
 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3838

UTILIZING GENETIC ALGORITHM INTEGRATED WITH
INTELLIGENT OPERATORS AND SARSA FOR

EXTRACTING HIGH UTILITY ITEMSETS

LOGESWARAN K1 , SAVITHA S2, SURESH S3, ANANDAMURUGAN S4

1Assistant Professor(Sr.G), Department of AI, Kongu Engineering College, Tamilnadu, India

2Assistant Professor, Department of CSE, K.S.R. College of Engineering, Tiruchengode, Tamilnadu, India

Associate Professor, Department of Database Systems, School of Computer Science and Engineering,

Vellore, India.

Associate Professor, Department of IT, Kongu Engineering College, Tamilnadu, India

E-mail: 1klogesbech@gmail.com

ABSTRACT

This research article presents a novel approach for mining High Utility Itemsets (HUIs) by integrating Genetic
Algorithm (GA) with SARSA algorithm. It begins by providing a comprehensive overview of GA's
fundamental principles and operational procedures, followed by an in-depth exploration of SARSA algorithm
components, supported by diagrammatic representations. The core contribution of this study is the
introduction of the Intelligent Genetic Algorithm with on-policy Reinforcement Learning (IGA_RLON)
methodology, which is thoroughly elaborated upon. The effectiveness of IGA_RLON is meticulously
evaluated in terms of execution time, convergence speed, and the percentage of successfully mined HUIs,
through comparative analysis with established methods such as IGA_RLOFF, HUPEUMU-GRAM, and
HUIM-BPSO. This article aims to advance the field of HUI mining by proposing a robust and efficient
algorithmic framework.

Keywords: Genetic Algorithm, SARSA Algorithm, Reinforcement Algorithm, High Utility Itemset Mining,
Data Mining, Control Parameters

1. INTRODUCTION

High utility itemset mining (HUIM) is a
significant task in data mining and machine learning.
It is concerned with discovering itemsets that are
highly valuable, based on a utility function that
measures their usefulness. HUIM is used in a variety
of domains, such as marketing, healthcare, e-
commerce, and finance, where the identification of
valuable itemsets can provide valuable insights for
decision-making.

1.1. Genetic Algorithm

GA is a computational technique inspired by the
process of natural selection and evolution in biology.
It is a metaheuristic optimization algorithm that is
used to find optimal solutions to complex problems.
GA works by simulating the process of evolution,
where candidate solutions (individuals) are treated as
genes and undergo genetic operations such as

crossover and mutation to produce offspring (new
solutions) [1]. The fitness of these solutions is
evaluated using an objective function, and the
process is repeated iteratively until the optimal
solution is found. GA has been applied in various
domains, including engineering, economics, and
machine learning, due to its ability to handle
complex and multi-dimensional problems [2].

 GA has been successfully applied in HUIM
to efficiently discover valuable itemsets from large
datasets. In HUIM, the objective is to find itemsets
with high utility, which is determined by a utility
function that measures the usefulness of an itemset.
GA-based approaches for HUIM involve
representing itemsets as chromosomes, and using
genetic operations such as crossover and mutation to
generate new itemsets [3]. The fitness of these
itemsets is evaluated using the utility function, and
the process is repeated iteratively until the optimal
solution is found.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3839

 The key objective of HUIM is to find itemsets
with high utility, which is determined by a utility
function. The utility function measures the
usefulness or value of an itemset in a given context.
For instance, in the context of retail sales, the utility
function may be defined in terms of the profit
obtained from selling an itemset [4]. In healthcare,
the utility function may measure the effectiveness of
a treatment based on the outcomes of a clinical trial.
In finance, the utility function may be defined in
terms of the return on investment of a portfolio of
securities.

 The applications of HUIM are numerous
and diverse. In marketing, HUIM can help identify
product bundles that are likely to be purchased
together, which can increase revenue and customer
satisfaction [5]. In healthcare, HUIM can aid in
identifying effective treatments for specific diseases
based on patient outcomes. In e-commerce, HUIM
can help identify items that are frequently purchased
together, which can be used to provide personalized
recommendations to customers. In finance, HUIM
can aid in portfolio optimization by identifying
securities that are likely to provide a high return on
investment.

 One of the primary challenges in HUIM is
to efficiently discover high utility itemsets from a
large dataset. Since the number of itemsets can be
exponential, it is necessary to develop efficient
algorithms to identify the most valuable itemsets [6].
Several evolutionary based algorithms have been
proposed for HUIM, including HUPEUMU-GRAM
and HUIM-BPSO. This current research explores
about the discovery of HUIs using GA with its
operators calibrated using SARSA learning.

1.2. GA Working Procedure

Figure 1 represent the flowchart of
workflow process involved in GA. The algorithm
begins by initializing a population of candidate
solutions, which are evaluated based on their fitness.
The fittest individuals are then selected for
reproduction, with the aim of producing even better
solutions in the next generation [7].

Crossover and mutation are applied to the
selected individuals to produce new offspring, which
are then evaluated for their fitness. The fittest
individuals from the new generation are selected
again for further reproduction through crossover and
mutation, and the process is repeated until a stopping
criteria is satisfied [8].

The stopping criteria may be based on a
fixed number of iterations, reaching a certain level
of fitness, or other factors. If the stopping criteria is
not satisfied, the algorithm loops back to the
selection stage to continue the process. Once the
stopping criteria is satisfied, the algorithm
terminates and returns the best solution found.

Figure 1 : Genetic Algorithm Workflow

1.3. Crossover Operation

Figure 2 illustrates the process involved in
crossover operation of GA. There are two parents
that contribute genetic material to the offspring.
Before the crossover operation occurs, a random
number is generated. If the random number is below

the crossover rate (𝐶ோ), then a crossover operation
occurs at a randomly chosen crossover point.
Otherwise, the offspring are simply copies of their
respective parents [9]. The fitness of each offspring
is then evaluated and the resulting offspring are
generated

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3840

Figure 2 :Crossover Operation

1.4. Mutation Operation

Figure 3 shows the process involved in

mutation operation. For Mutation process, the output
of crossover operation goes as an input. Mutation
process is applied on each individual. It takes single
parent and undergoes mutation with a certain
probability, determined by a specified mutation rate.
Before mutation occurs, a random number is
generated [10]. If the random number is below the
mutation rate, then a gene is randomly selected for
mutation, and a new allele is generated for the
selected. The resulting offspring is then evaluate. If
the random number is above the mutation rate, the
parent is simply copied to become the offspring

Figure 3 : Mutation Operation

2. LITERATURE SURVEY

The methodology used in [11] involves the
development of a Decomposition based on a
compact Genetic Algorithm (DcGA) for mining
closed high-utility itemsets (CHUIs) in large-scale
databases. The process begins with transforming the
transaction database into a graph network, followed
by the application of community detection to create
groups of highly correlated transactions. The
compact genetic algorithm is then applied to each
community to find local closed high utility patterns,
and the results are concatenated to derive global
closed high utility patterns. This approach aims to
efficiently mine CHUIs in a limited time and obtain
a good predictive model for pattern
recommendation. The methodology also includes a

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3841

comparison of the proposed DcGA with existing
pattern mining algorithms in terms of runtime and
effectiveness analysis, as well as convergence
performance.

A novel genetic algorithm (GA)-based approach
for safeguarding sensitive high utility itemsets
during utility mining, aiming to minimize
information loss while protecting critical data was
designed in [12]. It introduces a flexible evaluation
function and leverages the downward closure
property and pre-large concept to accelerate
chromosome evaluation, reducing database
rescanning costs. Highlighting the proliferation of
electronic data and the necessity for privacy-
preserving techniques, it underscores the importance
of addressing confidentiality concerns. This GA-
based strategy represents the first attempt at privacy-
preserving high utility itemset mining, employing
transaction insertion for data concealment. It
underscores the complexities of data mining,
particularly in managing privacy, and underscores
the need for efficient algorithms to mitigate these
challenges.

The researcher proposed an Ant Colony
Optimization (ACO)-based methodology for mining
high-utility itemsets in [13]. It involves leveraging
the behavior of ant colonies to efficiently explore the
search space and identify itemsets with high utility
values in large datasets. The methodology likely
includes the design of pheromone update rules,
heuristic information, and exploration-exploitation
strategies tailored for high-utility itemset mining.
Additionally, it may incorporate mechanisms for
handling constraints and optimizing performance
metrics such as runtime and solution quality.

The methodology involves the development of
an evolutionary algorithm that optimizes for both
frequency and utility simultaneously in [14]. This
entails creating specialized fitness functions and
employing Pareto-based optimization strategies to
efficiently extract itemsets meeting both criteria.
Additionally, the methodology likely includes
techniques for addressing scalability and efficiency
concerns when dealing with large datasets.

An evolutionary approach caled Artificial Bee
Colony (ABC) algorithm was proposed in [15] to
discover high utility itemsets. It involves initializing
artificial bees to explore the solution space
iteratively. The bees adjust positions to represent
changes to candidate itemsets, guided by the
principles of the ABC algorithm. Fitness evaluation
assesses itemset utility based on predefined criteria.
Selection mechanisms choose promising itemsets for
the next iteration. The iterative process continues
until convergence criteria are met, with performance

evaluated based on effectiveness in discovering high
utility itemsets.

3. PROPOSED METHODOLOGY

In the proposed IGA_RLON approach, the GA control
parameters namely Crossover and Mutation
operators are calibrated intelligently using the action
chosen from the SARAS learning algorithm. Later,
IGA_RLON was used to mine the high utility itemset
from the benchmark dataset

3.1. Methodology of SARSA

A typical methodology involved in SARSA learning
is illustrated in the Figure 4. Below are the steps
involved in SARSA learning.

1. Initialize the Q(s,a) table with arbitrary values
for all possible state-action pairs.
2. Select an action (a) using an greedy

policy, which means that there's a chance of
selecting a random action with probability (e.g.,
10%), and selecting the action with the highest Q-
value with probability 1 .
3. Perform the selected action ‘ a ’ and observe the

reward ‘ R ’ and the next state ‘ 's ’.

4. Select the next action ‘ 'a ’ for the next state ‘

's ’ using the same greedy policy.

5. Update the Q(s,a) value for the current state-

action pair using the SARSA update rule as in the
Eq. 1, which is:

 (1)

where is the learning rate, is the discount

factor, and Q(s',a') is the Q-value for the next

state-action pair.
6. Set the current state to the next state ‘ 's ’ and

the current action to the next action ‘ 'a ’.
7. Repeat steps 2-6 until the algorithm converges
to the optimal Q-values for all state-action pairs.

3.2. Design of IGA_RLON

Figure-3 illustrate the architecture design of

IGA_RLON algorithm. Initially, the itemsets are
represented as binary chromosomes of population.
Roulette wheel selection (RWS) strategy is used to

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3842

select parent chromosomes from the population.
State set 𝑆௦ is calculated from the parent
chromosomes. An appropriate action should be
chosen based on greedy action selection

scheme. From the action chosen, the Crossover rate
(𝐶ோ) and Mutation Rate (𝑀ோ) are calibrated
intelligently.

Figure 4 : Architecture Design of IGA_RLON

Now the chromosomes are updated using (𝐶ோ) and
(𝑀ோ) and the fitness of chromosomes are evaluated.
Finally the chromosomes having fitness greater than
the minimum utility threshold are added to HUI list.
Parallelly the Q-value and Q-Table are updated
based on SARSA learning.

3.3. Design Methodology

IGA_RLON starts with initializing the РЅ,

𝑇௫ and 𝑡 and generate representation for
chromosomes. Fitness of the population is calculated
using the Eq. 2 and calculate the state using the Eq.
3. Choose the action to be taken using the Eq. 5 and
calculate the reward for current action using the Eq.
4. Update the Q-value and Q-table using Eq. 1 and
calibrate the GA control parameter namely 𝐶ோ and
𝑀ோ by choosing appropriate values from the Table
4.4 using the current action a . Perform crossover
and mutation operation using the updated 𝐶ோ and 𝑀ோ
values. Calculate the fitness of the updated offspring
individual and if it is greater than min_ util then

add it into HUI list. Replace the existing parent
individual with new offspring individual in the
population. Repeat the above process until

termination condition is reached. Figure 5 illustrate
above process by pictorial representation.

Figure 5 : Design Methodology of IGA_RLON

𝐹(𝐶) = 𝜐(𝑋, 𝐿) 2

𝑓(𝑠௩) = 𝑓(𝑓) + 𝑓(𝜇) + 𝑓(𝑝ௗ)
 3

𝑹 = 𝝎𝒄𝑹𝒄 +𝝎𝒎𝑹𝒎 4

max (,)) (1)
(,)

() ()
t

t t

Q s a with probability
s a

random a with probability

5

4. EXPERIMENTAL EVALUATION

Performance metrics namely Execution time,
convergence speed and discovered HUIs are used to
measure the delivery of IGA_RLON. The
performance of proposed IGA_RLON approach is
compared with HUPEumu-GRAM, HUIM-BPSO and
IGA_RLOFF. These algorithms are applied on
standard dataset namely chess, accident_10%,
mushroom and connect from SPMF repository.

4.1. Execution Time
Figure 6 to 9 represents the execution time taken by
the IGA_RLON, HUPEumu-GRAM, HUIM-BPSO
and IGA_RLOFF to mine the HUIs from the chess,
accident_10%, mushroom and connect datasets are
measured and a graph is plotted by taking

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3843

min_ util along the x-axis and execution time in

seconds along y-axis.

Figure 6 : Execution Time for Chess dataset

The main inference from the Figure 6 is that the
proposed IPGA_RLON reduces the execution time
required to mine the HUIs from chess dataset by
12.52% and 4.05% when compared with HUPEumu-
GRAM and HUIM-BPSO respectively. On the other
side, IGA_RLON takes 6.74% more execution time
when compared with the IGA_RLOFF to mine HUIs
from chess dataset.

Figure 7 : Execution Time for Accident_10% dataset

Figure 8 : Execution Time for Mushroom dataset

Figure 9 : Execution Time for Connect dataset

Figure 7 shows that the proposed IGA_RLON reduces
the execution time required to mine the HUIs from
accident_10% dataset by 12.44% and 4.43% when
compared with HUPEumu-GRAM and HUIM-BPSO
respectively. On the other side, IGA_RLON takes
2.37% more execution time when compared with
IGA_RLOFF to mine the HUIs from accident_10%
dataset.
 Figure 8 shows that the proposed
IGA_RLON reduces the execution time required to
mine the HUIs from mushrom dataset by 15.54%
and 6.82% when compared with HUPEumu-GRAM
and HUIM-BPSO respectively. On the other side,
IGA_RLON takes 4.68% more execution time when
compared with IGA_RLOFF to mine the HUIs from
mushroom dataset.
 Figure 9 shows that the proposed
IGA_RLON reduces the execution time required to
mine the HUIs from connect dataset by 6.97% and
4.71% when compared with HUPEumu-GRAM and
HUIM-BPSO respectively. On the other side,
IGA_RLON takes 4.78% more execution time when
compared with IGA_RLOFF to mine the HUIs from

mushroom dataset.
4.2. Convergence Speed
The convergence speed of IGA_RLON is measured
using the dataset chess, accident_10%, mushroom
and connect dataset from SPMF repository and
compared with HUPEumu-GRAM, HUIM-BPSO
and IGA_RLOFF. Graph is plotted by varying
min_ util along x-axis and No. of HUIs discovered

along y-axis.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3844

Figure 10 : Convergence speed for Chess dataset

Figure 11 : Convergence speed for Accident_10% dataset

Figure 12 : Convergence speed for Mushroom dataset

Figure 13 : Convergence speed for Connect dataset

Figure 10 to 13 infers that IGA_RLON converges at
reasonable speed with good number of HUIs when
compared with HUPEumu-GRAM, HUIM-BPSO.
Where as IGA_RLON converges bit slowly when
compared with IGA_RLOFF.

4.3. Discovered HUIs
Percent of discovered HUIs using IPSO_RLON from
chess, accident_10%, mushroom and connect dataset
is analyzed by comparing it with HUPEumu-GRAM,
HUIM-BPSO and IPSO_RLON. Graph is plotted
using bar chart by varying min_ util along x-axis

and % of discovered HUIs along y-axis.

Figure 14 : Percent of discovered HUIs from Chess
dataset

Figure 15: Percent of discovered HUIs from
Accident_10% dataset

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3845

Figure 16 : Percent of discovered HUIs from Mushroom
dataset

Inference from the Figure 14 is that percent of
discovered HUIs from chess dataset by IGA_RLON
is improved by 29.85% and 15.35% when compared
with HUPEumu-GRAM, HUIM-BPSO. Also, percent
of discovered HUIs by IGA_RLON is less by 29.10%
when compared with IGA_RLOFF.
 Figure 15 illustrates that, percent of
discovered HUIs from accident_10% dataset by
IGA_RLON is improved by 80.14% and 8.25% when
compared with HUPEumu-GRAM, HUIM-BPSO.
Also, percent of discovered HUIs by IGA_RLON is
less by 3.21% when compared with IGA_RLOFF.
 Observation form the Figure 16 is that,
percent of discovered HUIs from mushroom dataset
by IGA_RLON is improved by 18.14% and 3.08%
when compared with HUPEumu-GRAM, HUIM-
BPSO. Also, percent of discovered HUIs by
IGA_RLON is less by 19.12% when compared with
IGA_RLOFF.

Figure 17 : Percent of discovered HUIs from Connect

dataset

Observation form the Figure 17 is that, percent of
discovered HUIs from connect dataset by
IGA_RLON is improved by 79.87% and 9.42% when
compared with HUPEumu-GRAM, HUIM-BPSO.
Also, percent of discovered HUIs by IGA_RLON is
less by 5.15% when compared with IGA_RLOFF.

5. CONCLUSION

In the current research the fundamental architecture
of SARSA, design methodology of the proposed
IGA_RLON approach and its performance was
explored. The experimental analysis gives
conclusion that IGA_RLON performs better in terms
of execution time, convergence speed and percent of
discovered HUIs when compared with HUPEumu-
GRAM, HUIM-BPSO.
 The IGA_RLON algorithm achieves notable
reductions in execution time, with decreases of
12.52% and 4.05% compared to HUPEumu-GRAM
and HUIM-BPSO respectively across various
datasets. However, it exhibits a slight increase of
6.74% in execution time compared to IGA_RLOFF
for mining HUIs.

IGA_RLON demonstrates competitive

convergence speed and generates a significant
number of high utility itemsets compared to
HUPEumu-GRAM and HUIM-BPSO.
Nevertheless, it exhibits a slightly slower
convergence rate in comparison to IGA_RLOFF.

IGA_RLON significantly improves the

percentage of discovered High Utility Itemsets
(HUIs) compared to HUPEumu-GRAM and HUIM-
BPSO across datasets, showing enhancements of up
to 80.14%. However, it exhibits a lower percentage
of discovered HUIs compared to IGA_RLOFF, with
reductions of up to 29.10%.

The proposed methodology leverages the
synergy between GA and SARSA to enhance the
efficiency and effectiveness of HUI mining. By
integrating reinforcement learning principles into the
genetic algorithm framework, IGA_RLON

demonstrates remarkable performance
improvements, paving the way for future
advancements in this domain.

REFERENCES

[1] M. Han, Z. Gao, A. Li, S. Liu, and D. Mu, “An

overview of high utility itemsets mining
methods based on intelligent optimization
algorithms,” Knowl. Inf. Syst., vol. 64, no. 11,
pp. 2945–2984, 2022, doi: 10.1007/s10115-
022-01741-1.

[2] S. Pramanik and A. Goswami, “Discovery of
closed high utility itemsets using a fast nature-
inspired ant colony algorithm,” Appl. Intell.,
vol. 52, no. 8, pp. 8839–8855, 2022, doi:
10.1007/s10489-021-02922-1.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3846

[3] S. Guo and H. Wei, “Fast Mining High Utility
Itemsets with Multiple Minimum Utility
Thresholds Fast Mining High Utility Itemsets
with,” pp. 0–25, 2022.

[4] K. Logeswaran and P. Suresh, “High utility
itemset mining using genetic algorithm
assimilated with off policy reinforcement
learning to adaptively calibrate crossover
operation,” Comput. Intell., Nov. 2021, doi:
10.1111/coin.12490.

[5] S. Yacoubi, G. Manita, H. Amdouni, S.
Mirjalili, and O. Korbaa, “A modified multi-
objective slime mould algorithm with
orthogonal learning for numerical association
rules mining,” Neural Comput. Appl., vol.
0123456789, 2022, doi: 10.1007/s00521-022-
07985-w.

[6] S. B. Patel, S. M. Shah, and M. N. Patel,
“INTELLIGENT SYSTEMS AND
APPLICATIONS IN ENGINEERING An
Efficient High Utility Itemset Mining Approach
using Predicted Utility Co-exist Pruning,” vol.
10, no. 4, pp. 224–230, 2022.

[7] R. Kumar and K. Singh, “A survey on soft
computing-based high-utility itemsets mining,”
Soft Comput. 2021 2613, vol. 26, no. 13, pp.
6347–6392, Jan. 2022, doi: 10.1007/S00500-
021-06613-4.

[8] U. Ahmed, J. C. W. Lin, G. Srivastava, R.
Yasin, and Y. Djenouri, “An Evolutionary
Model to Mine High Expected Utility Patterns
from Uncertain Databases,” IEEE Trans.
Emerg. Top. Comput. Intell., vol. 5, no. 1, pp.
19–28, 2021, doi:
10.1109/TETCI.2020.3000224.

[9] J. M. T. Wu, G. Srivastava, M. Wei, U. Yun, and
J. C. W. Lin, “Fuzzy high-utility pattern mining
in parallel and distributed Hadoop framework,”
Inf. Sci. (Ny)., vol. 553, pp. 31–48, 2021, doi:
10.1016/j.ins.2020.12.004.

[10] K. Logeswaran, P. Suresh, and S.
Anandamurugan, “Particle Swarm
Optimization Method Combined with off
Policy Reinforcement Learning Algorithm for
the Discovery of High Utility Itemset,” Inf.
Technol. Control , vol. 52, no. 1, pp. 25–36,
Mar. 2023, doi: 10.5755/J01.ITC.52.1.31949.

[11] J. C. W. Lin, Y. Djenouri, G. Srivastava, U.
Yun, and P. Fournier-Viger, “A predictive GA-
based model for closed high-utility itemset
mining,” Appl. Soft Comput., vol. 108, p.
107422, 2021, doi:
10.1016/j.asoc.2021.107422.

[12] C.-W. Lin, T.-P. Hong, J.-W. Wong, G.-C. Lan,
and W.-Y. Lin, “A GA-Based Approach to Hide

Sensitive High Utility Itemsets,” Sci. World J.,
vol. 2014, no. 1, pp. 1–12, 2014, doi:
10.1155/2014/804629.

[13] J. M. T. Wu, J. Zhan, and J. C. W. Lin, “An
ACO-based approach to mine high-utility
itemsets,” Knowledge-Based Syst., vol. 116, pp.
102–113, 2017, doi:
10.1016/j.knosys.2016.10.027.

[14] L. Zhang, G. Fu, F. Cheng, J. Qiu, and Y. Su,
“A multi-objective evolutionary approach for
mining frequent and high utility itemsets,” Appl.
Soft Comput. J., vol. 62, pp. 974–986, 2018, doi:
10.1016/j.asoc.2017.09.033.

[15] W. Song and C. Huang, Discovering high utility
itemsets based on the artificial bee colony
algorithm, vol. 10939 LNAI. Springer
International Publishing, 2018. doi:
10.1007/978-3-319-93040-4_1.

