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ABSTRACT 
 

Quantum phase estimation is a fundamental algorithm in quantum computing for estimating the phase of an 
eigenvalue for a unitary operator.  While the output state of quantum phase estimation circuit exactly matches 
to the phase represented as rational number with denominator as powers of 2, the measurement could be read 
in many different states for phases outside this form. In this paper, we address this gap by formulating and 
precisely computing the quantum state of QPE when the phase is not exactly represented as a rational number 
with a denominator in a power of 2. Leveraging mathematical techniques from number theory and 
trigonometry, we derive explicit expressions for the quantum state of QPE in these cases. To validate our 
results, we compare our theoretical predictions with simulations using the Qiskit framework, confirming the 
accuracy of our formulations. Our findings provide insights into the behavior of QPE for phases, expanding 
the understanding and applicability of this fundamental quantum algorithm. 

Keywords: Quantum Phase Estimation, Quantum Fourier Transform, Shor’s algorithm, Probability 
Distribution, Quantum State 

 
1. INTRODUCTION  
 

Quantum phase estimation (QPE) stands as a 
foundational algorithm in quantum computing, 
essential for estimating the phase of unitary 
operators with high precision. Originally introduced 
by Kitaev [1], QPE has garnered significant attention 
for its role in various quantum algorithms, including 
Shor's algorithm  for factoring large integers 
[2][3][4] and broad range of quantum simulation 
techniques  [5][6][7]. Conventionally, QPE is well-
understood when the phase is represented as a 
rational number with the denominator in a power of 
2, allowing for efficient quantum circuit 
implementations. However, the behavior of QPE for 
phases outside this conventional form remains less 
explored, posing challenges for understanding and 
leveraging the algorithm in practical quantum 
computations. 

In this paper, we address this gap by formulating 
and precisely computing the quantum state of QPE 
when the phase is not exactly represented as a 
rational number with a denominator in a power of 2. 
Representation of output state of QPE in such cases 
is not explicitly formulated in any previous literature.  
Building upon mathematical techniques from 
number theory and trigonometry, our result shows 
that the probability of a state closest to the 
approximation is highest in these cases. Our 

formulations provide a comprehensive 
understanding of QPE's behavior for phases beyond 
the conventional rational representations, offering 
insights into its theoretical foundations and practical 
implications. 

To validate our theoretical results, we employ 
simulations using the Qiskit framework [10], a 
leading platform for quantum computing research 
and development. By comparing our theoretical 
predictions with Qiskit simulations, we confirm the 
accuracy and efficacy of our formulations, 
establishing their utility in practical quantum 
computations. Our findings not only extend the 
understanding of QPE but also pave the way for 
exploring its applications in scenarios where phases 
are not strictly rational with denominators in powers 
of 2. 

2. QUANTUM PHASE ESTIMATION 

Given an n-qubit quantum gate U, Figure 1 
shows a circuit diagram implementing Quantum 
Phase Estimation for gate U. Throughout this paper 
in the circuit diagram, we will use a convention of 
numbering qubit subscripts from bottom to top, 
which means that bottom-most qubit represents the 
highest bit when the measured state is interpreted as 
a binary number. We will name qubits with prefix 𝑞 
as in 𝑞𝑥௜  in order to represent the position of the 
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qubit in the quantum circuit, where 𝑥௜ represent the 
state of the qubit. In the QPE circuit, the bottom t 
qubits will be measured, and the phase is estimated 
based on the measurement. When Dirac notation 
[11] is used to describe quantum operation, the 
bottom qubit is located to the left of the top qubit. 

H represent a Hadamard gate, whose 
quantum operation is described with a matrix 

ቌ

ଵ

√ଶ

ଵ

√ଶ
ଵ

√ଶ
−

ଵ

√ଶ

ቍ. For an n-qubit quantum gate U whose 

operation is described with a 2௡ × 2௡ matrix U, 𝑈௞ 
represents an n-qubit quantum gate whose operation 
is described with a matrix 𝑈௞. U gate connected to a 
qubit using a vertical line and a black dot represents 
a controlled-U gate, 𝑐𝑈௤௫೔,௤௬ , where the control 
qubit is 𝑞𝑥௜  qubit and the target qubits are qys. The 
operation of this (n+1)-qubit gate 𝑐𝑈௤௫೔,௤௬  is as 
follows. 

𝑐𝑈௤௫௜,௤௬|𝑥௜⟩|𝑦⟩ = ൜
|𝑥௜⟩|𝑦⟩, 𝐟𝐨𝐫  |𝑥௜⟩ = |0⟩

|𝑥௜⟩𝑈|𝑦⟩, 𝐟𝐨𝐫  |𝑥௜⟩ = |1⟩  
 

As derived in [12][13] the inverse Quantum 
Fourier Transform circuit, denoted as 𝑄𝐹𝑇ற , 
transforms the input state to the output state as in the 
following.  

𝑄𝐹𝑇ற|𝑥௧ିଵ𝑥௧ିଶ … 𝑥ଵ𝑥଴⟩   

=  
|0⟩ + 𝑒

ିଶగ௜
௫బ
ଶభ|1⟩

√2
⊗

|0⟩ + 𝑒
ିଶగ௜ቀ

௫భ
ଶభା

௫బ
ଶమቁ

|1⟩

√2
⊗ 

… ⊗
|0⟩ + 𝑒

ିଶగ௜ቀ
௫೟షభ

ଶభ ା
௫೟షమ

ଶమ ା⋯ା
௫బ
ଶ೟ ቁ

|1⟩

√2
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If the state of qx qubits is measured along the z-axis 
as 𝑥 = 𝑥௧ିଵ𝑥௧ିଶ … 𝑥ଵ𝑥଴ ∈ {0,1}௧ ,  λ  =  

௫

ଶ೟   is a 

phase of eigenvalue of U, which satisfies U|ψ⟩ =
𝑒ଶగ௜ఏ   |ψ⟩ for some eigenvector |ψ⟩ of U.  

For example, if  λ =
ଵ

଼
, the probability 

distribution of measurement of QPE circuit with t=3 
qubits is as in Figure 2.  In the case when the 
denominator of λ is 2௧ , the output state is |1⟩ with 
probability = 1, theoretically.  

If λ =
ଵ

ଷ
 ,where the denominator of λ is not 

represented as 2௧ , the probability distribution of 
measurement is as shown in Figure 3. We formulate 
the probability distribution in the following section. 

 
3. ANALYSIS OF QPE MEASUREMENT 
 

By the definition of a controlled-U gate,  if 
we apply a controlled-U gate, 𝑐𝑈௤௫೔,௤௬ , to an 
arbitrary quantum state |𝑥௜⟩  =  α |0⟩  +  β |1⟩  and 
|𝑦⟩  =  |ψ⟩, an eigenstate of  U, the quantum state 
evolves to the following equation, for an eigenvalue, 
𝑒ଶ஠஛௜ . 

 
𝑐𝑈௤௫೔,௤௬|𝑥௜⟩|ψ⟩ = α|0⟩|ψ⟩ + β|1⟩𝑈|ψ⟩ 

= α|0⟩|ψ⟩ + β|1⟩𝑒ଶ஠஛௜|ψ⟩ 
=  (α|0⟩ + β 𝑒ଶ஠஛௜|1⟩) |ψ⟩ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Quantum Phase Estimation circuit used to estimate the phase of an n-qubit quantum gate U 
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The result of this operation changes the 
quantum state of the control qubit when the initial 
state of the target qubit was an eigenstate of U.  This 
operation is referred as a phase-kickback and used as 
a common technique for measuring operators in 
quantum error correcting codes, such as the surface 
code [14]. The circuit in Figure 1 makes use of the 
phase-kickback.  

Following the equation, 

𝑈ଶೖ
|𝑦⟩ =  𝑈ଶೖିଵ U|y⟩ 

=  𝑈ଶೖିଵ 𝑒ଶ஠஛௜|𝑦⟩ 

=  𝑈ଶೖିଶ𝑈𝑒ଶ஠஛௜|𝑦⟩ 

=  𝑈ଶೖିଶ 𝑒ଶ஠ଶ஛௜|𝑦⟩ 
= ⋯ 

=  𝑈଴𝑒ଶ஠ଶౡ஛௜|𝑦⟩ 

=  𝑒ଶ஠ଶౡ஛௜|𝑦⟩ 
 

|ψ⟩, an eigenstate of U, is also an eigenstate 

of  𝑈ଶೖ
 for eigenvalue eଶ஠ଶౡ஛୧.   

The operation of the controlled- 

𝑈௤௫೔,௤௬
ଶೖ

  gate is described as in the following. 

𝑐𝑈ଶೖ

௤௫௜,௤௬|𝑥௜⟩|𝑦⟩

= ቊ
|𝑥௜⟩|𝑦⟩, 𝐟𝐨𝐫  |𝑥௜⟩ = |0⟩

|𝑥௜⟩𝑈ଶೖ
|𝑦⟩ =  𝑒ଶ஠ଶౡ஛௜|𝑥௜⟩|𝑦⟩, 𝐟𝐨𝐫  |𝑥௜⟩ = |1⟩  

 

 

 
Figure 2 Probability Distribution of Measurement in QPE 

Circuit for a Gate with Phase 𝜆 =
ଵ

଼
 USING 3 

Measurement Qubits. 

This implies that he role of the controlled-

𝑈ଶೖ
 is to change the state of control qubit, which is 

one of   𝑞𝑥଴, 𝑞𝑥ଵ, … , 𝑞𝑥௧ିଵ  qubits in the circuit in 
Figure 1.  

The initial state of the circuit is prepared as 
|0⟩⊗ ௧|ψ⟩  where |ψ⟩   is an eigenstate of U.  
Hadamard gates H changes the quantum states of 

𝑞𝑥௜ s |0⟩ → |+⟩ =
ଵ

√ଶ
 (|0⟩ + |1⟩)  .Thus, the 

quantum state |ϕ⟩ which includes only bottom t 
qubits, 𝑞𝑥௧ିଵ, … , 𝑞𝑥଴,  is represented as the 
following equation. 

|𝜙⟩   =  
|0⟩ + 𝑒ଶగఒ௜ଶ೟షభ

|1⟩

√2
⊗

|0⟩ + 𝑒ଶగఒ௜ଶ೟షమ
|1⟩

√2
 ⊗ 

… ⊗
|0⟩ + 𝑒ଶగఒ௜ଶభ

|1⟩

√2
⊗

|0⟩ + 𝑒ଶగఒ௜ଶబ
|1⟩

√2
 

=
1

2௧
෍ 𝑒ଶగ௜ఒ൫ଶ೟షభ௫೟షభା⋯ାଶబ௫బ൯ 

௫∈{଴,ଵ}೟

|𝑥௧ିଵ … 𝑥ଵ𝑥଴⟩ 

using the representation  

|0⟩ + 𝑒ଶ஠஛௜ଶೖ
|1⟩ = ෍ 𝑒ଶ஠஛௜ଶೖ௫|𝑥⟩

௫∈{଴,ଵ}

. 

The inverse Quantum Fourier Transform 
circuit, denoted as  𝑄𝐹𝑇ற, transforms the input state 
to the output state and the state is rewritten as in the 
following equation. 

 

 
Figure 3 Probability Distribution of Measurement in QPE 

Circuit for a Gate with Phase 𝜆 =
ଵ

ଷ
 USING 3 

Measurement Qubits. 
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𝑄𝐹𝑇ற|𝑥௧ିଵ𝑥௧ିଶ … 𝑥ଵ𝑥଴⟩   

=  
|0⟩ + 𝑒

ିଶగ௜
௫బ
ଶభ|1⟩

√2
⊗

|0⟩ + 𝑒
ିଶగ௜ቀ

௫భ
ଶభା

௫బ
ଶమቁ

|1⟩

√2
⊗ 

… ⊗
|0⟩ + 𝑒

ିଶగ௜ቀ
௫೟షభ

ଶభ ା
௫೟షమ

ଶమ ା⋯ା
௫బ
ଶ೟ ቁ

|1⟩

√2
 

=
1

√2
 
 

෍ 𝑒
ିଶగ௜௬೟షభ௫బ

ଶ
 

ଵ

௬೟షభୀ଴

|𝑦௧ିଵ⟩  ⊗ 

1

√2
 
 

෍ 𝑒
ିଶగ௜௬೟షమ(ଶ௫భା௫బ)

ଶమ  

ଵ

௬೟షమୀ଴

|𝑦௧ିଶ⟩  ⊗ … 

1

√2
 
 

෍ 𝑒
ିଶగ௜௬బ൫ଶ೟షభ௫೟షభା⋯ାଶ௫భା௫బ൯

ଶ೟  

ଵ

௬బୀ଴

|𝑦଴⟩ 

=
1

√2௧
෍ 𝑒

ିଶగ௜(௬೟షభଶ೟షభ௫బା⋯ା௬బ൫ଶ೟షభ௫೟షభା⋯ା௫బ൯

ଶ೟  

௬∈{଴,ଵ}೟

|𝑦⟩ 

Then  𝑄𝐹𝑇ற|ϕ⟩  is represented with 𝑐(𝑦), 

𝑄𝐹𝑇ற|𝜙⟩   

=
1

√2௧
෍ 𝑒ଶగ௜ఒ൫ଶ೟షభ௫೟షభା⋯ାଶబ௫బ൯ 𝑄𝐹𝑇ற|𝑥⟩  

௫∈{଴,ଵ}೟

 

=  ෍ 𝑐(𝑦)

௬∈{଴,ଵ}೟

|𝑦⟩ 

𝑐(𝑦) as defined in Equation 1 below.  𝑐(𝑦) 
is the probability amplitude of measuring |𝑦⟩. 

We define θ௞ as 

θ௞ ≡ 
(λ2௞ − (𝑦௧ିଵି௞2௧ିଵ + ⋯ + 𝑦௠2௞ା௠ + ⋯ + 𝑦଴2௞)

/2௧)π 
= (λ2௞ − ∑ 𝑦௠

௧ିଵି௞
௠ୀ଴ 2௞ା௠/2௧) 𝜋  

 
 
 
 

 
 
 
 

to rewrite 𝑐(𝑦) as 
 

𝑐(𝑦) =
1

2௧
ෑ ෍ 𝑒ଶ௜஘ೖ௫ೖ

௫ೖ∈{଴,ଵ}

௧ିଵ

௞ୀ଴

=
1

2௧
ෑ൫1 + 𝑒ଶ௜஘ೖ൯

௧ିଵ

௞ୀ଴

 

using the following relation 

1 + 𝑒ଶ஘௜ = 1 + cos 2θ + 𝑖 sin 2θ 
= 1 + (2 cosଶ θ − 1) + 2𝑖 sin θ cos θ 
= 2 cos θ (cos θ + 𝑖 sin θ) 
= 2 cos θ 𝑒஘௜ 

The probability amplitude of |𝑦⟩, 𝑐(𝑦) is 
represented as a product of cosine values and 
exponential functions of pure imaginary numbers as 
in the following.   

𝑐(𝑦) =
1

2௧
ෑ൫1 + 𝑒ଶ௜஘ೖ൯

௧ିଵ

௞ୀ଴

= ෑ cos 𝜃௞ 𝑒ఏೖ௜

௧ିଵ

௞ୀ଴

 

Because the square of L2-norm of 
probability amplitude indicates the probability of the 
state is measured, and L2 norm of exponential 
function of a pure imaginary number is 1 by Euler's 
formula, probability of measuring |ϕ⟩ = |𝑦⟩  is 
analytically computed as a square product of t cosine 
values as in the following equation. 

𝑃(|𝑦⟩) = ‖𝑐(𝑦)‖ ଶ =  ෑ cosଶ 𝜃௞

௧ିଵ

௞ୀ଴

 

For example, in QPE circuit of U gate with 
t=3 qubits for measurement, 

𝑐(𝑦) = cos θଶ 𝑒஘మ௜ cos θଵ 𝑒஘భ௜ cos θ଴ 𝑒஘బ௜  

 

 

 

𝑐(𝑦) =
1

2௧
෍ 𝑒ଶగ௜ቀఒ൫ଶ೟షభ௫೟షభା⋯ାଶబ௫బ൯ିቀ௬೟షభଶ೟షభ௫బା⋯ା௬బ൫ଶ೟షభ௫೟షభା⋯ା௫బ൯ቁ/ଶ೟ቁ

௫∈{଴,ଵ}೟

=
1

2௧
ෑ ෍ 𝑒ଶ௜ఏೖ௫ೖ

௫ೖ∈{଴,ଵ}

௧ିଵ

௞ୀ଴

 

 
 
 
(1) 
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where 

 θଶ ≡ (2ଶλ − 𝑦଴2ଶ/2ଷ)π 

θଵ  ≡   ൭2ଵλ −   ෍ 𝑦௠2ଵା௠ / 2ଷ

ଵ

௠ୀ଴

  ൱  π  

      =   (2ଵλ −  (𝑦଴  2ଵ  + 𝑦ଵ 2ଶ) / 2ଷ) 𝜋  

𝜃଴  ≡   ൭2଴𝜆 −   ෍ 𝑦௠2௠ / 2ଷ

ଶ

௠ୀ଴

  ൱  𝜋  

      =   (2଴𝜆 −  (𝑦଴ 2଴  + 𝑦ଵ 2ଵ + 𝑦ଶ  2ଶ) / 2ଷ) 𝜋  

 

for U gate with phase λ =
ଵ

ଷ
 , where  λ ≠

௞

ଶ೟  

for any integer k with t=3 qubits for measurement, 
Table 1 shows the probabilities, ‖𝑐(𝑦)‖ ଶ along with  
θ଴, θଵ, θଶ . 

This result matches the graph in Figure 3. 

Because 
ଵ

ଷ
 is close to 

ଷ

଼
 , the probability of measuring 

|𝑦⟩ = |011⟩ is highest and the probability decreases 
as the difference between y and 2௧𝜆 increases. 

Table 1 Probability of Measuring |𝑦⟩ in QPE Circuit for 

a Gate with Phase 𝜆 =
ଵ

ଷ
   Using  3 Measurement Qubits.  

|𝑦⟩ 𝜃଴ 𝜃ଵ 𝜃ଶ Probability 

|000⟩ 
1

3
𝜋 

2

3
𝜋 

4

3
𝜋 0.016 

|001⟩ 
5

24
𝜋 

5

12
𝜋 

5

6
𝜋 0.032 

|010⟩ 
1

12
𝜋 

1

6
𝜋 

4

3
𝜋 0.175 

|011⟩ −
1

24
𝜋 −

1

12
𝜋 

5

6
𝜋 0.688 

|100⟩ −
1

6
𝜋 

2

3
𝜋 

4

3
𝜋 0.047 

|101⟩ −
7

24
𝜋 

5

12
𝜋 

5

6
𝜋 0.019 

|110⟩ −
5

12
𝜋 

1

6
𝜋 

4

3
𝜋 0.013 

|111⟩ −
13

24
𝜋 −

1

12
𝜋 

5

6
𝜋 0.012 

 

Let's take an example of the case when 𝜆 =
ଵ

଼
   where 

𝜆 is a rational number with denominator as power of 
2. 
 

θଶ = (2ଶ/2ଷ − 𝑦଴2ଶ/2ଷ) 
θଵ = (2ଵ/2ଷ − (𝑦଴2ଵ + 𝑦ଵ2ଶ)/2ଷ) 
θ଴ = (2଴/2ଷ − (𝑦଴2଴ + 𝑦ଵ2ଵ + 𝑦ଶ2ଶ)/2ଷ) 

 

Table 2 shows the probabilities, ‖𝑐(𝑦)‖ ଶ 
along with  𝜃଴, 𝜃ଵ, 𝜃ଶ . 

Table 2 Probability of Measuring |𝑦⟩ in QPE Circuit for 

a Gate with Phase 𝜆 =
ଵ

଼
  Using  3 Measurement Qubits.  

|𝑦⟩ 𝜃଴ 𝜃ଵ 𝜃ଶ Probability 

|000⟩ 
1

8
𝜋 

1

4
𝜋 

1

2
𝜋 0.000 

|001⟩ 0𝜋 0𝜋 0𝜋 1.000 

|010⟩ −
1

8
𝜋 −

1

4
𝜋 

1

2
𝜋 0.000 

|011⟩ −
1

4
𝜋 −

1

2
𝜋 0𝜋 0.000 

|100⟩ −
3

8
𝜋 

1

4
𝜋 

1

2
𝜋 0.000 

|101⟩ −
1

2
𝜋 0𝜋 0𝜋 0.000 

|110⟩ −
5

8
𝜋 −

1

4
𝜋 

1

2
𝜋 0.000 

|111⟩ −
3

4
𝜋 −

1

2
𝜋 0𝜋 0.000 

 
 
 
As the Table 2 illustrates, in the case when   

𝜆 =
௞

ଶೖ 
    for some integer k, 𝜃௜ for c(k) is represented 

as in the following. 

𝜃௜ = 𝜋 ቌ2௜𝑘/2௧ − ෍ 𝑘௠

௧ିଵି௜

௠ୀ଴

2௜ା௠/2௧ቍ 

= 𝜋 ቌ ෍ 2௠𝑘௠2௜

௧

௠ୀ଴

− ෍ 𝑘௠

௧ିଵି௜

௠ୀ଴

2௜ା௠ቍ /2௧  

= 𝜋 ෍ 2௠𝑘௠2௜

௧

௠ୀ௧ି௜

/2௧ 
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= π ෍ 2௠ᇲା௧𝑘௠ᇲା௧ି௜

௜

௠ᇲୀ଴

/2௧ 

= 𝜋 ෍ 2௠ᇲ
𝑘௠ᇲା௧ି௜

௜

௠ᇲୀ଴

 

It is shown that all 𝜃௜ s of c(k) are integer 

multiples of 𝜋 for some integer k when   𝜆 =
௞

ଶೖ 
 . 

Since cosଶ 𝜃௜ = 1 , the probability of measuring |𝑘⟩  
is 1, whereas the probability of measuring |𝑘ᇱ⟩  for 
𝑘ᇱ ≠ 𝑘  is 0. This result, shown in Table 2, is 
confirmed in the graph of Figure 2. 

 
4. EVALUATION   
 

The open-source quantum computing 
frameworks, such as IBM Qiskit [10] Google Cirq, 
Microsoft Q# and Rigetti Forest Quantum, has 
provided platforms for developing, simulating, and 
executing quantum algorithms [15].  

We implement the QPE circuit using IBM 
Qiskit library as shown in Figure 4. The Qiskit 
circuit library provides QFT and PhaseEstimation 
classes implementing Quantum Fourier Transform 
and Quantum Phase Estimation. In this work, in 
order to illustrate the circuit composition, QPE 
circuit is composed of H, U gates and QFT class.  

 
The Python code in  Figure 4 shows the source 

code used to build and simulate the QPE circuit 
using Qiskit. IBM released a major update of Qiskit 
from v0.46.0 to v1.0.1 as of February 2024. The 
following code is written in the new version v1.0.1.  

 
The circuit diagram of a quantum circuit built in 

the step 1 of Figure 4, is shown in Figure 5, 
generated using QuantumCircuit.draw() function. 

 
 
The simulation result in step 3 of code in Figure 

4 follows the probability distribution in Figure 3. 
The probability distribution confirms the 
computation in Table 1. 
 

Modifying the variable t of code in Figure 4 
from 3 to 4, we built a QPE circuit for U with phase 
ଵ

ଷ
   for t=4 measurement qubits, which increases 

precision in the measurement. The simulation 
exhibits the probability distribution in Figure 6. 
 
 
 
 

# step 1 :  
# build a phase estimation circuit with 'phase' 
import numpy as np 
from qiskit import QuantumCircuit, \ 
         QuantumRegister, ClassicalRegister 
from qiskit.circuit.library import QFT 
 
t = 3 
n = 1 
qx = QuantumRegister(t,'qx') 
qy = QuantumRegister(n,'qy') 
c = ClassicalRegister(t,'c') 
qpe = QuantumCircuit(qy, qx, c) 
 
phase = 1./3 
qpe.x(qy)           # eigenstate |1> 
qpe.barrier() 
qpe.h(qx) 
Un = 1 
for qx_i in range(t): 
    for i in range(Un): 
      # controlled-Phase-Shift gate 
        qpe.cp(2*np.pi*phase, qx[qx_i], qy);              
    Un *= 2 
 
qpe.compose(QFT(t,inverse=True), \ 

range(n,n+t), inplace=True) \ 
qpe.measure(range(n,n+t),range(t)))        

 # depiction of a quantum circuit 
 

qpe.draw(fold=-1, output='mpl') 
 
# step 2 :  
# simulate the circuit as many as 'shots' times 
from qiskit.primitives.sampler import Sampler 
sampler = Sampler() 
job = sampler.run(qpe, shots=100000) 
result = job.result() 
prob = \ 

result.quasi_dists[0].binary_probabilities() 
print(prob) 
 
# step 3 :  
# visualize the probability of measurement 
from qiskit.visualization \ 

import plot_distribution 
plot_distribution(prob) 

Figure 4  Python Source Code simulating QPE Circuit 

for a Gate with Phase 𝜆 =
ଵ

ଷ
   Using  3 Measurement 

Qubits.  
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|𝑦⟩ 𝜃଴ 𝜃ଵ 𝜃ଶ 𝜃ଷ 
Computed 
Probability 

Simulated 
Probability 

|0000⟩ 
1

3
𝜋 

2

3
𝜋 

4

3
𝜋 

8

3
𝜋 0.004 0.004 

|0001⟩ 
13

48
𝜋 

13

24
𝜋 

13

12
𝜋 

13

6
𝜋 0.005 0.005 

|0010⟩ 
5

24
𝜋 

5

12
𝜋 

5

6
𝜋 

8

3
𝜋 0.008 0.008 

|0011⟩ 
7

48
𝜋 

7

24
𝜋 

7

12
𝜋 

13

6
𝜋 0.015 0.015 

|0100⟩ 
1

12
𝜋 

1

6
𝜋 

4

3
𝜋 

8

3
𝜋 0.044 0.044 

|0101⟩ 
1

48
𝜋 

1

24
𝜋 

13

12
𝜋 

13

6
𝜋 0.685 0.685 

|0110⟩ −
1

24
𝜋 −

1

12
𝜋 

5

6
𝜋 

8

3
𝜋 0.172 0.172 

|0111⟩ −
5

48
𝜋 −

5

24
𝜋 

7

12
𝜋 

13

6
𝜋 0.028 0.028 

|1000⟩ −
1

6
𝜋 

2

3
𝜋 

4

3
𝜋 

8

3
𝜋 0.012 0.012 

|1001⟩ −
11

48
𝜋 

13

24
𝜋 

13

12
𝜋 

13

6
𝜋 0.007 0.007 

|1010⟩ −
7

24
𝜋 

5

12
𝜋 

5

6
𝜋 

8

3
𝜋 0.005 0.005 

|1011⟩ −
17

48
𝜋 

7

24
𝜋 

7

12
𝜋 

13

6
𝜋 0.004 0.004 

|1100⟩ −
5

12
𝜋 

1

6
𝜋 

4

3
𝜋 

8

3
𝜋 0.003 0.003 

|1101⟩ −
23

48
𝜋 

1

24
𝜋 

13

12
𝜋 

13

6
𝜋 0.003 0.003 

|1110⟩ −
13

24
𝜋 −

1

12
𝜋 

5

6
𝜋 

8

3
𝜋 0.003 0.003 

|1111⟩ −
29

48
𝜋 −

5

24
𝜋 

7

12
𝜋 

13

6
𝜋 0.003 0.003 

Figure 5 Qiskit drawing of QPE circuit with n=1, t=3 

 Table 3 Probability of Measuring y in QPE circuit for QPE Circuit for a Gate with Phase 𝜆 =
ଵ

ଷ
   Using  4 

Measurement Qubits. 
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Figure 6  Qiskit Simulation Result of QPE Circuit for a 

Gate with Phase 𝜆 =
ଵ

ଷ
 USING 4 Measurement Qubits. 

 
The probabilities are shown in the last 

column in Table 3, labeled as simulated probability. 
Table 3 confirms that the result of the simulation is 
consistent with the computed probability from our 
analysis.  
 

Because 
ଵ

ଷ
 is close to 

ହ

ଵ଺
, the probability of 

measuring |𝑦⟩ = |0101⟩  is highest and the 
probability decreases as the difference between 𝑦 
and 2௧  𝜆 increases, as it conforms to our intuition. 
 
4. EVALUATION   
 
Quantum phase estimation (QPE) is a vital 
component employed in many important quantum 
algorithms [16][17][18][19]. The ability to 
accurately estimate phase parameters is crucial for 
enabling quantum-enhanced computation in diverse 
fields ranging from cryptography [20][21][22][23] 
to material science [24][25][26]. 
 
In this paper, we have undertaken a comprehensive 
exploration of quantum phase estimation (QPE), 
focusing particularly on scenarios where the phase is 
not exactly represented as a rational number with a 
denominator in a power of 2. Through a rigorous 
mathematical analysis and precise computation of 
the quantum state of QPE in such cases, we have 
extended our understanding of this fundamental 
quantum algorithm. 
 
Our analysis contributes to a deeper appreciation of 
the behavior of QPE and its applications. By 
leveraging insights from number theory and 
trigonometry, we have derived explicit expressions 

for the quantum state of QPE, providing valuable 
theoretical foundations for its practical 
implementation and optimization. In quantum 
chemistry and quantum simulation, where the phases 
represent energy eigenvalues or dynamics of 
quantum systems, exact or approximate computation 
of QPE enables accurate predictions of molecular 
properties, reaction rates, and material behavior. 
Similarly, in quantum machine learning and 
optimization, precise estimation of phases 
contributes to the development of efficient quantum 
algorithms for tasks like database search, pattern 
recognition, and optimization problems. 
 
The validation of our theoretical results through 
simulations using the Qiskit framework underscores 
the accuracy and efficacy of our formulations. The 
comparison between theoretical predictions and 
Qiskit simulations serves as a testament to the 
reliability and utility of our approach, offering 
practitioners and researchers a reliable mathematical 
framework for analyzing QPE. 
 
Moreover, our work contributes to the broader 
landscape of quantum computing research, 
highlighting the importance of understanding the 
behavior of fundamental quantum algorithms in 
various contexts. As quantum computing continues 
to evolve, with advancements in hardware, software, 
and algorithmic techniques, our insights into QPE 
pave the way for further innovation and exploration 
in the field. 
 
In conclusion, this paper advances our understanding 
of quantum phase estimation and similar quantum 
operations, offering mathematical insights and 
rigorous formulation of quantum states. 
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