
 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3592

A HEURISTIC-BASED METHOD FOR DEMAND-BASED
REUSABLE COMPONENT DESIGN CONFIGURE:

AN EMPIRICAL ANALYSIS

N MD JUBAIR BASHA1*,Dr GOPINATH GANAPATHY2, Dr MOHAMMED MOULANA3

1Research Scholar, Department of Computer Science & Engineering, Bharathidasan University,

Tiruchirappalli, Tamil Nadu, INDIA
2Senior Professor, Department of Computer Science & Engineering, Bharathidasan University,

Tiruchirappalli, Tamil Nadu, INDIA.

3Professor, Department of Computer Science & Engineering, Koneru Lakshmaiah Educational Foundation,
Vaddeswaram, Guntur, Andhra Pradesh, INDIA

Email: jubairbasha@gmail.com*

ABSTRACT

During software development, the developer must select components from the repository that meet the needs
of the customer. If the repository has legacy components that fit the client's needs, they may easily be
removed and delivered to the customer. If the developer is unable to locate the specific components required,
the developer must configure the equivalent components from legacy components before delivering the
solution. In other circumstances, when the developer is unable to locate components in the repository that do
not satisfy the customer's needs, the components must be developed from scratch. The linked work now
addresses the situation in which the developer discovers components that only partially satisfy the customer's
needs. The identification of components, their reusability, and their ability to be grouped with other
components are all investigated in this proposed work. The use of a heuristic method in the creation of
configurable reusable components is discussed in this article. The major focus of this work is on the situations
in the components, with the characteristics from the scenarios being identified. Furthermore, in a facade,
these functions are organized as configurable reusable components. An empirical analysis was also
conducted. This makes it possible for developers to locate the configured reusable components.

Keywords: Software Components, Configured Reusable Components, Façade, Feature Point, Lack Of
Cohesion In Methods, Heuristic Function

1. INTRODUCTION

Programmers have been reusing algorithms,
subroutines, and chunks of code from
previously produced programmes since the
beginning of programming. Mcllory [1], who
stressed the importance of component-based
software systems, was the first to codify the
concept of software reuse. The application of
Mcllory's concept resulted in thoughts for
developing software systems in the same way
that hardware systems are developed (e.g.
electronic circuits). Later study focused on
reuse and its potential orientations, as well as
the value of reuse [2, 3]. Most of the largest
software development vendors, such as IBM,
HP, and Motorola, have adopted reuse as one
of their regular paradigms on their production

lines, and many others have claimed positive
results with reuse in their software development
projects [4]. Software reuse is a method of
generating, organizing, and locating reusable
components for future development. The two
major strategies for recycling software are
generally recognized: developing with reuse
and creating for reuse. The former strategy
includes features such as classifying and
searching for software components, whereas the
later technique focuses on creating and
producing reusable components. In reality,
reuse development is a prerequisite for reuse
development since you can't reuse a component
that isn't even available. Until date, it appears
that there has been no widely acknowledged
standard for the design of reusable software
components [12]. With (object-oriented) class
libraries, application frameworks, and design

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3593

patterns, as well as source code [7], the reuse
of design is becoming more common. Two
complimentary strategies of reusing legacy
components were presented by Jianli.et al[10].
Many techniques, as well as design flaws in
reusable domain-specific components, have
been examined in earlier work. Until date, it
appears that there has been no widely
acknowledged standard for the design of
reusable software components [12]. This
encourages utilizing a heuristic-based
approach to develop configurable reusable
components. Looking at sequence diagrams
and identifying situations from the use case
diagram is how the heuristic-based method is
done. For modifying the behavior of the
components, feature points (FP) can be used.
Developers may quickly detect the common
behavior of components based on client needs
by utilizing feature points (FP). Compared to
the many ways outlined above [12, 13, 14, 15,
17], this can help to identify the components
and make them more reusable. This paper
discusses about the heuristics-based approach
for demand based reusable component design
configure which is performed by empirical
analysis.

This paper is structured as follows. Section 2
discusses the related work with extensive
literature on component reuse. Section 3
discusses the need for the proposed work and
highlights the drawbacks of the earlier
approaches. This section provides the
motivation for this paper. Section 4
implements the proposed Heuristic-Based
Method for Demand-Based Reusable
Component Design Configure. Section 5
examines the mathematical results for the
proposed heuristic-based approach and
compares the existing approaches by
conducting empirical analysis. Section 6
concludes the work with a future proposal.

2. RELATED WORK

The use of existing software or the creation of
new software based on software knowledge is
referred to as software reuse. Software or
software expertise are both examples of
reusable assets. A software asset's reusability is
indicated by its reusability feature [5]. The
process of designing software and reusing it [6]
is referred to as software reuse. We can reduce
software development complexity, improve
product quality, and speed up production in the

organization by reusing software. During
software development, the developer must
select components from the repository that meet
the criteria of the client. If the repository has
legacy components that fit the customer's needs,
they can be removed and the product provided
to them. If the developer cannot discover
exactly the correct components, the product
must be delivered after configuring the
corresponding components from legacy
components. In other circumstances, if the
developer is unable to locate components in the
repository that do not satisfy the customer's
needs, the components must be developed from
scratch. The linked work now addresses the
situation in which the developer discovers
components that only partially fulfill the
customer's criteria. The identification of
components, their reusability, and their ability to
be grouped with other components are all
examined in this work. With (object-oriented)
class libraries, application frameworks, and
design patterns, as well as source code [7],
design reuse has become increasingly prevalent.
Two complimentary strategies of reusing legacy
components were presented by Jianli et al [10].
Component evolution is permitted among them,
and this is accomplished by binary class
inheritance between component modules.
Semantic entities define the other, which can be
built at compile time or bound at runtime.
Despite the fact that component confinement
remains the primary reuse mechanism that leads
to the establishment of software product lines
[8]. In order to locate the components again, a
large amount of data must be collected,
preserved, and analyzed. Maurizio et.al.[11]
presented a way for automatically generating a
software catalogue that includes tools for
preserving and retrieving data [9]. Product reuse
and Process reuse are the two major kinds of
software reuse. Through module integration and
design, product reuse entails reusing a software
component while also creating a new
component. Reusing legacy components from
the repository is referred to as process reuse.
These parts can be reused without modification
or with minimal changes. By versioning these
components, the updated software components
may be preserved. Depending on the desired
domain, components may be categorized and
selected [10]. The use of existing software or the
creation of new software using software
expertise is referred to as software reuse.
Software or software expertise are both

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3594

examples of reusable assets. The feature of
reusability reflects the likelihood of a software
asset being reused [5]. The process of using
"designed software for reuse" over and over
again is referred to as "software reuse" [6]. We
can control software development complexity,
improve product quality, and speed up
production in the company by reusing
software.

In software development, as per the customer’s
requirements, the developer needs to identify
the components from the repository. If the
repository contains the legacy components
which matches with the customer requirements
can be easily extracted and deliver the product
to the customer. If the developer doesn’t find
the exactly matching components, then it is
necessary to configure the relevant
components from the legacy components and
will deliver the product. In other case, if the
developer does not find the components which
not at all matching the customer’s requirements
from the repository, it is necessary to develop
the components from the scratch. Now the
related work is concerned with the case when
the developer identifies the components which
are partly matching with the customer’s
requirements. This work explores the
identification of components up to what extent
they can be reusable and what extent they can
be grouped with the other components?

With (object-oriented) class libraries,
application frameworks, and design patterns,
as well as the source code, the reuse of design
has established itself [7]. Jianli et al. offered
two strategies for reusing legacy components
that are complimentary to one other. One of
them permits component evolution through
binary class level inheritance across
component modules. The other is by specified
semantic entity, which can be constructed or
bound at runtime. Although component
confinement remains the primary reuse
paradigm that contributes to the creation of
software product lines [8]. For the retrieval of
the components, a large amount of data must
be gathered, preserved, and analyzed. Maurizio
has developed an approach for automatically
creating a software catalogue [9], which
includes tools for preserving and retrieving
information. Product reuse and Process reuse
are the two major kinds of software reuse. The
term "product reuse" refers to the recycling of

software components as well as the creation of
new components as a consequence of module
integration and building. The reuse of old
components from the repository is referred to as
process reuse. These components can be reused
without modification or with minor changes.
Versioning these components allows the
updated software component to be archived.
Depending on the necessary domain, the
components can be categorized and selected
[10]. Identifying objects and processes for a
class of related systems for a certain domain can
help enhance software reuse. Domains are areas
of application in software engineering [11]. So,
the domain specific components are considered
as a part of this research work to carry out.

Figure 1. Organization for Component Management

A component's design is critical to its
functionality. The ability to reuse something is
not a byproduct. For reuse, there must be
specifications, building, and testing. It costs up
to ten times more to design new software for a
component as a result of this. For a good
component, many criteria have been proposed.
The following are a few of the criteria: The
component should be used to represent a
concept. It should be extremely well-
coordinated, with just the operations required
for effective utilization. It also requires a well-
defined interface in terms of both syntax and
semantics. If the names of two operations in two
distinct components are the same, they should
function identically. Their writing style, on the
other hand, should be identical for clarity. The
component must be self-contained, loosely
coupled, and hence have low coupling with
other parts. Independence comes from an
object-oriented perspective. The component
should be a generic abstraction that may be used

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3595

in a variety of applications without requiring
any additional modifications. Internal and
outward comprehension are both necessary.
Good components are serviced for a long
period since they have a long-life expectancy.
The component system handles the selection,
classification, and maintenance of components
in the repository, as well as the creation of new
ones. The component repository should be
available to everyone in the development team.
Ideally, the component repository will be
shared by several products. As a result, the
component system should be able to handle
several projects. The creation of new projects
necessitates the inclusion of the necessary
components. The project proposals should be
evaluated by a software component committee,
which is made up of experienced designers and
one representative from the components
department. You should consider if the
proposed components require further
development. If the component's design is
finalized, it is sent to the component design
department with a deadline. It's then added to
the component repository and given a new
version status, as illustrated in Figure 1. The
software component group should evaluate the
value of the component when it is in use.
Software systems are still grappling with the
task of identifying reusable components. The
domain-specific components [16] face the
similar difficulty. Won Kim et al. [13] divide
component-based reuse into two categories:
without modification and with change. Simply
selecting a component from a software
component repository and inserting it into
newly generated software is referred to as
reusing without change. General functions in
programming language libraries, such as the
arithmetic functions in the C programming
library, are one of the known mechanisms for
this sort of reuse. The most significant cause
for legacy components that cannot be reused in
their original form is the functional difference.
A functionally coordinated existing component
and a new component to be built is rare. The
new component under development may
necessitate certain changes to the older
components' equivalent functions, as well as
the inclusion of new functions. Similar
granular components, on the other hand, are
unlikely to be reused without change across
product lines (or business units). The described
function reuse, however, poses a hurdle.
Identification of most reusable software is still

an issue [21,22].

2.1 MOTIVATION
During software development, the developer
must identify the components from the
repository according to customer requirements.
If the repository contains the legacy components
that meet the customer's requirements, they can
simply be extracted and the product shipped to
the customer. If the developer does not find
exactly the right components, it is necessary to
configure the corresponding components from
the legacy components and to deliver the
product. In other cases, when the developer
cannot find the components from the repository
that do not meet customer requirements at all, it
is necessary to develop the components from
scratch. The associated work now deals with the
case that the developer identifies the
components that partially meet the customer
requirements The identification of components,
their reusability, and their ability to be grouped
with other components are all examined in this
work. The developer must determine the
common behavior of the components from
historical components according to client
requirements. Components with similar
behavior can be reused. With (object-oriented)
class libraries, application frameworks, and
design patterns, as well as source code [7],
design reuse has become increasingly prevalent.
Two complimentary strategies of reusing legacy
components were presented by Jianli. et al.
Many techniques that do not develop reusable
domain-specific components have been
described in earlier work. Until date, it appears
that there has been no widely acknowledged
standard for the design of reusable software
components [12]. This motivates designing
special types of components that share a
behavior that must be identified by the legacy
components. Feature Oriented Software
Development (FOSD) [14] uses object-oriented
languages with special classes that define
features and develop object-oriented systems by
keeping feature objects together. AsmaaAlyaed
et al. [15] has presented an approach to domain
engineering that extends Feature Oriented
Domain Analysis (FODA). This approach
constructs the function model as an executable
architecture and thus enables the definition of
the reference architecture as such a function
model with variability, as it is defined in the
feature model. Even so, this approach of using
state diagrams to aid decision-making in

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3596

identifying the features is contemplated. The
state diagram diagram may not identify all
behaviors related to the domain-specific
components. The greatest challenges in reuse
are to find the right reusable device from the
multitude of functions and to adapt the reusable
device to current needs and licensing problems
[16].Collin McMillan et.al.[17] created an
approach named Portfolio for finding high
relevant functions from the archive of C/C++
source code. To address the needs of
programmers to reuse retrieved code as
functional abstractions. However, this
approach is subjected to only C/C++
programming code but not for all the object-
oriented approaches. However, commonly
accepted standard for designing reusable
software components seems to be
unrecognized widely till now [12].The above
literature motivates to propose a heuristic
based approach by considering sequence
diagram and identifying scenarios from the use
case diagram. The feature point (FP) can be
considered for the change in the behavior of the
components which was not discussed in any of
the above approaches. This may help to
identify and make the components more
reusable rather than the previous discussed
different approaches [12, 13, 14, 15,17].
Identification of most reusable software is still
an issue [21,22,25]. Among them some of the
issues are also highlighted in [23,24,26,27,28].
The proposed work fits better to the object
oriented systems only.

3. A HEURISTIC-BASED METHOD FOR
DEMAND-BASED REUSABLE
COMPONENT DESIGN CONFIGURE
Fichman et al. [18] have suggested that
heuristic approaches encourage reuse where it
can be most efficiently practiced than the other
approaches, as discussed earlier. The heuristics
can be defined in such a way that a specific
solution to a specific problem is achieved. The
use of heuristics generally corresponds to the
need of decision makers to efficiently generate
satisfactory solutions. This motivates to
propose a heuristically based approach versus
other approaches discussed earlier.

3.1. FAÇADE
Facade is a packaged subset of components, or
references to components, selected from the
component system [19]. Each facade provides
public access to only those parts of the

component system that have been selected for
reuse. Facade enables developers to extract the
reusable components from the legacy systems.

3.2. FEATURE

A feature is a use case, part of a use case or a
responsibility of a use case [19]. A feature point
is a variability of features.

The proposed Heuristic-Based Method For
Demand-Based Reusable Component Design
Configure is as follows:
1. Step I: Consideration of use cases and actors
from the use case diagram generated from the
system.
2. Step II: Identify scenarios from the use case
diagram.
3. Step III: The identified scenarios are
implemented in the sequence diagram. The
common scenarios, i.e.. Features that are the
same in the domains are extracted. The
functions are collected from the scenarios of the
components.
4. Step IV: The reusability levels of the
components can be identified by using a
measure of the LCOM of the different scenario
scenarios.
5. Step V: These functions are collected and
placed in a configured reusable component C.
grouped 'extracted from various domain-
specific components in a facade.
6. Step VI: The configured reusable component
consists of feature points (FP) that differ from
feature to feature.
7. Step VII: The heuristic function is applied in
identifying the feature points (FP) for
component reuse.
8. Step VIII: Repeat Step IV for all components
in the component-based systems.
The above approach can be realized using the
different case studies as follows:
The point of sale case study is very popular and
is used in many large supermarkets or
department stores and is used to meet the needs
of the sales system. This is an online system and
is used to manage or control most large store
activity. This case study manages and controls
the inventory details and does the online
accounting and generates various online reports.
Figure 2, describes the use case diagram of the
point of sale component. The actors are the
customer and the cashier. Both actors interact
with each use case. The list of use cases are Buy
Product, Barcode Scanning, Paybill, Process

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3597

Sale, Complete Sale, Update Inventory, and
Tax Calculation. Various scenarios were
identified from this use case diagram.

Figure 2. Use case Diagram of Point of Scale

Table 3. Total scenarios identified in Point of sale

Component
Name

Total
Number
of Actors

Total
Number
of
Usecases

Total
Number of
scenarios
identified

 Point of Sale 2 7 8

Figure 3: Usecase Diagram of Recruitment

System

Figure 3 shows the use case diagram of the recruiting
component. The use case diagram includes the three
actors Interveiwer, Participant and Scorer. About 10
use cases interact with these three actors. Table 4
contains the list of scenarios identified from this use
case diagram

Table 4. Total Scenarios identified in Recruitment Systems
Component
Name

Total
Number
of
Actors

Total
Number
of
Usecases

Total
Number
of
scenarios
identified

Recruitment 3 10 22

Figure 4. Sequence Diagram of Point of Sale

The sequence diagram for the point of sale
component is shown in Figure 4. Cashier is the
limit class that interacts with the point of sale.
The scenarios identified in the use case diagram
are implemented in the sequence diagram. Each
scenario is illustrated one after the other. There
are also some scenarios that in turn act as the
component's response. Code scanners and code
readers are the different control classes of this
sequence diagram. Bank is the entity class.
Different methods relate to the boundary, control
and entity classes. These methods are the
relevant behavior modeling of the system. The
different scenarios are identified by the point of
sale system, but the other component systems
such as online quiz, point of sale, recruitment
system, web interactive and education system
are also taken into account, but not recognized.
The point-of-sale component is only
implemented. The features are considered from
the scenarios obtained from the sequence
diagram. The common and related features are
extracted and grouped into a new component C1
'and C2'. These are known as configured
reusable components. A configured reusable
component contains the general and related
functions. Such configured reusable
components are grouped into a facade. The
building owners can easily remove the reusable
components as a facade. The overall

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3598

presentation of the concept is shown in Figure
5. This applies to the component-based systems
of the domain-specific components. The
configured reusable components can also differ
for different domain-specific components.

4.DEMAND BASED REUSABLE
DOMAIN-SPECIFIC SOFTWARE
COMPONENTS: AN EMPIRICAL
EVALUATION

The reuse of software components can be
assessed taking into account the heuristics
discussed above. The results were evaluated
taking into account the domain-specific
components. The various domain components
were realized and implemented according to
the identified heuristics. The scenarios were
identified in the use case diagram. These were
implemented in the sequence diagram. The
empirical evaluations of the domain-specific
component reuse are discussed in detail, taking
into account the lack of cohesion of the
methods (LCOM). The metrics were identified
to determine the level of component reuse. The
measure “Lack of cohesion in methods”
(LCOM) [20] focuses on the cohesion between
methods of a class used in the case studies
discussed. The LCOM measure can be defined
as follows

LCOM= 

Figure 5: Component Based System representing a facade

and Domain specific reusable components

 P = { (Ci, Ci) | CiCj =  }

and
 Q = { (Ci, Ci) | CiCj }

Where  stands for stands for the operation of
intersection of two sets of components and  denotes
an empty sets.
If all sets { C1, C2 , C3 , ------------Cn} are empty then
let P = .
C1={prepareinvoice(),buyproduct(),barcodescanning
(),paybill(),processsale(),clearsale(),updateinventory(
),calculate() }
C2={ score(), time(), calculate(),
prize(),rules(),No.ofteams(),No.ofparticipants(),
calculate(), conductexam() }
C3={createwebpage(),clearwebpage(),
updatewebpage(), setpage(),stayonpage(),
addcontent(), modifycontent(), clearcontent(),
submitwebpage()}
C4={conductexam(),results(),internalexam(),timetabl
e(),externalexam(),calculateresult(),calculateattendan
ce(),generatenotice(),generatesalary(),updateattendan
ce(),clearcontent()}
C5={checkqualifications(),submitCV(),shortlistcandi
dates(),announceresult(),conducttest(),conductintervi
ew(), checkexperience(), shortlistcandidates()}
All similar method interactions from the behavioral
scenarios obtained above apply mathematically. The
common methods are identified using the above
mathematical model. This results as follows:

 C1  C3 = {  }

 C1  C4 = {  }
 C1  C5 = {  }
 C2  C3 = {  }

 C3  C5 = {  }
 C4  C5 = {  }
C1  C2 = {calculate ()}
C2  C4 = {conductexam()}
C2  C5 =

{announceresult()}
C3  C4= {clearcontent()}

Next, the value of both P and Q from the
above replacement of various methods can be
analyzed from these empirical values. The
value is assigned under the P and others are
assigned under the Q.
P={(C1,C3),(C1,C4),(C1,C5),(C2,C3),(C3,C
5), (C4,C5)}
Q= {(C1,C2),(C2,C4),(C2,C5),(C3,C4)}

and finally
LCOM = | P | - | Q | = 6 – 4 =2

The LCOM measure shows the desperation of

| P | - | Q | ,

 if | P | > | Q |

0
Otherwise

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3599

the methods in the components. The higher the
value of LCOM, the lower the similarity
between the methods in the components, i.e.
The LCOM measurement therefore makes it
possible to know the degree of reusability of
methods in the components. The LCOM
measured value for the assigned components is
reached at the value '2'. This means that the
value of LCOM for these component systems
is very low. The reusability of the components
is very high. It is analyzed that the LCOM value
of different components in different
component-based systems can vary. Taking
into account the above Q, related methods are
grouped in a facade in the component systems.
This facade makes it possible to identify
reusable components in the component
systems. The builders can easily extract the
reusable components from this facade.
Furthermore, the components in the facade are
again separated according to the changed
features with the feature points. A feature point
(FP) is the variability of the features. The points
of variation are reached depending on the
differences in the characteristics of the other
methods in the facade. The heuristic function is
taken into account for the identification of the
feature points as follows:

Hreuse= LCOM { Ci } > | 2 |

The above equation describes the heuristic
function. This feature helps identify variations
in the configured reusable components. This
heuristic function takes into account a value of
approximately 2. The value for lack of cohesion
in methods (LCOM) can be equal to or greater
than 2, since at least 2 characteristics must be
taken into account, which are almost identical
in their behavioral implementation. These
feature points are used to identify those features
in the components that have different
behavioral functions. The value of the heuristic
function is determined by the behavior of the
component system. This can vary from
different component systems and the number of
components used in the system. By considering
the above heuristic function, the feature point
can be identified. This helps in deciding the
feature point in the configured reusable
components. According to the requirements,
the developers can easily recognize the
common behavior of the components using the
feature points (FP). In Figure 5, FP1 and FP2
are the feature points identified in the C1

'configured reusable component in the facade.
FP3 is the feature point identified in the C2
'configured reusable component in the facade.
FP1, FP2 and FP3 are identified using the
heuristic function. The feature points were
identified as a function of the features with their
behavioral aspects of the components. It was
found that FP1, FP2 and FP3 show at least 2
behavioral characteristics of the selected
components. This is achieved through the lack
of method cohesion (LCOM). Thus, feature
points help identify the variations of configured
reusable components in the features.

Figure 6. Comparison of heuristic based approach
with both existing approaches
Figure 6 describes the comparison of the
previous approaches and the proposed work.
The previous approaches are named as
McMillan et.al.[17] and Alayed et.al.[15] are
considered for comparison with the proposed
heuristics approach. The re usability level of the
different approaches are shown using the box
plotting. McMillan et.al.[17], Alayed et.al.[15]
and heuristic based approach re usability levels
are showed and compared effectively. It is
identified that Alayedet.al[15] approach is better
than the McMillan et.al.[17]. In comparison
with both earlier approaches, heuristic based
approach is better than these both approaches.
The median value in the box plot shows the re
usability level of the different approaches
discussed in this paper. The median of the
McMillan's approach [17] is 4.4 and Alayed [15]
approach is 4.9, where as the proposed heuristics
approach is around 5.8. The reusability index
value may change for different component-
based systems. As the behavioral aspects of the
system will play a vital role in the software
component reuse. This is achieved with the
reusable configured components which are
grouped in a facade. The heuristic function will
also help in identification of feature points (FP)
for extracting common features from the

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3600

reusable configured components. A configured
reusable component includes only those
features that can be reusable a lot. This is
achieved from the Lack of cohesion in methods
(LCOM) measure. It is assumed that heuristic
based approach gives the possible solution for
any contemporary problems in computer
science. The proposed heuristic based approach
is well suited and can be applicable in the
software industry may produce better results in
the reuse of a software components.

5. CONCLUSION AND FUTURE WORK

Organizations benefit greatly from component-
based systems built with demand based
reusable domain specific software components.
The most difficult aspect of reuse is selecting
the appropriate reusable from a vast array of
options and adapting reusability to current
requirements. Different techniques and design
flaws in reusable domain-specific components
have been examined in earlier work. Until date,
it appears that there has been no widely
acknowledged standard for the design of
demand based reusable domain specific
software components. This encourages
utilizing a heuristic-based approach to develop
configurable reusable components. As
mentioned in the preceding sections, the
suggested strategy is realized and executed
utilizing several domain specific components
and implemented using various domain
specific applications. The degree of reusability
of domain-specific components is evaluated
and compared to several ways, with the
suggested heuristic-based approach being
found to be superior to the others and extracted
the demand-based domain specific
components. The suggested heuristic method
for Demand-Based Reusable Component
Design Configure and empirical analysis was
conducted which is well-suited, may be used in
the software business can improve outcomes
when extracting demand based reusable
domain-specific software components. The
reuse design guidelines for component quality
characteristics can be applied in the future as
part of the ongoing effort.

REFERENCES:

[1] McIlroy, M. Douglas, et al. "Mass-produced
software components." Proceedings of the
1st International Conference on Software

Engineering, GarmischPattenkirchen,
Germany. sn, 1968.

[2] Mili, Hafedh, FatmaMili, and Ali Mili.
"Reusing software: Issues and research
directions." Software Engineering, IEEE
Transactions on 21.6 (1995): 528-562.

[3] Frakes, William B., and Kyo Kang. "Software
reuse research: Status and future " IEEE
transactions on Software Engineering 31.7
(2005): 529-536.

[4] Almeida, Eduardo S., et al. "CRUISE:
Component Reuse in Software Engineering."
(2007).

[5] Zhongjie Wang et.al, “ A Survey of Business
Component Methods and Related
Technique”, World Academy of Science,
Engineering and Technology, pp.191-200,
2006.

[6] N Md JubairBasha, Salman Abdul Moiz, “A
Methodology to manage victim components
using CBO measure”, published in
International Journal of Software Engineering
& Applications(IJSEA), Vol3 (2) pp 87-96,
March 2012, ISSN:0975-9018.

[7] William B. Frakes, Kyo Kang: Software
Reuse and Research: Status and Future, IEEE
Transactions on Software Engineering”, Vol.
31, No. 7, July 2005.

[8] Xichen Wang, Luzi Wang: Software Reuse
and Distributed Object Technology, IEEE
Transactions on Software Engineering, 2011.

[9] Sametinger: Software Engineering with
Reusable Components, Springer-Verlag,
ISBN 3- 540-62695-6, 1997.

[10] Jianli He, Rong Chen, WeinanGu: A New
Method for Component Reuse, IEEE
Transactions on Software Engineering, 2009.

[11] Maurizio Pighin: A New Methodology for
Component Reuse and Maintenance, IEEE
Transactions on Software Engineering, 2001.

[12] Alkazemi, Basem Y., Mohammed K. Nour,
and Pete A. Lee. "Characterizing Reusable
Software Components" published in
DReMeR'13, June, 2013, Pisa, Italy.

[13] Kim, Won. "On Issues with Component-
Based Software Reuse." Journal of object
technology 4.7 (2005): 45-50.

[14] Kästner, Christian, and Sven Apel. "Feature-
Oriented Software Development." Generative
and Transformational Techniques in Software
Engineering IV. Springer Berlin Heidelberg,
2013. 346-382.

[15] Alayed, Asmaa, Kung-Kiu Lau, and Cuong
Tran. "Towards Component-based Domain
Engineering." Software Engineering and

 Journal of Theoretical and Applied Information Technology
30th April 2024. Vol.102. No 8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3601

Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on. IEEE, 2013.

[16] Bauer, Veronika, Jonas Eckhardt, Benedikt
Hauptmann, and Manuel Klimek. "An
exploratory study on reuse at google." In
Proceedings of the 1st International
Workshop on Software Engineering
Research and Industrial Practices, pp. 14-23.
ACM, 2014.

[17] McMillan, Collin, et al. "Portfolio: finding
relevant functions and their usage." Software
Engineering (ICSE), 2011 33rd International
Conference on. IEEE, 2011.

[18] Fichman, Robert G., and Chris F. Kemerer.
"Incentive compatibility and systematic
software reuse." Journal of Systems and
Software 57.1 (2001): 45-60.

[19] Jacobson, Ivar, Martin Griss, and
PatrikJonsson. Software reuse: architecture
process and organization for business
success. Vol. 285. New York: acm Press,
1997.

[20] Peters, James F., and WitoldPedrycz.
Software engineering: an engineering
approach. John Wiley & Sons, Inc., 1998.

[21] Aggarwal, Jyoti, and Manoj Kumar.
"Software metrics for reusability of
component based software system: a
review." International Arab Journal of
Information Technology 18.3 (2021): 319-
325.

[22] Zulkurnain, F. I. N. M., et al. "A decade of
software reuse: Research direction."
International Journal of Advanced Science
and Technology (2020).

[23] McMillan, C., Grechanik, M., Poshyvanyk,
D., Xie, Q., & Fu, C. (2011, May). Portfolio:
finding relevant functions and their usage.
In Proceedings of the 33rd International
Conference on Software Engineering (pp.
111-120).

[24] Basha, N. M. J., & Moiz, S. A. (2012,
September). A methodology to reconfigure
victim components using modularity. In
2012 CSI Sixth International Conference on
Software Engineering (CONSEG) (pp. 1-6).
IEEE.

[25] Basha, N. M. J., & Choudhury, S. (2016).
Assessment of Reusability Levels on
Domain-Specific Components Using
Heuristic Function. In Innovations in
Computer Science and Engineering:
Proceedings of the Third ICICSE, 2015 (pp.
153-161). Springer Singapore.

[26] Basha, N., Ganapathy, G., & Moulana, M.
(2022). A Preliminary Exploration on
Component Based Software Engineering.
International journal of computer science and
network security: IJCSNS, 22(9), 143-148.

[27] Basha, N. M. J., Ganapathy, G., & Moulana,
M. (2021, December). CREA-Components
Reusability Evaluation and Assessment: An
Algorithmic Perspective. In International
Conference on Advanced Informatics for
Computing Research (pp. 132-142). Cham:
Springer International Publishing.

[28] N Md Jubair Basha, et al. (2023). Towards
Constructive Cost Analysis for demand based
Reusable Domain Specific Components.
International Journal on Recent and
Innovation Trends in Computing and
Communication, 11(9), 494–502.
https://doi.org/10.17762/ijritcc.v11i9.8835

