
 Journal of Theoretical and Applied Information Technology 
30th April 2024. Vol.102. No 8 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3423 

 

 ENHANCING LARGE UNDERGROUND EXCAVATION 
RISK ASSESSMENT: OPTIMIZATION THROUGH 

INFORMATION SYSTEMS  
 

MALABIKA ADAK1, ALTAF USMANI2, ANIRBAN MANDAL3 
1Asst. Professor, Dept. of Department of Applied Mathematics and Humanities, YCCE, Nagpur, India. 

2AGM, Engineers India Ltd., New Delhi 110066 India 
3Professor, Dept. of Civil Engineering, VNIT-Nagpur, India. 

 
1malabikaadak@yahoo.co.in. 2 9935@ycce.in,  3amandalthesis@yahoo.com 

 
 
 

ABSTRACT 
 

                    This article endeavours to introduce a thorough risk management framework tailored for the assessment of 
underground facilities situated within rock formations. Drawing insights from the data analysis gathered 
from two notable underground cavern projects in India, the framework undergoes development and 
refinement. It revisits the setbacks encountered in these projects alongside the corresponding strategies for 
mitigation. By leveraging empirical data, the article explores risk assessment using a Decision Tree model 
grounded on entropy. This risk assessment model integrates various factors concerning geological 
conditions such as rock mass classification, Q value, joint set orientation, and shear zones, which are 
correlated with diverse sources of failure. The outcomes of this model underscore the significance of 
prioritizing resource allocation and costs based on the importance of parent attributes and the associated 
levels of child attributes. Thus present method is expected to optimize the construction of underground 
structures. 
Keywords: Decision Tree, Risk Management, Geological Uncertainties, Tunnelling. 
 
1. INTRODUCTION  
 
The high demand for infrastructure facilities 
motivates engineering innovation to explore novel 
technologies, concepts, materials, and spatial 
possibilities, aiming to deliver safer and more 
dependable infrastructure. Meeting such demand 
typically involves underground excavation 
technology, which is associated with comparatively 
large investments, relatively long construction 
phases, various combinations, and the coordination 
of multiple contractors. Despite detailed geological 
investigations, most underground excavations face 
geological and hydrological surprises in actual 
ground conditions. These surprises, combined with 
inappropriate excavation methods and unfavorable 
surface and sub-surface conditions such as busy 
traffic, existing facilities, and a lack of efficient 
construction management, can lead to accidents or 
hazards [1]. Consequently, owners and contractors 
incur significant losses, making the management 
and minimization of risks in underground 
excavation a critical factor in tunnel or cavern 
construction work. 

 
Since the 1970s, the recognition of 

underground excavation risks has led to subsequent 
research, with a focus on qualitative measurement 
and reliability analysis [2, 3]. However, the 
majority of research has centered on reliability 
analysis of geotechnical risks, presenting inherent 
difficulties. Geotechnical risk management has 
become challenging due to the increased use of 
underground space. According to Michael Latham, 
"No construction project is devoid of risk. Risk can 
be managed, reduced, shared, transferred, or 
acknowledged. It cannot be disregarded." [4]. 

 
Over the years, a variety of risk analysis 

techniques have evolved, including the Influence 
Diagram Method, Monte Carlo Simulation Method, 
Expected Value Method, Decision Tree Method, 
and Fault Tree Method, as well as their 
combinations [5]. Each method has its merits and 
demerits, making them suitable for specific civil 
construction processes. In the context of 
underground excavation, risk is primarily related to 
geological surprises, and entropy serves as a 
measure of the uncertainty of the excavation 
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process. Therefore, risk in underground excavation 
is defined as the probability of the occurrence of a 
hazard. A decision tree, a simple and powerful 
method for inferring classification rules, provides 
an advantage over the neural network method due 
to its easy-to-follow sequence of decisions [6]. 
However, developing a decision tree with the 
minimum number of leaves poses challenges [6]. 

 
Elmi and Attar (2021) delve into the 

optimization of tunnel construction methods 
through multicriteria decision analysis, showcasing 
innovative approaches to enhance construction 
efficiency and performance. Feng, et al. (2020) 
introduce a novel risk assessment framework for 
underground utility tunnel construction, grounded 
in the theory of complex networks, providing a 
holistic perspective on risk management in 
underground infrastructure projects. 

 
In the Indian context, underground 

structures play a pivotal role, given the anticipated 
land use density of 403 persons/km², surpassing 
that of even the most populous country, China, by 
2.5 times [7]. The urban population concentration 
in towns and cities, where tall buildings are 
commonplace, necessitates an expanded network of 
mass transit systems and various facilities. 
However, this urban growth and densification pose 
substantial challenges to the uncertainties linked to 
intricate geological conditions and rock mass 
reactions within the Earth's crust. These 
uncertainties manifest as potential risks of rock 
mass instabilities, underscoring the imperative for 
risk management measures encompassing 
elimination, mitigation, acceptance, or transfer. 
Nonetheless, a standardized method for quantifying 
underground engineering risk analysis is currently 
lacking. Therefore, the quantification of risk 
emerges as a critical component of risk 
management [8]. This paper introduces an interval 
entropy measurement method rooted in expert 
investigation, built upon the principles of entropy 
and its generalization and extension. 

 
Each underground construction endeavor 

entails a unique level of risk contingent upon its 
site-specific conditions. This paper systematizes the 
procedure for risk identification and consequence 
assessment, culminating in the formulation of a 
predictive model grounded in suitable strategies [9]. 
A systematic methodology entails scrutinizing and 
comprehending the risks associated with buildings 
or constructions under analogous conditions and 
functional specifications to devise a predictive 

model adept at recognizing risks in forthcoming 
projects. This research introduces a straightforward 
approach for crafting a risk assessment-driven 
predictive model, leveraging data from two 
completed projects and implementing this model to 
forecast outcomes for a prospective project. 

 
The demand for infrastructure facilities 

drives continuous innovation in engineering, 
necessitating the exploration of novel technologies 
and methods to ensure the delivery of safer and 
more dependable infrastructure. Underground 
excavation technology, crucial for meeting this 
demand, involves substantial investments and 
coordination efforts but is often plagued by 
unforeseen geological and hydrological challenges. 
These challenges, combined with inappropriate 
excavation methods and unfavorable surface 
conditions, pose significant risks to project owners 
and contractors, resulting in substantial losses. 
Despite decades of research on underground 
excavation risks, current methodologies primarily 
focus on qualitative measurements and reliability 
analysis, lacking a standardized approach for 
quantifying risks. This critical gap underscores the 
importance of developing robust risk management 
frameworks specific to underground construction. 
This paper addresses this need by introducing an 
interval entropy measurement method, providing a 
systematic approach for identifying and assessing 
risks in underground construction projects. 

 
 

2. METHODS UTILIZED FOR RISK 
EVALUATION 

Risk assessment plays a pivotal role in 
providing a platform to identify and measure risks 
accurately, enabling the evaluation of their 
magnitude [10]. A range of tools for analyzing and 
assessing risks, including fault tree analysis, event 
tree analysis, cause-consequence analysis, bowtie 
diagrams, decision tree analysis, probabilistic risk 
analysis, Bayesian networks, analytic hierarchy 
process, fuzzy logic, and artificial intelligence, have 
been gathered for quantification purposes. 

        
The selection of suitable tools hinges on 

the specific nature of the problem at hand. In this 
study, particular attention is given to the entropy of 
attributes, which plays a pivotal role in shaping the 
decision tree. At the core of this decision tree lies 
the quantification of rock mass instability 
occurrences, determining whether the rock mass 
remains stable or becomes unstable. 
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A decision tree serves to evaluate the level 
of risk associated with different courses of action 
within the realm of risk-based decision-making. 
This research employs quantitative diagrams 
featuring nodes and branches that depict various 
potential decision paths and chance events. The 
confidence in the decision tree stems from the 
identification of potential attribute nodes and an 
assessment of their likelihood of occurrence. This 
structured approach delineates decisions and chance 
events in a sequential manner, resulting in a tree 
structure with branches indicating events and their 
probabilities, with decisions appended to each 
node. The most consistent and prominent attribute 
serves as the focal point, with entropy serving as 
one of the tools used to gauge homogeneity at the 
node level. Entropy acts as a metric for evaluating 
the uniformity of a node.                                                                                
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Here, P(j/Ni) denotes the relative 
frequency of class j at node Ni. 

 
The highest entropy value arises when 

records are evenly distributed among all classes, 
indicating maximum impurity. Conversely, the 
lowest entropy value indicates maximum 
homogeneity. To construct the decision tree 
framework, the subsequent sections delve into the 
analysis of two underground cavern projects. The 
study is segmented into three parts: 
a. Formulation of a prediction model based on 
Project-1. 
b. Validation of the model using data from Project-
2. 
c. Projection for Project-3's future outcomes. 

 
3. SYNOPSIS OF PROJECTS 

 

Presently, under examination are two 
significant underground cavern projects, namely 
Project-1 and Project-2, located in the southern 
region of India. Project-1 comprises five 
underground chambers, varying in length from 
380m to 800m, excavated in gneiss rock. The 
quality of the rock mass varies from poor in shear 
zones to good [12]. Similarly, Project-2 boasts 
comparable dimensions, featuring a chamber length 
of 700m excavated in granitic gneiss [13]. The 
standard dimensions of these caverns measure 20m 
in height and 30m in width. The data collected from 
these projects primarily focuses on instability zones 
near excavations/structures or areas where 
significant instability has been observed. 

 
In Project-1, various instances of failure 

were observed, as depicted in Fig. 1(a). These 
incidents encompass the displacement of a 
substantial wedge within the sidewall, attributed to 
the unfavorable alignment of a shear zone (oriented 
parallel to the chamber axis) intersecting with 
another unidentified shear zone. Furthermore, 
significant deformations arose from stress 
relaxation within weak shear zones formed as a 
result of dyke intrusions, leading to the cracking 
and spalling of shotcrete. Fig. 1(b) illustrates the 
structural geological map of the project, illustrating 
shear zones and dyke intrusions. Notably, notable 
seepage issues were absent in this project due to 
clay-filled joints. The failure of the large wedge led 
to a one-year delay in that specific area for muck 
removal and the implementation of stabilization 
measures (including rock bolts and concreting) to 
prevent further failure, resulting in additional costs. 
Instances of shotcrete cracking and spalling were 
observed near the crown region, necessitating the 
construction of access ramps due to sequential 
excavation in that area to address these issues [14-
18]. 

 
 

Figure 1. Project 1 (a) Structural geological map with layout (b) Wedge failure in the cavern 
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Figure 2 illustrates the structural 
geological map of Project-2, highlighting dyke 
intrusions, shear zones, and sub-horizontal joints. 
Failures in this project were primarily attributed to 
significant seepage caused by the open 
configuration of the sub-horizontal joint set and its 
connection to a water source. The encounter with 

high-pressure seepage was exacerbated by the 
project's depth, prompting post-grouting 
interventions that resulted in time delays and 
increased costs. Furthermore, notable deformations 
occurred in weak shear zones formed due to dyke 
intrusions. 

 

   
                                 Figure 2. Structural geological map of Project 2. 
 
 

The factors identified as contributing to 
failures encompassed rock class (Q value), joint set 
orientation, and shear zones. Field observations 
were employed to delineate these attributes across 
the entire span of both caverns. The circumstances 
precipitating failure or rock mass instability were 
broadly classified into deformation and seepage 

failures. Extensive data pertaining to real failures 
that transpired during the construction of the 
caverns were also gathered. A direct correlation 
between the mapped attribute data and the failure 
type was established to construct the prediction 
model. 
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3.1 SELECTION OF ATTRIBUTES FROM 
DATA DURING DECISION TREE 
AANALYSIS 

 
The comprehensive risk management system 

heavily relied on the process of data collection. 
Information obtained during the construction 
phase was crucial in establishing a dependable 
decision-making framework. The specific details 
of the chosen attributes and instability criteria 
addressed in this study are elaborated in 
subsequent sections [19-22]. 

If shear zones measure less than 1m in 
thickness, their influence on stress and 
deformation in the adjacent rock mass following 
excavation is relatively negligible and may be 
disregarded. Similarly, faults that do not intersect 
the cavern excavation and are located farther 
away than the cavern's span have minimal effect 
on the stress and deformation of the surrounding 
rock mass. Moreover, if a shear zone is situated 
near the cavern floor, its impact on cavern 
stability is marginal [23-27]. However, if the 
shear zone is located near the crown within the 
cavern's span and close to the sidewalls within 
half the cavern's span, it significantly affects 
tunnel stability. Hence, including the shear zone 
in the analysis depends on its thickness being 
more than 1m and falling within the cavern's 
span at the crown and half the cavern's span at 
the sidewall of the excavation. 

Rock mass classification by Q- system, 
mainly applied in medium to hard rock 
tunnelling, serves as a crucial parameter for 
evaluating the strength of the rock mass. Three 
classes of Q values are considered in this 
analysis to characterize the rock mass. 

 
Q < 1, indicating very poor rock mass 

(TYPE 1) 
1 < Q < 4, indicative of poor rock mass 

(TYPE 2) 
Q > 4, representing fair to good rock mass 

(TYPE 3) 

 
Joints play a pivotal role in cavern stability, 
particularly when their orientation is unfavorable 
to the cavern's alignment. If, for example, the 
cavern's alignment parallels the strike of the joint 
set and dips toward the cavern axis, it poses a 
risk to cavern stability. Thus, joint sets opposing 
the cavern's alignment are identified as 
contributors to instability in this analysis. 

 
This study examines various instability 

parameters, including significant deformation 
(defined as deformation exceeding 1 percent), 
the formation or failure of wedges, and sagging 
or falling of shotcrete. Excessive seepage is 
flagged if the Lugeons value surpasses 2. Data 
from Project-1 are consolidated, detailing joint 
orientation, Q value, and shear zone attributes in 
Table 1. The predictive model is validated using 
data from Project-2, with synthesized data 
outlining representative parameters for Project-2 
also presented in Table 1. 

 
3.2 RISK ASSESSMENT ANALYSIS 

MODEL 
 

The construction of a prediction model, 
focused on identifying potential risk zones 
contributing to instability within the cavern, 
involves the application of decision tree analysis. 
Additionally, the utilization of the concept of 
entropy is employed to determine the optimal 
split as a branch of the tree among various 
attributes. In this framework, the parent node is 
indicated by the lowest entropy value among 
different attributes, serving as the starting point 
for splitting into child nodes. Figure 3a outlines 
the methodology adopted in this study for the 
development, verification, and validation of the 
prediction model based on data from Project-1 
and Project-2 under analogous conditions. It also 
illustrates the application of the model to a 
proposed project. 
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Table 1. Attribute Data From Project 

Project-1 Project-2 Project-3 
Joint 

orientation 
Q 

Shear 
zones 

Instability 
occurs? 

Joint 
orientation 

Q 
Shear 
zones 

Instability 
occurs? 

Joint 
orientation 

Q 
Shear 
zones 

Instability 
occurs? 

Favourable 
TYPE 

1 
NO NO Favourable 

TYPE 
2 

NO NO Unfavourable 
TYPE 

2 
NO Stable 

Favourable 
TYPE 

1 
NO NO Favourable 

TYPE 
1 

NO NO Unfavourable 
TYPE 

3 
YES Instable 

Favourable 
TYPE 

2 
NO NO Favourable 

TYPE 
2 

YES NO Unfavourable 
TYPE 

1 
NO Stable 

Favourable 
TYPE 

2 
NO NO Favourable 

TYPE 
2 

YES NO Unfavourable 
TYPE 

3 
NO Stable 

Favourable 
TYPE 

1 
NO NO Favourable 

TYPE 
1 

NO NO Unfavourable 
TYPE 

2 
NO Stable 

Favourable 
TYPE 

3 
YES NO Favourable 

TYPE 
1 

NO NO Unfavourable 
TYPE 

3 
NO Stable 

Favourable 
TYPE 

1 
YES NO Favourable 

TYPE 
2 

NO NO Unfavourable 
TYPE 

1 
YES Instable 

Favourable 
TYPE 

2 
NO NO Favourable 

TYPE 
1 

NO NO Favourable 
TYPE 

2 
NO Stable 

Favourable 
TYPE 

2 
NO NO Favourable 

TYPE 
2 

YES NO Favourable 
TYPE 

2 
NO Stable 

Favourable 
TYPE 

2 
YES NO Favourable 

TYPE 
1 

NO NO Favourable 
TYPE 

3 
YES Stable 

Favourable 
TYPE 

1 
NO NO Unfavourable 

TYPE 
1 

YES YES Favourable 
TYPE 

1 
NO Stable 

Favourable 
TYPE 

2 
NO NO Favourable 

TYPE 
2 

NO NO Favourable 
TYPE 

3 
NO Stable 

Favourable 
TYPE 

3 
NO NO Favourable 

TYPE 
1 

NO NO Favourable 
TYPE 

1 
NO Stable 

Favourable 
TYPE 

2 
YES NO Unfavourable 

TYPE 
1 

YES YES Unfavourable 
TYPE 

3 
YES Instable 

Favourable 
TYPE 

1 
YES NO Unfavourable 

TYPE 
2 

YES YES Unfavourable 
TYPE 

1 
NO Stable 

Favourable 
TYPE 

3 
YES NO Unfavourable 

TYPE 
2 

YES YES 

 

Favourable 
TYPE 

2 
YES NO Favourable 

TYPE 
1 

NO NO 

Favourable 
TYPE 

3 
YES NO Unfavourable 

TYPE 
1 

YES YES 

Unfavourable 
TYPE 

3 
YES YES Favourable 

TYPE 
2 

YES NO 

Unfavourable 
TYPE 

3 
YES YES Favourable 

TYPE 
1 

NO NO 

Unfavourable 
TYPE 

3 
YES NO Unfavourable 

TYPE 
1 

YES YES 

Unfavourable 
TYPE 

1 
YES YES Unfavourable 

TYPE 
2 

YES Yes 

Unfavourable 
TYPE 

1 
YES YES Favourable 

TYPE 
1 

NO NO 
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The attribute data from Project-1 is synthesized into  
frequency distributions for each attribute and its 
respective class at the initial node of the decision 
tree. Entropy is calculated for each attribute, and 
homogeneity is assessed; specifically, the attribute 
with the lowest entropy value signifies the optimal 
split. Table 2 presents the entropy calculation at the 
initial node. Notably, the attribute "joint set 
orientation" exhibits the lowest entropy value of 
0.4, thus being designated as the first node, with 

subsequent attribute splitting conducted using 
entropy in subsequent calculations to formulate the 
decision tree. 

 
The outcome of constructing a prediction 

model using decision tree analysis is depicted in 
Figure 3b. The accuracy assessment of the 
prediction model for Project-1 data is provided in 
Table 1. The accuracy of this prediction model for 
Project-1 data stands at 90%. 

 
 

 
 

Figure 2. Methodology of risk assessment analysis 

 
 
 
 
3.3 Validation of the Prediction Mmodel 

Table 3 presents the validation outcomes of 
the prediction model utilizing the Project-2 
dataset. The predictive accuracy achieved for this 
dataset stands at a commendable 78%. This 
accuracy metric underscores the robustness and 
efficacy of the model in extrapolating insights 
from the provided data. 

Beyond merely achieving a high accuracy 
rate, the validation outcomes showcased in Table 
3 signify the model's proficiency in handling the 

unique characteristics and complexities 
embedded within the Project-2 dataset. Through 
rigorous analysis and iterative refinement, the 
model has demonstrated its capability to discern 
patterns, extract relevant features, and make 
accurate predictions. 

Moreover, the validation process serves as a 
critical checkpoint, ensuring that the model's 
performance remains consistent and reliable 
across diverse datasets. By scrutinizing the 
predictive outcomes against ground truth labels, 
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stakeholders can ascertain the model's 
generalization capacity and its ability to yield 
actionable insights in real-world scenarios. 

 

The 78% accuracy attained in this validation 
exercise underscores the model's potential to 
serve as a valuable decision-support tool across 
various domains. Whether applied in financial 
forecasting, healthcare diagnostics, or resource 
optimization, the predictive capabilities 
showcased by the model offer tangible benefits, 

empowering stakeholders to make informed 
decisions and drive meaningful outcomes. 

 

In summary, the validation outcomes 
presented in Table 3 not only affirm the model's 
predictive accuracy but also highlight its 
adaptability and utility in diverse applications. 
Moving forward, continued validation and 
refinement will be essential to ensure the model's 
relevance and effectiveness in addressing 
evolving challenges and opportunities. 

 
Table 1. Sample calculation of entropy at the first node of decision tree analysis for the prediction model 

Q 
Frequency 

M1 = Entropy (Q, instability) 
Unstable Stable Total 

Type 3 3 4 7 0.30 

Type 2 0 8 8 0.00 

Type 1 2 6 8 0.28 

Total 5 18 23 0.58 

Shear zones 
Frequency M2 = Entropy (Shear zones, 

instability) Instable Stable Total 

TRUE 5 8 13 0.54 

FALSE 0 10 10 0.00 

Total 5 18 23 0.54 

Joint orientation 
Frequency M3 = Entropy (Joint orient, 

instability) Instable Stable Total 

Unfavourable 4 1 5 0.16 

Favourable 1 17 18 0.24 

Total 5 18 23 0.40 

 

3.4 Application of prediction model 

The existing forecasting model has been 
expanded to predict potential risk areas for a 
proposed Project-3 located in the eastern region of 
India. This project shares similar geological 
conditions and functional requirements with 
Project-1 and Project-2. By analyzing borehole and 
surface geological mapping data, it is expected that 

Project-3 will face two shear zones along the 
cavern axis and an unfavorably dipping foliation 
plan along the same axis. The projection of the 
potential risk zone for Project-3 is determined using 
the extended prediction model, as illustrated in 
Figure 4. The summarized prediction results can be 
found in Table 1. 
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Table 2. Validation of prediction model for Project-2 data via accuracy calculation 

Joint orientation Q Shear zones Instability occurs? Prediction result 

Favourable TYPE 2 NO NO Pass 
Favourable TYPE 1 NO NO Pass 
Favourable TYPE 2 YES NO Fail 
Favourable TYPE 2 YES NO Pass 
Favourable TYPE 1 NO NO Pass 
Favourable TYPE 1 NO NO Pass 
Favourable TYPE 2 NO NO Pass 
Favourable TYPE 1 NO NO Pass 
Favourable TYPE 2 YES NO Fail 
Favourable TYPE 1 NO NO Pass 

Unfavourable TYPE 1 YES YES Pass 
Favourable TYPE 2 NO NO Pass 
Favourable TYPE 1 NO NO Pass 

Unfavourable TYPE 1 YES YES Pass 
Unfavourable TYPE 2 YES YES Fail 
Unfavourable TYPE 2 YES YES Fail 

Favourable TYPE 1 NO NO Pass 
Unfavourable TYPE 1 YES YES Pass 

Favourable TYPE 2 YES NO Pass 
Favourable TYPE 1 NO NO Pass 

Unfavourable TYPE 1 YES YES Pass 
Unfavourable TYPE 2 YES Yes Fail 

Favourable TYPE 1 NO NO Pass 

 

 
                                                             
 
 

 

 

 

 

 

 

Figure 3. Predicted structural geological map of Project 3 

 
 
 
4 CONCLUSIONS 

 
 

This study incorporates an entropy-based 
model to predict potential instability in 
underground tunneling and cavern projects. An 
extensive analysis was carried out on data related to 

risks in three distinct underground projects. The 
data were thoroughly examined using various 
criteria to identify attributes and potential causes of 



 Journal of Theoretical and Applied Information Technology 
30th April 2024. Vol.102. No 8 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3432 

 

instability. Subsequently, a decision tree analysis 
based on entropy was applied to these attributes. 
 

The decision tree was specifically tailored for 
Project-1, comprising parent and child attributes. In 
the event of instability, this decision tree aids in 
resource allocation. The initial analysis of the 
parent attribute allows for the avoidance or 
mitigation of the risk. Typically, the parent attribute 
acts as the root cause, requiring a significant 
allocation of resources for risk mitigation measures. 
However, if the root cause persists, the decision 
tree provides a prioritized list of child attributes. 
 

The investigation expands to encompass the 
validation process employed in Project-2 and offers 
a forward-looking projection for structures 
encountering analogous geological conditions and 
functional demands, as illustrated in Project-3. 
Thus, the model established in this research is 
rooted in fundamental characteristics and instances 
of failure. The findings underscore substantial 
potential for enhancing risk management, with the 
possibility of further refinement through the 
incorporation of additional case studies and a wider 
spectrum of attributes. 
 
Declaration: All the Authors have contributed to 
give proper shape to this article.  The authors 
declare that they have no conflict of interest. 
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