existing 
VANET research. Unlike prior studies such as 
Sepasgozar and Pierre (2022) [6], which rely solely 
on AI-driven traffic predictions, this approach first 
employs Ridge Regression to filter out noisy data 
and prevent overfitting. This ensures that only 
relevant traffic features are considered before 
passing the data to XGBoost, which iteratively 
refines predictions for traffic flow and hazard 

detection. Compared to Gao et al. (2021) [2], who 
utilized heuristic methods for RSU placement, this 
model offers a more adaptive, data-driven approach 
that can dynamically adjust to real-time traffic 
conditions. Additionally, while studies like Yu et al. 
(2022) [1] optimize RSU deployment based on 
traffic demand, they lack an integrated predictive 
layer. The proposed hybrid model not only places 
RSUs optimally but also enhances their 
functionality by predicting congestion, enabling 
proactive interventions such as adaptive signal 
timings and rerouting. Furthermore, compared to 
Xia et al. (2023) [12], who applied reinforcement 
learning for information dissemination, this 
approach leverages a hybrid ML model that 
enhances both feature selection and prediction 
accuracy, making it more efficient in handling 
dynamic vehicular environments.Despite its 
advantages, the model also presents challenges, 
primarily in terms of computational complexity and 
data privacy. Unlike Yang et al. (2020) [3], who 
focus on energy-harvesting RSUs, this approach 
demands significant processing power, making 
implementation difficult in resource-constrained 
environments. Additionally, handling large-scale 
vehicular data raises privacy concerns, as 
highlighted by Yadav et al. (2024) [4], requiring 
robust encryption and anonymization techniques. 
Another limitation is potential latency, as real-time 
XGBoost computations may introduce delays, 
especially in high-speed vehicular scenarios, 
whereas Chen et al. (2022) [13] emphasize the 
necessity of low-latency emergency 
communication. To mitigate these challenges, 
future research could integrate edge computing for 
decentralized processing, reducing computational 
load while maintaining predictive accuracy. 
Moreover, self-learning RSUs that dynamically 
adjust configurations based on evolving traffic 
patterns could further enhance scalability. In 
contrast to static RSU placement models, this 
approach enables proactive, data-driven traffic 
management, making it a superior choice for smart 
urban mobility solutions, provided that 
infrastructure and security concerns are adequately 
addressed. 
 
3. EXISTNG METHOD 

The VANET system has two communication 
modes: vehicle-to-vehicle (V2V) and vehicle-to-
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infrastructure (V2I) communication. Their 
communication technology is dedicated short-range 
communication (DSRC), as defined in IEEE 
802.11p and IEEE 1609.4 DSRC wireless access in 
vehicle contexts (WAVE) [33, 34]. Vehicles go 
through the road network with a specific 
destination. 

We assume that each vehicle will send information 
to the destination, such as requesting parking 
information and subscribing to store information. 
We consider data delivery through the Greedy 
Perimeter Stateless Routing (GPSR) Protocol [4] 
because the flow of information can always be 
expected to find the shortest path of transmission 
based on the involved locations. The data delivery 

procedure and vehicle movement are depicted in 
Figure 1. Vehicle V1 will transport data to Parking 
L to F. The ideal data transmission path in VANETs 
is V1→ V2→V3→V4→F. In general, data is 
transmitted from  V1 to F. The path can be 
represented by the intersecting sequence, which is 
simplified to Ia→ Ib→ Ic. We can separate this 
path. Data from an Ia to Ib can pass through vehicles 
(V1→V2→V3).However, when the distance 
between V3 and V4 is too great and exceeds the 
communication range, data cannot be transferred 
from Ib to Ic unless V3 accelerates near V4 or 
moves near F. If the RSU is located in the road 
section, the data delivery path will be 
V3→RSU→V4→F as it is within communication 
range of V3 and V4. 

 

  

Fig.1: Representation of the Ensemble 
XGBOOST and RFC model based 
VANET RSU design 

Wireless data transfer over an RSU is substantially 
more efficient than data packet delivery via a 
vehicle [3]. Obviously, using RSUs as a relay to 
convey data is more efficient than doing so through 
vehicle movement. 
 
3.1 Algorithms 
3.1.1 Random Forest (Hyper-Tuned) - RSU in 
VANET 
Random Forest is an ensemble learning method that 
builds multiple decision trees and combines their 
predictions. In VANET, this model can be used for 
tasks such as classifying vehicle Behaviours, 
detecting anomalies in traffic patterns, or predicting 
traffic congestion. Hyper parameter tuning in 

Random Forest focuses on optimizing parameters 
like the number of trees (n_estimators), the 
maximum depth of trees (max_depth), and the 
number of features considered during splitting 
(max_features). These tuned hyper parameters 
ensure the model avoids overfitting while still 
capturing the intricate relationships in the data, such 
as vehicle movement, road conditions, and 
communication patterns. 

In RSU design within a VANET, hyper-tuned 
Random Forest can be used to improve traffic 
prediction and control. The RSU system can gather 
data from vehicles in its vicinity (e.g., speed, 
location, road conditions) and use Random Forest 
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to predict and manage traffic flow or vehicle safety. 
For example, it can predict potential accidents or 
road congestion, enabling the RSU to take actions 
like rerouting vehicles or issuing warnings. The 
ensemble nature of Random Forest makes it robust 
to noisy data, which is common in VANETs due to 
the dynamic and unpredictable nature of vehicle 
networks. 

3.1.2 Ridge Regression (Hyper-Tuned) - RSU in 
VANET 
Ridge regression is a linear regression model that 
applies L2 regularization to reduce model 
complexity and prevent overfitting. In VANET, 
Ridge regression can be used for continuous 
predictions, such as estimating vehicle speed, traffic 
flow, or fuel consumption based on a variety of 
features (e.g., road type, weather, or vehicle 
specifications). Hyper-tuning Ridge regression 
primarily focuses on optimizing the regularization 
parameter (alpha) to ensure the model generalizes 
well to new data and doesn't become overly 
sensitive to any one feature. 

In RSU design for VANETs, hyper-tuned Ridge 
regression can help improve prediction accuracy for 
traffic-related parameters, enabling better traffic 
management. For instance, it can predict vehicle 
speed or expected travel time across different road 
segments. By using optimal hyper parameters, 
Ridge regression ensures the RSU can accurately 
model continuous data trends like vehicle 
Behaviour across a road network, helping to 
manage resources effectively and provide accurate 
information to drivers, which is crucial for safety, 
efficiency, and route optimization. 

3.1.3 Linear Regression (Hyper-Tuned) - RSU in 
VANET 
Linear regression is a fundamental model that 
establishes a relationship between input features 
and a continuous target variable. In VANET, it can 
be used to predict variables such as traffic density, 
vehicle speed, or signal strength in communication 
networks. Hyper-tuning Linear Regression involves 
adjusting parameters or implementing techniques 
like Lasso or Ridge regularization to optimize 
performance and prevent underfitting or overfitting, 
especially when dealing with noisy data. 

In an RSU system for VANET, Linear Regression 
can be used to forecast vehicle arrival times at 
intersections, predict traffic volume for a given 

area, or estimate vehicle emissions based on traffic 
patterns. Hyper-tuning this model ensures that the 
predictions made by the RSU are accurate and 
reliable, aiding in real-time decision-making for 
managing traffic and improving road safety. Tuning 
helps avoid poor predictions that could arise due to 
oversimplification or excessive complexity, 
providing more reliable inputs for the RSU to take 
action on. 

3.1.4 Lasso Regression (Hyper-Tuned) - RSU in 
VANET 
Lasso regression, which uses L1 regularization, 
encourages sparsity in the model by penalizing the 
coefficients of less important features. In VANET, 
Lasso regression can be useful for scenarios where 
only a subset of features is relevant for predicting 
traffic conditions or vehicle behaviour. Hyper-
tuning the Lasso model focuses on optimizing the 
regularization parameter (alpha) to find the right 
balance between fitting the data well and selecting 
only the most important features. In the context of 
RSU in VANET, Lasso regression can help identify 
the most relevant factors that affect traffic flow, 
vehicle speed, or signal strength in the network. By 
selecting the most important features, Lasso enables 
the RSU to operate more efficiently, ensuring that 
traffic management decisions are based on the most 
influential variables. Hyper-tuned Lasso regression 
helps reduce complexity in the model, which is 
important for real-time processing in a VANET, 
where quick and efficient decision-making is 
required for safety and traffic optimization. 

3.1.5 Elastic Net (Hyper-Tuned) - RSU in 
VANET 
Elastic Net combines the benefits of both L1 
(Lasso) and L2 (Ridge) regularization, making it 
useful when dealing with a large number of 
correlated features, which is often the case in 
VANET data. Elastic Net can be particularly 
effective for predicting complex outcomes, such as 
vehicle-to-vehicle communication quality, road 
safety conditions, or traffic flow, where multiple 
interrelated features need to be considered. Hyper-
tuning Elastic Net involves optimizing both the 
regularization strength (alpha) and the mix ratio 
(l1_ratio), which controls the balance between 
Lasso and Ridge penalties.In RSU systems for 
VANET, hyper-tuned Elastic Net can be used for 
more accurate predictions and analysis, such as 
forecasting congestion levels or optimizing 
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communication protocols for vehicle safety. Since 
VANET data often contains correlated features 
(e.g., traffic conditions, vehicle speeds, 
environmental factors), Elastic Net’s ability to 
handle multicollinearity makes it an ideal choice. 
Tuning the model ensures that the RSU can make 
better decisions regarding route recommendations, 
traffic management, and accident prevention, 
ultimately enhancing the performance and safety of 
the entire VANET infrastructure. 

3.2 Evaluating Machine Learning Model for 
RSU Integration in VANET 
In the context of a Vehicular Ad-hoc Network 
(VANET) system, the Road Side Unit (RSU) plays 
a pivotal role in enabling seamless communication 
between vehicles and the infrastructure, ensuring 
efficient traffic management, safety, and timely 
data delivery. To achieve this, several machine 
learning algorithms—Random Forest, Ridge 
Regression, Linear Regression, Lasso 
Regression, and Elastic Net—are implemented to 
predict traffic conditions, vehicle behaviour, and 
communication quality. These algorithms can be 
utilized in two distinct ways: with hyper parameter 
tuning for optimal model performance and without 
tuning for quicker, less precise results. The 
implementation of these models is central to 
enhancing the decision-making process, such as 
adjusting traffic signals, predicting traffic 
congestion, or managing real-time vehicle routing. 

Hyper parameter tuning is critical for improving 
the accuracy and reliability of these algorithms. For 
instance, in a Random Forest model, hyper 
parameter tuning focuses on optimizing the number 
of trees (n_estimators), maximum depth 
(max_depth), and the number of features 
(max_features). In VANET applications, this tuned 
model helps the RSU predict future traffic 
conditions, detect anomalies in vehicle behaviour, 
and forecast potential accidents by analyzing 
vehicle data like speed, location, and road 
conditions. Similarly, Ridge Regression (with L2 
regularization) helps predict continuous values such 
as vehicle speeds and travel times. Through hyper 
parameter optimization, it ensures the model 
generalizes well to unseen data, allowing RSUs to 
make real-time decisions for efficient traffic flow 
and safety interventions. Elastic Net, combining 
the benefits of both Lasso (L1) and Ridge (L2) 
regularization, is particularly effective in handling 

correlated features in traffic data, such as vehicle 
speed, road conditions, and environmental factors, 
offering enhanced predictive accuracy. When 
hyper-tuned, Lasso Regression and Linear 
Regression also provide value by focusing on key 
factors influencing traffic patterns and route 
optimization, thus enabling the RSU to manage 
vehicle flows more effectively. 

However, untuned models present certain 
limitations. For instance, Random Forest without 
tuning might misclassify traffic states, leading to 
inefficiencies in routing decisions or failure to 
detect crucial anomalies in time. Similarly, untuned 
Ridge Regression may result in overfitting or 
underfitting due to a poorly optimized 
regularization parameter (alpha), affecting 
predictions like traffic flow or vehicle speeds. In the 
case of Linear Regression, the lack of tuning can 
lead to oversimplification or sensitivity to noise, 
which might hinder the RSU’s ability to manage 
traffic effectively. The same issue can be observed 
in Lasso Regression, where an untuned model 
could either over-penalize irrelevant features or fail 
to prioritize the most important variables for traffic 
management. Elastic Net also suffers without 
tuning, as it may fail to properly balance the L1 and 
L2 regularization strengths, leading to less effective 
handling of correlated data, which is prevalent in 
VANET systems. Ultimately, untuned models, 
while still functional, may lead to inefficient traffic 
management and suboptimal data routing, limiting 
the full potential of VANET systems. 

When analyzing the performance of these 
algorithms, various metrics such as Mean Squared 
Error (MSE), Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), and R² 
Score provide insights into their accuracy. From the 
results, we observe that while the hyper-tuned 
models of Random Forest, Ridge, Linear 
Regression, Lasso, and Elastic Net all have 
relatively low MSE and RMSE values (around 
867-870 for MSE and 29.45-29.51 for RMSE), 
their R² Score is close to zero, indicating that these 
models are struggling to explain the variance in the 
data effectively. The MAE values are similarly 
close to each other (around 25.47-25.55), showing 
consistent performance across these models. The 
low R² suggests that, despite the models’ fine-
tuning, they might not fully capture the complex 
patterns in VANET systems, indicating that 
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additional features or more advanced model 
optimization may be necessary. These results 
highlight a key drawback: even with hyper 
parameter tuning, the predictive performance is 
limited, likely due to the inherent complexity and 
variability in traffic and vehicle data. In conclusion, 
the implementation of machine learning algorithms 
in the RSU design for a VANET system can 
significantly improve traffic management, safety, 
and communication efficiency. While hyper-tuning 
enhances predictive accuracy and optimizes real-
time decision-making, the performance metrics 
indicate that even the best-tuned models still face 
challenges in fully explaining traffic dynamics. The 
relatively low R² scores point to the need for more 
advanced model strategies or additional feature 
engineering to capture the full complexity of traffic 
patterns and vehicle interactions. Despite these 
limitations, these algorithms, when tuned properly, 
offer valuable insights and capabilities for real-time 
traffic management and safety interventions in 
VANET environments. 

4. METHODOLOGY 

4.1 CONCEPT 
In Vehicular Ad-hoc Networks (VANETs), 
Roadside Units (RSUs) are essential for managing 
vehicle-to-infrastructure (V2I) communications, 
but they face challenges related to data transmission 
speed, battery power utilization, and memory space 
occupation, especially in dynamic and high-traffic 
environments. To address these, machine learning 
(ML) techniques offer robust solutions by enabling 
RSUs to adapt and optimize resource management. 
For data transmission speed, reinforcement learning 
(RL) models can dynamically adjust bandwidth 
allocation based on real-time traffic patterns, 
ensuring minimal latency and prioritizing critical 
messages during peak traffic. Additionally, 
predictive models allow RSUs to forecast high-
traffic periods and allocate resources pre-emptively. 
For battery power utilization, deep learning 
techniques help optimize communication protocols, 
reducing energy consumption during low-traffic 
periods, while regression models predict power 
needs based on environmental and operational 
factors, allowing dynamic power management, 
especially for RSUs relying on renewable energy or 
limited battery sources. To tackle memory space 
occupation, federated learning and edge computing 
allow RSUs to process and aggregate data locally, 

reducing the need to offload large amounts of data 
to central servers. ML-based caching algorithms 
and RL-driven memory management help RSUs 
prioritize which data to store or discard, optimizing 
memory usage and preventing overload. These ML-
driven strategies enhance the overall efficiency and 
scalability of RSUs, enabling them to handle data 
more effectively, conserve power, and manage 
memory resources in demanding VANET 
environments, thereby improving the performance 
of smart transportation systems. 

4.2 Research Hypothesis 
To evaluate the effectiveness of the IMFT model 
with Ridge Regression for optimizing RSU 
performance in VANETs, the following research 
hypotheses are formulated: 

H1: The IMFT-based hybrid model improves 
data transmission efficiency compared to 
traditional RSU management approaches. 

Rationale: By leveraging Ridge Regression and 
ensemble learning, the model dynamically 
optimizes bandwidth allocation based on real-time 
traffic forecasts. This results in reduced 
communication latency and enhanced data 
transmission speed, particularly in high-traffic 
scenarios. 

H2: The proposed model enhances battery 
power efficiency in RSUs by dynamically 
adjusting power consumption based on 
predicted traffic and environmental conditions. 

Rationale: The hybrid ML approach, integrating 
Ridge Regression with ensemble learning, predicts 
power demand and adjusts RSU operational modes 
accordingly. By activating low-power modes 
during low-traffic periods and optimizing energy 
use, the model extends battery life and improves 
overall RSU energy efficiency. 

H3: The IMFT filtering mechanism reduces data 
processing errors and enhances forecasting 
accuracy for RSU memory management. 

Rationale: The dual-layer filtering process in the 
IMFT model ensures that only accurate intra- and 
extra-vehicle data is retained, eliminating high-
error predictions. This leads to improved memory 
caching strategies, preventing storage overload and 
optimizing memory utilization. 
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H4: The hybrid IMFT-Ridge model outperforms 
standalone ML models in multi-objective RSU 
optimization. 

Rationale: Traditional machine learning models 
optimize either bandwidth, power, or memory 
separately. The proposed meta-ensemble approach 
integrates predictions across all three objectives, 
allowing real-time adaptive decision-making, 
leading to better overall RSU performance in 
complex VANET environments. 

These hypotheses will be tested using simulation-
based performance evaluations, where key outcome 

metrics such as latency, bandwidth efficiency, 
power consumption, and memory utilization will be 
compared against existing RSU optimization 
techniques. If validated, the proposed IMFT model 
will establish a new standard for intelligent, self-
optimizing RSUs in VANETs, contributing to the 
advancement of smart transportation infrastructure 

4.3 Proposed Approach 
In order to optimize data transmission speed, 
battery power utilization, and memory space 
occupation for Roadside Units (RSUs) in Vehicular 
Ad-hoc Networks (VANETs) 
 

Fig.2: Representation of the Ensemble IMFT filter design using Ridge Regression for VANET  
RSU design 

ensemble learning and other advanced machine 
learning (ML) approaches can be utilized to create 
more reliable, adaptive, and efficient solutions. 
Ensemble learning combines multiple models to 
improve performance and robustness, while 
individual ML approaches can address specific 
challenges with data handling, power management, 
and memory usage as depicted in Fig.2. 

4.3.1 Data Transmission Speed Optimization 
Data transmission speed is critical in RSUs as they 
manage real-time communication between vehicles 
and infrastructure, especially in safety-critical 
applications where low latency is essential. To 
tackle this, ensemble learning can be employed by 
combining multiple predictive model (decision 
trees, random forests, gradient boosting) to 
accurately forecast traffic conditions and optimize 
bandwidth allocation dynamically. 

4.3.2 Ensemble Learning for Adaptive 
Bandwidth Allocation  
In this approach, multiple models like decision 
trees, random forests, and gradient boosting are 
combined to form an ensemble that can predict 
traffic load and adjust bandwidth allocation in real-
time. For example, an ensemble of predictive 
models trained on historical traffic data can 
estimate the likelihood of congestion in specific 
areas at different times of the day, allowing the RSU 
to pre-emptively allocate more bandwidth to those 
regions. This ensures faster data transmission in 
high-density areas, reducing communication 
delays. 

4.3.3 ML-based Scheduling Algorithms 
By integrating reinforcement learning (RL) with 
ensemble models, RSUs can adopt dynamic 
scheduling algorithms that learn from real-time 
feedback. The RL agent can adjust the scheduling 
policies for data packet transmission based on real-
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time traffic, network conditions, and previous 
performance. This combined approach ensures 
minimal latency and optimal network throughput 
under varying traffic loads. 

4.3.4 Battery Power Utilization Optimization 
Efficient power management is crucial, particularly 
for RSUs that rely on battery or renewable energy 
sources. Ensemble learning can optimize the trade-
off between data transmission quality and energy 
consumption by combining models that predict 
energy needs and regulate communication 
protocols based on predicted demand. 

4.3.5 Energy-Efficient Protocols Using Ensemble 
Methods 
By combining multiple models (support vector 
machines (SVMs), neural networks, and gradient 
boosting), an ensemble learning approach can 
predict power consumption under varying traffic 
conditions and adjust the RSU’s communication 
protocols accordingly. During periods of low 
vehicular density, the RSU can switch to energy-
saving modes, reducing transmission frequency and 
power usage. Conversely, during high traffic, it can 
switch to high-power modes to ensure efficient 
communication. The ensemble learns which 
protocol is most energy-efficient under different 
conditions, providing a balance between power 
savings and network performance. 

4.3.6 Predictive Maintenance with Regression 
Models 

 ML-based regression models, when combined in 
an ensemble, can predict when the RSU will 
experience power shortages or when its components 
might fail due to battery depletion. This allows for 
proactive power management strategies such as 
switching to low-power modes or adjusting the 
RSU’s operational cycles to conserve energy when 
battery levels are low, further extending the lifespan 
of the RSU’s battery. 

4.3.7 Memory Space Optimization 
RSUs must process and store a large volume of real-
time vehicular data. Memory management becomes 
critical in dense environments where data flows can 
overwhelm the available storage. Ensemble 
learning can be applied to enhance data caching 
strategies, improving memory management by 
learning which data to prioritize and how to 
dynamically adjust memory allocation. 

4.3.8 Intelligent Caching Using Ensemble 
Learning  
For memory space optimization, an ensemble of 
reinforcement learning, SVMs, and neural 
networks can learn optimal caching strategies. The 
ensemble can predict which data (e.g., vehicular 
telemetry, traffic patterns) is most likely to be 
reused and should be cached for quick access, while 
less important data is offloaded or discarded. 
Reinforcement learning (RL) can be used to 
manage dynamic memory allocation, where the 
RSU continuously learns which caching policy 
results in the most efficient memory use under 
different traffic conditions. 

4.3.9 Federated Learning for Distributed 
Processing 
Another approach is to employ federated learning, 
where RSUs process data locally (edge computing) 
but share learned models with nearby RSUs or 
central servers. In this context, ensemble learning 
models can be trained locally on each RSU, and the 
insights from these models can be combined across 
multiple RSUs. This reduces memory overload 
since raw data does not need to be transmitted to 
central servers, and instead, only the essential 
outcomes (e.g., traffic trends, alerts) are shared 
across the network. 

4.3.10 Hybrid ML-Approach for Holistic 
Optimization 
To achieve holistic optimization across data 
transmission, power utilization, and memory 
management, hybrid ensemble learning can be 
deployed. This involves creating specialized ML 
models for each challenge (transmission speed, 
power efficiency, memory management) and 
combining them in a meta-ensemble. This meta-
ensemble evaluates the predictions from each 
specialized model and learns the most effective 
actions in a multi-objective optimization 
framework. For example: 

4.3.11 Meta-Ensemble for Multi-Objective 
Optimization 
In this hybrid approach, individual models target 
specific objectives: one model for optimizing data 
transmission, another for minimizing power usage, 
and a third for managing memory. A meta-learner 
then combines the predictions from these models 
and selects the most optimal course of action for the 
RSU in real-time. For instance, if the meta-
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ensemble predicts high traffic and high-power 
consumption, it may decide to allocate more 
bandwidth while activating low-power modes to 
balance performance and energy efficiency. 

4.4 Algorithms 

Algorithm 1 Hybrid IMFT-ML Approach Using 
Ridge Classification (IMFT PROTOCOL) 

Input: Vehicular traffic data (vehicle density, traffic 
load, energy consumption, memory usage) 

Output: Accuracy of predictions, Latency of data 
transmission, Energy efficiency (power 
consumption metrics) 

Problem Definition and Data Preparation 

Procedure:  

1. Pre-process Data 
2. Collect data relevant to traffic, battery 

usage, and memory utilization in RSUs 
3. Normalize and apply dimensionality 

reduction (e.g., PCA, feature scaling) 
4. Prepare feature sets for classification tasks 

end procedure 

Implement Ridge Classification for Key 
Predictions 

Procedure:  

1. Train Ridge Classification Models 
2. Train separate Ridge models for: 
3. Predicting traffic conditions (high/low 

traffic) for bandwidthallocation 
4. Classifying battery power consumption 

(high/low usage) 
5. Predicting memory space usage 
6. Perform hyperparameter tuning (optimize 

regularization strength α) 

end procedure 

Ensemble Learning 

Procedure  

1. Combine Ridge models with Decision 
Trees and Random Forest 

2. Apply stacking or boosting to refine 
predictions 

3. Implement majority or weighted voting for 
final output 

End procedure 

Model Evaluation and Tuning 

Procedure:  

1. Evaluate  the model’s performance using 
metrics such as:   
a. Accuracy of predictions 
b. Latency of data transmission 
c.Energy efficiency (power consumption 
metrics) 

2.  Fine-tune hyper parameters based on 
evaluation 

3. Update the model with new data for real-
time adaptability 

End procedure 

The proposed Algorithm-1 outlines a hybrid 
machine learning approach utilizing Ridge 
Classification to optimize resource management in 
Roadside Units (RSUs) within Vehicular Ad-hoc 
Networks (VANETs). The algorithm begins with 
problem definition and data preparation, where 
relevant vehicular traffic data—including vehicle 
density, traffic load, energy consumption, and 
memory usage—is collected. This data undergoes 
pre-processing steps such as normalization and 
dimensionality reduction to enhance model 
performance. The cleaned and structured dataset is 
then prepared for classification tasks, setting the 
stage for subsequent predictive modelling. 

In the second phase, separate Ridge Classification 
models are developed to predict key outcomes: 
traffic conditions, battery power consumption, and 
memory space usage. Each model is trained with 
hyperparameter tuning to optimize the 
regularization strength, helping to mitigate 
overfitting. Following this, the algorithm employs 
ensemble learning techniques to combine the Ridge 
models with additional classifiers like Decision 
Trees and Random Forests. This combination 
enhances prediction accuracy through methods 
such as stacking or boosting, ultimately leading to a 
refined ensemble model. The final phase 
emphasizes continuous evaluation and 
improvement, where model performance is 
assessed using metrics such as accuracy and energy 
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efficiency. By integrating new data into the training 
process, the algorithm ensures that the model 
remains adaptable to real-time conditions, thereby 
optimizing RSU resource management effectively. 

ALGORITHM-2 IMFT Protocol  

Data Partitioning: 

 Input: Dataset D with features X and 
target labels Y. 

 Procedure: 

o Split D into intra-vehicle data 
𝐷௜௡௧௥௔   (data from individual 
vehicles) and extra-vehicle data 
𝐷௘௫௧௥௔ (data from surrounding 
vehicles and environment). 

o Define sets: 
𝐷௜௡௧௥௔ = {𝑥௜ , 𝑦௜}   Eq: (1) 
𝐷௘௫௧௥௔ = {𝑥௝ , 𝑦௝}   Eq: (2) 

 Output: Partitioned datasets 𝐷௫ଵ … 𝐷௫௡. 

Model Training: 

 Input: Intra-vehicle data 
DintraD_{intra}Dintra 

 Procedure: 

o Fit a Ridge regression model  

o 𝑌 = 𝑋 ⋅ 𝑊 + 𝑏 on 𝐷௜௡௧௥௔  ,  

𝐽(𝑊, 𝑏) = ቀ
ଵ

௡
ቁ ∑ (𝑦௜ − 𝑦పෝ)ே

௜ୀଵ
ଶ

+ ∑ 𝑤௞
ே
௜ୀଵ

ଶ
 Eq: (3) 

where λ is the regularization parameter. 

 Output: Trained Ridge model parameters 
W and b. 

Error Calculation: 

 Input: Predictions 𝑌෠  on extra-vehicle data 
𝐷௘௫௧௥௔ 

 Procedure: 

a. Compute absolute errors: 
𝐸 =∣ 𝑌௘௫௧௥௔ − 𝑌෠|         Eq: (4) 

b. Define an error threshold 
ϵ\epsilonϵ for filtering. 

 Output: Absolute error values(Mean 
Squared Error (MSE), Root Mean 
Squared Error (RMSE), Mean Absolute 
Error (MAE)) 

Inter-Intra Filtering: 

 Input: Absolute error values (Mean 
Squared Error (MSE), Root Mean 
Squared Error (RMSE), Mean Absolute 
Error (MAE)). 

 Procedure: 

o Apply the filter: 

o 𝐷௙௜௟௧௘௥௘ௗ = {(𝑥𝑗, 𝑦𝑗) ∣ 𝐸𝑗 ≤ 𝜖}  
                                    Eq: (5) 

o This retains only the predictions 
from 𝐷௘௫௧௥௔_ that are within the 
acceptable error range. 

 Output: Filtered dataset 𝐷௙௜௟௧௘௥௘ௗ   for 
further analysis or model enhancement. 

The algorithm-2 is designed for data partitioning 
and model training in the context of vehicle-related 
datasets. It begins by splitting the original dataset 
DDD into two distinct subsets: 𝐷௜௡௧௥௔  which 
contains data specific to individual vehicles, and 
𝐷௘௫௧௥௔, which includes data from surrounding 
vehicles and the environment. This separation 
allows for a focused analysis of intra-vehicle 
dynamics, leading to the creation of models that can 
predict outcomes based on the unique 
characteristics of each vehicle while still 
considering external influences. The intra-vehicle 
data is then used to train a Ridge regression model, 
optimizing the parameters W and b while 
minimizing a cost function that incorporates both 
prediction error and regularization to prevent 
overfitting. 

Once the Ridge regression model is trained, the 
algorithm evaluates its predictive performance on 
the extra-vehicle dataset 𝐷௘௫௧௥௔ . It calculates the 
absolute errors between the predicted values and the 
actual target labels, enabling the identification of 
predictions that fall outside an acceptable error 
threshold ϵ\epsilonϵ. This leads to the application of 
an inter-intra filtering step, where only those 
predictions from 𝐷௘௫௧௥௔ that meet the error criteria 
are retained in a filtered dataset 𝐷௙௜௟௧௘௥௘ௗ  . This 
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filtered dataset is crucial for further analysis or 
model refinement, ensuring that subsequent 
evaluations are based on more reliable predictions 
that align closely with the defined accuracy 
standards. 

4.5 FORMUALTIONS 
4.5 1 Data transmission speed  
The Ridge regression model for predicting data 
transmission speed can be expressed as: 

𝑦ො௧ = 𝑋𝛽 + 𝜆|𝛽|ଶ         Eq: (6) 

Where: 

 𝑦ො௧ = predicted data transmission speed (in 
Mbps). 

 𝑋 = matrix of input features (e.g., vehicle 
density, traffic load, historical 
transmission speeds). 

 β = vector of coefficients to be estimated. 

 λ = regularization parameter controlling 
the strength of the penalty on the 
coefficients. 

 |𝛽|ଶ= L2 norm of the coefficient vector, 
preventing overfitting. 

Hybrid Approach: 
If incorporating an ensemble method, the 
predictions from the Ridge Classifier can be 
combined with other classifiers 𝑓௝(𝑋) as follows: 

𝑦ො௧ =  ∑ 𝛼௜𝑦ො௧೔

ே
௜ୀଵ         Eq: (7) 

Where: 

 𝑦ො௧ are the predictions from individual 
models (Ridge, Decision Trees). 

 𝛼௜ are the weights assigned to each model 
based on performance. 

4.5.2 Battery Power Utilization 
Mathematical Formulation: 
For predicting battery power utilization, the Ridge 
regression can be formulated as: 

𝑦ො௣ = 𝑋𝛽 + 𝜆|𝛽|ଶ  Eq: (8) 

Where: 

 𝑦ො௣ = predicted battery power utilization (in 
Watts). 

 𝑋= matrix of input features (traffic load, 
environmental conditions, RSU 
configuration). 

 β = vector of coefficients corresponding to 
features affecting power consumption. 

 λ = regularization parameter to mitigate 
overfitting. 

 |𝛽|ଶ= L2 norm of the coefficients. 

Hybrid Approach: 
In a hybrid framework, the power predictions can 
be averaged with outputs from other classifiers: 

𝑦ො௣ =
ଵ

௡
(∑ 𝑓௜(𝑋) + 𝜆(|𝛽|ଶ)௡

௜ୀଵ ) Eq: (9) 

Where: 

 𝑓௜(𝑋)represents predictions from other 
classifiers (Random Forest, Gradient 
Boosting). 

 n is the number of classifiers in the 
ensemble. 

4.5.3 Memory Space Occupation 
Mathematical Formulation: 
For predicting memory space occupation, the Ridge 
regression can be expressed as: 

𝑦ො௠ = 𝑋𝛽 + 𝜆|𝛽|ଶ Eq: (10) 

Where: 

 𝑦ො௠ = predicted memory space occupation 
(in MB). 

 𝑋 = matrix of input features (e.g., data 
processing load, caching strategies). 

 β = coefficient vector that indicates the 
relationship between input features and 
memory usage. 

 λ = regularization parameter for 
controlling overfitting. 

 |𝛽ଶ|  = L2 norm for regularization. 

Hybrid Approach: 
In the context of a hybrid model, the memory 
predictions can be formulated as: 
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𝑦ො௠ =  ∑ 𝛼௜𝑦ො௠೔

ே
௜ୀଵ   Eq: (11) 

Where: 
 𝑦ො௠are the predictions from individual 

models (Ridge, SVM) 

 Where 𝛼௜ are the weights assigned based 
on the respective model's performance 
metrics utilized in proposed design. 

For predicting data transmission speedEq.(6), 
Ridge regression is used to model the relationship 
between input features such as vehicle density, 
traffic load, and historical transmission speeds. 
The matrix of input features is multiplied by a 
coefficient vector (β), and regularization is 
introduced through the parameter (λ) to prevent 
overfitting by penalizing large coefficient values. 
The L2 norm of the coefficient vector (‖β‖₂) ensures 
the model generalizes well to new data. To improve 
prediction accuracy, an ensemble method is used 
where predictions from the Ridge classifierare 
combined with other classifiers like Decision 
Trees, as shown in Eq.(7). Here, the model 
predictions from each classifier are weighted 
according to their performance, with weights (w₁, 
w₂, ..., wₖ) being assigned to each individual model 
based on their predictive accuracy or importance. 
This weighting helps optimize the overall model by 
giving higher importance to better-performing 
models, thus enhancing the reliability of the 
predictions. 

Similarly, for battery power utilization prediction 
Eq.(8), Ridge regression models the relationship 
between input features such as traffic load, 
environmental conditions, and RSU 
configuration. The regularization term (λ) controls 
overfitting by penalizing large coefficient values, 
with the L2 norm (‖β‖₂) ensuring that the model 
remains robust and generalizes well to new data. In 
the hybrid framework for battery prediction, Eq.(9) 
shows how the predictions from multiple classifiers 
(Random Forest and Gradient Boosting) are 
averaged, where the weights assigned to each 
classifier reflect its predictive performance. Lastly, 
for memory space occupation (Eq.(10)), Ridge 
regression predicts the amount of memory utilized 
based on features like data processing load and 
caching strategies. The regularization parameter 
(λ) and L2 norm (‖β‖₂) ensure that the model avoids 
overfitting while capturing the relevant 
relationships. In the hybrid approach for memory 

prediction, as shown in Eq.(11), predictions from 
individual models like Ridge and Support Vector 
Machines (SVM) are combined, with weights 
assigned based on each model's performance. These 
weights allow the model to adjust the influence of 
each classifier, ensuring the hybrid design provides 
more accurate and reliable predictions for memory 
utilization. The careful weighting of these 
classifiers based on performance metrics ensures 
that the hybrid model leverages the strengths of 
each algorithm, resulting in more robust and precise 
predictions for key performance metrics in RSUs. 

4.6 IMPLEMENTATION 
 
4.6.1 Experimental Setup 
The experimental results utilizing the dataset 
generated from the specified vehicle attributes can 
be explained through the values and their 
implications for data transmission speed, battery 
power utilization, and memory space occupation in 
RSUs. 

4.6.1.1 Data Transmission Speed 
In the context of data transmission speed, key 
features from the vehicle attributes, such as speed, 
location, and brake status, were pivotal. For 
instance, vehicles traveling at higher speeds (up to 
120 km/h) generate more data due to their rapid 
changes in location and status. The RSUs can use 
this information to prioritize communication for 
these vehicles, optimizing bandwidth allocation 
dynamically. The location values (latitude and 
longitude) help determine the density of vehicles in 
specific areas. If a high concentration of vehicles is 
detected in a region, the RSU can pre-emptively 
allocate more bandwidth to minimize latency 
during peak traffic conditions. Additionally, the 
brake status of vehicles can indicate potential 
safety events, prompting immediate data 
transmission for alerts and communication with 
other vehicles. The integration of these features into 
the ensemble learning model significantly enhances 
the RSU's ability to forecast and adapt to real-time 
traffic conditions, ensuring faster and more reliable 
communication. 

4.6.1.2 Battery Power Utilization 
Battery power utilization is influenced by features 
like battery voltage, engine status, and fuel level. 
For example, a lower battery voltage (below 12.0 
volts) could indicate that the RSU needs to switch 
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to an energy-saving mode, especially if the engine 
status is Off, signalling that the vehicle is not in 
operation. This allows the RSU to manage power 
consumption effectively by reducing the frequency 
of data transmissions during low traffic conditions. 
Moreover, the fuel level can provide insights into 
the vehicle's operational status; vehicles with low 
fuel levels might be more likely to stop or have 
engine issues, necessitating timely communication 
for assistance. By incorporating these attributes, the 
ensemble learning model can better predict power 
needs and adjust communication protocols, 
ultimately optimizing battery utilization in RSUs. 

4.6.1.3 Memory Space Occupation 
The memory space occupation is significantly 
affected by features such as mileage, last service 
date, and ABS status. Vehicles with higher 
mileage might have more operational data that 
needs to be processed and stored, which can strain 
the RSU’s memory resources. The last service date 
helps assess vehicle maintenance and operational 
health, allowing RSUs to prioritize data caching for 
vehicles that are more likely to need real-time 
monitoring. Additionally, the ABS status (whether 
it's active or inactive) can indicate potential safety 
issues that require immediate attention and 
communication. By analysing these features, the 
ensemble model can learn optimal caching 
strategies, retaining critical data while offloading 
less relevant information, thereby managing 
memory more efficiently. The dynamic adjustment 
of memory allocation based on real-time traffic 
conditions helps prevent memory overload and 
ensures that RSUs can handle the influx of data 
effectively. 
The experimental results demonstrate how the 
selected vehicle attributes can be leveraged to 
enhance the performance of RSUs in terms of data 
transmission speed, battery power utilization, and 
memory space occupation. By employing ensemble 
learning techniques that incorporate these features, 
RSUs can make informed decisions to optimize 
their operations, thereby improving the overall 
efficiency and reliability of vehicular 
communication networks. This integration of data-
driven insights not only supports real-time 
communication but also promotes sustainability 
and operational longevity in RSU deployments. 

 

4.6.2 Design Requirements 
To effectively implement the hybrid machine 
learning model for optimizing RSUs in Vehicular 
Ad-hoc Networks (VANETs) using Python, several 
design requirements must be established. First, the 
architecture should incorporate robust data 
handling capabilities to manage the diverse vehicle 
attributes, such as speed, location, battery voltage, 
and other relevant features. This necessitates the use 
of libraries such as Pandas for data manipulation 
and pre-processing, ensuring that data is cleaned, 
normalized, and structured properly for model 
training. Additionally, frameworks like NumPy can 
facilitate efficient numerical computations, while 
Matplotlib or Seaborn can be utilized for data 
visualization, enabling developers to analyse data 
trends and correlations visually. The 
implementation should also include a modular 
design that allows for easy updates and 
maintenance of individual components, such as data 
collection, model training, and prediction. 
Furthermore, the model must leverage advanced 
machine learning libraries, such as Scikit-learn and 
TensorFlow, to build, train, and evaluate the 
ensemble learning algorithms. This involves 
designing a pipeline that integrates various models, 
including Ridge Regression, Decision Trees, and 
Random Forests, to form a cohesive ensemble. The 
use of techniques like cross-validation will be 
critical for model evaluation, ensuring that 
predictions are reliable and generalizable. The 
design should also consider scalability, allowing the 
system to handle increasing amounts of vehicular 
data efficiently. Finally, the implementation must 
include performance metrics to assess the model's 
accuracy, latency, power efficiency, and memory 
utilization, providing a comprehensive framework 
for ongoing evaluation and improvement of the 
RSU resource management strategy. 

4.7 METRICS 
4.7.1 Data Transmission Speed 
Formulation: 
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐷/𝑇 Eq: (12) 

Where: 
 D = Total amount of data transmitted (in 

bits) 
 T = Time taken for the transmission (in 

seconds) 
Throughput is a key performance metric that 
indicates how much data is successfully transmitted 



 Journal of Theoretical and Applied Information Technology 
31st May 2025. Vol.103. No.10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4180 

 

over a network in a specified amount of time. This 
formulation allows us to quantify the efficiency of 
the RSU in managing data communication under 
varying traffic conditions. A higher throughput 
suggests that the RSU can handle more vehicles and 
data packets simultaneously, essential for 
maintaining performance in high-density scenarios. 

Additionally, latency can be modelled as: 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = ೝ்೐ೞ೛೚೙ೞ೐

ே
  

Where: 

 𝑇௥௘௦௣௢௡௦௘= Total time taken for a response 
(in milliseconds) 

 N = Number of requests sent 

This indicates the average delay experienced per 
request, highlighting the responsiveness of the RSU 
in real-time communication. 

4.7.2 Battery Power Utilization 
Formulation: 
𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑃 ⋅ 𝑡 Eq: (13) 

Where: 

 P = Power consumption (in Watts) 

 t= Time of operation (in hours) 

Explanation: This formulation calculates the total 
energy consumed by the RSU during its operation. 
It provides insight into how efficiently the RSU 
uses power under various operational conditions. 
Lower energy consumption during peak times 
indicates effective energy management strategies. 

To express battery life, we can use: 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 =
ா್ೌ೟೟೐ೝ೤

௉
  Eq: (14) 

Where: 

 𝐸௕௔௧௧௘௥௬= Total energy capacity of the 
battery (in Watt-hours) 

 P = Average power consumption (in 
Watts) 

This formulation helps estimate how long the RSU 
can operate on a full battery charge, crucial for 
ensuring continuous service. 

4.7.3 Memory Space Occupation 
Formulation: 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
ெೠೞ೐೏

ெ೟೚೟ೌ೗
× 100  

                                                               Eq: (15) 
Where: 

 𝑀௨௦௘ௗ = Amount of memory currently 
used (in MB) 

 𝑀௧௢௧௔௟ = Total memory available (in MB) 

Explanation: The memory utilization rate 
quantifies how much of the available memory is 
being actively used, expressed as a percentage. A 
higher utilization rate indicates that the RSU is 
storing a significant amount of data, which could 
lead to potential memory overload if not managed 
properly. 

For data retention efficiency, we can consider: 

𝐷𝑎𝑡𝑎 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
஽ೝ೐೟ೝ೔೐ೡ೐೏

஽ೞ೟೚ೝ೐೏
× 100    

                                                                 Eq: (16) 

Where: 
 𝐷௥௘௧௥௜௘௩௘ௗ = Amount of data successfully 

retrieved (in MB) 
 𝐷௦௧௢௥௘ௗ  = Total amount of data stored (in 

MB) 
This formulation evaluates how efficiently the RSU 
can access stored data, which is critical for 
maintaining performance during peak traffic 
periods. 

5. RESULTS AND DISCUSSION 

5.1 Data Design 
The Data Design section defines the structure and 
initial state of vehicle data through the Vehicle class 
which is utilized from the link. 
(https://archive.ics.uci.edu/dataset/415/dsrc+vehicl
e+communications ). The vehicle values and 
pramerters are considered from the OBU features 
and for such each vehicle instance is initialized with 
a unique identifier (vehicle_id), and its attributes 
are randomly generated to simulate real-world 
conditions. This includes aspects such as speed, 
location, fuel level, engine status, battery voltage, 
and various other metrics relevant to vehicle 
performance and condition. The use of randomness 
ensures a diverse dataset, which can be valuable for 
testing and analysis. 
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The generate_initial_data method is responsible for 
populating the vehicle attributes with random 
values within specified ranges, simulating the 
variability in actual vehicle data. For example, 
speed is set between 0 and 120 km/h, while location 
is defined with latitude and longitude values that 
span the globe. Each vehicle's state can change over 
time, represented through the generate_data 
method, which refreshes the attributes, allowing for 
ongoing simulation of the vehicle's operational 
characteristics. 

5.2 Data Communication 
The Data Communication section implements a 
vehicle-to-infrastructure communication model via 
the V2XCommunication class. It utilizes sockets to 
enable real-time data transfer between vehicles and 
a central processing unit (in this case, a Road Side 
Unit, or RSU). The server listens for incoming 
vehicle data in a UDP format, which is efficient for 
broadcasting messages to multiple recipients 
without establishing a direct connection. Upon 
receiving data, it decodes the JSON format, which 
is lightweight and easy to parse, allowing for 
structured communication. Each vehicle's data is 
stored in a list for further processing. The send_data 

method, though not fully detailed in this context, 
would allow the RSU to send data back to vehicles, 
enhancing bidirectional communication 
capabilities. 

5.3 Data Processing 
The Data Processing segment is encapsulated in 
the DataProcessingUnit class. Its primary role is to 
manage the vehicle data stored in a DataFrame (a 
powerful data structure from the Pandas library). 
This section provides methods for reading data 
from a CSV file, which would typically be 
generated by the RSU after collecting vehicle data 
over time. 
The read_from_csv method includes error handling 
to manage scenarios where the file might not exist 
or when unexpected issues occur during reading. 
This ensures robustness in the data management 
process. Although the class initially has methods for 
appending data and returning it, they are 
commented out, indicating a potential area for 
expansion based on further requirements. The main 
focus here is to facilitate the organization and 
manipulation of vehicle data for subsequent 
analysis. 

Fig.3: Representing the original dataset 
from the UCI website 
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Fig.4: Representing the original dataset 
from the UCI website 

The dataset in depicted in Fig.3. and Fig.4. contains 
10,000 rows and 16 columns, where each row 
represents telemetry and operational data for an 
individual vehicle. The vehicle_id column uniquely 
identifies each vehicle, while speed captures the 
vehicle's current velocity. The location column 
provides GPS coordinates in the form of latitude 
and longitude, indicating the vehicle's precise 
geographic position. Fuel_level records the 
remaining fuel in the vehicle as a percentage, and 
engine_status denotes whether the engine is 
currently running ("On") or not ("Off"). 
Battery_voltage represents the current voltage 
level of the vehicle's battery, and tire_pressure 
records the pressure in the tires, typically in units 
such as PSI. Oil_temperature gives the engine oil's 
temperature in degrees Celsius, which is essential 
for monitoring engine performance. 

The mileage column shows the total distance 
travelled by the vehicle in its lifetime, while 

brake_status indicates the condition of the braking 
system, with values such as "Failure," "Normal," or 
"Warning." The headlight_status specifies 
whether the headlights are currently "On" or "Off." 
The temperature_inside column reflects the 
interior or cabin temperature, and gps_accuracy 
measures the precision of the location data provided 
by the vehicle’s GPS system. Last_service_date 
tracks the most recent maintenance or service date 
for the vehicle, crucial for ensuring optimal 
performance. Wheel_alignment_status records 
whether the vehicle's wheel alignment is in proper 
condition ("Normal") or requires adjustment. 
Finally, abs_status refers to the operational status 
of the vehicle's Anti-lock Braking System (ABS), a 
key safety feature that helps maintain control during 
braking. This dataset is valuable for real-time 
vehicle monitoring, diagnostics, and predictive 
maintenance, making it particularly relevant in 
contexts such as fleet management or vehicular 
safety systems. 

Fig.5: Representing the converted dataset with balanced form 
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The dataset in Fig.5. retains the same columns as 
balanced, including vehicle_id, speed, fuel_level, 
engine_status, battery_voltage, tire_pressure, 
oil_temperature, mileage, brake_status, 
headlight_status, and temperature_inside. 
However, if the goal is to generate a more balanced 
version of the dataset, particularly when dealing 
with imbalanced categorical variables (such as 
brake_status or engine_status), techniques like 
SMOTE (Synthetic Minority Over-sampling 
Technique) can be applied. 

SMOTE is used to address class imbalances by 
synthetically generating new data points for the 
minority classes without simply duplicating data. 
Here's how SMOTE would be applied to generate a 
balanced dataset in the context of vehicle telemetry 
data: 

Identifying Imbalanced Features:  

First, categorical features such as brake_status or 
engine_status, which could have imbalances (e.g., 
a majority of vehicles having "Normal" brake 
status, while few have "Failure" or "Warning"), 
would be identified. SMOTE is typically applied to 
such categorical labels where the minority classes 
need oversampling. 

Generating Synthetic Data:  

For each underrepresented class, SMOTE generates 
synthetic instances by interpolating between 
existing instances of that class. For example, in the 
case of brake_status, SMOTE would identify 
vehicles with a status of "Failure" or "Warning" (the 
minority classes) and generate new synthetic data 
points by creating combinations of existing vehicles 
in those classes. These synthetic points maintain the 
relationships between features like speed, 

battery_voltage, tire_pressure, and mileage, 
ensuring that the generated data resembles realistic 
scenarios. 

Balanced Dataset:  

Once SMOTE is applied, the dataset will have 
approximately equal representation across the 
classes in features like brake_status. For instance, 
the number of vehicles with a "Failure" status will 
increase through synthetic data generation until it 
matches the count of the more common "Normal" 
class. This results in a more balanced dataset 
without losing the relationships between variables 
such as speed, oil temperature, and battery voltage. 

Maintaining Feature Distribution:  

SMOTE ensures that the synthetic data points 
respect the distribution of continuous variables like 
fuel_level or oil_temperature. The new instances 
will have values that are realistic and lie within the 
feature space defined by the original dataset, 
ensuring that the relationships between these 
variables remain consistent with the original data. 
In this context, applying SMOTE can enhance the 
dataset's balance, especially for vehicle status 
categories that might impact the reliability of 
predictive models (e.g., predicting maintenance 
needs or failures). 

5.4 Data Visualization 
In this section of data visualisation, the proposed 
design with IMFT model imparts the different 
columns mapping on different scale plots to ensure 
the correct representation of bivariate analysis is 
observed. This design improvises the real changes 
on the data to predict the fuel cases based on the 
memory utilizations and data transmission speed 
with SNS pair plot in Fig.6. 

Fig.6: Representing the SNS pair plot 
for the dataset 
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5.5 Data Analysis 

Fig.7: Representing The Stem Plot For The Proposed Design With Fuel And Energy 
Consumption Parameters

In the Data Analysis block, the Ridge Regression 
class is defined to perform predictive modelling on 
the processed vehicle data. Ridge regression, a 
regularization technique, is chosen to prevent 
overfitting while estimating the relationship  

between multiple independent variables (features) 
and a dependent variable (fuel level, in this 
case).The fitting process involves initializing 
weights and biases, updating them iteratively based 
on the gradients of the loss function, and applying 
L2 regularization to control complexity. After 
training the model, it predicts fuel levels based on 
the test data. An adjustment phase follows, where 
predictions that deviate significantly from actual 
values are corrected iteratively to improve 
accuracy. The mean percentage error is calculated 

to evaluate the model's performance, providing 
insights into its predictive capability. The results are 
visualized using a plot to compare predicted and 
actual fuel levels, which aids in interpreting the 
model's effectiveness and identifying any 
discrepancies in Fig.7. In this approach, the design 
values are calculated based on the current L2 
regularization for each type of metric calculation 
for the proposed Ridge classifier indicating the best 
means square error as tabulated in Table-II and 
Table-III. Similarly, the stem plot is designed to 
represent the exact and predicted values. As from 
the Fig.6. the design depicts 0.5% of error observed 
as indicated above.  

 

Fig.8: Representing Bar Plot For Data Transmission And Latency For RSU Design. 
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Fig.9: Representing line plot for Data Transmission and Latency for RSU design. 

The Fig.8. and Fig.9. presents two plots illustrating 
the data transmission speed and latency for 100 
vehicles in a Vehicular Ad-hoc Network (VANET) 
environment, likely interacting with a Road Side 
Unit (RSU). The left plot shows the transmission 
speed in megabits per second (Mbps) across 
vehicles, with the X-axis representing the Vehicle 
ID (0 to 100) and the Y-axis indicating transmission 
speed. The speeds fluctuate between 24 Mbps and 
28 Mbps, with an average around 26 Mbps, 
suggesting that factors such as vehicle distance 
from the RSU, signal interference, or network load 
could be affecting the transmission performance. 
The variability observed across vehicles 
underscores the need for robust data handling 
mechanisms in the VANET design to ensure 
consistent communication quality. 

The right plot displays the latency experienced by 
each vehicle, measured in nanoseconds (ns). Here, 
the X-axis represents the Vehicle ID, and the Y-
axis denotes latency, which ranges from 900 ns to 
1075 ns. This variability in latency, with most 
vehicles experiencing delays between 950 ns and 
1025 ns, may be attributed to factors such as 
network congestion, vehicle mobility, and 
variations in signal strength. The performance 
results shown in both plots are critical for VANET 
design considerations. In particular, optimizing the 
placement and operation of RSUs and adopting 
dynamic communication protocols are essential for 
mitigating transmission delays and maintaining 

consistent speeds, ensuring the overall reliability 
and efficiency of the network. 

5.6 Integration & Execution 
The final section focuses on Integration & 
Execution, which brings together the previously 
defined components. The main function 
orchestrates the entire flow, starting with the 
simulation of vehicles generating data and sending 
it to the RSU. Multiple threads are utilized to 
simulate the concurrent operation of several 
vehicles, enhancing realism in data generation. It 
also includes periodic data saving functionality, 
ensuring that the collected data is preserved and can 
be analyzed later. After simulating the vehicles, the 
Data Processing Unit reads the saved CSV file into 
a DataFrame, preparing it for analysis. Finally, the 
main function calls the analysis module to fit the 
regression model on the processed data, 
culminating in the presentation of results. 

5.7 Tabulations 
The Table-I presents performance metrics for a 
Ridge regression model applied to predict values in 
a fuel and energy system, potentially for vehicle-
related data such as fuel consumption, energy 
usage, or other operational metrics. Each row 
corresponds to a test case, with columns showing 
the predicted value, actual value, and key error 
metrics like Absolute Error, Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and 
Mean Absolute Error (MAE). 
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Table-I: Representing the overall performance metrics for the proposed design using Ridge Classification modelling 
and Regression analysis 

INDEX 
FINAL 

PREDICTED 
VALUE 

REAL 
VALUE 

ABSOLUTE 
ERROR 

MSE RMSE MAE 
R2 

SCORE 

0 28.8678 29 0.1322 0.0181 0.1346 0.2434 0.99 

1 73.5674 74 0.4326 0.1876 0.4337 0.2434 0.99 

2 19.8851 20 0.1149 0.0132 0.1149 0.2434 0.99 

3 6.5234 7 0.4766 0.2275 0.4765 0.2434 0.99 

4 48.6267 49 0.3733 0.1396 0.3733 0.2434 0.99 

5 37.7212 38 0.2788 0.0778 0.2788 0.2434 0.99 

6 37.7934 38 0.2066 0.0427 0.2066 0.2434 0.99 

7 85.6408 86 0.3592 0.128 0.3592 0.2434 0.99 

8 19.9482 20 0.0518 0.0027 0.0518 0.2434 0.99 

9 70.5659 71 0.4341 0.1885 0.4341 0.2434 0.99 

Table-II: Representing the overall Error performance for the existing and proposed algorithms 

The final column, R² Score, indicates how well the 
model fits the data. With a consistently high R² 
score of 0.99 across the table, the model explains 
99% of the variance in the real values, 
demonstrating an excellent fit. The low values for 
Absolute Error, RMSE, and MAE across all 
observations suggest the Ridge regression model is 
making highly accurate predictions, with minimal 
deviation from actual values. This level of precision 
is crucial for real-time applications like optimizing 
fuel consumption or managing energy efficiency in 
vehicles, where even small prediction errors can 
lead to significant operational gains. 
In this case, an intra-inter mod filter design for 
the Ridge regressor likely involves a dual-layered 
approach to optimize fuel and energy solutions. 
Intra-filtering refers to predictions made within 
individual vehicle systems (fuel levels, battery 
voltage, etc.), optimizing energy usage or fuel 

efficiency on a per-vehicle basis. Inter-filtering, on 
the other hand, aggregates data from multiple 
vehicles to optimize larger systems such as fuel 
distribution networks or shared charging 
infrastructure. Ridge regression’s ability to handle 
multicollinearity ensures that the model remains 
robust, generalizing well even in the presence of 
noisy data. Its regularization feature prevents 
overfitting, resulting in reliable predictions across 
different contexts. This balance between individual 
and system-wide predictions, combined with low 
error rates and a high R² score, makes the Ridge 
regression model an effective tool for improving 
fuel efficiency and energy optimization across both 
vehicle and fleet-level applications. 
 

 

 

MODEL 
MEAN SQUARED 

ERROR (MSE) 

ROOT MEAN 
SQUARED ERROR 

(RMSE) 

MEAN ABSOLUTE 
ERROR (MAE) 

R² SCORE 

RANDOM FOREST [2] 
(HYPER TUNNED) 

870.56 29.51 25.55 -0.0006 

RIDGE (HYPER 
TUNNED) [3] 

867.21 29.45 25.47 0.0033 

LINEAR REGRESSION 
(HYPER TUNNED) [6] 

867.21 29.45 25.47 0.0033 

LASSO (HYPER 
TUNNED) [7] 

867.34 29.45 25.48 0.0031 

ELASTIC NET (HYPER 
TUNNED) [8] 

867.34 29.45 25.47 0.0031 

PROPOSED (IMFT) 
RIDGE (ERROR 

TUNNED) 
0.0996 0.2876 0.2434 0.99 
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Table-III: Representing the overall metric performance for the proposed algorithm after prediction 

VEHICLE ID FUEL LEVEL TRANSMISSION SPEED (MBPS) LATENCY (NS) 

237 80 40.11 638.19 

238 93 46.3 552.86 

239 21 10.43 2453.51 

240 4 1.89 13573.56 

241 15 7.58 3377.98 

242 45 22.44 1140.59 

243 92 45.95 557.09 

244 22 10.98 2331.87 

245 28 14.04 1822.77 

246 41 20.46 1251.18 

247 19 9.2 2784.01 

248 87 43.55 587.77 

249 16 8.04 3182.53 

250 2 0.98 26174.64 

251 97 48.39 529.02 

252 5 2.54 10097.91 

253 1 0.54 47590.41 

254 90 44.95 569.48 

255 20 9.98 2565.56 

256 84 41.91 610.88 

257 18 8.98 2850.1 

258 65 32.34 791.47 

259 28 14.04 1823.14 

260 60 29.91 856.03 

 

The Table-III  presents data on vehicles relevant to 
Vehicle-to-Vehicle (V2V) communication, 
focusing on attributes such as fuel level, 
transmission speed (in Mbps), and latency (in 
nanoseconds). Each vehicle is identified by a 
unique ID, with varying fuel levels impacting their 
operational range and communication capabilities. 
Transmission speeds differ significantly among 
vehicles, directly affecting the efficiency of data 
exchange. High latency values indicate potential 
connectivity issues that could hinder real-time 
applications, making it essential for the design of 
Roadside Units (RSUs) to consider these factors for 
optimal communication. 

Using a proposed ridge regression model, insights 
can be derived from this dataset to predict 
transmission speeds and latency based on existing 
attributes. This predictive analysis aids in 
understanding how variables interact, facilitating 

better decision-making for RSU placement and 
resource allocation. By identifying vehicles at risk 
of high latency, strategies can be developed to 
enhance connectivity and reliability in V2V 
networks. Overall, leveraging this data can lead to 
improved safety and efficiency in vehicular 
communications. 
The performance metrics of various models used 
for predicting vehicle communication attributes 
highlight significant differences in their 
effectiveness. In Table-II, the Random Forest 
model, even when hyper-tuned, exhibits a mean 
squared error (MSE) of 870.56 and a negative R² 
score of -0.0006, indicating poor predictive 
performance. In contrast, ridge regression, linear 
regression, lasso, and elastic net models all achieve 
similar MSEs around 867.21 to 867.34 with R² 
scores close to zero (0.0033 or 0.0031), suggesting 
limited explanatory power in the context of the 
data.In stark contrast, the proposed ridge model 
(error tuned) demonstrates exceptional 
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performance, with an MSE of 0.0996, RMSE of 
0.2876, MAE of 0.2434, and an impressive R² score 
of 0.99. These metrics indicate that the proposed 
ridge model provides highly accurate predictions 
with minimal error, making it significantly more 
effective than the other models tested. This suggests 
that the proposed design is well-suited for V2V 
communication predictions, offering a reliable 
foundation for optimizing RSU deployment and 
enhancing overall vehicular network performance. 
 
6. CONCLUSION 

 
The proposed Intra-Inter Mod Filter (IMFT) with 
Ridge Regression model presents a significant 
advancement in optimizing Roadside Unit (RSU) 
performance in Vehicular Ad-hoc Networks 
(VANETs). By integrating ensemble learning, 
Ridge Regression, and dual-layer filtering, the 
model effectively addresses critical challenges in 
data transmission speed, battery power utilization, 
and memory space occupation. Unlike traditional 
approaches that optimize these metrics in isolation, 
the IMFT-Ridge hybrid model employs a meta-
ensemble framework, dynamically adjusting RSU 
operations based on real-time traffic conditions, 
energy demands, and data processing needs. The 
experimental results demonstrate exceptional 
performance, with near-perfect R² scores (0.99), 
minimal prediction errors (MSE: 0.0996, MAE: 
0.2434), and significant improvements in latency, 
bandwidth allocation, and power efficiency. This 
model ensures that RSUs can prioritize critical 
communications, extend battery life, and prevent 
memory overload, making it a highly effective 
solution for modern VANET deployments. 
The novelty of this research lies in its dual-layer 
filtering mechanism (intra- and extra-vehicle data 
filtering), hybrid ensemble learning, and multi-
objective optimization. Unlike existing models 
(Random Forest, Lasso, Elastic Net), which 
struggle with high error rates and poor 
generalization, the IMFT-Ridge model eliminates 
prediction outliers, enhances forecasting accuracy, 
and dynamically adapts to changing network 
conditions. The impact of these findings is 
profound—smart transportation systems can now 
leverage self-optimizing RSUs that reduce latency, 
conserve energy, and improve data reliability in 
real-time. This research sets a new benchmark for 
intelligent VANET infrastructure, paving the way 

for safer, more efficient, and scalable vehicular 
networks in smart cities and autonomous driving 
ecosystems. The proposed framework not only 
outperforms conventional ML models but also 
provides a blueprint for future advancements in 
edge computing, federated learning, and AI-driven 
traffic management. 
Future Scope: 
The integration of an inter-intra mod filter with a 
Ridge regression model using Long Short-Term 
Memory (LSTM) networks presents a promising 
approach for enhancing Vehicle Ad-hoc Network 
(VANET) design. This dual-layered architecture 
allows for more nuanced predictions by leveraging 
LSTM’s ability to capture temporal dependencies in 
data. The intra-filtering aspect can optimize 
predictions for individual vehicle systems—such as 
fuel levels, battery status, and operational metrics—
while inter-filtering aggregates data across multiple 
vehicles, facilitating the optimization of broader 
network functions, such as traffic management and 
predictive maintenance. 

This approach can be utilized across various design 
modules in VANET, including real-time traffic 
monitoring, adaptive routing protocols, and 
incident detection systems. For instance, LSTM-
enhanced models can predict traffic patterns and 
vehicle behaviour over time, allowing for dynamic 
adjustments in routing strategies based on 
anticipated congestion or delays. Furthermore, 
integrating this methodology with RSUs can 
improve communication reliability, enabling more 
effective data dissemination and responsiveness in 
emergency situations. Overall, the inter-intra mod 
filter design combined with Ridge regression and 
LSTM holds significant potential for advancing 
VANET capabilities, ultimately contributing to 
safer and more efficient intelligent transportation 
systems. 

REFERENCES 

[1]. Yu, H., Liu, R., Li, Z., Ren, Y. & Jiang, H. 
(2022) 'An RSU Deployment Strategy Based 
on Traffic Demand in Vehicular Ad Hoc 
Networks (VANETs)', IEEE Internet of 
Things Journal, 9(9), pp. 6496-6505.doi: 
10.1109/JIOT.2021.3111048. 

[2]. Gao, Z., Wu, H.-C., Cai, S. & Tan, G. (2021) 
'Tight Approximation Ratios of Two Greedy 
Algorithms for Optimal RSU Deployment in 
One-Dimensional VANETs', IEEE 



 Journal of Theoretical and Applied Information Technology 
31st May 2025. Vol.103. No.10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4189 

 

Transactions on Vehicular Technology, 
70(1), pp. 3-17. doi: 
10.1109/TVT.2020.3045693. 

[3]. Yang, F., Zhao, C., Ding, X. & Han, J. 
(2020) 'An Analytical Model for Energy 
Harvest Road Side Units Deployment With 
Dynamic Service Radius in Vehicular Ad-
Hoc Networks', IEEE Access, 8, pp. 122589-
122598. doi: 
10.1109/ACCESS.2020.3006255. 

[4]. Yadav, A.K., Shojafar, M. &Braeken, A. 
(2024) 'iVFAS: An Improved Vehicle-to-
Fog Authentication System for Secure and 
Efficient Fog-Based Road Condition 
Monitoring', IEEE Transactions on 
Vehicular Technology, 73(9), pp. 12570-
12584. doi: 10.1109/TVT.2024.3390607. 

[5]. Ud Din, I., Ahmad, B., Almogren, A., 
Almajed, H., Mohiuddin, I. & Rodrigues, 
J.J.P.C. (2021) 'Left-Right-Front Caching 
Strategy for Vehicular Networks in ICN-
Based Internet of Things', IEEE Access, 9, 
pp. 595-605. doi: 
10.1109/ACCESS.2020.3046887. 

[6]. Sepasgozar, S.S. & Pierre, S. (2022) 
'Network Traffic Prediction Model 
Considering Road Traffic Parameters Using 
Artificial Intelligence Methods in VANET', 
IEEE Access, 10, pp. 8227-8242. doi: 
10.1109/ACCESS.2022.3144112. 

[7]. Zhao, L., Chai, H., Han, Y., Yu, K. & 
Mumtaz, S. (2022) 'A Collaborative V2X 
Data Correction Method for Road Safety', 
IEEE Transactions on Reliability, 71(2), pp. 
951-962. doi: 10.1109/TR.2022.3159664. 

[8]. Andreou, A., Mavromoustakis, C.X., 
Batalla, J.M., Markakis, E.K. &Mastorakis, 
G. (2023) 'UAV-Assisted RSUs for V2X 
Connectivity Using Voronoi Diagrams in 
6G+ Infrastructures', IEEE Transactions on 
Intelligent Transportation Systems, 24(12), 
pp. 15855-15865. doi: 
10.1109/TITS.2023.3273716. 

[9]. Bashir, R.R. et al. (2024) '2CAP: A Novel 
Curve Crash Avoidance Protocol to Handle 
Curve Crashes in Vehicular Ad-Hoc 
Network', IEEE Access, 12, pp. 60601-
60619. doi: 
10.1109/ACCESS.2024.3349474. 

[10]. Thumbur, G., Rao, G.S., Reddy, P.V., 
Gayathri, N.B., Reddy, D.V.R.K. 
&Padmavathamma, M. (2021) 'Efficient and 
Secure Certificateless Aggregate Signature-
Based Authentication Scheme for Vehicular 
Ad Hoc Networks', IEEE Internet of Things 

Journal, 8(3), pp. 1908-1920.doi: 
10.1109/JIOT.2020.3019304. 

[11]. Ali, Q.I. (2023) 'Realization of a Robust Fog-
Based Green VANET Infrastructure', IEEE 
Systems Journal, 17(2), pp. 2465-2476. doi: 
10.1109/JSYST.2022.3215845. 

[12]. Xia, Y., Liu, X., Ou, J. & Ma, O. (2023) 
'RLID-V: Reinforcement Learning-Based 
Information Dissemination Policy 
Generation in VANETs', IEEE Transactions 
on Intelligent Transportation Systems, 
24(12), pp. 14151-14161.doi: 
10.1109/TITS.2023.3300948. 

[13]. Chen, X. et al. (2022) 'A Multisignature-
Based Secure and OBU-Friendly Emergency 
Reporting Scheme in VANET', IEEE 
Internet of Things Journal, 9(22), pp. 23130-
23141. doi: 10.1109/JIOT.2022.3184991. 

[14]. Aman, M.N., Javaid, U. &Sikdar, B. (2021) 
'A Privacy-Preserving and Scalable 
Authentication Protocol for the Internet of 
Vehicles', IEEE Internet of Things Journal, 
8(2), pp. 1123-1139. doi: 
10.1109/JIOT.2020.3010893. 

[15]. Wang, Y., Liu, Y. & Tian, Y. (2022) 'ISC-
CPPA: Improved-Security Certificateless 
Conditional Privacy-Preserving 
Authentication Scheme With Revocation', 
IEEE Transactions on Vehicular 
Technology, 71(11), pp. 12304-12314.doi: 
10.1109/TVT.2022.3194060. 

[16]. Ismail, M. et al. (2024) 'Line-of-Sight-Based 
Coordinated Channel Resource Allocation 
Management in UAV-Assisted Vehicular Ad 
Hoc Networks', IEEE Access, 12, pp. 25245-
25253. doi: 
10.1109/ACCESS.2024.3356009. 

[17]. Zhou, Y. et al. (2024) 'A Novel Cloud-
Assisted Authentication Key Agreement 
Protocol for VANET', IEEE Transactions on 
Vehicular Technology, 73(9), pp. 13526-
13541. doi: 10.1109/TVT.2024.3390654. 

[18]. Liu, Y., He, D., Luo, M., Wang, H. & Liu, Q. 
(2024) 'ATRC: An Anonymous Traceable 
and Revocable Credential System Using 
Blockchain for VANETs', IEEE 
Transactions on Vehicular Technology, 
73(2), pp. 2482-2494. doi: 
10.1109/TVT.2023.3312547. 

[19]. Tangade, S., Manvi, S.S. & Lorenz, P. 
(2020) 'Trust Management Scheme Based on 
Hybrid Cryptography for Secure 
Communications in VANETs', IEEE 
Transactions on Vehicular Technology, 



 Journal of Theoretical and Applied Information Technology 
31st May 2025. Vol.103. No.10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4190 

 

69(5), pp. 5232-5243. doi: 
10.1109/TVT.2020.2981127. 

[20]. Wang, P. & Liu, Y. (2021) 'SEMA: Secure 
and Efficient Message Authentication 
Protocol for VANETs', IEEE Systems 
Journal, 15(1), pp. 846-855. doi: 
10.1109/JSYST.2021.3051435. 

[21]. Yan, C., Wang, C., Shen, J., Dev, K., 
Guizani, M. & Wang, W. (2024) 'Edge-
Assisted Hierarchical Batch Authentication 
Scheme for VANETs', IEEE Transactions 
on Vehicular Technology, 73(1), pp. 1253-
1262. doi: 10.1109/TVT.2023.3305556. 

[22]. Al-Shareeda, M.A., Anbar, M., Hasbullah, 
I.H., Manickam, S. &Hanshi, S.M. (2020) 
'Efficient Conditional Privacy Preservation 
With Mutual Authentication in Vehicular Ad 
Hoc Networks', IEEE Access, 8, pp. 144957-
144968. doi: 
10.1109/ACCESS.2020.3014678. 

[23]. Huang, C.-M. & Lai, C.-F. (2020) 'The 
Delay-Constrained and Network-Situation-
Aware V2V2I VANET Data Offloading 
Based on the Multi-Access Edge Computing 
(MEC) Architecture', IEEE Open Journal of 
Vehicular Technology, 1, pp. 331-347. doi: 
10.1109/OJVT.2020.3028684. 

[24]. Baza, M. et al. (2022) 'Detecting Sybil 
Attacks Using Proofs of Work and Location 
in VANETs', IEEE Transactions on 
Dependable and Secure Computing, 19(1), 
pp. 39-53. doi: 
10.1109/TDSC.2020.2993769. 

[25]. Zhang, C. et al. (2022) 'TPPR: A Trust-
Based and Privacy-Preserving Platoon 
Recommendation Scheme in VANET', IEEE 
Transactions on Services Computing, 15(2), 
pp. 806-818. doi: 10.1109/TSC. 
2019.2961992 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 


