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ABSTRACT 
 

The ongoing integration of cutting-edge technologies is profoundly transforming agricultural oversight, 
where drones emerge as pivotal instruments for precise crop monitoring, early disease detection, and efficient 
land management. The harmonious synergy between drones and AI, specifically deep learning, is 
revolutionizing the surveillance of plant diseases, facilitating accurate realtime detection. This innovative 
approach not only promises enhanced effectiveness but also fosters sustainable agricultural management, 
steering the course of modern farming towards intelligent and environmentally conscious practices. This 
article undertakes a thorough comparative exploration of recent advancements in deep learning-based object 
detection. It investigates two model families - the single-pass YOLO (You Only Look Once) and the two-
pass RCNN (Region-based Convolutional Neural Network) - along with their respective variations, with a 
particular focus on their potential use in drone-based agricultural surveillance, specifically targeting the 
detection of Potato Late Blight. The conducted experiments unveil promising results across various metrics, 
affirming the invaluable role of this tool in the detection and monitoring of agricultural diseases. This research 
not only contributes to advancing our understanding of deep learning in agricultural contexts but also 
underscores the significance of integrating cutting-edge technologies for sustainable and efficient farming 
practices. 
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1. INTRODUCTION  

Plant diseases pose a significant threat to 
food security and agriculture. "Potato Late Blight" 
serves as a devastating example among these 
afflictions. The major issue lies in the rapid spread 
of these diseases, resulting in massive crop losses 
and compromising food availability. Faced with this 
threat, it becomes imperative to implement effective 
preventive measures and surveillance solutions. A 
robust monitoring system can play a crucial role by 
enabling early detection of disease signs, providing 
the opportunity for swift intervention to contain the 
spread and minimize damage [1]. The need for 
proactive action in the development of surveillance 
systems is thus a critical element to ensure crop 
resilience and secure long-term food safety [2]. 

Various techniques are employed to 
monitor and track plant diseases such as "Potato Late 
Blight." Remote sensing technologies, including 

satellite and drone imagery, offer a non-invasive 
means of assessing crop health by detecting subtle 
changes in vegetation that may indicate the presence 
of disease. Ground-based sensors equipped with 
advanced imaging systems and data analytics 
provide real-time monitoring at the field level. 
Additionally, molecular diagnostic tools enable the 
identification of specific pathogens responsible for 
diseases, facilitating targeted interventions. 
Traditional scouting, involving manual field 
inspections, remains a valuable technique for on-the-
ground observation of symptoms [3]. 

The use of drones offers several notable 
advantages in the field of agricultural surveillance. 
These devices allow for rapid and precise data 
collection on a large scale, facilitating early 
identification of issues such as plant diseases. With 
their flexible operational capabilities, drones can be 
deployed at various stages of the agricultural season 
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to monitor crop growth, assess irrigation efficiency, 
and detect temperature variations. By automating 
data collection, farmers can make informed 
decisions and respond quickly to potential 
challenges, contributing to a more efficient and 
sustainable agriculture [4]. 

The fusion of drones and deep learning has 
revolutionized agricultural surveillance, particularly 
in object detection. This combination allows drones 
to capture high-resolution data over fields, while 
deep learning algorithms rapidly and accurately 
analyze this information. Automated detection of 
objects, such as early signs of plant diseases or 
growth variations, becomes achievable. This 
approach transforms agricultural monitoring by 
enabling proactive issue identification and more 
efficient resource management, paving the way for a 
sustainable increase in agricultural productivity [5]. 

The limitations mentioned above have 
prompted the suggestion of an automated system 
designed to aid in the detection of potential Potato 
Late Blight. This system leverages object detection 
algorithms, notably the YOLO and Faster R-CNN 
versions.  

The subsequent sections of this document 
are structured as follows: Section two delves into the 
contextual foundation of our research, offering 
insights into the background. Section three provides 
an in-depth examination of relevant literature and 
related works. In section four, our proposed 
methodology is outlined and explained. The 
outcomes and discussions related to the proposed 
system are presented in section five. Finally, section 
six offers a conclusion along with perspectives for 
future considerations. 

2. BACKGROUNDS 

2.1 Computer Vision 
Computer vision is a branch of artificial 

intelligence focused on imparting machines with the 
ability to visually understand and interpret the world 
around them. Its goal is to enable computer systems 
to perceive, analyze, and make decisions based on 
visual information extracted from images or videos. 
In essence, computer vision seeks to replicate the 
human capacity to visually interpret and 
comprehend its environment [6]. 

The application domains of computer 
vision are broad and continually expanding. Among 
its common applications are object recognition, face 
detection, image segmentation, text recognition, 
video surveillance, augmented reality, autonomous 
driving, medical imaging, virtual reality, and more. 

This technology finds use in sectors such as 
healthcare, security, industry, research, 
transportation, and significantly contributes to the 
advancement of various fields by automating and 
enhancing the visual understanding of computer 
systems [7].  

2.2 Deep Learning 
  Deep learning, drawing inspiration from the 
human brain, empowers a computer to autonomously 
acquire knowledge. Although it is a recent 
development, it has already had a notable influence, 
particularly in identifying visual content, 
understanding spoken language, and processing 
natural language [8]. 

While powerful, deep learning faces 
challenges, notably the requirement for substantial 
amounts of data for effective learning. Despite these 
challenges, this captivating field of machine learning 
yields remarkable results [9]. 

2.3 Object Detection 
Object detection is a crucial aspect of 

computer vision, aiming to locate and classify 
objects within an image or video. Various 
applications, ranging from video surveillance to 
automatic license plate recognition and medical 
imaging, heavily rely on this technology [10]. Deep 
learning has revolutionized object detection by 
replacing traditional methods with deep neural 
networks. These models automatically learn 
complex features, allowing for better generalization 
and improved performance across diverse scenarios 
[11]. 

Two predominant approaches dominate the 
object detection landscape (Figure 1): single-shot 
models, exemplified by YOLO, and two-shot 
models, represented by Faster RCNN. Single-shot 
models are known for their speed, making them 
suitable for real-time applications like urban 
surveillance. On the other hand, two-shot models, 
though more complex, provide superior precision, 
making them well-suited for tasks requiring 
meticulous object detection. The rapid evolution of 
object detection, fueled by deep learning, promises 
ongoing advancements. Researchers continuously 
explore new architectures to enhance accuracy, 
speed, and model adaptability. This creative 
dynamic paves the way for even more sophisticated 
applications, from autonomous driving to early 
disease detection, shaping the future of computer 
vision [12]. 

In object detection research, the current 
focus is on enhancing model interpretability and 
resilience against adversarial attacks. This improves 



 Journal of Theoretical and Applied Information Technology 
15th April 2024. Vol.102. No 7 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
2936 

 

their applicability in critical areas such as healthcare 
and autonomous vehicles. 

 
Fig. 1. One-Stage vs. Two-Stage Object Detection 

Architectures 

2.3.1 R-CNN and its variants 
R-CNN, Fast R-CNN, and Faster R-CNN 

mark successive advancements in the object 
detection field. Each model distinguishes itself 
through its capacity to enhance the effectiveness and 
precision of object detection in images. The core 
concept underlying R-CNN involves segmenting the 
image into regions of interest (RoI) and subsequently 
applying a convolutional neural network to each 
region for feature extraction [13]. 

Fast R-CNN [14] introduces a noteworthy 
enhancement by seamlessly integrating the region 
proposal process directly into the network. In 
contrast, Faster R-CNN [15] elevates this 
optimization to a higher level by introducing a 
dedicated network known as the "RPN" (Region 
Proposal Network). This specialized network 
accelerates and refines the generation of region 

proposals, contributing to a faster and more accurate 
object detection process. 

Consequently, these successive models 
exemplify a substantial leap forward in the 
efficiency of object detection. This progress is 
achieved through the incorporation of refinements 
such as computational resource sharing, integration 
of dedicated networks, and the streamlining of the 
region proposal process [16]. 

2.3.2 YOLO 
YOLO is a widely used convolutional 

neural network architecture in the realm of real-time 
object detection. What sets YOLO apart is its 
innovative ability to execute object detection in a 
single pass through the network, unlike conventional 
methods that require multiple steps. The first 
version, YOLOv1, introduced in 2016, demonstrated 
high efficiency but had limitations in precision, 
especially for small objects. Subsequent versions, 
YOLOv2 (or YOLO9000), YOLOv3, and YOLOv4, 
brought significant improvements in precision and 
processing speed. YOLOv2 introduced multi-scale 
detection and the ability to detect a large number of 
object classes, while YOLOv3 optimized the 
architecture for enhanced precision [17], [18]. 

In 2021, YOLOv5 was unveiled, marking a 
significant milestone in the evolution of the YOLO 
series. Subsequent releases, namely YOLO versions 
v6 [19] and v7 [20] (both launched in 2022), along 
with the most recent version, v8 [21] introduced in 
2023, have continued to elevate the architecture's 
performance. These newer iterations bring forth 
notable enhancements in terms of both exactness and 
processing speed, showcasing the ongoing 
commitment to refining the YOLO framework. 
Additionally, the introduction of a novel 
segmentation pipeline in the latest versions 
demonstrates a forward-looking approach, 
expanding the capabilities of YOLO beyond object 
detection. 

3. RELATED WORKS  

Arshad et al. [22] aims to enhance 
agricultural productivity by providing precise and 
rapid solutions for disease detection. The key goal of 
this study is to formulate a hybrid deep learning 
model, PLDPNet, that integrates advanced 
technologies to effectively predict potato leaf 
diseases. Researchers created PLDPNet by 
combining features derived from two well-
established deep learning models, VGG19 and 
Inception-V3, with the addition of vision 
transformers. This hybrid approach allows the model 
to leverage the strengths of each component, leading 
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to more accurate and reliable predictions. The 
dataset used to train and evaluate the PLDPNet 
model is notable, comprising images of potato leaves 
classified into three categories: early blight, late 
blight, and healthy leaves. To validate the model's 
universality and robustness, researchers tested 
PLDPNet on additional datasets, including those of 
apple and tomato leaves. This research highlights the 
potential of hybrid deep learning in the precise and 
rapid diagnosis of plant diseases, paving the way for 
practical applications that could significantly 
transform agricultural practices. 

Anim-Ayeko et al. [23] employed the 
ResNet-9 model, a deep convolutional neural 
network, to classify potato and tomato leaf images 
from the PlantVillage dataset, which contains 6652 
images, encompassing healthy leaves and those 
affected by early and late blight. Initially trained on 
a subset of 3990 images, ResNet-9 underwent testing 
on 1331 images after data augmentation to balance 
class distribution. Model optimization involved fine-
tuning hyperparameters such as learning rate and 
epochs to enhance performance. The results 
demonstrated exceptional accuracy: a test accuracy 
of 99.25%, an overall accuracy of 99.67%, a recall 
of 99.33%, and an F1 score of 99.33%. In addition 
to quantitative evaluation, the authors utilized 
saliency maps to provide visual explanations of the 
model's predictions. These maps highlight regions 
within leaf images deemed most important for 
classification, thereby enhancing transparency and 
understanding of the model's internal workings. 

The main objective of the study of Shi et al. 
[24] was to develop CropdocNet, a deep learning 
model capable of efficiently processing complex 
hyperspectral data obtained through aerial imaging. 
CropdocNet stands out for its ability to integrate and 
analyze spectral and spatial features to accurately 
identify cases of late blight, overcoming challenges 
related to terrain variability and the complexity of 
disease symptoms. The training and validation 
dataset included high-resolution hyperspectral 
images collected using a DJI S1000 drone equipped 
with a UHD-185 imaging spectrometer from Cubert 
GmbH. These hyperspectral images cover a 
wavelength range from 450 nm to 950 nm, 
comprising 125 spectral bands. In total, 23 
hyperspectral images were mosaic-ed for the first 
experimental site (16382 × 8762 pixels), and 16 
hyperspectral images for the second site, reflecting 
diverse terrain conditions and disease development 
stages, providing a realistic framework for model 
evaluation. CropdocNet achieved an average 
accuracy of 95.75%. 

The study of Gao et al. [25] focuses on a 
Convolutional Neural Network model based on 
SegNet, specifically tailored for the semantic 
segmentation of late blight lesions. Field-collected 
images for training and testing capture the diversity 
of potato genotypes and disease severity levels. The 
dataset comprises approximately 500 RGB images 
from the field, spanning disease severity from 0% to 
70%, resulting in 2100 cropped images. For training, 
1600 of these cropped images were used, with 250 
randomly selected for validation and testing. The 
results are significant, with an Intersection over 
Union (IoU) of 0.996 for the background and 0.386 
for disease lesions in the test dataset. Furthermore, a 
linear relationship was established between 
manually assessed late blight visual scores and the 
number of lesions detected by deep learning at the 
canopy level. The study also examined the impact of 
class weight balancing on segmentation 
performance, underscoring the importance of class 
balancing in training deep learning models for 
agricultural applications. 

4. PROPOSED METHOD  

The innovative architecture proposed 
herein represents a groundbreaking leap in the realm 
of agricultural monitoring systems, designed to 
significantly augment efficiency. The core strategy 
involves seamlessly integrating cutting-edge 
interfaces that harness the power of drone imagery 
and deploy sophisticated deep learning techniques 
for disease detection, with a specific emphasis on 
combatting "Potato Late Blight". This ambitious 
endeavor hinges on the imperative implementation 
of deep learning algorithms meticulously crafted to 
discern and identify the characteristic symptoms of 
this particular affliction within the vast array of 
images captured by the aerial drones. These drones, 
equipped with state-of-the-art high-resolution 
cameras, ensure the precision of visual data 
acquisition, capturing intricate details vital for early 
disease detection. Following the data collection 
phase, a meticulously crafted pipeline will kick into 
action, employing pre-trained object detection 
models to automate the identification of nascent 
signs of "Potato Late Blight", as elucidated in Figure 
2. The outcome of this comprehensive effort is 
poised to revolutionize agricultural surveillance, 
proactively mitigating disease risks, and fine-tuning 
crop management strategies. Ultimately, this 
initiative promises to usher in a new era of 
sustainable and high-quality agricultural production, 
propelling the industry towards greater resilience 
and productivity. 
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Fig. 2. Proposed Architecture 

The suggested approach involves five 
pivotal steps, detailed in Figure 3. 

 

Fig. 3. Proposed Methodology 

4.1 Dataset Gathering 
The first step in our proposed methodology 

entails collecting a comprehensive array of images, 
including late blight-infected potatoes and those 
devoid of any disease symptoms (Figure 4). 
Following the implementation of data augmentation 
techniques, our dataset expands to include a 
substantial total of 2280 images, all meticulously 
labeled with the designation "Late Blight". These 
visuals were ac-quired utilizing ground-based 
cameras and airborne drones. Ground cameras were 
utilized to secure detailed imagery, ensuring precise 
portrayals of the ailment. Conversely, aerial drones 
were utilized to provide a broader perspective, 
capturing expansive areas within potato cultivation. 
The combination of ground and aerial approaches 
has yielded a comprehensive set of images, ranging 
from meticulous details to a panoramic overview. 

 

Fig. 4. Sampling Images with and without Late Blight 
from the Database 

We drew upon a diverse array of sources to 
compile this dataset, with our primary source being 
photographs of multiple potato-growing plots within 
the Berkane agricultural zone. These images were 
personally captured by our team of researchers 
during on-site visits, providing a detailed and up-to-
date perspective on the local agricultural reality. We 
utilized both our smartphones and video footage 
captured by a drone. Furthermore, we gathered 
photographs from datasets available to the public, 
including online image repositories and platforms. 
These images were employed to broaden the dataset, 
thereby furnishing a more diverse array of data for 
the model to assimilate and learn from. 

4.2 Data Preprocessing 
The second step involves preprocessing 

image data, which is a critical stage. Its main aim is 
to improve the quality and consistency of data by 
removing undesirable elements such as noise and 
artifacts, which could adversely affect the model's 
performance. This involves operations like intensity 
normalization, distortion correction, and image 
scaling. By removing these disturbances, 
preprocessing ensures a clean and uniform input for 
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the model, thereby facilitating convergence during 
the learning phase. Another critical aspect of the 
preprocessing process is image data augmentation. 
This step aims to diversify the dataset by applying 
various transformations to existing images, such as 
rotations, flips, zooms, and other geometric 
modifications with random parameters. The primary 
objective of augmentation is to enrich the variability 
of the training data, enabling the model to learn more 
robust and generalized patterns. By introducing 
controlled variations in the dataset, data 
augmentation helps improve the model's ability to 
handle real-world scenarios and strengthen its 
resilience to variable conditions. By combining these 
two steps, the overall preprocessing of image data 
creates an optimized training set, fostering 
maximum model performance. 

4.3 Foundation Model Choice 
As part of our investigation into enhancing 

the detection of "Late Blight" in images taken by 
agricultural drones designed for monitoring potato 
crops, we will explore two distinct approaches: 
single-pass models and double-pass models. This 
marks the third stage of our study. For single-pass 
models, we will explore the performance of 
YOLOv6, YOLOv7, and YOLOv8 architectures, all 
utilizing the Darknet backbone. On the other hand, 
for double-pass models, we will scrutinize the 
outcomes achieved with Faster R-CNN, employing 
backbones such as ResNet, VGG16, and VGG19. 
The selection of these convolutional neural network 
architectures as backbones is grounded in prior 
studies demonstrating their efficacy in similar 
contexts [26]. This comparative approach will 
enable us to assess and select the most suitable 
model for our specific task of "Late Blight" detection 
in agricultural environments. 

ResNet. an abbreviation for Residual 
Network, represents a groundbreaking development 
in deep learning architecture pioneered by Microsoft 
Research in 2015. It ingeniously tackles the 
challenge of training exceptionally deep neural 
networks by introducing the concept of residual 
learning. The key breakthrough involves the 
incorporation of shortcut connections, or skip 
connections, which allow information to circumvent 
certain layers during forward propagation [27]. This 
ingenious design mitigates the vanishing gradient 
problem, facilitating the training of highly complex 
networks with enhanced accuracy. Renowned for its 
efficacy in computer vision tasks like image 
recognition and object detection, ResNet has become 
a pivotal model, celebrated for its ability to leverage 

the benefits of deep neural networks while 
surmounting com-mon training obstacles [28]. 

VGG. or Visual Geometry Group, is a 
family of influential convolutional neural networks 
(CNNs) known for their straightforward 
architecture. VGG16 and VGG19, with 16 and 19 
layers respectively, are key members. Developed by 
the University of Oxford, these models feature a 
sequence of convolutional layers and densely 
connected layers. Despite their simplicity, VGG16 
and VGG19 have proven highly effective in image 
classification tasks, showcasing their enduring 
impact on deep learning in computer vision [29]. 

DarkNet. a nimble and potent neural 
network framework developed by Joseph Redmon, 
creator of the YOLO algorithm, stands out for its 
efficiency in computer vision applications. This 
lightweight architecture, ideal for real-time object 
detection, supports both CPU and GPU 
computations, achieving a favorable balance 
between speed and accuracy. Darknet's open-source 
and modular design has propelled its widespread 
adoption in the deep learning community, owing to 
its adaptability and seamless integration into diverse 
projects [30]. 

4.4 Training for Object Detection 
Refining our object detection models 

through adjustment and fine-tuning, utilizing the 
preprocessed and augmented dataset, represents the 
fourth step in our proposed approach. We adopt a 
dataset split of 70% for training, 20% for validation, 
and 10% for testing purposes. Our model repertoire 
includes YOLOv6, YOLOv7, and YOLOv8, as well 
as Faster R-CNN variants (ResNet50, VGG16 and 
VGG19). These models leverage a foundational 
backbone model. 

Our training procedure involves utilizing 
labeled data, typically featuring bounding boxes 
around objects within images, accompanied by class 
information for the enclosed objects. The labeling 
process employs Open-Source Data Labeling 
software [31]. The input data format varies, with 
Faster R-CNN utilizing TensorFlow record 
(TFRecord) files, while YOLO employs TXT 
annotations and YAML config files. The ultimate 
goal of this step is to craft a highly accurate and 
dependable model tailored for the detection of Late 
Blight. 

4.5 Assessing Model Performance 
As a final step, we assess the models' 

performance by analyzing the entire dataset. This 
assessment utilizes 10% of the test set to gauge the 
average accuracy and inference speed of each model. 
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The testing stage is pivotal by allowing us to gauge 
model performance on novel data, aiding in 
determining the overall effectiveness of the models 
in detecting Potato Late Blight, and the potential for 
real-time use by drone. 

5. FINDING RESULTS 

In this section, we will begin by outlining 
the hardware specifications utilized in our study on 
object detection using a drone-mounted camera. 
Following this exposition, we will introduce the 
evaluation metrics employed to gauge the accuracy 
of the developed system. To assess the object 
detection results, a comparative analysis will be 
conducted against a dataset from real potato fields. 
Lastly, we will conclude this section by presenting 
and thoroughly discussing the outcomes achieved 
through the proposed method. 

5.1 Technical Specifications 
In the context of this study, the 

experimental setup included a Mavic Air drone by 
DJI fitted with a camera of high resolution [32]. For 
training and testing object detection models, we 
utilized a DELL PowerEdge R740 server featuring 
an Intel Xeon Silver 4210 2.2G processor and 80GB 
of RAM. This server was additionally equipped with 
two NVIDIA RTX A5000 GPUs, each with 24GB of 
graphics memory. 

5.2 Evaluation Metrics 
Numerous metrics exist to assess the 

effectiveness of an object detection algorithm, 
including: 

5.2.1 Precision, recall and F1 score 
Precision denotes the number of instances 

correctly identified as "Potato Late Blight" by the 
model, divided by the total number of instances 
detected as "Potato Late Blight," including false 
positives. Recall measures the model's ability to 
identify all actual occurrences of "Potato Late 
Blight" among all real instances and is calculated by 
dividing the number of instances correctly identified 
by the model by the total number of actual 
occurrences of "Potato Late Blight." The F1 score 
combines precision and recall into a single metric, 
offering a balanced assessment. It is calculated as the 
harmonic mean of precision and recall. These 
metrics are essential for a holistic evaluation of a 
model's effectiveness in accurately detecting the 
"Potato Late Blight" object. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
∗

 
 (1) 

 

5.2.2 Average Precision 
The Average Precision (AP) is a 

performance metric that assesses the average 
precision of a detector across all classes, including 
the detection of the "Potato Late Blight" object. 
While it provides a comprehensive overview of the 
overall effectiveness of the detector, it may lack 
granularity in evaluating the performance for 
specific classes such as "Potato Late Blight." To 
calculate AP, one constructs the precision-recall 
curve for a given set of detections and then computes 
the average precision by averaging precision values 
at regularly spaced recall levels. In the specific case 
of "Potato Late Blight" detection, the formula for AP 
is applied to the set of detections related to this 
particular class [33]. The formula for AP is: 

𝐴𝑃 =  ∑ [𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘)  −  𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘 + 1) ∗
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠(𝑘)]  (2) 

Where Recalls(n)=0, Precisions(n)=1, and 
n=Number of thresholds 

5.2.3 Mean Average Precision 
The mean Average Precision (mAP) stands 

as a sophisticated metric designed to assess the 
performance of object detection models. Unlike 
simpler measures, it considers precision and recall 
for each class, providing a detailed perspective. 
Calculated at various confidence thresholds, such as 
0.5 and 0.95, mAP offers a thorough assessment of 
model robustness. Although its complexity can make 
interpretation challenging, mAP enhances 
evaluation by providing detailed insights into overall 
model effectiveness. The mean Average Precision 
formula encapsulates these considerations, making it 
a valuable tool for assessing and comparing object 
detection algorithms. 

𝑚𝐴𝑃 = ∑ 𝐴𝑃𝑖 

5.2.4 Intersection over Union 
Intersection over Union (IoU) is a metric 

used in object detection to assess the overlap 
between a detected object and its ground truth. It 
ensures the accuracy of object localization. Despite 
its complex formula involving rectangle coordinates, 
IoU provides detailed insights into the model's 
ability to precisely align detected objects with their 
actual references. IoU compares the intersection area 
of two rectangles to their union area. While metrics 
like Average Precision (AP) and mean Average 
Precision (mAP) are commonly used to evaluate 
object detection models, IoU complements these by 
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offering specific information on the model's 
accuracy in localizing objects. 

𝐼𝑜𝑈 =  
(   ) 

(   )
   

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑚𝑖𝑛(𝑥2, 𝑥4) −
𝑚𝑎𝑥(𝑥1, 𝑥3)) ∗ (𝑚𝑖𝑛(𝑦2, 𝑦4) − 𝑚𝑎𝑥(𝑦1, 𝑦3)) 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 =  (𝑥2 − 𝑥1)  ∗  (𝑦2 − 𝑦1)  +
 (𝑥4 − 𝑥3)  ∗  (𝑦4 − 𝑦3)  −

 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

5.2.5 Inference Time  
The inference time of a deep learning 

model, particularly in object detection, refers to the 
duration it takes for the model to analyze an input 
image and generate predictions. This critical metric 
is influenced by factors like model architecture and 
available computational resources, impacting the 
model's real-time usability. The goal is to optimize 
inference time while maintaining sufficient 
accuracy, especially in applications that require a 
swift response. 

5.3 Results Discussion 
This study aims to assess the performance 

of two families of object detection models in 
identifying Potato Late Blight for the purpose of 
integrating this drone-based monitoring capability 
into a comprehensive supervision platform. We 
evaluated double-stage Faster-RCNN models, each 
employing different backbone networks, alongside 
single-stage YOLO models (v6, v7, and v8). These 
models were trained on a dataset comprising images 
sourced from the internet and others captured 
directly in potato fields in Morocco's eastern region. 
We trained each model for 100 epochs to ensure 
convergence across all metrics. The models 
underwent training and evaluation using various 
measures, including mAP at IoU thresholds of 0.5 
and 0.95, recall, precision, and F1 score. 
Additionally, we measured the inference time 
(milliseconds/frame) using two Nvidia RTX A5000 
GPUs. The F1 score, a metric that combines 
precision and recall in object detection models, 
provides a valuable balance between avoiding false 
detections and effectively capturing real objects. We 
prioritize the field of plant diseases with an emphasis 
on mAP@0.5. In critical domains like medicine, 
precision is paramount, leading to a preference for 
mAP@0.95. This higher confidence threshold 
ensures exceptionally reliable results, significantly 
reducing false positives. 

Table 1 and Figure 5 comprehensively 
present the results obtained by various models 

during both the entire testing phase and the training 
process, respectively. An initial observation 
indicates that all models successfully detect potato 
late blight with precision, and notably, YOLO 
models require less training time. Among these 
models, Faster-RCNN stood out by showcasing the 
highest performance levels. Specifically, the Faster-
RCNN model with ResNet-50 backbones (RS50) 
achieved an impressive F1 score of 93.97%, along 
with a mAP@0.5 of 95.32% and a mAP@0.95 of 
81.12%. These results clearly underscore the 
robustness and efficiency of models adopting this 
particular configuration. This model also stands out 
for having the lowest inference time among Faster-
RCNN models, displaying an average of 71.89 
milliseconds per image. On one hand, while YOLO 
models demonstrated slightly lower performance 
compared to Faster-RCNN models, with YOLOv8 
achieving a mAP@0.5 of 91.45% and a mAP@0.95 
of 79.31%, they significantly excel in inference time. 
Specifically, YOLOv8 boasts an average of only 
1.43 milliseconds per image. It is noteworthy that 
YOLO v6, v7, and v8 are not sequential versions, 
meaning that one is not necessarily newer than the 
other. Instead, they represent results from distinct 
research endeavors. This positions YOLO, 
especially YOLOv8, as an optimal choice for real-
time applications, such as drone data collection, 
where fast processing speed is crucial. While the 
Fast-RCNN model (RS50) also yielded satisfactory 
results, its higher processing speed compared to 
YOLO models makes it the preferred choice in an 
architecture where the drone sends images to a 
ground station responsible for Potato Late Blight 
object recognition. 

Table 1: Outcomes Achieved by the Implemented Models 
(On the Test Set) 

DL 
Model 

Infer-
ence 
Time 

Prec-
ision 

Rec- 
all 

F1 
Score 

IoU 
mAP 
@0.5 

mAP 
@0.95 

(ms / 
frame) 

% % % % % % 

Faster-
RCNN 
(RS50) 

~71.89 93.92 94.01 93.97 95.36 95.32 81.12 

Faster-
RCNN 
(VGG19) 

~97.89 91.15 90.47 90.81 93.44 92.75 80.65 

Faster-
RCNN 
(VGG16) 

~87.75 91.96 91.47 91.71 93.23 93.22 80.52 

YOLOv6 ~2.47 84.59 84.80 84.70 88.06 89.12 78.93 

YOLOv7 ~3.51 84.78 84.99 84.89 89.17 90.29 79.09 

YOLOv8 ~1.43 87.18 88.34 87.76 91.36 91.45 79.31 
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Fig. 5. Evolution of mAP@0.5 Across Epochs for 
Analyzed Models (Validation Set) 

In summary, the decision between YOLO 
and Faster RCNN models for Potato Late Blight 
detection depends on the preferred balance between 
precision and processing speed. For applications 
prioritizing high accuracy, faster RCNN models, 
particularly the faster RCNN model (RS50), would 
be the preferred choice. Conversely, for real-time 
applications requiring fast processing speeds, YOLO 
models, especially YOLOv8, emerge as the optimal 
option (see Figure 6). 

 

Fig. 6. Potato Late Blight detection examples using 
YOLOv8 

In our research, we've pioneered an 
innovative methodology by harnessing the synergy 
of drone technology and object detection to pinpoint 
plant diseases. This approach stands out from prior 
efforts by facilitating extensive crop surveillance 
with heightened precision and efficiency in disease 
identification. Through the seamless integration of 
drone flight capabilities with advanced object 
detection algorithms, we achieve comprehensive 

coverage of agricultural fields, empowering 
proactive and swift disease monitoring. This 
groundbreaking approach holds immense promise in 
transforming agricultural monitoring practices, 
ushering in early disease detection that enables 
targeted interventions and mitigates crop losses. 

6. CONCLUSION 

New technologies are revolutionizing 
agricultural supervision, enabling precise crop 
management, real-time monitoring of environmental 
conditions, and optimization of yields. This sets the 
stage for more sustainable and efficient farming 
practices. The combination of drones and AI, 
particularly leveraging deep learning, is 
transforming agricultural monitoring by swiftly and 
accurately detecting plant diseases. This proactive 
approach allows for targeted management, reducing 
crop losses and promoting more efficient, 
sustainable agriculture. This article presents a 
comparative study of deep learning models for 
potential use in detecting "Potato Late Blight" using 
drones. The research aims to evaluate and compare 
various approaches to identify the most effective 
method for early and accurate detection of this 
disease, paving the way for innovative solutions in 
agricultural monitoring. We explored two families of 
object detection models in our study, namely the 
single-pass YOLO models (versions v6, v7, and v8) 
and the two-stage Faster R-CNN models with three 
backbone variants: Res-Net50, VGG16, and 
VGG19. The obtained results show promise for 
disease detection and monitoring, positioning this 
tool as a potentially valuable asset in this field. The 
studied models exhibit promising results across 
various metrics, positioning them-selves as a 
valuable tool for disease detection and monitoring. 
To select the most suitable model for drone images, 
achieving equilibrium between precision and speed 
of processing is crucial. For enhanced precision, it is 
advisable to use the faster RCNN model. 
Alternatively, for real-time applications 
emphasizing speed, the YOLO model, especially 
YOLOv8, emerges as the optimal choice with a 
mAP@0.5 of 91.45%, mAP@0.95 of 79.31%, and 
an inference time of nearly 1.43 milliseconds per 
image.  

This research not only sheds light on the 
potential of deep learning models for early detection 
of "Potato Late Blight" using drones but also 
underscores the critical role of innovative 
technological integration in advancing agricultural 
monitoring. By evaluating and comparing various 
deep learning approaches, this study contributes to 
the growing body of knowledge aimed at enhancing 
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the precision and efficiency of disease detection in 
precision agriculture. 

Future work could explore alternative 
datasets, refine model architectures, or investigate 
the integration of other advanced technologies to 
enhance the precision and efficiency of disease 
detection in precision agriculture, with a particular 
focus on considering and optimizing for varying 
weather conditions and drone flight altitudes. 
Furthermore, there is a need to delve into the 
development of robust algorithms capable of 
adapting to dynamic environmental factors, such as 
fluctuating weather patterns and varying terrain, to 
ensure consistent and reliable performance across 
diverse agricultural settings. Additionally, exploring 
the potential synergies between different sensing 
modalities and data fusion techniques could further 
enhance the accuracy and utility of disease detection 
systems in precision agriculture. 
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