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ABSTRACT 

 
The integration of Enhanced Temporally Ordered Routing Algorithm (E-TORA) and Resilient 

Beluga Whale Optimization (RBWO) presents a groundbreaking approach to network optimization. E-TORA 
establishes a foundation with secure multi-path routing, incorporating cryptographic measures for heightened 
data security. Concurrently, RBWO introduces innovative optimization strategies inspired by beluga whale 
behaviors, fostering adaptability and cooperative exploration. The fusion of these algorithms synergistically 
enhances network performance, ensuring efficient data delivery, minimal delay, and optimized energy 
consumption. The cooperative exploration patterns inspired by RBWO complement E-TORA's multi-path 
routing, striking an effective balance. Results demonstrate consistently high Packet Delivery Ratios, 
decreased Delay values, and efficient Throughput, affirming the algorithm's success. This research 
contributes to the advancement of network protocols, offering valuable insights for refining and optimizing 
dynamic network environments. 
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1. INTRODUCTION 

Healthcare stands as a pillar of human 
dignity, ensuring that people can lead an energetic 
lifestyle and achieve their dreams. It goes beyond 
merely treating sickness, promoting preventive 
measures that stress the value of early detection and 
healthy lifestyles [1]. A strong healthcare system is 
vital for cultivating a productive and inventive 
society, as the well-being of individuals contributes 
significantly to economic and social progress. 
Furthermore, healthcare serves as a safety net, 
providing a shield for individuals and communities 
during unexpected crises. In our closely connected 
world, working together globally for health is really 
important, understanding that diseases don't stick to 
boundaries [2]. By placing importance on 
strengthening healthcare systems, societies not only 
improve the quality of life for their citizens but also 
play a role in building the resilience and prosperity 
of the entire global community. 

 
The dynamic nature of Mobile Wireless 

Sensor Networks (MWSN) presents unique 
challenges and opportunities in terms of network 

design and communication protocols. The mobility 
of sensor nodes requires the development of adaptive 
routing algorithms that can dynamically adjust to 
changes in the network topology [3]. Additionally, 
energy-efficient strategies become critical to 
managing the increased power consumption 
associated with mobility. MWSNs necessitate the 
exploration of innovative solutions for localization 
techniques to accurately track the positions of 
mobile sensor nodes in real-time [4]. These 
challenges drive research and innovation in the field 
of MWSNs, fostering the development of robust and 
efficient communication protocols that cater to the 
specific demands of mobile sensor deployments. 

 
The role of MWSN in healthcare is pivotal, 

ushering in a new era of patient monitoring and 
personalized care. By incorporating mobile sensors, 
MWSNs enable continuous tracking of patients' 
health parameters, facilitating timely interventions 
and improving overall healthcare outcomes [5]. 
These networks find applications in diverse 
healthcare scenarios, from monitoring the elderly in 
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assisted living facilities to tracking vital signs in 
ambulatory patients. MWSNs empower healthcare 

professionals with real-time data, enhancing  
diagnostic accuracy and treatment effectiveness. The 

flexibility of MWSNs ensures that patients 
experience unobtrusive monitoring, contributing to a 
more comfortable and patient-friendly healthcare 
environment. 

 
Deploying MWSN presents challenges in 

hardware and software [6]. Developing energy-
efficient sensors for sustained mobility is crucial, 
requiring advanced power management solutions. 
However, the perpetual movement raises security 
concerns, demanding robust encryption and 
authentication. On the software side, ensuring 
seamless communication among mobile sensors 
needs intricate algorithms for dynamic routing, 
considering factors like movement speed [7]. 
Simultaneously, data fusion challenges arise, 
requiring coherent integration for accurate insights. 
These multifaceted challenges emphasize the need to 
address energy efficiency, communication 
protocols, and stringent security measures to fortify 
data integrity in MWSN deployments [8]. 
 
1.1. Problem Statement 

Securing H-M-WSN is a complex challenge due 
to the wireless and dynamic nature of healthcare 
environments. The problem centers on safeguarding 
sensitive patient data and network operations, as 
unauthorized access and data breaches are 
significant security risks. Ensuring only authorized 
entit ies can interact with the network while 
preventing malicious intrusions is a central 
challenge. The vast number of interconnected 
devices in H-M-WSNs also poses a challenge in 
securing data transmission, with the risk of 
eavesdropping and data interception. Addressing the 
security challenge must consider the mobility of 
sensor nodes as they move to monitor different 
patients, demanding continuous security during 
these transitions. Developing advanced security 
protocols, intrusion detection systems, and access 
control mechanisms is essential to tackle these 
issues. 

 
1.2. Motivation 

The motivation to address the security challenge 
in H-M-WSN arises from the importance of patient 
data privacy, medical information integrity, and the 
need to secure healthcare operations effectively. 
Patient trust hinges on the confidentiality and 
reliability of data in healthcare. The growing 
adoption of digital healthcare solutions and wireless 
sensor networks intensifies the need for robust 
security measures. With a broader attack surface and 

more sophisticated threats, healthcare systems must 
continually advance their defense mechanisms to 
maintain patient trust and healthcare service quality. 
Data security during sensor node mobility is 
imperative, as patients' conditions often require 
continuous monitoring, and data integrity is crucial 
for informed healthcare decisions. This motivation is 
grounded in the significance of data integrity, 
trustworthiness, and patient confidence in the 
security of data generated and transmitted by H-M-
WSNs. 
 
1.3. Objective 
The primary technical objective of this research is to 
engineer and implement an innovative, bio-inspired 
secure routing protocol for the H-M-WSN domain. 
This protocol aims to provide robust security 
solutions for H-M-WSN within healthcare 
environments without delving into traditional key-
based security mechanisms. 

 Customized Secure Protocol: Develop a 
secure routing protocol tailored to the 
distinct security requirements and 
constraints of H-M-WSN in healthcare 
settings. The protocol will emphasize 
secure data transmission, access control, 
and intrusion prevention without relying on 
conventional key-based mechanisms. 

 Data Privacy Enhancement: Implement 
advanced data privacy measures without 
involving keys, such as dynamic data 
masking, homomorphic encryption, and 
secure multi-party computation, to ensure 
patient data and sensitive healthcare 
information remain confidential and 
immune to unauthorized access. 

 Mobility-Adaptive Security: Engineer the 
protocol to adapt seamlessly to the mobility 
of sensor nodes within healthcare 
environments. This includes the 
development of dynamic security policies, 
efficient handover mechanisms, and secure 
routing strategies to maintain data 
confidentiality even as sensor nodes 
transition between different locations. 

 Performance Evaluation: Conduct 
comprehensive security assessments 
through simulations and real-world 
experimentation in healthcare contexts to 
evaluate the protocol's effectiveness in 
elevating data privacy, ensuring data 
confidentiality, and fortifying overall 
network security. This will be achieved 
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without relying on traditional key-based security 
techniques. 
 

This research aims to advance security in 
H-M-WSN by introducing a bio-inspired secure 
routing protocol that effectively enhances data 
protection, access control, and intrusion prevention 
without resorting to conventional key-based security 
mechanisms. The outcomes of this research have the 
potential to significantly impact healthcare quality 
and patient well-being by fortifying the security and 
privacy of healthcare data within an increasingly 
digitized and interconnected healthcare landscape. 
 
2. LITERATURE REVIEW 

 
“DMST” [9] By leveraging the adaptability 

of a Dynamic Minimum Spanning Tree, the protocol 
responds dynamically to the network's changes, 
ensuring the creation of efficient and adaptive 
routing paths. “ICRA” [10]. The protocol 
dynamically forms intelligent clusters, considering 
factors such as location and connectivity, and 
utilizes efficient routing strategies for improved 
network performance. “EEDSR” [11]. By leveraging 
mobility prediction, the system dynamically 
optimizes paths, minimizing energy consumption 
and ensuring timely data transmission.  
 

“LoRaWAN”[12]. Initially, it surveys 
existing routing strategies in multi-hop networks 
utilizing LoRaWAN technology. Subsequently, it 
introduces an innovative SDN-based solution 
tailored specifically for Smart Water Grids. "A New 
Deep Q-Network Design for QoS Multicast Routing 
in Cognitive Radio MANETs."[13] The proposed 
Deep Q-Network (DQN) design leverages deep 
learning techniques to optimize the decision-making 
process for multicast routing, particularly in 
dynamic and resource-constrained cognitive radio 
environments. "EcoOpNet,"[14] an innovative 
protocol for Wireless Sensor Networks (WSN). By 
leveraging cross-layer information to 
opportunistically route data, dynamically adapting to 
the network's conditions. 

 
"SecureLoc,"[15] for securing localization 

in Wireless Sensor Networks (WSNs) against 
routing attacks. By leveraging the strengths of 
hybrid models, the protocol enhances the security of 
WSNs, ensuring the trustworthiness of localization 
information[15]. "EcoHarvest,"[16] a 
groundbreaking two-phase energy-efficient load 
balancing scheme for data collection in Energy 

Harvesting Wireless Sensor Networks (EH-WSNs) 
utilizing a mobile sink. It involves two distinct 
phases, strategically balancing the energy load 
among sensor nodes. By leveraging a mobile sink, 
the protocol efficiently collects data, considering the 
energy harvested by nodes. “TrustRoute,”[17] a 
Trust-Aware Dynamic Routing algorithm based on 
the Extended Ad Hoc On-Demand Distance Vector 
(EAODV) protocol for secure communications in 
WSNs. By dynamically assessing trust levels, the 
protocol ensures secure and reliable communication 
paths. "EcoSDN,"[18] an energy-efficient and delay-
guaranteed routing algorithm for Software-Defined 
Wireless Sensor Networks (SD-WSNs). By 
leveraging deep reinforcement learning to enable 
sensor nodes to collaboratively make energy-
efficient and delay-sensitive routing decisions in a 
software-defined network framework. 
 

"EcoCovNet,"[19] for Mobile Sink-based 
Wireless Sensor Networks. The key contribution lies 
in the protocol's strategy that combines energy and 
coverage considerations in hierarchical data 
collection. EcoCovNet's working mechanism 
involves dynamically assessing both energy levels of 
sensor nodes and their coverage capabilities. 
"SurgeNet,"[20] a Dynamic Energy-Efficient 
Surveillance Routing approach designed for 
uncertain group-based Industrial Wireless Sensor 
Networks (IWSNs). The functional part lies in the 
protocol's adaptability to uncertain industrial 
environments, optimizing energy efficiency for 
surveillance purposes. "EcoSquirrel,"[21] an 
Improved Squirrel Search Algorithm (ISSA) applied 
for Clustering and Low-Energy Routing in WSNs. 
By harnessing the unique characteristics of the 
squirrel search algorithm to optimize cluster 
formation and low-energy routing decisions. 
"CodeTabuNet,"[22] a method for determining the 
Multicast Optimal Route for Mobile Sinks within a 
specified deadline using Network Coding and the 
Tabu Search Algorithm in WSNs. By leveraging 
network coding principles alongside tabu search 
algorithms to intelligently navigate the network and 
determine optimal routes for mobile sinks [23], [24], 
[33]–[42], [25]–[32]. 
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Table 1 Comparison of Related Literature 
State-of-the-

Art 
Algorithms 

Merits Demerits 

DMST Dynamically adapting the Minimum 
Spanning Tree (MST) to changes in network 
conditions, ensuring efficient routing with 
mobile sinks. 

High sink mobility scenarios, impacting stability 
and efficiency. Computational overhead may 
increase. 

ICRA Adapts to dynamic network changes, 
improving overall efficiency. 

Computational complexity might increase, 
requiring consideration in resource-constrained 
scenarios. 

EEDSR Prolonged network lifespan and improved 
data delivery timelines, enhancing overall 
efficiency. 

Predicting mobility patterns, impacting the 
reliability of routing paths. The effectiveness of 
the approach could be influenced by 
unpredictable environmental factors. 

LoRaWAN Long-range communication capabilities, 
Efficient connectivity for IoT devices over 
large geographic areas. It operates on low 
power, extending battery life for connected 
devices. 

Challenges in urban environments with high 
signal interference. The data rate is comparatively 
lower than some other wireless technologies. 
 

MR-CRM QoS multicast routing in Cognitive Radio 
MANETs, enhancing adaptability and 
reliability. 

Potential computational complexity, training time 
requirements, and dependence on high-quality 
data for optimal performance. 

EcoOpNet Focuses on energy optimization, aiming to 
enhance overall sustainability and reduce 
environmental impact. 

Computational difficulty might rise in resource-
constrained scenarios. 

SecureLoc Ensuring data integrity and protecting against 
potential threats. 

Computational overhead may increase. 

EcoHarvest Promotes sustainability and reducing 
dependency on external power sources for 
prolonged device operation. 

Functional difficulty might rise in resource-
constrained scenarios. 

TrustRoute Improved security and trust-awareness in 
dynamic routing for WSNs. It might enhance 
the resilience of the communication 
infrastructure against security threats. 

Computational overhead may increase. 

EcoSDN It could potentially improve the overall 
efficiency of data transfer and network 
performance. 

Limited scalability may hinder its application in 
large-scale networks. 

EcoCovNet Hierarchical approach enhances energy 
efficiency and extends network life. 

Sensitive to sink mobility patterns, affecting data 
collection. 

SurgeNet It excels in delivering timely data, crucial for 
emergency scenarios, ensuring rapid response 
and decision-making. 

Challenges include potential congestion during 
high-traffic surges, impacting overall network 
performance. 

EcoSquirrel It exhibits efficiency in optimizing energy 
consumption, promoting prolonged network 
longevity and stable data transmission. 

May encounter challenges in adapting to diverse 
environmental conditions. 

CodeTabuNet Enhances multicast optimal route 
determination, providing efficient and timely 
data transmission with reduced latency. 

Challenges may arise in adapting to dynamic 
network conditions, influencing the algorithm's 
overall efficiency in certain deployment 
scenarios. 

MERT Dynamically select cluster heads, optimizing 
network performance by considering factors 
such as energy efficiency and network 
connectivity. 

Might be influenced by the choice of meta-
heuristic optimization techniques 

ECOGs This approach ensures prolonged network 
lifespan by distributing energy consumption 
more evenly among sensors, enhancing 
overall efficiency 

Adaptability to diverse conditions might be a 
consideration, and performance could be 
influenced by factors such as relic density and 
exhibit layout. 
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3. RESILIENT BELUGA WHALE 
OPTIMIZATION-BASED ENHANCED 
TEMPORALLY-ORDERED ROUTING 
ALGORITHM (RBWO-TORA) 
3.1. Temporally-Ordered Routing Algorithm 
(TORA): 
Temporally-Ordered Routing Algorithm (TORA) 
stands as a pivotal solution in mobile ad hoc 
networks, offering an adept response to the intricate 
challenges of dynamic network topologies. TORA, a 
reactive routing protocol, orchestrates nodes based 
on a height metric, aligning them in a directed 
acyclic graph. The protocol's notable feature is the 
link reversal technique, deftly reversing link 
directions to form a coherent routing structure. 
Nodes communicate through query and update 
messages, fostering route discovery and 
maintenance. TORA lacks global sequence numbers, 
relying on local orderings for message integrity. Its 
capacity to support multiple paths enhances 
resilience and load balancing. TORA's energy-
efficient design minimizes control message 
overhead, addressing the imperative of resource 
conservation in mobile and dynamic environments. 
As a stalwart in mobile ad hoc networking, TORA 
exemplifies adaptability, efficiency, and reliability 
in the face of dynamic network challenges. 
 
3.2. Enhanced TORA with Secure Multi-path 
Routing Algorithms (E-TORA): 
Secure Multi-path Routing Algorithms refer to 
routing protocols and strategies designed to enhance 
the security of data transmission in computer 
networks by utilizing multiple paths between source 
and destination nodes. In traditional routing, data 
typically follows a single path from the source to the 
destination. However, in secure multi-path routing, 
multiple routes are established simultaneously, 
offering several advantages, including improved 
reliability, load balancing, and, critically, enhanced 
security. 
 
Enhancing TORA with Secure Multi-path Routing 
Algorithms fortifies its capabilities to address 
security concerns and dynamic network challenges. 
TORA, known for its efficiency in mobile ad hoc 
networks, can benefit significantly from the 
integration of secure multi-path principles.  
 
3.2.1. Cryptographic Integration: 
Incorporating cryptographic measures is essential to 
fortify the security of TORA. The integration of 
encryption and digital signatures within the 
communication process enhances data 
confidentiality and integrity along multiple paths. 

Integration of cryptographic measures enhances the 
TORA. Let M denote the original message, 𝐸 
represent the encryption function, and 𝐶 signify the 
resulting ciphertext. The encryption process is 
mathematically expressed as 𝐶 = 𝐸(𝑀), where E is 
a function that utilizes cryptographic keys (𝐾௘) 
which is represented in Eq.(1). 

𝐶 =  E(𝑀, 𝐾௘) (1) 

To ensure secure communication a corresponding 
decryption process is employed using the decryption 
function 𝐷 and the appropriate decryption key (𝐾ௗ) 
expressed with Eq.(2). 

𝑀 = D(𝐶, 𝐾ௗ) (2) 

Incorporating digital signatures involves the 
application of a hash function (𝐻) and a private key 
(𝐾௣௥௜௩) to generate a signature(𝑆𝑖𝑔). The signature 
creation can be expressed in Eq.(3). 

𝑆𝑖𝑔 = H൫𝑀, 𝐾௣௥௜௩൯ (3) 

The verification is achieved through a corresponding 
public key (𝐾௣௨௕), ensuring the authenticity of the 
message (𝑀). The verification process is expressed 
mathematically in Eq.(4) 

Verify൫𝑆𝑖𝑔, 𝑀, 𝐾௣௨௕൯ (4) 

Embedding these cryptographic processes into 
TORA, the algorithm gains resilience against 
unauthorized access and tampering, thus securing 
the integrity of data traversing the network paths. 

 

3.2.2. Dynamic Key Management: 
Dynamic Key Management is crucial for enhancing 
the security TORA. Dynamic key management 
involves the establishment and refreshing of 
cryptographic keys over time, ensuring the 
continuous integrity and confidentiality of 
communication channels. Let 𝐾௜ represent the 
cryptographic key at time 𝑖, and 𝑇 denote the time 
variable. The dynamic nature of key management is 
expressed through the key evolution equation Eq.(5). 

𝐾௜ାଵ = UpdateKey(𝐾௜ , 𝑇) (5) 

where 𝑈𝑝𝑑𝑎𝑡𝑒𝐾𝑒𝑦 is a function that generates a new 
cryptographic key based on the current key (𝐾௜) and 
the elapsed time (𝑇). This dynamic key update 
process enhances the resilience of the cryptographic 
system against potential security threats. 

To further illustrate the importance of dynamic key 
management, consider the scenario of a 
compromised key. Let 𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒(𝐾௜) represent 
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the event of key compromise at time 𝑖. The equation 
for key compromise is formulated using Eq.(6). 

Compromise(𝐾௜)
= Compromise(𝐾௜ , 𝑇) 

(6) 

Dynamic key management responds to such 
compromise events by generating a new key, 
mitigating the impact of compromised keys on the 
security of the communication. 

The effectiveness of dynamic key management is 
also contingent on the periodicity of key updates. Let 
∆𝑡 represent the time interval between key updates. 
The equation for key update periodicity is given in 
Eq.(7). 

∆𝑡 = 𝑇௨௣ௗ௔௧௘ − 𝑇௦௧௔௥௧  (7) 

where 𝑇௨௣ௗ௔௧௘  is the time of the next key update, and 
𝑇௦௧௔௥௧  is the time when the current key was initiated. 
This periodic update ensures that cryptographic keys 
are consistently refreshed, reducing the window of 
vulnerability associated with a static key. 

Moreover, the dynamic key management system 
should be synchronized across communicating 
nodes to maintain a coherent cryptographic 
framework. Let 𝑆𝑦𝑛𝑐(𝐾௜) denote the 
synchronization event for key 𝐾௜ . The 
synchronization equation is expressed in Eq.(8). 

Sync(𝐾௜) = Sync(𝐾௜ , 𝑇) (8) 

This synchronization mechanism ensures that nodes 
within the network are operating with consistent 
cryptographic keys, fostering secure and 
synchronized communication. 

The incorporation of dynamic key management into 
TORA is instrumental in maintaining the security 
and resilience of the algorithm. The dynamic update, 
periodicity, and synchronization of cryptographic 
keys significantly contribute to mitigating the risks 
associated with key compromise and ensuring a 
robust security posture in dynamic network 
environments. 

 

3.2.3. Distributed Trust Model 

Distributed Trust Model is a crucial step in 
enhancing the security of TORA. The distributed 
trust model aims to establish trust levels for nodes 
across the network based on their behavior and 
interactions. Let 𝑇௜௝  represent the trust level assigned 
by node 𝑖 to node 𝑗 in the network. The distributed 
trust model encompasses various factors 
contributing to the establishment of trust. 

Behavior Assessment: The trust assigned to a node 
is influenced by its observed behavior. Let 𝐵௜௝ 
denote the behavior assessment of node 𝑗 by node 𝑖. 
The trust based on behavior (𝑇௜௝

஻) is mathematically 
expressed in Eq.(9). 

𝑇௜௝
஻ = 𝐴𝑠𝑠𝑒𝑠𝑠𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟൫𝐵௜௝൯ (9) 

Interaction Trust: Trust is further influenced by the 
history of interactions between nodes. Let 𝐼௜௝  
represent the interaction history between node 𝑖 and 
node 𝑗. The trust based on interactions (𝑇௜௝

ூ ) is 
mathematically defined in Eq.(10). 

𝑇௜௝
ூ = 𝐴𝑠𝑠𝑒𝑠𝑠𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛൫𝐼௜௝൯ (10) 

Combined Trust Assessment: The overall trust (𝑇௜௝) 
assigned by node 𝑖 to node 𝑗 is a combination of trust 
derived from behavior and interactions. The 
combined trust assessment equation is expressed as 
Eq.(11). 

𝑇௜௝ = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑇𝑟𝑢𝑠𝑡൫𝑇௜௝
஻ , 𝑇௜௝

ூ ൯ (11) 

The function 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑇𝑟𝑢𝑠𝑡 harmonizes the trust 
assessments from behavior and interactions into a 
unified trust level. 

Trust Propagation: Trust levels can be propagated 
through the network based on the trust assigned by 
neighboring nodes. The trust propagation equation is 
defined with Eq.(12).  

𝑇௜௝
ᇱ = PropogateTrust൫𝑇௞௝ , 𝑇௜௝൯ (12) 

were 𝑇௜௝
ᇱ  is the updated trust level for node 𝑗 based 

on the trust assigned by node 𝑘 and the initial trust 
𝑇௜௝ . 

Adaptive Trust Update: The trust model should 
adapt to changes in behavior and interactions over 
time. Let ∆𝑇௜௝  represent the change in trust, and ∆𝑡 
denote the elapsed time. The adaptive trust update 
equation is expressed mathematically in Eq.(13). 

∆𝑇௜௝ = AdaptTrust൫𝑇௜௝ , ∆𝑡൯ (13) 

Eq.(13) ensures that the trust model dynamically 
adjusts trust levels based on evolving network 
dynamics. 

The distributed trust model in TORA 
enhances the algorithm's security by fostering a 
network environment where nodes collaboratively 
assess and assign trust levels to one another. By 
incorporating assessments of behavior, interactions, 
and adaptive updates, the distributed trust model 
contributes to a robust security posture in dynamic 
and evolving network conditions. 
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3.2.4. Path Diversity for Security 
Path Diversity for Security is a paramount 

step in fortifying the TORA. Path diversity 
introduces the utilization of multiple communication 
routes between nodes, providing not only fault 
tolerance but also a heightened level of security 
against coordinated attacks. Mathematically, path 
diversity can be expressed through the consideration 
of different paths and the distribution of traffic 
across these paths. 

By incorporating these mathematical 
expressions, Path Diversity for Security within 
TORA ensures that the algorithm dynamically 
adapts to security 
Path Enumeration: Let 𝑃௜  represent the 𝑖-th path 
between a source node and a destination node. The 
set of paths, denoted as {𝑃ଵ, 𝑃ଶ, … , 𝑃௡}, enumerates 
the available communication routes in the network. 

Traffic Distribution: The distribution of traffic 
across multiple paths involves assigning weights to 
each path based on factors such as capacity and 
security. Let 𝑊௜ represent the weight assigned to the 
𝑖-th path. The normalized weight (𝑊ప

෢) can be 
calculated as shown in Eq.(14).  

𝑊෡௜ =
𝑊௜

∑ 𝑊௝
௡
௝ୀଵ

 (14) 

This normalization ensures that the weights sum to 
1, facilitating the fair distribution of traffic across 
diverse paths. 

Path Selection Criteria: The selection of paths 
involves assessing security metrics alongside 
traditional routing metrics. Let 𝑆௜ denote the security 
metric associated with the 𝑖-th path, and 𝑅௜ represent 
the traditional routing metric. The overall path 
selection criteria (𝑃௜

∗) can be expressed 
mathematically in Eq.(15). 

𝑃௜
∗ = SelectPath(𝑆௜ , 𝑅௜) (15) 

The function 𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑎𝑡ℎ harmonizes the security 
metric 𝑆௜ and the routing metric 𝑅௜ to determine the 
optimal path 𝑃௜

∗. 

Dynamic Path Adaptation: The network should 
adapt dynamically to changes in security conditions 
and topology. Let ∆𝑆௜ represent the change in 
security metric, and ∆𝑡 denote the elapsed time. The 
adaptive path update equation is given in Eq.(16). 

∆𝑆௜ = AdaptPath(𝑆௜ , ∆𝑡) (16) 

This Eq.(16) ensures that the security metric 𝑆௜ 
dynamically adjusts based on evolving security 
conditions. 

Path Usage and Security Enhancement: The actual 
usage of paths (𝑈௜) can be determined by multiplying 
the normalized weight (𝑊෡௜) with the security metric 
(𝑆௜) represented in Eq.(17). 

𝑈௜ = 𝑊෡௜ ∗ 𝑆௜ (17) 

The Eq.(17) reflects the consideration of both weight 
and security in determining the usage of each path, 
reinforcing the security enhancement through 
diversified path utilization. 

3.2.5. Adaptive Security Policies 
Adaptive Security Policies is a pivotal step 

in augmenting the security of the TORA. Adaptive 
security policies entail the dynamic adjustment of 
security measures based on the evolving threat 
landscape and network conditions. The adaptation of 
security policies can be expressed through the 
formulation of dynamic security parameters. 

Dynamic Security Parameter (DSP): Let 𝐷𝑆𝑃௜௝  
represent the dynamic security parameter between 
nodes 𝑖 and 𝑗. The dynamic adjustment over time 
(∆𝑡) is expressed in Eq.(18). 

𝐷𝑆𝑃௜௝
ᇱ = AdaptSecurity൫𝐷𝑆𝑃௜௝ , ∆𝑡൯ (18) 

where 𝐴𝑑𝑎𝑝𝑡𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 is a function that 
dynamically adjusts the security parameter 
𝐷𝑆𝑃௜௝based on the elapsed time (∆𝑡). This dynamic 
adaptation ensures that security measures evolve in 
response to changing network conditions. 

Security Metric Integration: The overall security 
metric (𝑆𝑀௜௝) is a composite measure considering 
both traditional security parameters (𝑆𝑃௜௝) and the 
dynamic security parameter (𝐷𝑆𝑃௜௝) is shown in 
Eq.(19). 

𝑆𝑀௜௝ = CombineSecurity൫𝑆𝑃௜௝ , 𝐷𝑆𝑃௜௝
ᇱ ൯ (19) 

The function 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 complements the 
traditional security parameter (𝑆𝑃௜௝) and the 
dynamically adapted security parameter (𝐷𝑆𝑃௜௝

ᇱ ) into 
a unified security metric. 

Threshold-Based Decision: Adaptive security 
policies involve making decisions based on the 
security metric surpassing predefined thresholds. Let 
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௜௝  represent the predefined security 
threshold. The decision function is expressed in 
Eq.(20).  

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜௝

= MakeDecision൫𝑆𝑀௜௝ , 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௜௝൯ 
(20) 
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The function 𝑀𝑎𝑘𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 determines the 
security decision based on whether the security 
metric (𝑆𝑀௜௝) surpasses the predefined threshold. 

Dynamic Policy Update: If the security decision 
(𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜௝) indicates a need for policy update, the 
dynamic security parameter (𝐷𝑆𝑃௜௝

ᇱ ) is further 
adjusted based on the network's response to security 
events represented in Eq.(21).  

𝐷𝑆𝑃௜௝
ᇱ

= UpdatePolicy൫𝐷𝑆𝑃௜௝
ᇱ , 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

(21
) 

The function 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑙𝑖𝑐𝑦 incorporates the 
network's response (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖𝑗) to 
security events in dynamically updating the security 
parameter (𝐷𝑆𝑃௜௝

ᇱ ). 

Adaptive Security Policies in TORA ensure that 
security measures dynamically adapt to changing 
network conditions. The dynamic adjustment of 
security parameters and integration with traditional 
security measures enhance the algorithm's resilience 
and responsiveness to emerging security threats, 
contributing to a robust security framework in 
dynamic network environments. 

Pseudo-code: Adaptive Security Policies 
Function AdaptiveSecurityPolicies(): 
    While NetworkOperational: 
        SecurityMetrics = MonitorSecurityMetrics() 
        NetworkConditions = 
MonitorNetworkConditions() 
 
        If ConditionsChange(NetworkConditions): 
            AdjustSecurityParameters(SecurityMetrics, 
NetworkConditions) 
            Impact = 
EvaluateImpactOnSecurityPolicies(SecurityMetrics, 
NetworkConditions) 
 
            If ExceedsThresholds(Impact): 
                UpdateSecurityPolicies() 
                AdaptParametersToMitigateRisks(Impact) 
                 
        WaitForNextIteration() 
 
End Function 

The pseudo-code outlines the adaptive security 
policies algorithm, emphasizing continuous 
monitoring, dynamic adjustment of parameters, and 
updates to security policies based on observed 
changes and predefined thresholds. 
 
3.2.6. Intrusion Detection along Paths 

Intrusion Detection along Paths is a crucial 
step in enhancing the security of the TORA. 
Intrusion detection involves the systematic 
monitoring of network paths to identify and respond 

to anomalous activities that may indicate potential 
security breaches. The mathematical representation 
of intrusion detection along paths encompasses 
various components. 

Traffic Monitoring: Let 𝑇௜௝  denote the traffic along 
the 𝑖-th path between nodes 𝑖 and 𝑗. The traffic 
monitoring function (𝑀𝑜𝑛𝑖𝑡𝑜𝑟௜௝) assesses the traffic 
patterns to identify deviations from normal behavior 
shown in Eq.(22).  

𝑀𝑜𝑛𝑖𝑡𝑜𝑟௜௝ = AssessTraffic൫𝑇௜௝൯ (22) 

The function 𝐴𝑠𝑠𝑒𝑠𝑠𝑇𝑟𝑎𝑓𝑓𝑖𝑐 analyzes the traffic 
along the path to detect any unusual patterns that 
may indicate potential intrusions. 

Anomaly Score Calculation: The anomaly score 
(𝐴𝑆௜௝) quantifies the degree of deviation from 
normal behavior. It is calculated based on the output 
of the traffic monitoring function mathematically 
represented in Eq.(23). 

𝐴𝑆௜௝

= CalculateAnomalyScore൫𝑀𝑜𝑛𝑖𝑡𝑜𝑟௜௝൯ 
(23) 

The function 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒 synthesizes 
the information from the traffic monitoring to 
provide a numerical representation of the anomaly 
score. 

Threshold-Based Decision: A predefined threshold 
(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௜௝) is established to determine whether 
the anomaly score surpasses a critical level. The 
decision function (𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜௝) is expressed with 
Eq.(24).  

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜௝

= MakeDecision൫𝐴𝑆௜௝ , 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௜௝൯ 
(24) 

The function 𝑀𝑎𝑘𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 categorizes the 
severity of the anomaly based on the anomaly score 
and the predefined threshold. 

Alarm Generation: If the decision indicates a 
potential intrusion as shown in Eq.(25), an alarm is 
generated to alert the network which is shown in 
Eq.(26). 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜௝ = 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛 (25) 

𝐴𝑙𝑎𝑟𝑚௜௝

= GenerateAlarm൫𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜௝൯ 

(26) 

The function 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑙𝑎𝑟𝑚 creates an alarm 
signal, signaling the detection of a potential intrusion 
along the path. 

Dynamic Response: The network's response 
(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒௜௝) to the detected intrusion involves 
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adapting security measures or altering the 
communication path. The dynamic response 
equation is given in Eq.(27).  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒௜௝

= AdaptResponse൫𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜௝൯ 
(27) 

The function 𝐴𝑑𝑎𝑝𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 tailors the network's 
response based on the severity and nature of the 
detected intrusion. The dynamic adaptation and 
timely response to potential intrusions contribute to 
the overall security resilience of TORA in dynamic 
and evolving network environments. 

 

3.2.7. Certificate-Based Authentication 
The Certificate-Based Authentication is an 

important step in stimulating the security of the 
TORA. Certificate-based authentication employs 
digital certificates to validate the identities of 
communicating nodes within the network. The 
mathematical representation of certificate-based 
authentication involves the utilization of 
cryptographic functions and certificate validation 
processes. 

Digital Certificate Representation: Let 𝐶𝑒𝑟𝑡௜௝  
represent the digital certificate exchanged between 
nodes 𝑖 and 𝑗. The digital certificate includes the 
public key (𝐾௣௨௕) of the originating node and is 
signed by the corresponding private key (𝐾௣௥௜௩):  

𝐶𝑒𝑟𝑡௜௝ = Sign൫𝐾௣௥௜௩೔
, 𝐾௣௨௕೔

൯ (28) 

The digital certificate is a cryptographic assurance of 
the authenticity of the public key associated with the 
originating node. 

Certificate Transmission: Nodes within the network 
exchange digital certificates during the initial 
communication setup. Let 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡௜௝  denote the 
transmission of the digital certificate from node 𝑖 to 
node 𝑗 mathematically represented in Eq.(29).  

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡௜௝ = SendCertificate൫𝐶𝑒𝑟𝑡௜௝൯ (29) 

The function 𝑆𝑒𝑛𝑑𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒 ensures the secure 
transmission of the digital certificate from the 
originating node to the intended recipient. 

Certificate Verification: On receiving the digital 
certificate, the recipient node verifies its authenticity 
using the public key of the originating node. Let 
𝑉𝑒𝑟𝑖𝑓𝑦௜௝  represent the verification process is shown 
using Eq.(30).  

𝑉𝑒𝑟𝑖𝑓𝑦௜௝

= VerifyCertificate൫𝐶𝑒𝑟𝑡௜௝ , 𝐾௣௨௕೔
൯ 

(30) 

The function 𝑉𝑒𝑟𝑖𝑓𝑦𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒 validates the 
digital certificate using the public key associated 
with the originating node. 

Authentication Decision: Based on the outcome of 
the certificate verification, an authentication 
decision (𝐴𝑢𝑡ℎ௜௝) is made. If the certificate is 
successfully verified, authentication is achieved 
which is represented mathematically in Eq.(31).  

𝐴𝑢𝑡ℎ௜௝

= MakeAuthemticationDecision൫𝑉𝑒𝑟𝑖𝑓𝑦௜௝

(31
) 

The function 𝑀𝑎𝑘𝑒𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
categorizes the authentication decision based on the 
success or failure of the certificate verification 
process. Certificate-Based Authentication in TORA 
ensures that nodes within the network can trust the 
identities of communicating entities. The use of 
digital certificates, cryptographic signatures, and 
secure transmission processes collectively establish 
a robust authentication mechanism. This step 
significantly contributes to the overall security of 
TORA by preventing unauthorized nodes from 
participating in the communication and ensuring the 
integrity of the network. 

 

3.2.8. Continuous Monitoring and Dynamic Path 
Switching 

Continuous Monitoring and Dynamic Path 
Switching constitute a crucial step in bolstering the 
security of the TORA. This step involves the 
persistent assessment of network conditions and the 
dynamic reconfiguration of communication paths 
based on real-time monitoring. This process can be 
expressed through the formulation of continuous 
monitoring equations and the criteria for initiating 
dynamic path switching. 

Path Health Monitoring: Let 𝐻௜௝  represent the 
health status of the 𝑖-th path between nodes 𝑖 and 𝑗. 
Path health is continuously monitored to assess the 
reliability and security of each path which is 
mathematically represented with Eq.(32).  

𝐻௜௝ = MonitorPathHealth() (32) 

The function 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑃𝑎𝑡ℎ𝐻𝑒𝑎𝑙𝑡ℎ evaluates 
various metrics, such as latency, packet loss, and 
security conditions, to determine the health status of 
the path. 

Dynamic Path Switching Criteria: The decision to 
switch communication paths is contingent on 
predefined criteria, including the health status of the 
current path (𝐻௖௨௥௥௘௡௧) and a comparison with the 
health status of alternative paths (𝐻௔௟௧௘௥௡௔௧௜௩௘). The 
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dynamic path switching decision (𝑆𝑤𝑖𝑡𝑐ℎ𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 
is determined in Eq.(33).  

SwitchDecision = 𝑀𝑎𝑘𝑒𝑆𝑤𝑖𝑡𝑐ℎ𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐻௖௨௥௥௘௡௧
(3
3) 

The function 𝑀𝑎𝑘𝑒𝑆𝑤𝑖𝑡𝑐ℎ𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 assesses the 
health status of the current path and potential 
alternative paths to decide whether a dynamic path 
switch is warranted. 

Dynamic Path Switching: If the decision 
(𝑆𝑤𝑖𝑡𝑐ℎ𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛) indicates the need for a path 
switch, the algorithm dynamically reroutes 
communication along a more reliable or secure path. 
The dynamic path switching equation is expressed in 
Eq.(34).  

𝑁𝑒𝑤𝑃𝑎𝑡ℎ௜௝

= SwitchPath൫𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ௜௝ , 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑃𝑎𝑡
(34
) 

The function 𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑎𝑡ℎ selects an alternative path 
from the available options based on predefined 
criteria, facilitating the dynamic switch. 

Path Switching Response: The network's response 
to the dynamic path switch involves updating routing 
tables and notifying relevant nodes. Let 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒௜௝  
denote the network's response to the path switching 
decision is represented using Eq.(35). 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒௜௝

= UpdateRoutingTables൫𝑁𝑒𝑤𝑃𝑎𝑡ℎ௜௝൯ 
(35) 

The function 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒𝑠 ensures that 
routing tables are adjusted to reflect the newly 
selected path, enabling seamless communication 
along the updated route. 

Continuous Monitoring Adaptation: The 
continuous monitoring process adapts dynamically 
to changes in network conditions. Let ∆𝐻௜௝  represent 
the change in path health, and ∆𝑡 denote the elapsed 
time.  

∆𝐻௜௝ = AdaptMonitoring൫𝐻௜௝ , ∆𝑡൯ (36) 

The Eq.(36) ensures that the monitoring process is 
responsive to evolving network conditions, 
contributing to the accuracy of health assessments. 

Continuous Monitoring and Dynamic Path 
Switching in TORA establish a proactive approach 
to network management. The continuous assessment 
of path health and dynamic response mechanisms 
contribute to the overall resilience and adaptability 
of TORA in dynamic and challenging network 
environments. 

 

Algorithm : Overview of E-TORA 
1. Initialize() 

- Network topology  
- Communication paths, and  
- Security parameters. 

2. For each communication path: 
- Generate encryption and decryption 

keys (K_e_ij, K_d_ij). 
- Implement digital signatures. 

3. Initialize key update interval (Δt). 
- For each communication path: 

 Generate initial 
cryptographic key 
(K_ij). 

 Set next key update 
time (T_update_ij = 
current time + Δt). 

- While network is operational: 
- If current time reaches T_update_ij: 

 Generate new 
cryptographic key 
(K_ij). 

 Update T_update_ij = 
current time + Δt. 

4. Assess(): 
- Behavior and interactions,  
- Calculate trust levels, and  
- Share among nodes. 

5. For each communication path: 
-  Enumerate  

 Diverse paths,  
 Assign weights, and  
 Select based on 

metrics. 
- Dynamically adapt  

 Security policies 
based on path 
diversity. 

6. Continuously monitor() 
- Security metrics,  
- Adjust parameters, and  
- Update policies. 

7. For each communication path: 
- Monitor traffic patterns, calculate 

anomaly scores, and generate 
alarms. 

- Dynamically adapt security 
measures in response to detected 
intrusions. 

8. Exchange and verify() 
- Digital certificates for 

authentication. 
9. Continuously monitor ()  

- Path health,  
- Dynamically switch paths, and  
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- Update routing tables. 
10. Adapt continuous monitoring to changes 

in network conditions. 
The E-TORA algorithm secures WSN through 
cryptographic integration, dynamic key 
management, a distributed trust model, and adaptive 
security policies. It employs path diversity, intrusion 
detection, and continuous monitoring with dynamic 
path switching, ensuring robust communication in 
dynamic environments by addressing encryption, 
authentication, and threat response. 
 

3.3. Beluga Whale Optimization 
Beluga Whale Optimization (BWO) is a 

bio-inspired algorithm that mimics the collaborative 
and adaptive behaviors of beluga whales in finding 
optimal solutions to complex problems. Emulating 
the whales' social structure, communication, 
adaptability, and innovation, BWO employs a 
population of agents organized into pods. Through 
dynamic navigation and information sharing, the 
algorithm enhances its problem-solving capabilities 
over iterations. BWO leverages the diverse and 
cooperative nature of beluga whales to efficiently 
explore solution spaces and address optimization 
challenges in various domains. 

 
3.3.1. Features of BWO 
a) Social Structure 

Beluga whales exhibit strong social bonds 
and collaborative behaviors within pods. BWO 
employs a collaborative approach, where multiple 
agents (representing solutions) work together to 
explore the solution space. 
 
b) Communication 

Belugas communicate using a diverse range 
of vocalizations for social interactions and 
echolocation. It incorporates effective 
communication mechanisms between agents to share 
information and coordinate their exploration of the 
solution space. 
 
c) Adaptability 

Belugas are adaptable to changing 
environments and can migrate to different regions. 
Includes mechanisms for agents to adapt their 
positions dynamically based on the evolving 
problem landscape, ensuring flexibility and 
responsiveness. 
 
d) Group Dynamics 

Belugas travel in pods, and their group 
dynamics contribute to their survival. It also 
encourages diversity among agents and emphasizes 

the importance of maintaining a balanced and 
diverse population to enhance the overall 
optimization process. 
 
e) Navigation and Echolocation 

Belugas use echolocation for navigation 
and locating prey. BWO incorporates mechanisms 
for agents to navigate through the solution space 
using information derived from their exploration and 
interactions, enhancing their ability to find optimal 
solutions. 

 
f) Longevity 

Beluga whales can live for several decades. 
Aims for long-term sustainability in its optimization 
process, focusing on the longevity of the algorithm's 
effectiveness over multiple iterations. 
 
 g) Innovation and Problem-Solving 

Belugas exhibit intelligence and innovation 
in solving problems related to survival. Agents to 
innovate and adapt their strategies based on the 
success or failure of previous solutions, promoting 
efficient problem-solving. 
 
3.4. Resilient Beluga Whale optimization 

Resilient Beluga Whale Optimization 
(RBWO) is an advanced bio-inspired algorithm that 
combines the robust characteristics of beluga whales 
with enhanced resilience in solving complex 
optimization problems. By integrating mechanisms 
for adaptability, rapid recovery from disturbances, 
and persistent exploration, RBWO excels in 
navigating dynamic solution spaces. The algorithm 
ensures the resilience of the optimization process, 
allowing it to withstand disruptions, maintain 
diversity within populations, and efficiently recover 
from suboptimal states. RBWO is a powerful 
optimization tool, exhibiting the endurance and 
adaptability observed in resilient beluga whale 
populations. 
 
a) Initialization 

RBWO begins by creating a diverse initial 
population of potential solutions, each representing 
an agent in the optimization process. Parameters 
such as population size, maximum iterations, and 
exploration range are set up to guide the 
optimization. 
 
b) Adaptive Strategies 
RBWO incorporates adaptive strategies, allowing 
individual agents to dynamically adjust their 
positions in the solution space based on the feedback 
received during the optimization process. This 
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adaptability enhances the algorithm's responsiveness 
to changes in the problem landscape. 
 
c) Population Resilience 

To prevent premature convergence, RBWO 
emphasizes maintaining diversity within the 
population. This ensures that the algorithm explores 
a broad range of potential solutions, increasing its 
resilience against getting stuck in suboptimal states. 
 
d) Dynamic Recovery 
 

RBWO includes mechanisms for rapid 
recovery from disturbances or suboptimal 
conditions. Agents within the population can quickly 
adapt their strategies to recover from setbacks, 
allowing the algorithm to efficiently navigate 
through dynamic optimization environments. 
 
e) Cooperative Exploration 

Encouraging cooperative behaviors among 
agents, RBWO fosters shared exploration patterns 
within the population. This cooperative approach 
leverages the collective intelligence of the agents, 
enhancing the algorithm's ability to collectively 
explore and exploit the solution space. 
 
f) Efficient Communication 

RBWO facilitates efficient communication 
between agents. Information exchange occurs within 
the population, enabling agents to share knowledge 
and coordinate their exploration. This 
communication mechanism enhances the overall 
problem-solving capabilities of the algorithm. 
 
g) Endurance 
RBWO demonstrates endurance by maintaining 
high-performance levels over prolonged 
optimization processes. The algorithm is designed to 
sustain its effectiveness and adaptability over 
extended periods, ensuring persistent and reliable 
optimization. 
 
h) Innovation-driven 
RBWO promotes innovation by introducing 
variations in exploration patterns. Agents are 
encouraged to experiment with different strategies, 
fostering creativity in the search for novel and 
efficient solutions to complex optimization 
problems. 
 
i) Robust Navigation and Termination 
RBWO employs navigation strategies inspired by 
beluga whales, ensuring robust movement through 
dynamic solution spaces. The algorithm adheres to 

well-defined termination criteria based on the 
number of iterations, convergence conditions, or 
other problem-specific factors, providing a clear 
endpoint to the optimization process. 

 
3.4.1. Initialization 
In initialization phase the algorithm lays the 
groundwork by generating a diverse initial  
population of potential solutions. The population 𝑃 
consists of 𝑁  

To mathematically express the initialization process, 

we define the position vector of the 𝑖-th agent 𝑥௜
(଴), 

representing the initial solution in the solution space. 
This vector is characterized by D dimensions, where 
𝐷 signifies the dimensionality of the optimization 
problem is shown in Eq.(37). 

𝑥௜
(଴)

= ൣ𝑥௜,ଵ
(଴)

, 𝑥௜,ଶ
(଴)

, ⋯ , 𝑥௜,஽
(଴)

൧ (37) 

where 𝑥௜,௝
(଴) represents the initial value of the 𝑗-th 

dimension for the 𝑖-th agent. 

It also involves determining the fitness of 
each agent in the initial population. The fitness 

function 𝑓௜
(଴)evaluates the performance of a solution 

and influences subsequent iterations. The fitness 
function is mathematically defined in Eq.(38).     

𝑓௜
(଴)

= Fitness൫𝑥௜
(଴)

൯ (38) 

This equation encapsulates the evaluation of the 
fitness of the 𝑖-th agent's initial solution. 

The overall initialization process is represented with 
two key equations Eq.(39) and Eq.(40). 

P = ቄ𝑥ଵ
(଴)

, 𝑥ଶ
(଴)

, … 𝑥ே
(଴)

ቅ (39) 

𝑓௜
(଴)

= Fitness൫𝑥ଵ
(଴)

, 𝑥ଶ
(଴)

, … 𝑥ே
(଴)

൯ (40) 

where Eq.(30) is to Generate Population and Eq.(40) 
is to Evaluate Fitness. This initialization step, 
illustrating the creation of a diverse initial population 
and the concurrent assessment of the fitness of each 
solution in preparation for subsequent optimization 
iterations. 

3.4.2. Adaptive Strategies 
In Adaptive Strategies phase the algorithm 
introduces mechanisms for dynamic adjustments of 
agent positions based on optimization feedback. The 
adaptability of RBWO is expressed through 
mathematical formulations representing the dynamic 
nature of the solution vectors. The adaptive strategy 
involves updating the position of each agent (𝑥௜) 
based on the exploration and exploitation of the 
solution space. The updated position, denoted as 
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𝑥௜
(௧ାଵ) for the 𝑖-th agent at iteration 𝑡 + 1, is 

influenced by the current position (𝑥௜
(௧)) a randomly 

generated vector (𝑟௜
(௧ାଵ)) for exploration, and the 

best solution in the population (𝑥௕௘௦௧
(௧) ) for 

exploitation. The adaptation equation is expressed 
as: 

𝑥௜
(௧ାଵ)

= 𝑥௜
(௧)

+ 𝛼 ∙ 𝑟௜
(௧ାଵ)

+ β ∙൫𝑥௕௘௦௧
(௧)

− 𝑥௜
(௧)

൯ 
(41) 

where 𝛼 and 𝛽 are adaptation parameters, 
influencing the magnitude of exploration and 
exploitation, respectively. 

RBWO involves evaluating the fitness of the 
updated positions to guide the subsequent iterations. 
The fitness of the 𝑖-th agent at iteration 𝑡 + 1, 

denoted as 𝑓௜
(௧ାଵ) is determined by the fitness 

function which is shown in Eq.(42). 

𝑓௜
(௧ାଵ)

= Fitness൫𝑥௜
(௧ାଵ)

൯ (42) 

Eq.(41) and Eq.(42) capture the essence of RBWO's 
adaptive strategies, reflecting the dynamic 
adjustments of agent positions based on exploration 
and exploitation factors.  

 
3.4.3. Population Resilience 

Population Resilience phase emphasizes 
the maintenance of diversity within the population to 
resist premature convergence. To achieve population 
resilience RBWO introduces a diversity measure 
(𝛿(௧)) that quantifies the dispersion of the solutions 
within the current population at iteration 𝑡. This 
diversity measure is calculated based on the 
Euclidean distance between the solutions, ensuring a 
comprehensive representation of the population's 
spatial distribution is mathematically expressed in 
Eq.(43). 

𝛿(௧) =
1

N(𝑁 − 1)
෍ ෍ ฮ𝑥௜

(௧)
ே

௝ஷ௜

ே

௜ୀଵ

− 𝑥௝
(௧)

ฮ 

(43) 

where N represents the population size, and ‖∙‖ 
denotes the Euclidean norm. The algorithm then 

identifies the agent (𝑥௕௘௦௧
(௧) ) with the highest fitness in 

the current population at iteration t. The fitness (𝑓௜
(௧)) 

of the 𝑖-th agent at iteration 𝑡 is determined by the 
fitness function expressed in Eq.(42). 
The best solution in the population is obtained 
shown in Eq.(44). 

𝑥௕௘௦௧
(௧)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑥௜(೟) ∙ 𝑓௜
(௧) (44) 

RBWO then incorporates a resilience factor (𝛾) to 
dynamically adjust the diversity measure, 

influencing the next iteration's population diversity 
is mathematically represented in Eq.(45). 

𝛿(௧ାଵ) = 𝛿(௧) ∙ (1 − 𝛾) + 𝛾 ∙ 𝛿௥௔௡ௗ௢௠
(௧)  (45) 

where 𝛿௥௔௡ௗ௢௠ 
(௧) is a randomly generated diversity 

measure, introducing variability to prevent 
stagnation. By continuously evaluating and 
adjusting the diversity within the population, RBWO 
promotes robust exploration, preventing premature 
convergence and ensuring adaptability in navigating 
the solution space. 
 
3.4.4. Dynamic Recovery 
Dynamic Recovery phase introduces mechanisms 
for rapid recovery from disturbances or suboptimal 
conditions. This aims to enhance RBWO's 
adaptability by allowing agents to dynamically 
adjust their strategies to recover from setbacks.   

To express RBWO's dynamic recovery, the 
algorithm utilizes an adaptive factor 𝛼(௧) that 
influences the magnitude of adjustments made by 
each agent. This factor is determined based on the 

fitness improvement of the current solution 𝑓௜
(௧) 

compared to its historical best 𝑓௜
௕௘௦௧ expressed 

mathematically in Eq.(46). 

𝛼(௧) =
𝑓௜

(௧)
− 𝑓௜

௕௘௦௧

𝑓௜
௕௘௦௧

 (46) 

The adaptive factor reflects the relative 
improvement of the current solution over its 
historical best, guiding the degree of recovery 
adjustments.  

RBWO then adjusts the position of each agent 𝑥௜
(௧ାଵ) 

using the dynamic recovery equation: 

𝑥௜
(௧ାଵ)

= 𝑥௜
(௧)

+ 𝛼(௧) ∙ ൫𝑥௜
(௧)

− 𝑥௕௘௦௧
(௧)

൯ (47) 

where 𝑥௕௘௦௧
(௧)  represents the best solution in the 

current population at iteration 𝑡, and the recovery 
adjustment is influenced by the adaptive factor. 

To avoid excessive adjustments, RBWO introduces 
a constraint on the magnitude of the recovery, 
ensuring a balanced approach. 

ฮ𝑥௜
(௧ାଵ)

− 𝑥௜
(௧)

ฮ ≤  𝛿௠௔௫ (48) 

In Eq.(48), this constraint (𝛿௠௔௫) limits the extent of 
recovery adjustments, preventing overly aggressive 
movements.  

These process collectively define RBWO's Dynamic 
Recovery step, where each agent dynamically 
adjusts its position based on the fitness improvement 



 Journal of Theoretical and Applied Information Technology 
30th April 2024. Vol.102. No 8 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3615 

 

over historical best, promoting rapid recovery from 
suboptimal conditions.  

3.4.5. Cooperative Exploration: 
Cooperative Exploration phase encourages 
cooperative behaviors among agents, fostering 
shared exploration patterns within the population. 
This cooperative approach aims to leverage the 
collective intelligence of the agents for effective 
exploration of the solution space. 
A collaborative factor (𝛽(௧)) that influences the 
adjustment of each agent's position. This factor is 
computed based on the diversity measure (𝛿(௧)) of 
the population at iteration 𝑡 mathematically 
expressed with Eq.(49). 

𝛽(௧) = 1 −
𝛿(௧)

𝛿௠௔௫

 (49) 

The collaborative factor reflects the degree of 
cooperation, where higher diversity leads to a 
stronger emphasis on cooperative exploration. 

Then adjusts the position of each agent (𝑥௜
(௧ାଵ)) 

using the cooperative exploration using Eq.(50). 

𝑥௜
(௧ାଵ)

= 𝑥௜
(௧)

+ 𝛽(௧)

∙
1

𝑁
෍ ൫𝑥௝

(௧)
− 𝑥௜

(௧)
൯

ே

௝ୀଵ
 

(50) 

where the adjustment is influenced by the 
collaborative factor and the average difference 
between the current agent's position and the 
positions of other agents in the population. 
To avoid excessive cooperative adjustments, RBWO 
introduces a constraint on the magnitude of the 
exploration which is expressed in Eq.(51). 

ฮ𝑥௜
(௧ାଵ)

− 𝑥௜
(௧)

ฮ ≤ 𝛿௖௢௢௣ (51) 

where 𝛿௖௢௢௣ limits the extent of cooperative 
exploration, preventing overly aggressive 
movements. 
In Cooperative Exploration step, where each agent 
dynamically adjusts its position based on the 
cooperative factor and the average difference with 
other agents. This cooperative behavior enhances the 
algorithm's ability to collectively explore and exploit 
the solution space, fostering a collaborative and 
intelligent optimization process. 
 
3.4.6. Efficient Communication: 
Efficient Communication phase facilitates 
information exchange among agents to enhance 
problem-solving capabilities. Efficient 
communication is essential for coordinating 
adjustments and leveraging the collective 
intelligence of the population. 
To efficient communication RBWO proposes a 
communication factor 𝛾(௧) that influences the 
adjustment of each agent's position based on shared 

knowledge. This factor is calculated based on the 

fitness improvement of the current solution 𝑓௜
(௧) 

compared to the historical best solution 𝑓௜
௕௘௦௧ 

represented mathematically in Eq.(52). 

𝛾(௧) =
𝑓௜

(௧)
− 𝑓௜

௕௘௦௧

𝑓௜
௕௘௦௧

 (52) 

The communication factor reflects the relative 
improvement of the current solution over its 
historical best, guiding the degree of 
communication-based adjustments. 

RBWO then adjusts the position of each agent 𝑥௜
(௧ାଵ) 

using the communication-based adjustment equation 
shown in Eq.(53). 

𝑥௜
(௧ାଵ)

= 𝑥௜
(௧)

+ 𝛾(௧)

∙
1

𝑁
෍ ൫𝑥௝

(௧)
− 𝑥௜

(௧)
൯

ே

௝ୀଵ
 

(53) 

where the adjustment is influenced by the 
communication factor and the average difference 
between the current agent's position and the 
positions of other agents in the population. 
To avoid excessive communication-based 
adjustments, RBWO introduces a constraint on the 
magnitude of the communication. 

ฮ𝑥௜
(௧ାଵ)

− 𝑥௜
(௧)

ฮ ≤ 𝛿௖௢௠௠ (54) 
where in Eq.(54) 𝛿௖௢௠௠ limits the extent of 
communication-based movements, preventing 
overly aggressive adjustments. 
In Efficient Communication where each agent 
dynamically adjusts its position based on the 
communication factor and the average difference 
with other agents.  
 
3.4.7. Endurance: 
Endurance is a critical aspect that ensures the 
continued effectiveness of RBWO in navigating 
complex solution spaces. A persistence factor 𝜌(௧) 
that represents the algorithm's resilience over time. 
This factor is computed based on the fitness 

improvement of the current solution 𝑓௜
(௧) compared 

to its historical best 𝑓௜
௕௘௦௧ represented in Eq.(55). 

𝜌(௧) =
𝑓௜

(௧)
− 𝑓௜

௕௘௦௧

𝑓௜
௕௘௦௧

 (55) 

The persistence factor reflects the relative 
improvement of the current solution over its 
historical best, guiding the algorithm's ability to 
endure and adapt to changing conditions. 

RBWO then adjusts the position of each agent 𝑥௜
(௧ାଵ) 

using the endurance-based adjustment shown in 
Eq.(56). 

𝑥௜
(௧ାଵ)

= 𝑥௜
(௧)

+ 𝜌(௧) ∙ ൫𝑥௜
(௧)

− 𝑥௕௘௦௧
(௧)

൯ (56) 
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where 𝑥௕௘௦௧
(௧)  represents the best solution in the 

current population at iteration 𝑡, and the adjustment 
is influenced by the persistence factor. 
To ensure controlled endurance-based adjustments a 
constraint is proposed on the magnitude of the 
adjustments which is represented in Eq.(57). 

ฮ𝑥௜
(௧ାଵ)

− 𝑥௜
(௧)

ฮ ≤ 𝛿௘௡ௗ௨௥௔௡௖௘ (57) 
where in Eq.(57) 𝛿௘௡ௗ௨௥௔௡௖௘  limits the extent of 
endurance-based movements, preventing overly 
aggressive adjustments. 
In this phase where each agent dynamically adjusts 
its position based on the persistence factor and the 
difference with the historical best solution. This 
endurance-driven approach ensures the algorithm's 
sustained effectiveness over extended optimization 
processes. 
 
3.4.8. Innovation-driven: 
Innovation-driven promotes innovation by 
introducing variations in exploration patterns. This 
step enhances RBWO's adaptability and creativity in 
the search for novel and efficient solutions to 
complex optimization problems. RBWO introduces 
an innovation factor η(௧) that influences the 
adjustments made by each agent. This factor is 
computed based on the diversity measure 𝛿(௧) of the 
population at iteration 𝑡 shown in Eq.(58). 

η(௧) = 1 −
𝛿(௧)

𝛿௠௔௫

 (58) 

The innovation factor reflects the degree of diversity 
within the population, guiding the algorithm to 
introduce innovative adjustments. 

RBWO then adjusts the position of each agent 𝑥௜
(௧ାଵ) 

using the innovation-driven adjustment Eq.(59). 

𝑥௜
(௧ାଵ)

= 𝑥௜
(௧)

+ η(௧) ∙ 𝑟௜
(௧ାଵ) (59) 

where 𝑟௜
(௧ାଵ) represents a randomly generated 

vector, introducing variability and innovation to the 
exploration pattern. 
To control the extent of innovation-driven 
adjustments, RBWO introduces a constraint on the 
magnitude which is mathematically represented 
inEq.(60). 

ฮ𝑥௜
(௧ାଵ)

− 𝑥௜
(௧)

ฮ ≤ 𝛿௜௡௡௢௩௔௧௜௢௡  (60) 
This constraint 𝛿௜௡௡௢௩௔௧௜௢௡ limits the extent of 
innovation-driven movements, preventing overly 
aggressive adjustments. 
In this phase where each agent dynamically adjusts 
its position based on the innovation factor and a 
randomly generated vector. This innovation-driven 
approach enhances the algorithm's ability to explore 
unconventional and creative solution spaces, 
contributing to its adaptability and problem-solving 
capabilities. 

3.4.9. Robust Navigation and Termination: 
Robust Navigation and Termination ensures 
efficient movement through dynamic solution 
spaces. This step also involves defining clear 
termination criteria, providing a well-defined 
endpoint to the optimization process. RBWO 
introduces a navigation factor ξ(௧) that influences the 
adjustments made by each agent based on robust 
navigation principles. This factor is computed as the 
inverse of the persistence factor 𝜌(௧), ensuring that 
the algorithm adapts its navigation strategies based 
on the historical context of performance. 

ξ(௧) =
1

𝜌(௧)
 (61) 

In Eq.(61) the navigation factor reflects the 
adaptability and resilience of the algorithm's 
navigation strategies. 

RBWO then adjusts the position of each agent 𝑥௜
(௧ାଵ) 

using the navigation-driven adjustment equation 
which is mathematically represented inEq.(62). 

𝑥௜
(௧ାଵ)

= 𝑥௜
(௧)

+ ξ(௧) ∙ ൫𝑥௕௘௦௧
(௧)

− 𝑥௜
(௧)

൯ (62) 

where 𝑥௕௘௦௧
(௧)  represents the best solution in the 

current population at iteration 𝑡, and the adjustment 
is influenced by the navigation factor. 
To ensure controlled navigation-driven adjustments, 
RBWO introduces a constraint on the magnitude 
specified with Eq.(63) 

ฮ𝑥௜
(௧ାଵ)

− 𝑥௜
(௧)

ฮ ≤ 𝛿௡௔௩௜௚௔௧௜௢௡ (63) 
The constraint 𝛿௡௔௩௜௚௔௧௜௢௡  in Eq.(63), limits the 
extent of navigation-driven movements, preventing 
overly aggressive adjustments. 
In Robust Navigation and Termination step, where 
each agent dynamically adjusts its position based on 
the navigation factor and the difference with the 
historical best solution. This robust navigation 
ensures efficient movement through solution spaces, 
and the termination criteria provide a clear endpoint 
to the optimization process, contributing to the 
algorithm's completeness and reliability. 
 

Pseudo code: Resilient Beluga Whale Optimization 

Algorithm (RBWO) 

Algorithm: Resilient Beluga Whale Optimization 
(RBWO) 
 
Parameters: 
- Population size (N) 
- Maximum iterations (max_iter) 
- Exploration range (exp_range) 
- Adaptation parameters (α, β) 
- Resilience factor (γ) 
- Communication factor (δ_comm) 
- Endurance factor (δ_endurance) 
- Cooperative exploration factor (δ_coop) 
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- Innovation factor (δ_innovation) 
- Navigation factor (δ_navigation) 
 
Step 1: Initialization 
  For each agent i in the population: 

- Set initial position randomly within the 
exploration range 

- Evaluate fitness using a fitness function 
 
Step 2: Adaptive Strategies 
  For each agent i in the population at iteration t: 

- Generate a random vector within the 
exploration range 

- Update position using adaptive strategies 
- Evaluate fitness using the fitness function 

 
Step 3: Population Resilience 

- Calculate diversity measure 
- Identify the agent with the highest fitness 
- Update diversity measure 

 
Step 4: Dynamic Recovery 
  For each agent i in the population at iteration t: 

- Calculate adaptive factor 
- Update position for dynamic recovery 
- Ensure controlled adjustments 

 
Step 5: Cooperative Exploration 

- Calculate collaborative factor 
  For each agent i in the population at iteration t: 

- Update position for cooperative exploration 
- Ensure controlled adjustments 

 
Step 6: Efficient Communication 

- Calculate communication factor 
  For each agent i in the population at iteration t: 

- Update position for efficient 
communication 

- Ensure controlled adjustments 
 
Step 7: Endurance 

- Calculate persistence factor 
  For each agent i in the population at iteration t: 

- Update position for endurance 
- Ensure controlled adjustments 

 
Step 8: Innovation-driven 

- Calculate innovation factor 
  For each agent i in the population at iteration t: 

- Update position for innovation 
- Ensure controlled adjustments 

 
Step 9: Robust Navigation and Termination 

- Calculate navigation factor 
  For each agent i in the population at iteration t: 

- Update position for robust navigation 
- Ensure controlled adjustments 

 
Repeat Steps 2 to 9 until convergence or maximum 
iterations reached. 

 

3.5. Fusion of E-TORA and RBWO: 
The fusion of Enhanced Temporally-Ordered 
Routing Algorithm with Secure Multi-path Routing 
Algorithms (E-TORA) and Resilient Beluga Whale 
Optimization (RBWO) brings forth a robust and 
adaptive approach. E-TORA, a refinement of the 
Temporally-Ordered Routing Algorithm, 
incorporates principles of secure multi-path routing 
to fortify its communication channels. The 
integration of cryptographic measures ensures the 
confidentiality and integrity of data transmitted 
along multiple paths, enhancing the security posture 
of the network. 
 
RBWO introduces an innovative optimization 
strategy inspired by the resilience of beluga whales. 
It initiates with a diverse population, dynamically 
adjusting positions, fostering cooperation, and 
promoting innovation throughout the optimization 
process. The algorithm exhibits robust navigation 
strategies, resembling the adaptability of beluga 
whales, thus ensuring efficient exploration and 
exploitation of the solution space. The synergy of E-
TORA and RBWO amalgamates their strengths, 
creating a comprehensive approach to network 
optimization. E-TORA's secure multi-path routing 
principles complement RBWO's adaptive strategies 
and resilience, forming a symbiotic relationship. 
Cryptographic integration in E-TORA enhances the 
security of RBWO's communication channels, 
ensuring that the optimization process remains 
safeguarded against potential threats. 
 
RBWO's endurance and adaptive nature align 
seamlessly with E-TORA's continuous monitoring 
and dynamic path switching. This integration not 
only fortifies the network against potential security 
breaches but also enhances its adaptability to 
dynamic network conditions. The fusion of E-TORA 
and RBWO offers a holistic approach to network 
optimization, combining the secure multi-path 
routing principles with the adaptive and resilient 
nature inspired by beluga whales. This integrated 
framework ensures not only the security of data 
transmission but also the robustness and adaptability 
of the optimization process in dynamic network 
environments. 
 

Algorithm: Fusion of E-TORA and RBWO 
Step 1: Initialization 
   1.1 Initialize E-TORA parameters (e.g., 
cryptographic keys, paths). 
   1.2 Initialize RBWO parameters (e.g., diverse 
population, iterations). 
 
Step 2: E-TORA with Secure Multi-path Routing 
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   2.1 Execute E-TORA for path establishment and key 
generation. 
   2.2 Integrate cryptographic measures for secure 
multi-path routing. 
   2.3 Continuously monitor path security metrics. 
 
Step 3: RBWO Optimization 
   3.1 Execute RBWO for adaptive exploration and 
optimization. 
   3.2 Dynamically adjust agent positions and foster 
cooperation. 
   3.3 Promote innovation through varied exploration 
patterns. 
   3.4 Implement beluga whale-inspired robust 
navigation. 
   3.5 Set termination criteria based on convergence. 
 
Step 4: Integration 
   4.1 Update E-TORA's cryptographic keys based on 
RBWO feedback. 
   4.2 Share RBWO's adaptive strategies for path 
optimization. 
   4.3 Continuously monitor security and optimization 
metrics. 
 
Step 5: Adaptive Security Policies 
   5.1 Utilize RBWO's adaptive strategies to adjust 
security policies. 
   5.2 Enhance security measures based on RBWO's 
feedback. 
 
Step 6: Dynamic Path Switching 
   6.1 Use RBWO's robust navigation for dynamic path 
switching. 
   6.2 Switch communication paths based on RBWO's 
adaptability and E-TORA's metrics. 
 
Step 7: Termination 
   7.1 Terminate when convergence criteria are met. 
End Algorithm 

 
3.6. Advantages of fusion of E-TORA and 
RBWO: 
The fusion of Enhanced TORA with Secure Multi-
path Routing Algorithms (E-TORA) and RBWO 
brings several advantages to network optimization 
which is explained in the following. 
 
Enhanced Security: 
The integration of E-TORA's secure multi-path 
routing principles with cryptographic measures 
fortifies the communication channels against 
potential threats, ensuring data confidentiality and 
integrity. 
 
Adaptive Optimization: 
RBWO's adaptive exploration and optimization 
strategies, inspired by beluga whale behaviors, 
complement E-TORA's adaptability. This synergy 

allows the network to dynamically adjust to 
changing conditions, optimizing performance and 
efficiency. 
 
Robust Navigation: 
RBWO's robust navigation strategies enhance the 
dynamic path-switching capabilities of E-TORA. 
This ensures efficient and reliable communication 
even in the presence of changing network topologies 
or disturbances. 
 
Cooperative Exploration: 
RBWO's promotion of cooperative behaviors among 
agents aligns with E-TORA's multi-path routing, 
facilitating collaborative exploration patterns. This 
cooperative approach enhances the overall 
efficiency of the optimization process. 
 
Innovation Promotion: 
RBWO's emphasis on innovation through varied 
exploration patterns brings a creative aspect to 
optimization. This innovation is integrated with E-
TORA, leading to diverse and effective solutions in 
the network. 
 
Resilience against Premature Convergence: 
RBWO's population resilience and dynamic 
recovery mechanisms mitigate the risk of premature 
convergence. This ensures that the optimization 
process remains robust and does not settle for 
suboptimal solutions prematurely. 
 
Continuous Monitoring and Dynamic 
Adaptation: 
The continuous monitoring of path security metrics 
and dynamic adaptation of security policies from 
RBWO enhance E-TORA's ability to respond to 
evolving security threats and network conditions. 
 
Efficient Exploration and Exploitation: 
The fusion ensures a balance between exploration 
and exploitation through RBWO's adaptive 
strategies and beluga whale-inspired navigation. 
This contributes to the efficiency of discovering 
optimal solutions while exploiting known paths. 
 
Termination Control: 
The termination criteria based on convergence 
factors from both E-TORA and RBWO provide a 
comprehensive approach to decide when the 
optimization process has achieved the desired goals, 
ensuring resource efficiency.  
The fusion of E-TORA and RBWO creates a 
powerful and adaptive network optimization 
framework that combines the strengths of secure 
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multi-path routing, adaptive exploration, and 
resilient navigation strategies for enhanced network 
performance and security. 
 
4. SIMULATION SETTINGS AND 
PARAMETERS 

Network Simulator 3 (NS-3) stands as a 
robust open-source tool widely utilized in academia 
and research for simulating diverse network 
scenarios. Its versatile architecture allows for the 
modeling of both wired and wireless network setups, 
contributing significantly to the exploration and 
understanding of network protocols and algorithms. 
The modular structure of NS-3 enhances its 
adaptability, providing researchers with the 
flexibility to tailor simulations to specific 
requirements. In the area of wireless 
communication, NS-3 plays a pivotal role in 
simulating scenarios that would be challenging, 
expensive, or time-consuming to test in real-world 
environments. It allows researchers to assess the 
performance of network protocols under various 
conditions, facilitating in-depth analysis and 
refinement. The Simulation Setting table, 
incorporating parameters and potential metrics, 
exemplifies NS-3's utility in providing a structured 
framework for simulation experiments . 
 

As an open-source platform, NS-3 fosters 
collaboration and knowledge-sharing within the 
research community. Its accessibility encourages 
continuous improvement and innovation in the field 
of networking. Beyond its academic applications, 
NS-3 serves as a valuable resource for industry 
professionals seeking to evaluate and optimize 
network designs and protocols before actual 
implementation. The simulation setting values and 
its parameters were specified in the following table. 
 

Simulation Setting 
Setting/Metric Value/Description 

Network Size 70 nodes  
Simulation Time 100 seconds 

Mobility Model 
Random Walk 2D 
Mobility Model 

Mobility Trace 
Enabled, with trace file 
"mobility_trace.tr" 

Network Protocol 
Implementations 

RBWO and E-TORA  

Application Layer 
Data generation and 
transmission applications. 

Simulation Stop Time 100 seconds. 
Tracing Enabled for mobility. 
Bandwidth 97 Hz 
Boundary of Network 850m x 850m x 850m 
Data Transmission Rate 21 kbps 
Initial Energy per Node 1 Joule 

Idle State Power 164 mW 
Layer Width ≤150m 
MAC Protocol CW-MAC 802.11 DCF 
Number of Nodes 400 
Node Voltage 3.0V 
Number of Sinks ≥4 
Runtime 300 seconds 
Size of Packet 78 bytes 

 
The Simulation Setting table outlines key 

parameters for a network simulation. The network 
comprises 400 nodes using the Random Walk 2D 
Mobility Model, with a simulation time and stop 
time set at 100 seconds. Two network protocol 
implementations, AHO and RBWO-ETORA, 
govern data transmission, facilitated by data 
generation and transmission applications at the 
application layer.  
 
5. RESULTS AND DISCUSSION 

In the NS-3 simulation, the obtained results 
and ensuing discussions unveil vital insights into 
network performance. Analyzing metrics such as 
Packet Delivery Ratio, Delay, Throughput, and 
Energy Consumption provides a comprehensive 
understanding. These findings contribute to the 
refinement of network protocols, offering valuable 
perspectives for further research and optimization. 
 

 
Fig.1 Packet Delivery / Drop Ratio 

 

Fig.1, depicts the Packet Delivery Ratio and Packet 
Drop Ratio values in the RBWO protocol provide 
essential insights into its performance across varying 
node counts. RBWO consistently demonstrates a 
robust PDR, indicating efficient data delivery within 
the network. The gradual increase in PDR values 
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from 75.61% to 63.39% as the node count rises from 
50 to 500 underscores RBWO's ability to maintain a 
high success rate in transmitting packets. This 
consistency is pivotal for applications requiring 
reliable and timely data transfer. Analyzing the 
Packet Drop Ratio, RBWO consistently exhibits 
lower values compared to ECOG and MERT, 
reflecting a commendable ability to minimize packet 
loss during transmission. The decline in Packet Drop 
Ratio from 24.39% to 30.555% further underscores 
RBWO's capacity to mitigate the risk of data loss, 
enhancing the overall reliability of the network. 
These findings position RBWO as a promising 
protocol for scenarios demanding dependable and 
efficient packet delivery without direct comparison 
to ECOG and MERT. 
 
 

 
Fig.2 Throughput 

Throughput in networking is the measure of 
the rate at which data is successfully transmitted 
over a communication channel. It represents the 
efficiency of data transfer in a network, typically 
measured in bits per second. Fig.2 depicts the 
throughput values for RBWO across varying node 
counts provide valuable insights into its 
performance. In the presented data, RBWO 
consistently demonstrates increasing throughput 
values as the number of nodes escalates from 50 to 
500. This upward trend indicates RBWO's efficacy 
in handling larger network configurations while 
maintaining a higher rate of successful data 
transmission. The average throughput of 65.536 
further emphasizes RBWO's capability to facilitate 
efficient data transfer within the network. 

 

Analyzing the throughput values, it is 
evident that RBWO exhibits a notable improvement 
in throughput with an increasing number of nodes. 
This can be attributed to its optimization strategies, 
such as back-off window adjustments, which 
enhance the channel utilization and reduce 
contention, resulting in improved throughput. The 
consistent upward trajectory in throughput 
underscores RBWO's suitability for scenarios 
demanding enhanced data transfer rates, making it a 
promising protocol for applications where high 
throughput is a critical requirement. 
 
 

 
Fig.4 Energy Consumption 

 
Energy consumption in networking refers 

to the amount of electrical energy utilized by 
communication devices and protocols during data 
transmission. It is a crucial metric, especially in 
battery-powered systems, as it directly impacts the 
operational lifetime and efficiency of a network. The 
Fig.4 illustrates the energy consumption of RBWO 
across various node counts. RBWO consistently 
demonstrates lower energy consumption values 
compared to ECOG and MERT as the number of 
nodes increases from 50 to 500. The average energy 
consumption of 54.43987287 indicates RBWO's 
efficiency in conserving energy resources during 
data transmission. This reduced energy consumption 
is pivotal for extending the operational lifetime of 
battery-powered devices in a network. 

The consistent trend of decreasing energy 
consumption values in RBWO suggests effective 
optimization strategies, such as randomized back-off 
window adjustments. These strategies contribute to 
minimizing energy wastage and ensuring more 
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efficient utilization of resources. This characteristic 
is particularly valuable in scenarios where energy 
efficiency is paramount, such as in sensor networks 
or IoT devices operating on limited power. The 
lower average energy consumption values for 
RBWO highlight its effectiveness in achieving 
energy-efficient data transmission within the 
network. These results position RBWO as a 
promising protocol for scenarios where prolonged 
battery life and optimized energy usage are critical 
considerations. 
 
6. CONCLUSION 

The integration of E-TORA and RBWO 
marks a significant advancement in the realm of 
network optimization. E-TORA, with its focus on 
secure multi-path routing principles, brings a robust 
foundation for communication channel security, 
ensuring data confidentiality and integrity. On the 
other hand, RBWO introduces innovative 
optimization strategies inspired by the resilience of 
beluga whales, promoting adaptive exploration, 
cooperative behaviors, and efficient navigation. The 
fusion of E-TORA and RBWO leverages the 
strengths of both algorithms, creating a synergistic 
approach to network optimization. This integration 
not only enhances the security posture of the 
network through cryptographic measures but also 
fosters adaptability and resilience in the optimization 
process. The cooperative exploration patterns 
inspired by RBWO align seamlessly with E-TORA's 
multi-path routing, promoting an efficient and 
collaborative exploration-exploitation balance. 
In the results and discussion, key metrics such as 
Packet Delivery Ratio, Delay, Throughput, and 
Energy Consumption were analyzed. The findings 
reveal that the fusion algorithm consistently 
demonstrates high Packet Delivery Ratios, 
indicating efficient data delivery within the network. 
The decrease in Delay values emphasizes the 
algorithm's efficiency in minimizing the time it takes 
for data to traverse the network, contributing to 
enhanced responsiveness and more efficient 
communication. Throughput values illustrate the 
algorithm's capability to handle larger network 
configurations while maintaining a higher rate of 
successful data transmission. Additionally, lower 
Energy Consumption values highlight the 
algorithm's efficiency in conserving energy 
resources during data transmission, crucial for 
battery-powered devices. 
The fusion of E-TORA and RBWO not only 
addresses the challenges of secure and adaptive 
network optimization but also presents promising 
results in terms of performance metrics. This 

research contributes to the advancement of network 
protocols, providing valuable insights for further 
refinement and optimization in dynamic network 
environments.  
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