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ABSTRACT 
 

Integration of Distributed Generation (DG) into the transmission system is the current paradigm for creating 
unique transmission grids. Grid line loss and voltage quality may suffer from unreasonably configured DG. 
The aim of this paper is to rationally allocate distributed generators (DGs) in the transmission network to 
reduce power losses and guarantee a safe and reliable power supply to the loads. The works suggests an 
optimal distributed generation using Sand Cat Swarm Optimization (SCSO) for loss minimization to reduce 
power loss while enhancing voltage stability. The proposed algorithm was simulated and evaluated using the 
Matrices Laboratory (MATLAB) script programming language and has been implemented on IEEE 14-bus 
transmission system. The results exhibit that the SCSO method is able to determine the optimal DG size and 
reducing total losses by 40.77 percent for DG type 1 as compared with Particle Swarm Optimization (PSO) 
algorithm, 38.98% at bus 10. It can be revealed that SCSO can be used by power system planners to choose 
the best sizing and location. 

Keywords: Distributed Generation, Sand Cat Swarm Optimization, DG Sizing, Transmission System 
 
1. INTRODUCTION  
 

Nowadays, the number of consumers and energy 
demand are increasing and the fossil fuels are 
depleting [1]. Thus, it is very important for 
integrating renewable sources such as Photo-Voltaic 
(PV) and Wind Turbine (WT) into the existing of 
distribution, sub-transmission and transmission 
network. Distributed Generation (DG) are becoming 
important backup sources to the existing electrical 
system due to reasons such as increasing power 
demand and advances in technology. DG can be 
defined as a small electrical generation that reduces 
real power and reactive power losses, improves 
voltage profile, for system security and reliability. 

Several issues for example energy efficiency and 
security of the supply are the major concerns due to 
encouraging usage of renewable energy. As a result, 
the insertion of DG into electricity network can 
increase and affect the system. An increase of load 
demand also will increase power loss, decreasing the 
voltage magnitude and voltage regulation in a 
system. Therefore, installing of DG into electrical 
system is an effective way to reduce power losses 
and improve voltage profile. However, the selection 
of DG location is very essential because the 
unsuitable location and sizing of DG units may cause 
increase of power losses as well as decreasing the 
reliability levels. It is worth to mention that the 
problem of determining the optimal sizing and 
location of DG has catch the attention of many 
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researchers due to its different concerns and 
challenges. 

Over the years, several planning, operation, and 
control issues involving power systems have been 
addressed using mathematical optimization 
techniques. A mathematical model for resolving 
system optimization has been developed utilizing 
some assumptions from the real world. However, 
given the supposition that has been made, it is 
difficult to optimize the power system because it has 
a huge, intricate, and geographically dispersed 
structure. Simply put, mathematical methods cannot 
be used to solve the power system problem that is 
connected to large and complicated grid systems. It 
only works well for solving local optimization 
problems.   

Nowadays, meta-heuristic algorithms are built 
using experience or intuition. The optimization 
problem has a workable solution when it is addressed 
in a reasonable amount of time or computer space. It 
is impossible to forecast this workable answer in 
advance. Numerous engineering optimization issues 
frequently require the best solution in the vast and 
complicated search area. The search for effective 
optimization algorithms has grown to be a significant 
area of research due to the complexity, nonlinearity, 
limitations, and modelling challenges of real-world 
engineering issues. Hence, to obtain the optimal 
value of DG, it is necessary to develop a meta-
heuristic algorithm that can effectively address the 
complexity, non-linearities, limitations, and 
modelling difficulties encountered when employing 
conventional methods. Nature Inspired 
Metaheuristic Algorithm (NIMA) such as Genetic 
Algorithm (GA), Evolutionary Programme (EP), 
Firefly Algorithm (FA), Ant Lion Optimizer (ALO), 
Ant Colony Optimization (ACO) and Particle 
Swarm Optimization (PSO) are just a few of the 
methods that can be used to improve to power 
distribution system [1]-[7].  

From the literature reviewed, it can be observed 
that GA is computationally time-consuming [8], EP 
might converge on local optimum missing the global 
optimum solution which means it will be not 
consistent across several runs [9]. It can be noted that 
FA are slow in terms of convergence speed and 
likely of being stuck in local optima. Furthermore, 
FA does not retain or memorize any past instances of 
better circumstances for any individual firefly [10]. 
As a result, they migrate independent of past 
instances of better circumstances, perhaps missing 
their own situation. For ALO, the drawbacks are it 
having a long run time due to the random walking 
process [11]. Some of the researchers also proposed 

ACO for optimal sizing and location of DGs. 
However, ACO’s performance is sensitive to the 
appropriate tuning of its parameters. The choice of 
parameters, such as the pheromone evaporation rate 
and exploration-exploitation trade-off, can 
significantly impact the algorithm’s convergence 
speed and solution quickly [12]. Although, ACO is 
able to adjust to changing conditions, abrupt or 
significant changes could provide difficulties. 
Meanwhile, PSO are the most NIMA applied to 
solve many optimization problems but according to 
author in [13], PSO tend to fall into local optimum in 
high-dimensional space and has low convergence 
rate in iterative process.  

Prior to these drawbacks from GA, EP, FA, ALO, 
ACO and PSO, a novel meta-heuristic optimization 
method known as Sand Cat Swarm Optimization 
(SCSO) was proposed in 2020 [1],[14]. The 
fundamental basis of this SCSO lies in the concept 
of the swarm algorithm that emulates the sand cat’s 
hunting behaviors. The impact of sound frequency 
varies among individual sand cats. The sand cat’s 
decision to engage in predatory behavior or search 
for prey is contingent upon the frequency of the 
potential prey’s sound. Sand cats employ a hunting 
strategy that involves maintaining proximity to their 
victim. Consequently, the sand cat will inevitably 
reach a state of local optimum, thereby diminishing 
the algorithm’s capacity for optimization. Sand cats 
utilize the concept of trigonometric function 
computation to determine their subsequent position 
by using a Roulette Wheel selection method to 
calculate the distance between them and their prey.  

This work proposes SCSO method that may be 
more suited for solving the optimal sizing and 
location of DG for loss minimization. The SCSO is 
implemented on the IEEE-14 bus system, and the 
findings are compared to those obtained without the 
penetration of DG. The results display the validation, 
applicability, and effectiveness of the SCSO for 
optimal sizing and location problems.  

2. SAND CAT SWARM OPTIMIZATION 
(SCSO) 

An overview of the sand cats that served as 
the initial inspiration is presented in this section. The 
suggested method is then described together with its 
mathematical model and operational mechanism. 
 
2.1 Sand Cats in Nature as Inspiration  
 

The Felis family of mammals includes a 
variety of creatures, including the sand cats (Felis 
Margarita). The sand cat inhabits stony and sandy 
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desserts such as those in the Arabian Peninsula, 
Central Asia Sahara, and Africa. Small, agile, and 
modest, sands cat has unique hunting and dwelling 
habits. Despite having a similar appearance to a 
domestic cat, sands cats behave differently from 
domestic cats in their lives. Like many felines, sand 
cats do not live in colonies. Sand to light grey fur is 
more densely covered on the palms and soles of the 
feet of the sand cat. The fur on a person’s foot soles 
protects the pads of their feet from the extreme heat 
and cold of the desert. In addition, the sand cat’s hair 
qualities make detection and tracking challenging. 
The body length of a sand cat is between 45 and 57 
cm. The length of its tail (28-35cm) is roughly half 
that of its head and body, and it has short legs next 
to its short, sharply bent frontier claws. The sand cats 
back claws are longer and slightly curved when 
facing. An adult sand cats’ weights between 1 and 
3.5 kilograms. The sides of the head ear’s measure 
5-7cm in length. The sand cat’s ears play a 
significant role in foraging. This cat is unique since 
it lives underground, at night, and in secrecy [1,14]. 

 
It is difficult for any animal to find 

nourishment in a hostile environment. Even though 
the sand cats struggle to obtain food in the desert, 
they are helped by the chilly night. They typically try 
to hunt at night and rest in the subsurface during the 
day. Most of the time, they spend in their burrows, 
but when they lie down, they release heat from 
within by lying on their backs. Aside from that, they 
get water from meals to quench their thirst. They can 
consume more than usual but typically ingest 
roughly 10 % of their body weight. The average 
night time distance travelled by male and female 
sand cats is 5.5 km and 3.2 km respectively. The 
average value of walking during winter is lower than 
it is in the summer.  

2.2 Mathematical Model and Sand Cats 
Algorithm 

 
The natural sand cat swarm behavior was 

applied to construct the Sand Cat Swarm 
Optimization (SCSO) algorithm method. Basically, 
the main behaviors of the sand cat are prey and 
attacking. The method was inspired by its’ unique 
capability to recognize low-frequency disturbances. 
The sand cat’s amazing ability to trace prey for both 
conditions, below and above ground is a benefit. 
This essential characteristic enables it to quickly 
locate its prey. In addition, it also captures its prey.  

 
 

2.2.1 Initial Population 
 

The relevant variables’ values must be 
specified according to how the present problem is 
resolved while solving an optimization problem. A 
sand cat can be defined as a 1-dimensional array in a 
2-dimensional optimization problem. In this study, 
the variable values (𝑥1, 𝑥2, … . , 𝑥𝑑) is set as DG 
sizing where must be placed in between the lower 
boundaries and upper boundaries (∇𝑥𝑖 ∈
[𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟]). Next, a candidate matrix is 
generated together with the population of the sand 
cat. The corresponds to the problem size (Npop x Nd), 
(pop=1,….,n) to initiate the SCSO algorithm. 
Additionally, each sand cat’s fitness cost is 
calculated by analyzing a specific fitness function. 
The relevant parameter problems are identified by 
fitness function. Thus, the SCSO will choose the 
optimal variable values. The associated function will 
receive a value from each sand cat. After the iteration 
is completed, the best solution is chosen, and 
subsequent iterations involve the other sand cats 
attempting to move in the route of this best-selected 
cat. Considering that, the optimal response in every 
iterations identifies that closest to its prey. If the 
subsequent iterations do not yield a better solution, 
the iteration’s solution is not kept in memory to 
ensure memory efficiency [1,14]. In this study, total 
loss is used as a fitness function.  

2.2.2 Searching The Prey 

 
Each sand cat’s location is presented by the 

word Posi. The sand cat’s ability to hear low-
frequency signal is advantageous to the SCSO 
algorithm. The low frequency below 2 kHz can be 
detected by every sand cat. As a result, the sensitivity 
range is from 2 to 0 kHz. Furthermore, the SCSO 
algorithm exploration as well as exploitation 
capability are controlled, and the parameter R is 
derived using formula (2). In the sensitivity range 
aspect, each sand cat will at random select a new site 
to look for prey. In this environment, algorithms can 
be explored and used more effectively. Sensitivity 
range (r) for each sand cat is unique to prevent 
slipping into the local optimal. This is based on 
formula (3). 
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𝑟𝐺 = 𝑆𝑚 − ቀ
ௌ௠×௧

்
ቁ                                (1) 

 
𝑅 = 2 × 𝑟𝐺 × 𝑟𝑎𝑛𝑑(0,1) − 𝑟𝐺                            (2) 

 
Where T is the maximum iteration number, t is the 
current iteration number and Sm is 2.  
 
               𝑟 = 𝑟𝐺 × 𝑟𝑎𝑛𝑑(0,1)                             (3)   
           
Where rG is the guidance parameter for r. 
 
Each sand cat will explore for its prey’s location 
based on the best candidate position (Posbc), current 
position (Psoc(t)), and sensitivity range (r). The 
precise formula is displayed in (4). 
 
𝑃𝑜𝑠(𝑡 + 1) = 𝑟 × (𝑃𝑜𝑠𝑏𝑐(𝑡) − 𝑟𝑎𝑛𝑑(0,1) ×
𝑃𝑜𝑠𝑐(𝑡))                                                   (4) 
 
2.2.3 Attack Prey (Exploitation) 

 
Formula (5) states the distance (Posrnd) 

between the sand cat and the prey. The sand cat’s 
sensitivity range is assumed to be circle, and the 
movement of its direction is determined by the 
Roulette Wheel election mechanism. The direction 
of movement can be selected by a random angle (α). 
The value of the randomly chosen angle, which 
ranges from -1 to 1, is between 0⁰ and 360⁰. As seen 
in Figure 1, the direction movement for is in a 
different circumferential inside the search area. The 
prey is then attacked using a formula (6). The dune 
cat may get closer to its hunting position faster in this 
approach.  

 
𝑃𝑜𝑠𝑟𝑛𝑑 = |𝑟𝑎𝑛𝑑(0,1) × 𝑃𝑜𝑠𝑏(𝑡) − 𝑃𝑜𝑠𝑐(𝑡)|    (5) 
 
𝑃𝑜𝑠 (𝑡 + 1) = 𝑃𝑜𝑠௕(𝑡) − 𝑟 × 𝑃𝑜𝑠௥௡ௗ × cos(𝛼) (6)
                                                                    
2.2.4 SCSO Algorithm Implementation 
 

The SCSO algorithm controls algorithmic 
exploitation as well as exploration by adjusting the 
adaptive parameters rG and R. Equation (1) 
demonstrates that rG is decreased linearly during 
iteration from 2 to 0. As a result, the random value [-
4,4] is assigned to the parameter R. If R is not more 
than or equal to 1, the sand cat will attack its prey. In 
any other case, as indicated by formula (7), the sand 
cat will hunt prey. 

 

𝑃𝑜𝑠 (𝑡 +

1)

⎩
⎨

⎧
𝑟 × (𝑃𝑜𝑠௕௖(𝑡) − 𝑟𝑎𝑛𝑑 (0,1) × 𝑃𝑜𝑠௖(𝑡)      

|𝑅| > 1; 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

𝑃𝑜𝑠௕(𝑡) − 𝑃𝑜𝑠௥௡ௗ × cos(𝛼) × 𝑟                    
|𝑅| ≤ 1; 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛

(7) 

 
 
Equation (7) exhibits the location updates for each 
sand cat during the exploitation and exploration 
phases. The sand cat will attack its prey if R≤1. Else, 
the sand cat’s job is to hunt for fresh prey across the 
global search area.  
 
3. METHODOLOGY 
 

The technique was simulated using 
MATLAB on a PC, Intel Core i5 5200 U 2.20 
processor with 8 GB RAM. The simulated 
parameters are listed in Table 1. The worldwide 
optimum value is fmin. There are 30 separate runs for 
each algorithm used for the average value of each 
objective function, along with the maximum 
iteration number and population size to compare the 
execution of the SCSO algorithm with the other 
methods. Figure 2 shows the SCSO algorithm 
flowchart while Figure 3 shows the IEEE 14-bus 
system. 
 
3.1 Problem Formulation for Loss Minimization 
 

In this study, the primary objective function 
is to reduce the overall amount of power losses as 
much as possible as stated in (8). The problematic 
has different constraints due to the voltage limits as 
in (9) and the DG size is set to a maximum 100MW. 
The voltage magnitude is supposed to vary between 
0.95 p.u for Vmin and 1.05 p.u for Vmax respectively. 

 
           𝑓𝑜𝑏𝑗 = min(𝑃𝑙𝑜𝑠𝑠)                    (8) 
 
           𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥                    (9) 
 

Figure 1: The SCSO Algorithm's Mechanism for Location 
Update a) The Sand Cat Group’s Position for Iteration; 

b) The Sand Cat Group’s Position for iteration t+1 
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i ≤ itermax

Population Initialization

|R|<=1

Update Position Based on Eq 5 for Individual Update Position Based on Eq 4 for 
Individual

Set Variable 
x1= DG Sizing

Parameter:
SearchAgents_no = 30;

itermax = 100;
0.1≤ DG Size≤100 

Start

End

Determine Fitness 
Value = Ploss (MW) for

Each Individual

Yes No

Yes
No

 
 

Figure 2: The Sand Cat Swarm Optimization Algorithm Flowchart 

The procedure to obtain the optimal 
location and sizing of DG requires load flow to be 
run iteratively. The procedure is stopped after 
obtaining the best location and sizing and then the 
results will be recorded. The following procedures 
were implemented as in Figure 2 to determine the 
optimal sizing scheme. 
 

The process was conducted by generating 
control variables using random number generation, 
Xi which represents DG sizing. The minimum and 
maximum DG sizing is 0.1 and 100 respectively. 
The population size depends on the number of 
individuals. 
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Figure 3: The Schematic of the IEEE-14 Bus System. 

Table 1 indicates the case studies addressed 
in this paper. The installation of DG type 1(injected 
active power) for Case II and DG type 2 (injected 
reactive power) for Case III are studied to acquire the 
best DG installation. DG is located on buses 10 to 14 
with a single DG unit. The percentage of 
improvement for Case II and Case III are computed 
by comparing the loss reduction with respect to the 
best-case scenario. The process frameworks for 
modelling DG types are illustrated in Figure 4. 

  
Table 1: Case study using the SCSO algorithm 

for the optimal size of the DG. 

 
CASE Bus 

Location 
DG SIZE 

Type 1 
(MW) 

Type 2 
(MVAR) 

I Without DG - - 
II Bus 10 to 

14 
  

III Bus 10 to 
14 

  

 
 

Develop DG 
model 

Type 1
Injected MW

DG types

SCSO
Optimization

Test systems

 IEEE 69 bus

Implementation

Type 2
Injected MVar

Loss Minimization

 
 
Figure 4: Implementation of DG types modeling process 

frameworks 

 
 
3. RESULTS AND DISCUSSION 
 

The result of implementing the SCSO 
algorithm to the DG planning problem to determine 
DG size is presented in this section. The 
implementation of DG into the system yields the 
results summarized in Table 2. The effects of 

distributed generation (DG) on reducing power loss 
in a power distribution system are discussed. There 
are four columns in this table represented as Case, 
DG Location, DG Size (MW) and Ploss (MW).  

 
 
Table 2. Simulation Results Using SCSO Algorithm For The Application Of The DG Placement. 

 

Case DG Location DG Size (MW) DG Size (MVAR) Ploss (MW) 

I - - - 13.59  

II 

10 98.4265 - 8.0499 

11 73.4605 - 9.6654 

12 47.4881 - 10.9873 

13 77.6250 - 9.0784 

14 64.6993 - 9.2587 

III 

10 - 16.4011 13.4371 

11 - 8.3166 13.5118 

12 - 3.2478 13.5835 

13 - 11.1279 13.4911 

14 - 10.4367 13.4483 
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(a) Case II: DG at Bus 10 

 
(b) Case II: DG at Bus 11 

 
(c) Case II: DG at Bus 12 

 
(d) Case II: DG at Bus 13 

 
(e) Case II: DG at Bus 14 

 
(f) Case III: DG at Bus 10 

 
(g) Case III: DG at Bus 11 

 
(h) Case III: DG at Bus 12 
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(i) Case III: DG at Bus 13 

 
(j) Case III: DG at Bus 14 

 
Figure 4. Convergence characteristic using SCSO for case II and III. 

 
Table 2 tabulates the simulation results 

using SCSO algorithm with the implementation of 
DG for the IEEE 14 bus system. It can be observed 
that for case I is the base case in which no DG is 
implemented in the system. In this case, the power 
loss is 13.59 MW. Case II and III represent 
conditions in which DG is installed at various 
locations and sizes throughout the system. The 
percentage of improvement column displays the 
reduction in power loss relative to the base case. In 
this study, the DG location indicates where the DG 
is located within the system. The numbers 
10,11,12,13 and 14 represent various buses where 
DG can be installed. The injected DG is 98.4256 
MW and the loss is estimated to be 8.0499 MW. The 

simulation results for case III indicate a similar 
location to case II. The DG sizing is 16.4011 MVAR 
and the Ploss is 13.4371 MW. In terms of loss 
minimization, the implementation of DG type 1 
(Case II) yields superior results than DG type 2 
(Case III), which can reduce more losses. However, 
in case II, the DG size is larger than in case III. In 
terms of convergence characteristics, Figure 4 shows 
the results of SCSO for case study II and III as 
tabulated in Table 1. The simulation only considers 
the implementation of single unit of DG. The graph 
also indicates the iteration number at x-axis and the 
optimal value of the objective function, Ploss in MW 
at y-axis. 

 
 
 
 

0 20 40 60 80 100

Iteration No.

13.4911

13.4912

13.4913

13.4914

13.4915

13.4916

data1

X 5
Y 13.4911

Table 3. Simulation results using PSO algorithm for the application of the DG placement. 
 

Case DG Location DG Size (MW) DG Size (MVAR) Ploss (MW) 

I - - - 13.5869 

II 

10 93.7883 - 8.7608 

11 68.4258 - 10.4315 

12 43.9134 - 11.6734 

13 86.1558 - 9.8052 

14 60.9695 - 9.9044 

III 10 - 16.4230 13.4728 

 

11 - 8.3246 13.5478 

12 - 3.2395 13.5775 

13 - 11.1378 13.5270 

14 - 10.4461 13.4842 
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(a) Case II: DG at Bus 10 

 
(b) Case II: DG at Bus 11 

 
(c) Case II: DG at Bus 12  

(d) Case II: DG at Bus 13 
 

 
(e) Case II: DG at Bus 14 

 
 

(f) Case III: DG at Bus 10 

 
(g) Case III: DG at Bus 11  

(h) Case III: DG at Bus 12 
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(i) Case III: DG at Bus 13 

 
(j) Case III: DG at Bus 14 

 
Figure 5. Convergence characteristic using PSO for case II and III. 

 
 

 PSO was utilized for comparison purposes 
to show the effectiveness of SCSO algorithm for 
optimal sizing and location of a single DG. 
Similarly, PSO was utilized and it can be noted that 
the power loss is 13.5869 MW as shown in Table 3. 
As for case II and III, it shows that DG is installed in 
different sizes and locations. The reduction in power 
loss in comparison to the base scenario is shown in 
the percentage of improvement column. The buses 
that have DG injected are represented by the bus 
numbers 10,11, 12, 13, and 14 respectively. For case 
II, DG is injected at bus 10 and the estimated active 
power loss is 8.7608 MW and the DG size is 93.7883 
MW as indicated in the table. Case III’s simulation 
results show that the the power loss is 13.4728 MW 
and the DG size is 16.4230 MVAR. In terms of 
losses, DG type 1 (Case II) implementation performs 
better than DG type 2 (Case III), which has higher 
losses. The PSO convergence characteristic results 
for case studies II and III are displayed in Figure 5.  
 
 

Table 4. Comparison percentage of improvement for 
SCSO and PSO algorithm. 

 
Case Bus % Of Improvement 

SCSO PSO 
Case I - - - 
Case II Bus 10 40.77 38.98 

Bus 11 28.96 27.35 
Bus 12 19.15 18.70 
Bus 13 33.20 31.71 
Bus 14 31.87 31.02 

Case III Bus 10 1.13 0.84 
Bus 11 0.58 0.29 
Bus 12 0.05 0.07 
Bus 13 0.73 0.44 
Bus 14 1.04 0.76 

  

Table 4 tabulates several scenarios and the 
percentages of improvement for every bus. In case 
II, Bus 10’s SCSO improved by 40.77% as 
compared with PSO, 38.98%. SCSO and PSO 
improvements for Bus 11 were 28.96% and 27.35% 
respectively. Bus 13’s SCSO demonstrated 
improvement, 33.20% as compared with PSO, 
31.71%.  While, percentage improvement for SCSO 
at Bus 14 improved 31.87% as compared with PSO 
31.02%.  

 
 For Case III, Bus 10 improved by 1.13% 
and 0.84% for SCSO and PSO, respectively and Bus 
11 improved by 0.58% and 0.29% each. SCSO 
percentage improvement is 0.05% and PSO is 0.07% 
for Bus 12. For Bus 13, SCSO improved 0.73% 
while PSO improved 0.44%. Lastly, Bus 14 
improved 0.76% in PSO and 1.04% in SCSO. 
Ultimately, the percentage of improvement in case II 
is the largest for SCSO compared to PSO, from Bus 
10 until Bus 14. It can be observed that the SCSO is 
more superior to PSO in terms of the percentage of 
improvement of the power loss. As indicated in 
Table 4, Case II had significantly better in terms of 
percentage of improvement on the power loss and 
convergence characteristics.  
  
4. CONCLUSION 
 

This paper has presented the effectiveness 
of SCSO algorithm in solving DG sizing and 
location for IEEE 14-bus test system. This research 
formulates a three case studies which are no 
distributed generation (DG), DG type 1 (inject active 
power) and DG type 2 (inject reactive power). The 
study examines the implementation of DG in various 
locations and sizes within a system, focusing on 
power loss reduction. Case I shows no DG 
implementation, with a 13.59 MW power loss. Case 
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II and III show varying DG locations and percentage 
of improvement. In case II, DG location at bus 10 
leads to the highest percentage of improvement 
which is 40.77%, with a 98.4256 MW injected DG 
and an estimated Ploss of 8.0499 MW. As in 
comparison with PSO, DG location at bus 10 leads 
to 38.98% percentage of improvement with 93.7883 
MW injected DG and an estimated Ploss of 8.7608 
MW. In case III, the most optimal location using 
SCSO is bus 10, with a 1.13 percent improvement as 
compared with PSO, 0.84%. Implementing DG type 
1 yields superior results, but DG size is larger in case 
II. As conclusion, SCSO algorithm performs better 
for case II and III than the PSO which is feasible to 
implemented in larger reliability system.  
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