
 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3015

ANALYSIS OF DEPLOYMENT OF SCALABLE SERVICE
USING KUBERNETES IN CLOUD ENVIRONMENT

GARIBALDY HUMPHREY WATULINGAS1, YANTO SETIAWAN2

1Computer Science, Bina Nusantara University, Jakarta, Indonesia

2Computer Science, Bina Nusantara University, Jakarta, Indonesia

E-mail: 1garibaldy.watulingas@binus.ac.id, 2yanto.setiawan@binus.ac.id

ABSTRACT

Cloud computing technology has developed very rapidly, and it is no longer exclusively being used by large
companies but also by the individual level that everyone can this technology relatively easily. Some of the
main advantages that drive the growth in the application and penetration of cloud computing technology in
the market are cost efficiency, flexibility, reliability, and scalability. With the implementation of scalability,
users can efficiently utilize the computing resources provided by cloud service providers to obtain maximum
performance at minimal cost. This research will analyze the case where cloud computing technology can be
used to apply a scalable service using Kubernetes running in a cloud environment and provide evidence for
the performance improvement that can be achieved from implementing scalability.

Keywords: Cloud Computing, Container Orchestration, Scalability

1. INTRODUCTION

Cloud computing technology has experienced a
very rapid development in the last two decades.
Starting with Amazon Web Services which was
launched in 2002, and then followed by other big
companies that also launched their cloud service
providers such as Google Cloud Platform in 2008,
Microsoft Azure in 2010, Alibaba Cloud in 2009,
IBM Cloud in 2011, Oracle Cloud in 2012, and many
others [1]. According to a report issued by Fortune
Business Insights in 2023, the market value of cloud
computing services in 2022 is estimated to be 569.31
billion USD with a projected growth value of 677.95
billion USD in 2023, and 2,432.87 billion USD in
2030. The biggest factor for this significant increase
in market penetration for cloud computing
technology in recent years was none other than the
impact of the COVID-19 pandemic that has pushed
the market expansion for the use of cloud computing
technology due to every industrial sector moving
their business to cloud services [2].

One of the main advantages of utilizing a cloud
computing technology is scalability, where users can
use an unlimited computing resources provided by
cloud computing services dynamically and
efficiently based on demand. This way, cloud
services can scale up computing resources whenever
the needs arise to handle more requests from users
and revert it back by scaling down the computing

resources as usage decreases [3]. This scalability is
especially useful to achieve cost efficiency due to the
part where cloud service providers generally offer a
pay as you go financing model where users need to
pay based on the number and duration of the cloud
computing resources used.

To achieve the maximum benefit of scalability
implementation in a cloud environment, cloud
service providers such as Amazon Web Services,
Google Cloud Platform, and others have provided a
feature called Auto Scaling Group (ASG) to perform
automatic scaling on Virtual Machines (VM). The
implementation of ASG in a cloud environment
allows for scaling up and scaling down of computing
resources based on CPU usage or other metrics that
can be configured by users, such as whenever the
load on one of the VMs reaches a preset threshold,
the cloud service provider can then automatically
create a new VM so then the load can be shared
across multiple VMs [4]. However, scalability
implementation directly on VMs is not
recommended as it presents inefficiencies in existing
computing resources. During a VM orchestration
process, it is necessary for each VM to because
during VM orchestration process it is necessary to
run the respective operating system, because during
VM orchestration process it is necessary to run the
respective operating systems which can consume
computing resources such as CPU and storage.
Therefore, scalability implementation in cloud

 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3016

environments generally relies on other virtualization
technologies, such as containers. Container provides
an environment where processes can run
independently and isolated both from the host and
other containers. The virtualization technology in
containers is pretty different than VMs, as containers
do not require an operating system to be run on each
instance so that they can save on the storage usage.
Additionally, container technology other
advantages, such as faster boot time (1.53 seconds
compared to 11.48 seconds using a VM) and faster
performance (4.546 seconds compared to 4.793
seconds using a VM) [5].

For all the reasons mentioned above, container
technology may quickly replace VM-based
virtualization technology as the computing instance
of choice in cloud-based service. And to support the
container-based deployment process, there are
several container orchestration tool options available
for managing clusters of computing instances for
running containers, such as Kubernetes, Docker
Swarm, Mesos, and OpenShift. Kubernetes, as the
market leader of container orchestration tools thanks
to it being an open-source application and supported
by big community, makes it possible to scale pods
based on the resource requirements of each pod, so
that all applications running in Kubernetes can be
easily scaled as needed [6].

Implementation of scalability using Kubernetes
can be achieved by utilizing some of the features
already provided in Kubernetes. Some of the
scalability features provided in Kubernetes are
Horizontal Pod Autoscaler, Vertical Pod Autoscaler,
and Cluster Autoscaler [7], with each of them
providing different approach to manage computing
resources in the Kubernetes cluster by allowing
containers to run on computing instances based on
the resource requirements of each container and the
overall computing resources availability [8]. And at
the end of this research, we can obtain evidence on
how these Kubernetes scalability features
implemented in a cloud environment by running a
series of tests conducted in this research, and how
users can gain performance improvement by
dynamically adding new computing resources when
needed as well as cost efficiency by eliminating
unused computing resources.

2. RESEARCH METHOD

This research carried out by running a series of
experiments by applying various scalability
configurations to an application running in a cloud
environment to obtain the performance results of

each configuration and make a reasonable
comparison between the increase of computing
resources and the application performance. In this
research, the application used is Nginx, which is a
popular HTTP server application used to provide
static web content and capable of handling more than
10,000 connections simultaneously. Based on a
survey conducted by Datadog in 2018, Nginx is the
most used application running in containers, so for
the purpose of this research, Nginx chosen as the
application that will be run in Kubernetes and tested
using a load test. Meanwhile, the container
orchestration tool used is Elastic Kubernetes Service
(EKS), which is a managed Kubernetes service
provided in Amazon Web Services to run
Kubernetes in a cloud environment. The
implementation of scalability using Kubernetes in a
cloud environment is not limited to the Elastic
Kubernetes Service (EKS) provided by Amazon
Web Services, but can also be applied to other
managed Kubernetes services such as Google
Kubernetes Engine (GKE) from Google, Azure
Kubernetes Service (AKS) from Microsoft, Alibaba
Cloud Container Service for Kubernetes (ACK) on
Alibaba Cloud, and other services where users can
immediately use Kubernetes services without
managing the system themselves. However, this
research will only focus on the implementation of
Kubernetes on Amazon EKS because based on the
Flexera 2021 State of the Cloud Report, Amazon
EKS still dominates the cloud-based container
orchestration tool with 51% market share compared
to other services.

The scalability features in Kubernetes applied in
this research are Horizontal Pod Autoscaler and
Cluster Autoscaler. Horizontal Pod Autoscaler is a
component in Kubernetes that can automatically
increase the number of pods or the smallest unit in
Kubernetes which represents a process running in a
Kubernetes cluster based on the use of computing
resources such as CPU or other metrics such as the
number of requests from users. Meanwhile, the
Cluster Autoscaler is a component that automatically
adjusts the number of nodes or computing instances
in a Kubernetes cluster so that a number of nodes are
available to run pods and ensures that no computing
resources that are left unused by removing unneeded
nodes. By using these two features, the service can
run with high performance and cost efficient, which
is possible by adding computing resources only
when needed and removing unused computing
resources.

Experiment carried out by running load test on the
Nginx application running in a Kubernetes cluster,

 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3017

where it is expected that it can increase the
performance in handling requests from users by
applying scalability. Nginx application will run
using default configuration to send respond of the
default page for each request from the client.
Meanwhile, load test carried out using wrk
application, which is an HTTP benchmarking tool
capable of increasing web server performance loads
by sending a large number of requests. Each wrk run
will be using 40 threads and 400 open connections
with a duration of 10 minutes as benchmark
parameters, and monitored using kubectl top
command.

And finally, the instance type used to run the load
test will be using t3.xlarge with 4 vCPU and 16 GiB
RAM, while the instance running the Nginx
application will use 3.medium instance type with 2
vCPU and 4 GiB RAM. This ensures that the number
of requests sent by load test instance is always higher
than the actual number of requests that can be
handled by Nginx, so the service ability to handle the
maximum number of requests from users can be
properly measured. In the experiment, scalability
implementation is only applied based on monitoring
of the CPU workload, while it is actually possible for
Kubernetes to apply scalability based on other
metrics such as workload of other computing
resources or even custom metrics that is defined by
the user.

3. RESULTS

The first test carried out by running the Nginx web
server in one pod, where all node resources were
consumed by the application to handle requests sent
by wrk so we can analyze how a process running
only on one pod maximizes the usage of available
computing resources. To run Nginx in Kubernetes,
we need a Kubernetes manifest file to download the
image from the container registry and deploy it to the
Kubernetes cluster. This Kubernetes manifest file
contains a simple configuration for running a process
into a pod using just one replica.

Figure 1: Kubernetes Manifest for Nginx

During this test, the node CPU resources
monitored at 98.77%, while the pod CPU usage
65.27%. By using this resources, wrk recorded that
Nginx is capable of handling 14,013,443 requests
sent within 10 minutes or 23,351.96 requests per
second.

 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3018

Figure 2: Load Test using 1 Pod

Based on the results of running tests using one
pod, it can be ascertained that the maximum
utilization of computing resources for the running
process is only around 60 to 70% of the node CPU
resource, although this figure will be consistent in all
results obtained in subsequent tests. And while it is
possible to run a process within a pod without
specifying resource limit that the pod can use, it is
not well recommended as it may interfere with other
processes running on the same node. So generally,
each pod will run with specifying resource request so
that Kubernetes can ensure that the pod does not use
resources that exceed the specified limits.

The second test still carried out by running the
Nginx web server in one pod, but resource limit has
been set, so now the pod is only allowed to use 0.5
vCPU or 25% of the total CPU in the t3.medium
instance. In this test, we expect that each pod uses
only a maximum of 25% CPU out of all the
computing resources available for use. This can be
done by setting the resource limit value in the
Kubernetes manifest file, as in this test which
specifies the CPU resource limit value using the unit
of "millicore".

In the result for this test, the node CPU resources
monitored at 39.18% with the pod CPU usage only
peaking at 24.97%. By applying this limit, the
number of requests sent by wrk that can be handled
by Nginx reduced to only 4,380,994 requests in 10
minutes or 7,300.50 requests per second.

Figure 3: Kubernetes Manifest with Resource Limit

Figure 4: Load Test using 1 Pod with Resource Limit

 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3019

Next, load test carried out by applying scalability
to increase the number of pods using the Horizontal
Pod Autoscaler if the resource usage in the pod
exceeds the specified limits. For this test, if CPU
usage of a pod exceeds 0.3 vCPU or 15% of the total
CPU in the t3.medium instance, then a new pod will
be added to the cluster and requests from users will
be distributed to all existing pods. Implementing
scalability using Horizontal Pod Autoscaler is done
by adding a Kubernetes object of the
"HorizontalPodAutoscaler” kind to the Kubernetes
manifest file, or can also be done by using the
"kubectl autoscale" command and letting Kubernetes
to automatically create the Kubernetes object
without the user having to do it manually.

Figure 5: Horizontal Pod Autoscaler

In this test, it can be observed at 2:30:55 that a new
pod was added to the cluster to handle requests that
cannot be handled by the existing pods. CPU
resource usage on the node increased to 78.62% with
CPU usage on each pod at 24.22%. With the addition
of these pods, the number of requests sent by wrk
that can be handled by Nginx instances increased to
8,477,559 requests in 10 minutes or 14,126.90
requests per second, which is approximately 2 times
increase than before.

Figure 6: Load Test using 2 Pods

The next test carried out by applying scalability to
use a maximum number of 3 pods. Based on
observation at 2:51:43, there are 2 pods added to the
cluster and the node CPU resources usage increased
to 99.95%. However, we can also notice that the
CPU usage of each pod decreased to 21.57%, with
the first pod CPU usage decreased from 24.75% to
22.75% at 2:51:43 mark. This decrease in pod CPU
usage was caused by the node CPU usage already
peaked at almost 100%, so there were no more
computing resources available for use by the pod.
While the number of requests still increased to
11,573,656 requests in 10 minutes or 19,286.27
requests per second or 2.6 times than when using 1
pod, it is noticeable that the performance increase is
not linear with the addition of pods.

 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3020

Figure 7: Load Test using 3 Pods

Further test by increasing the maximum number
of pods to 5 shows proof that the addition of pods
that were not accompanied by adding more
computing resources resulted in no performance
improvement, and in this case even cause a
performance degradation where the node CPU
resources usage stays at 99.96% while the average
CPU usage of each pod is only at 12.54%. The
requests also decreased to only 10,884,182 requests
in 10 minutes, or 18,137.23 requests per second.

Figure 8: Load Test using 5 Pods

Therefore, applying scalability by simply
increasing the number of pods is not enough and
must be balanced by increasing the computing
resources. To rectify the issue the number of nodes
can be adjusted to accommodate the number of pods.
Cluster Autoscaler is a Kubernetes component that
ensures that no pods fail to run on the cluster due to
insufficient resources, and improves efficiency on
nodes that are not fully utilized for a long time by
moving pods to other nodes and deleting unused
nodes.

 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3021

In this last test, it can be observed at 3:56:40 there
is a new node added to the cluster because all the
computing resources on the old node had been
consumed by the 3 pods running on that node. So a
new node was needed to run the remaining 2 pods.
In this test, the pod CPU usage stabilize at 21.98%,
with CPU usage of the first node at 99.7% and the
second node at 73.84%. The number of requests that
can be handled using 5 pods on 2 nodes increased to
18,435,726 requests in 10 minutes or 30,721.39
requests per second or almost 4.2 times of the
number of requests using 1 pod.

Figure 9: Load Test using 5 Pods on 2 Nodes

To maximize the efficiency of added resources in
scalability implementation, all pods and nodes added
by the Horizontal Pod Autoscaler and Cluster
Autoscaler will be scheduled to be deleted when they
are no longer needed. Pods with less than 10% CPU
workload for more than 5 minutes can be scheduled
for deletion, while nodes with low usage will also be
deleted after 10 minutes. Therefore, when there are
no more requests from wrk, the newly added node in
this last test will be scheduled for deletion by Cluster
Autoscaler.

Figure 10: Cluster Autoscaler Scale-Down

Below is a comparison table of CPU usage and the
number of requests that can be handled by Nginx
web server for each load test configuration executed
in this research.

Table 1: Performance Comparison for each Load Test

 Node CPU
usage

Pod CPU
usage

Req/10 min Req/sec

1 pod
(resource

limit)
39.18% 24.97% 4,380,994 7,300.50

1 pod (no
resource

limit)
98.77% 65.27% 14,013,443 23,351.96

2 pod 78.62% 24.22% 8,477,559 14,126.90

3 pod 99.95% 21.57% 11,573,656 19,286.27

5 pod
1 node

99.96% 12.54% 10,884,182 18,137.23

5 pod 2
nodes

173.54% 21.98% 18,435,726 30,721.39

 Journal of Theoretical and Applied Information Technology
15th April 2024. Vol.102. No 7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3022

These numbers are quite comparable to the
findings presented in prior studies where the
performance improvement obtained from applying
scalability is more or less proportional to the number
of pods [9], or even in the reverse scenario where
scalability is applied to a service with statically
defined number of requests and it has shown
evidence that the CPU workload is being distributed
proportionally among multiple pods [8].

4. CONCLUSIONS

Based on the test results carried out in this
research, it is proven that applying scalability to
applications can improve the performance of the
application, such as increasing the number of
requests sent by wrk that can be handled by the
Nginx web server. And at the same time, the
performance improvement introduced by scaling up
the computing resources is balanced with the scaling
down of unused computing resources so users can
gain the benefit of maximum performance with
minimal cost.

So when designing scalable and efficient services,
especially for those running in a cloud environment,
Kubernetes with its various scalability features can
be one of the options that can be chosen by users. In
addition, apart from scalability implementation
based on monitoring of CPU workload only as
carried out in this research, there are other metrics
that can be used, such as based on the number of
requests from users, which can be considered for
next research. And since the implementation of
scalability by Cluster Autoscaler dependent on the
cloud service provider, a research to compare the
performance improvement on scaling up and cost
efficiency on scaling down between multiple cloud
environments is also worth considering as an idea for
further research.

REFERENCES

[1] P. Dutta and P. Dutta, "Comparative Study of
Cloud Services Offered by Amazon, Microsoft
and Google," International Journal of Trend in
Scientific Research and Development, vol. 3, pp.
981-985, 2019.

[2] "Cloud Computing Market Size, Share &
COVID-19 Impact Analysis," [Online].
Available:
https://www.fortunebusinessinsights.com/cloud-
computing-market-102697.

[3] N. K. Sehgal, P. C. P. Bhatt and J. M. Acken,
Cloud Computing with Security Concepts and
Practices, Second ed., Springer, 2020.

[4] D. ND, A. Deshmukh, G. M, A. P. Chavan, H.
V. R. Aradhya and N. N. N, "Experimental
Analysis of Performance Metrics for
Configuration of Auto Scaling Groups,"
International Research Journal of Engineering
and Technology (IRJET), vol. 7, no. 5, 2020.

[5] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y.
Kwon and B.-J. Kim, "Performance Comparison
Analysis of Linux Container and Virtual
Machine for Building Cloud," Advanced Science
and Technology Letters, vol. 66, pp. 105-111,
2014.

[6] V. Medel, O. Rana, J. Á. Bañares and U.
Arronategui, "Modelling Performance &
Resource Management in Kubernetes," 2016
IEEE/ACM 9th International Conference on
Utility and Cloud Computing, 2016.

[7] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park
and S. Kim, "Horizontal Pod Autoscaling in
Kubernetes for Elastic Container Orchestration,"
Sensors, vol. 20, no. 16, 2020.

[8] L. P. Dewi, A. Noertjahyana, H. N. Palit and K.
Yedutun, "Server Scalability Using Kubernetes,"
The 2019 Technology Innovation Management
and Engineering Science International
Conference (TIMES-iCON2019), pp. 1-4, 2019.

[9] D. Balla, C. Simon and M. Maliosz, "Adaptive
scaling of Kubernetes pods," NOMS 2020 - 2020
IEEE/IFIP Network Operations and
Management Symposium, pp. 1-5, 2020.

