
Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2338

EMPOWERING SENTIMENT ANALYSIS OF COURSERA
COURSE REVIEWS WITH SOPHISTICATED ARTIFICIAL

BEE COLONY-INSPIRED
DEEP Q-NETWORKS (SABC-DQN)

J SAHITHA BANU1, G PREETHI2

1Research Scholar, Department of Computer Science, Ponnaiyah Ramajayam Institute of Science and
Technology (PRIST), Thanjavur,Tamilnadu

2 Associate Professor, Ponnaiyah Ramajayam Institute of Science and Technology (PRIST),
Thanjavur,Tamilnadu

E-mail:1 shahithak@gmail.com,2 mgpreethi@gmail.com

ABSTRACT

This paper presents SABC-DQN (Sophisticated Artificial Bee Colony Inspired Deep Q-Networks), a novel
approach to enhance the sentiment analysis of Coursera course reviews. Sentiment analysis is crucial for
understanding learner opinions, but existing methods struggle to capture the nuanced sentiments expressed
in textual data accurately. SABC-DQN combines the intelligent exploration capabilities of Artificial Bee
Colony (ABC) optimization algorithms with the power of Deep Q-Networks (DQN). The ABC optimization
algorithms mimic honey bees’ efficient foraging behaviour, enabling effective solution space exploration.
DQN, a reinforcement learning technique, utilizes a deep neural network to learn and approximate the optimal
policy for sentiment classification. The SABC-DQN approach operates through a multi-step process.
Initially, the ABC optimization algorithm guides the exploration of the solution space, identifying optimal
features that capture sentiment-related information. These features are then employed to train the DQN,
leveraging the representation learning capabilities of the deep neural network to predict sentiment labels
accurately. Experimental evaluations conducted on a dataset of Coursera course reviews demonstrate the
efficacy of SABC-DQN in enhancing sentiment analysis. The proposed approach outperforms existing
methods, achieving superior accuracy, precision, recall, and F1 score. SABC-DQN exhibits robustness when
faced with variations in review length, domain-specific jargon, and grammatical errors. SABC-DQN
introduces a novel solution for empowering sentiment analysis of Coursera course reviews. By integrating
sophisticated Artificial Bee Colony optimization algorithms with Deep Q-Networks, SABC-DQN provides
an advanced mechanism to capture nuanced sentiments expressed in textual data. The proposed approach has
the potential to significantly improve sentiment analysis accuracy, facilitating a deeper understanding of
learner perspectives in online educational platforms.

Keywords: Artificial Bee Colony, Coursera, Deep Q-Networks, SABC-DQN, Sentiment Analysis, Textual

Data Analysis

1. INTRODUCTION

In the digital era, online learning has emerged as a
transformative educational approach driven by
technological advancements and the internet’s
pervasive reach. With the integration of Learning
Management Systems (LMS) and adaptive learning
algorithms, online learning platforms provide
learners with personalized and adaptive educational
experiences [1]. Through intelligent algorithms,
learners receive targeted feedback, adaptive
assessments, and customized learning paths,
optimizing their learning outcomes. The flexibility
of online learning enables learners to access

educational content anytime and anywhere,
leveraging cloud-based storage and mobile
applications. Additionally, integrating virtual reality
(VR) and augmented reality (AR) technologies
within online learning environments offers
immersive and interactive experiences, allowing
learners to engage with realistic simulations and
practical scenarios [2]. Using big data analytics and
learning analytics enables educators to gain insights
into learners’ progress and tailor instructional
strategies accordingly. Online learning facilitates the
development of digital literacy and 21st-century
skills by providing collaboration, critical thinking,
and problem-solving opportunities through online

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2339

discussions, group projects, and online assessments.
Embracing online learning opens up a new era of
educational possibilities, empowering learners to
thrive in the digital age [3].

In the era of digitalization, our means of
communication and self-expression have undergone
a revolutionary transformation, resulting in a
tremendous volume of textual data. Within this
expansive realm of text, sentiment analysis has
emerged as a formidable technique for deciphering
the underlying sentiments and attitudes conveyed
[4]. Also referred to as opinion mining, sentiment
analysis employs computational methods, natural
language processing, and machine learning
algorithms to analyze and interpret the emotional
tone expressed in written text. An essential
application of sentiment analysis lies in managing
customer experiences. Businesses can glean
invaluable insights into customer sentiments,
satisfaction levels, and preferences by scrutinizing
customer feedback, online reviews, and social media
interactions. This wealth of information empowers
companies to make informed decisions, enhance
their products and services, and deliver unparalleled
customer experiences [5], [6].

Sentiment analysis plays a pivotal role in
monitoring social media platforms. These virtual
arenas are fertile ground for capturing public
opinions and sentiments [7]. By meticulously
analyzing tweets, posts, comments, and other user-
generated content, sentiment analysis aids in
monitoring public sentiment toward brands, events,
or trending topics. This strategic intelligence equips
marketers, advertisers, and decision-makers with a
profound understanding of public perception,
enabling them to tailor their strategies accordingly
[8] sentiment. Sentiment analysis also finds fruitful
applications in political analysis and public opinion
research. Researchers and policymakers can gauge
public opinion on specific policies, politicians, or
social issues by dissecting sentiments expressed in
news articles, blogs, or social media posts. This
analytical prowess informs decision-making
processes, facilitates effective communication
strategies, and identifies areas of concern.

Sentiment analysis holds immense value in
market research and competitive analysis.
Businesses can acquire insights into consumer
preferences, sentiments toward competitors, and
emerging market trends by analyzing online reviews,
forum discussions, or survey responses [9]. With this
knowledge, companies can adapt their marketing

strategies, devise innovative products, and gain a
competitive edge [10]. As sentiment analysis
advances, researchers delve into new dimensions,
such as aspect-based sentiment analysis and emotion
detection. Aspect-based sentiment analysis strives to
identify sentiments directed toward specific aspects
or features of a product or service, unearthing more
nuanced insights [11]. Emotion detection focuses on
categorizing the emotions expressed in text,
unravelling a deeper understanding of user
experiences and reactions. When bio-inspired
optimization techniques [12]–[16], [17], [18], [27],
[28], [19]–[26] are applied to sentiment analysis, the
objective is to achieve improved accuracy,
efficiency, or performance compared to traditional
methods. By leveraging the adaptive and efficient
strategies inspired by biological systems, bio-
inspired optimization can potentially enhance
sentiment analysis algorithms, leading to more
accurate sentiment classification, better prediction of
emotions, or improved interpretation of textual data
[29].

1.1. Problem Statement

The subjectivity and variability of human
emotions and opinions pose a significant challenge
in sentiment analysis. Sentiments can be expressed
differently by different individuals, and they can
vary based on cultural, demographic, and personal
factors. Existing sentiment analysis models often
struggle to handle this subjectivity and variability,
leading to inconsistencies and biases in sentiment
classification. This problem necessitates the
development of robust sentiment analysis models
that can account for individual differences, cultural
variations, and demographic influences, resulting in
more accurate and unbiased sentiment analysis
across diverse populations. Addressing the challenge
of subjectivity and variability requires advancements
in machine learning algorithms and models that can
effectively capture and represent the diverse range of
human sentiments and opinions.

1.2. Motivation

The motivation behind tackling the
subjectivity and variability challenges in sentiment
analysis is to achieve more accurate and unbiased
classification. By developing robust sentiment
analysis models that can handle individual
differences, cultural variations, and demographic
influences, we can better understand diverse
perspectives and ensure fair representation of
sentiments across different populations. This
motivation stems from the desire to avoid biased
decision-making, provide inclusive customer

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2340

experiences, and enable policymakers to gauge
public sentiment more accurately, leading to
equitable policies and initiatives.

1.3. Objective

Design and implement a robust sentiment
analysis algorithm to handle the subjectivity and
variability of human emotions and opinions. This
objective aims to develop techniques to account for
individual differences, cultural variations, and
demographic influences in sentiment analysis. It
seeks to enable unbiased sentiment classification by
accurately representing diverse perspectives and
ensuring fair representation of sentiments across
different populations.

 Handle the subjectivity and variability of
human emotions and opinions.

 Account for individual differences, cultural
variations, and demographic influences.

 Enable unbiased sentiment classification.

2.0 LITERATURE REVIEW

“Local and Global Context Focus

Multilingual Learning Model” [30] is designed to
handle multilingual data, enabling sentiment
analysis across different languages. It focuses on
capturing both the local context, which considers the
specific aspect and its surrounding words, and the
global context, which considers the overall
sentiment patterns and dependencies in the text. By
incorporating both levels of context, the model
provides a comprehensive understanding of aspect-
based sentiment. This approach improves the
accuracy and robustness of sentiment analysis across
languages and domains, making it valuable for
analyzing sentiment in multilingual datasets, such as
customer reviews, social media content, and opinion
mining. “Deep Multichannel Neural Networks” [31]
leverage deep neural networks with multiple
channels to capture different aspects of sentiment
information. By incorporating a variational
information bottleneck, the model learns to extract
the most relevant and informative features for
sentiment analysis while minimizing information
redundancy. This enables the model to compress the
input data effectively while preserving essential
sentiment-related information. The deep
multichannel architecture allows the model to
capture linguistic aspects, such as word embeddings,
syntactic structures, and semantic relationships,
resulting in comprehensive sentiment analysis. This
approach provides enhanced accuracy and
interpretability, making it valuable in applications
like opinion mining, social media sentiment

analysis, and customer feedback analysis. Bio-
inspired Optimization are being applied in many
researches to achieve the best cum expected results.

“Multimodal Sentiment Analysis” [32]
consists of two main components: a unimodal
reinforced Transformer and a time squeeze fusion
layer. The unimodal reinforced Transformer is used
to progressively attend to and distil unimodal
information from the multimodal embedding. The
time squeeze fusion layer fuses the unimodal
reinforced embeddings into a final multimodal
embedding. UR-Transformer has been evaluated on
the MOSEI, a large-scale multimodal sentiment
analysis dataset. It has been shown to outperform
state-of-the-art methods on this dataset. “Innovative
Sentiment Analysis” [33] focuses on individuals’
collective behavior and sentiment patterns. By
analyzing large-scale social media data or other
sources of public opinion, this approach identifies
trends, group dynamics, and the influence of social
interactions on sentiment. It provides insights into
the collective sentiment of a community or market,
enabling a deeper understanding of herd behavior
and its impact on decision-making processes. This
innovative sentiment analysis technique has
applications in finance, marketing, and social
sciences, offering valuable insights into the
dynamics of collective sentiment and the potential
for predicting and understanding group behavior.

“Weakly Supervised Framework” [34] has
been developed for aspect-based sentiment analysis
on students’ reviews of Massive Open Online
Courses (MOOCs). This framework addresses the
challenge of limited labelled data by leveraging
weak supervision, where aspect-level sentiment
annotations are automatically generated using
heuristics or distant supervision techniques. The
framework identifies aspects and associates
sentiment polarity with them by incorporating
domain-specific knowledge and linguistic patterns.
This approach allows for analyzing sentiment
towards specific aspects mentioned in students’
reviews, such as course content, instructors, or
platform usability. The weakly supervised
framework enables a more scalable and efficient
sentiment analysis process, providing valuable
insights into students’ opinions and sentiments
regarding different aspects of MOOCs. It can aid in
improving course offerings, identifying strengths
and weaknesses, and enhancing students’ overall
learning experience in online education platforms.
“Lexicon Embedding and Polar Flipping Technique”
[35] capture the sequential dependencies of words in

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2341

a sentence, allowing for a comprehensive
understanding of the sentiment expressed. At the
word level, lexicon embedding incorporates
sentiment information from pre-defined sentiment
lexicons. This enhances the model’s capture of
sentiment nuances and improves sentiment
classification accuracy. The polar flipping technique
further enhances the model by flipping sentiment
polarities of certain words based on contextual
usage, ensuring better sentiment representation. The
Two-Level LSTM with lexicon embedding and
polar flipping offers an effective solution for
sentiment analysis, achieving improved
performance and capturing fine-grained sentiment
information.

“Context-Dependent Part-of-Speech” [36]
involves analyzing the contextual information
surrounding words to identify relevant POS chunks
contributing to sentiment. Considering the larger
syntactic context, the sentiment lexicon becomes
more accurate and contextually relevant. This
approach enables the disambiguation of words with
multiple meanings and helps capture the intended
sentiment in a given context. By constructing a
sentiment lexicon based on context-dependent POS
chunks, sentiment analysis models can provide more
precise and reliable sentiment predictions,
improving the overall accuracy and contextual
understanding of sentiment in textual data. “Context-
Specific Heterogeneous Graph Convolutional
Network” [37] leverages the inherent contextual
information present in the text by utilizing a
heterogeneous graph structure. By representing
words, entities, and their relationships as nodes in
the graph, CSH-GCN captures the intricate
dependencies and interactions between them. The
model incorporates context-specific information to
enhance sentiment analysis accuracy, considering
the nuanced meanings of words in different contexts.
Through graph convolutional operations, CSH-GCN
effectively propagates information and captures the
rich semantic relationships within the heterogeneous
graph. This approach enables a comprehensive
understanding of implicit sentiment in text data,
making it valuable for applications such as social
media sentiment analysis, opinion mining, and
recommendation systems. The CSH-GCN model
significantly improves the accuracy and granularity
of sentiment analysis by leveraging context-specific
information and heterogeneous graph structures.

“Knowledge-Guided Sentiment Analysis”
[38] leverages the knowledge embedded within
human-generated explanations to improve the

accuracy and interpretability of sentiment analysis
results. Training the model to learn from these
explanations gains insights into the reasoning
process and the linguistic cues that indicate
sentiment. This approach allows the model to
capture complex sentiment patterns and understand
the underlying factors contributing to sentiment
expressions. By integrating human knowledge and
explanations, the knowledge-guided sentiment
analysis model provides more reliable and
transparent results, facilitating better decision-
making in various domains, such as customer
feedback analysis, social media monitoring, and
opinion mining. “Entity-Sensitive Attention and
Fusion Network” [39] addresses the challenges of
sentiment analysis by considering both textual and
visual modalities and their relationship with specific
entities or targets within the text. ESAF-Net
incorporates entity-sensitive attention mechanisms
to dynamically weigh the importance of different
modalities and their associated entities. The model
effectively captures the sentiment expressed towards
them by focusing on relevant entities. The fusion
network integrates multimodal information and
generates a comprehensive representation that
combines textual and visual cues. This enables
ESAF-Net to make accurate sentiment predictions at
the entity level. The model is beneficial for
analyzing sentiment in diverse multimedia sources,
such as product reviews, social media posts, and
online discussions, providing a deeper
understanding of sentiment towards specific entities
or targets.

“Naive Bayes Classification Algorithm
(NBCA)” [40] offers several benefits when
employed in sentiment analysis. It is a simple and
easily understandable method, making it accessible
to individuals new to machine learning. With
minimal parameter tuning, it reduces the complexity
of model selection. NBCA performs well with high-
dimensional data, making it suitable for sentiment
analysis tasks with numerous features. Its efficiency
in handling large volumes of text data is achieved by
assuming independence between features, resulting
in faster training and prediction times. Furthermore,
NBCA is robust to irrelevant features and missing
data without significantly impacting its
performance. It also requires a relatively small
amount of training data to estimate the necessary
probabilities, making it suitable for scenarios with
limited labelled data. “Random Forest Classification
Algorithm (RFCA)” [41] is an ensemble learning
algorithm that is highly effective in sentiment
analysis tasks. It can capture nonlinear relationships

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2342

between text features and sentiment, making it
suitable for scenarios where sentiment depends on
various factors within the text. RFCA reduces
overfitting by aggregating the predictions of
multiple decision trees, leading to more reliable
sentiment classification. Moreover, it provides
feature importance measures, enabling analysts to
identify the most informative features driving
sentiment. This information aids in understanding
key sentiment factors and feature selection. With its
ability to handle complex patterns, mitigate
overfitting, and offer interpretable feature
importance, RFCA enhances sentiment analysis and
effectively extracts sentiment from textual data.

3.0 SOPHISTICATED ARTIFICIAL BEE

COLONY-INSPIRED DEEP Q-

NETWORKS (SABC-DQN)

3.1. Modified Deep Q-Networks

Ensemble deep reinforcement learning

(RL) combines multiple agents in an ensemble to
enhance classification tasks. With diverse
architectures, training procedures, and initialization
settings, agents predict class labels for input data.
Training agents independently promotes diversity
and exploration of the feature space. Aggregating
predictions or class probabilities from multiple
agents enables comprehensive classification
decisions. Voting, averaging, or weighted averaging
are used to aggregate outputs. Ensemble deep RL
improves generalization, mitigates overfitting,
captures a wide range of patterns, and enhances
robustness by reducing individual errors or biases. It
provides insights into prediction uncertainty and
considers the trade-off between performance
improvement and computational complexity, as
training and inference procedures for multiple agents
require additional computational resources and
memory.

Deep Q-Network (DQN) is an advanced

classification algorithm that integrates deep neural
networks with RL. DQN leverages deep neural
networks’ power to handle high-dimensionality
input data and effectively capture intricate patterns,
facilitating accurate predictions in complex
classification scenarios. The training process of a
DQN-based classifier involves iterative interactions
between the model and the environment. The model
gradually improves performance by receiving
observations and making decisions based on the

current state. Evaluation is performed using a reward
signal, which serves as a metric to assess the
classifier’s effectiveness in the classification task.
The model’s parameters are updated through a
variant of the Q-learning algorithm known as deep
Q-learning, which optimizes the model by
minimizing the discrepancy between predicted and
actual values derived from the reward signal. An
advantageous characteristic of DQN is its ability to
learn directly from raw input data, alleviating the
need for extensive manual feature engineering. This
capability proves particularly valuable when
extracting meaningful features from the data is
challenging or computationally demanding.

3.1.1. Context-Aware Weight Adjustment

The primary agent may not exhibit overall

effectiveness in DQN. However, it can still
demonstrate exceptional performance in specific
situations. Unfortunately, the existing static fusion
strategy fails to exploit this valuable information
fully. Active fusion is introduced to address this
limitation by actively adjusting the weights assigned
to base agents based on their competence within the
local context of a test state. By evaluating a base
agent’s performance in specific regions, it gains
more influence over statewide policy decisions. As a
result, the evaluation of a base agent becomes more
nuanced and is not solely determined by its overall
performance. While a base agent may display
inadequate performance across all states, instances
may exist where it excels in specific states.
Unfortunately, the static fusion approach fails to
leverage this valuable insight effectively. The
proposed active fusion approach provides credit to
an agent based on its performance within the local
context of a specific test state. The evaluation of a
base agent’s performance within the local region of
a state carries greater weight when formulating
statewide policy decisions. This approach enables a
more comprehensive evaluation considering
performance variations across different regions.

The framework utilizes unique primitives
denoted as 𝑧 for training all agent 𝜑௦ in the same 𝜉
environment, where 𝑠 ranges from 1 to 𝑧. By
employing different training procedures, model
topologies, and parameter settings, diverse agents
can be created. Among the available options, the
DQN is selected as the foundational agent for the
framework due to its wide adoption and proven
effectiveness. The state-to-action transition is
achieved using the function 𝜑௦(𝑒). To evaluate the
performance of the agent 𝜑௦ on a given state 𝑒,

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2343

denoted as 𝑒 𝜔 𝜈൫𝑂(𝑒, 𝜑௦)൯, the cumulative reward
obtained over a 𝑡-step period is considered. This
assessment can be conducted independently of the
current state. Given a test state 𝑒 at time 𝑓, the
similarity to the states e ω ν is measured using the
function 𝜑௦ represented as 𝑠𝑖𝑚൫𝑒, 𝑒 , 𝜑௦൯. The most
similar states 𝑒 𝜔 𝜈 to 𝑒 are selected to construct a
similar set 𝑆൫,ఝೞ൯. Subsequently, the local

competence of 𝜑௦ on 𝑒, denoted as ቀ𝑍𝑈൫𝜑௦, 𝑒൯ቁ, is

calculated based on 𝑂(𝑒, 𝜑௦) where 𝑒 𝜔 𝑆൫,ఝೞ൯. The

weight of 𝜑௦, represented as 𝑁௦, is periodically
updated, specifically every 𝜈 time-interval,
according to 𝑍𝑈൫𝜑௦, 𝑒൯, with 𝑓 representing the
update time.

The ensemble technique begins with
training 𝑧-base agents until convergence. The value
of 𝑧 can be determined based on the specific
limitations and complexity of the application.
Subsequently, an evaluation set 𝜈 is created by
randomly selecting states and observing the
interactions of each base agent within its
environment. Starting with a state in 𝜈, the
effectiveness of the base agents is measured by
evaluating the rewards obtained in the subsequent 𝑡
stages. During testing, the weights of the base agents
are regularly adjusted based on their local
competence in managing states that are most similar
to a particular test state within a radius of 𝜈. To make
a final decision for a given test state, the choices
made by all base agents are aggregated by averaging
them.

Algorithm 1. Context-Aware Weight
Adjustment

Input:
 Number of base agents (𝑧)
 Evaluation set size (𝜈)
 Number of stages (𝑡)
 State-to-action transition function for

the agent 𝜑௦ ቀ𝜑௦,(𝑒)ቁ

 Similarity measure function between
states 𝑒 and 𝑒 for agent

𝜑௦ ቀ𝑠𝑖𝑚൫𝑒, 𝑒 , 𝜑௦൯ቁ

 Performance assessment function for
the agent 𝜑௦ on state 𝑒𝑂(𝑒, 𝜑௦)

Output:

 Final decision for a given test state

Procedure:

Step 1: Train z-base agents until they reach
their optimal performance.

Step 2: Create an evaluation set by
randomly selecting a subset of
states.

Step 3: For each test state in the evaluation
set:
a. Initialize an empty list of

weights.
b. Iterate over all base agents:

 Using the similarity
measure, calculate the
similarity between the test
state and each state
observed during training.

 Add the similarity
measure to the list of
weights.

c. Normalize the weights so that
their total sum equals 1.

Step 4: For each test state in the evaluation
set:
a. Initialize an empty list of

choices.
b. Iterate over all base agents:

 Compute the decision
made by each base agent
for the test state using its
state-to-action transition
function.

 Multiply the decision by
the corresponding weight
calculated in step 3 and
add it to the list of
choices.

c. Calculate the final decision for
the test state by summing up
all the choices.

Step 5: Return the final decision for each
test state in the evaluation set.

3.1.2. Assessment Set

The approach involves constructing an
evaluation set called 𝜈 to assess the expertise level
of an agent in a specific area. Active fusion
techniques in controlled and unstructured learning
also employ similar methods. Generating ν requires
active interactions between the agent and the
environment, ensuring that the examples in 𝜈
accurately reflect the allocation of states used in the
application. The formation of 𝜈 relies on the
capacities of each base agent. For each base agent
𝜑௦, a subset of initial states is randomly selected
across multiple episodes. The size of this subset is
determined by |𝜈|/𝑧, where |𝜈| represents the total

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2344

size of the evaluation set, and 𝑧 corresponds to the
total number of base agents. Consequently, 𝜈
encompasses all possible starting points collectively
chosen by the base agents. The magnitude of 𝜈,
denoted as 𝜈, holds significant importance.
Following the Principle of Large Numbers, a larger
𝜈 brings the distribution of states within 𝜈 closer to
that of the natural state space. However, it is
essential to note that increasing 𝜈 also increases the
evaluation time complexity. This occurs because
each state within 𝜈 needs to be compared with a test
state for every base agent during the evaluation
process. The experimental analysis in Section 4
provides detailed insights into the impact of 𝜈.

3.1.3. Performance Assessment

In RL, where supervision is unavailable,
evaluating an agent’s performance is an estimation
process. When considering a state 𝑒, the
performance of the agent 𝜑௦ on that state is
determined by the expected cumulative reward over
the next 𝑡 steps, taking into account a discount factor
𝛾. The performance is quantified using the following
equation:

𝑂൫𝑒 , 𝜑௦൯ = 𝐻 ൬ ൫𝛾௦𝐵ା௦
ఝೞ ൯

௧

௦ୀଵ
൰ (2)

where 𝛾 represents the discount factor, and
𝐵ା௦

ఝೞ denotes the immediate reward obtained by 𝜑௦in

state 𝑒ା௦. Due to the non-deterministic nature of the
transaction function in RL, the expected value is
incorporated to account for the variability. The 𝑡
value determines the number of future rewards
associated with the state 𝑒. It is generally not
preferable to have a small value for 𝑡 since the
observations made on 𝑒 may not provide sufficient
information for accurate estimation. This leads to
similar values of 𝑂 for most states. Conversely,
when 𝑡 is large, the cumulative reward may not have
a close relationship with the present decision, as it
considers rewards from distant future steps.

3.1.4. State of Resemblance

The approach introduced in this study
incorporates active fusion, which enables
performance enhancement even in scenarios where
the primary agent’s overall effectiveness is limited.
Active fusion involves assigning weights to base
agents based on their competence within the local
context of a test state. Their expertise can be
effectively leveraged by considering the
performance of base agents in specific regions or
states. Unlike static fusion approaches, which fail to
fully utilize the potential of base agents that may

excel in specific states but perform poorly overall,
active fusion overcomes this limitation. It evaluates
base agents based on their performance within the
local context of a test state, giving more weight to
agents that demonstrate high performance in that
particular region. To implement active fusion, an
evaluation set called 𝜈 is created. This set comprises
carefully selected states that reflect the allocation of
states used in the application. Each base agent
contributes to the formation of ν based on its
capacities. For each base agent 𝜑௦, a subset of initial
states is randomly selected from ν across multiple
episodes. The size of this subset is determined by
dividing the total size of ν|𝜈| by the total number of
base agents (𝑧), ensuring a fair representation of all
possible starting points collectively chosen by the
base agents.

The size of 𝜈, denoted as 𝜈, holds
significance in this approach. Increasing the size of
𝜈 brings the distribution of states within 𝜈 closer to
that of the natural state space, adhering to the
Principle of Large Numbers. However, it’s
important to note that a larger 𝜈 also increases the
evaluation time complexity. Every state within 𝜈
must be compared with a test state for every base
agent during the evaluation process. In terms of
performance assessment, equation (3) is employed to
measure the similarity between two states, 𝑒ଵ and 𝑒ଶ,
using a base agent 𝜑௦:

𝑠𝑖𝑚(𝑒ଵ, 𝑒ଶ, 𝜑௦) = 𝑑𝑖𝑠𝑡൫𝜏௦(𝑒ଵ), 𝜏௦(𝑒ଶ)൯ (3)

Here, 𝜏௦(𝑒ଵ) represents the output of the final
convolutional layer applied by the agent 𝜑௦ to state
𝑒ଵ, and 𝜏௦(𝑒ଶ) represents the output for the state 𝑒ଶ.
The function dist() calculates the distance between
the latent representations of the states, utilizing the
2-norm length measure (Euclidean distance).

3.1.5. Local Competency

The local competence denoted as
𝑍𝑈൫𝜑௦, 𝑒൯, plays a crucial role in assessing the
proficiency of the agent 𝜑௦ in the vicinity of a given
state, 𝑒. This measure provides insights into how
well 𝜑௦ performs in the local context of 𝑒. Two key
components are employed to determine the local
competence: 𝑂, as defined in equation (2), and sim,
as defined in equation (3), utilizing the validation set
𝜈. When encountering an unseen state, 𝑒 , a careful
selection process takes place from the validation set
𝜈 to identify the nearest neighbors of 𝑒. These
neighbors are chosen based on the guidelines
outlined in equation (3) for agent 𝜑௦. A comparable

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2345

state set is formed, denoted as 𝑆(ఝೞ). However, to
ensure a fair evaluation, the final comparable state
set, denoted as 𝑆, is constructed by combining
𝑆(ఝೞ) from all participating base agents. It is
important to note that the size of 𝑆 must be greater
than or equal to a to ensure adequate representation.
The width of 𝑆 is directly proportional to the value
of 𝑎, indicating the number of neighbors considered.

It is worth mentioning that the size of 𝑆 is a

critical factor. If 𝑆 is too small, it may not provide
enough data to assess the local competence of 𝜑௦ for
𝑒 reliably. On the other hand, a large value could
introduce a significant disparity between 𝑒 and the
states within 𝜈, shifting the focus away from the
local region. The mean value of 𝑂 for the agent 𝜑௦
across all states within 𝑆 is calculated to quantify the
local competence. This can be expressed as Eq.(4).

 𝑍𝑈൫𝜑௦, 𝑒൯ = 𝐻ఠௌ൫𝑂(𝑒, 𝜑௦)൯ (4)

By considering the states within 𝑆, which

have a solid connection to 𝑒, optimizing agent
𝜑௦ specifically for this set can lead to improved
performance in the local context. As a result, the
local proficiency for state 𝑒, indicated by
𝑍𝑈൫𝜑௦, 𝑒൯, is expected to exhibit significant
enhancements.

Algorithm 2: Local Competence Evaluation
for Base Agents

Input:
 State 𝑒: The unseen state to be

evaluated.
 Base agents’ performances 𝑂(𝑒, 𝜑௦):

Performance values of base agents on
different states.

 Validation set 𝜈: A set of states used for
evaluating local competence.

Output:

 Local competence 𝑍𝑈൫𝜑௦, 𝑒൯: The
measure of the base agent’s proficiency
in the local context of 𝑒.

Procedure:

Step 1: Initialize the comparable state set 𝑆
as an empty set.

Step 2: For each base agent 𝜑௦:
 Select the nearest neighbors of

𝑒 from the validation set 𝜈
based on similarity
measurement.

 Add these neighbors to 𝑆(ఝೞ).
Step 3: Combine 𝑆(ఝೞ) from all base agents

to form the comparable final state
set 𝑆.

Step 4: If |𝑆| < 𝑎 , increase the size of 𝑆 by
adding more states from 𝜈 until
|𝑆| ≥ 𝑎.

Step 5: Calculate the local competence
𝑍𝑈൫𝜑௦, 𝑒൯ as the mean value of
𝑂(𝑒, 𝜑௦) for all states 𝑒 in 𝑆.

Step 6: Return the local competence
𝑍𝑈൫𝜑௦, 𝑒൯ as the output.

3.1.6. Active Weight Distribution

The assignment of weight to 𝑒, labelled as
𝑛൫𝜑௦, 𝑒൯, is determined by evaluating function 𝜑௦

through the calculation provided by 𝑍𝑈൫𝜑௦, 𝑒൯.
This computation, defined as the division of
𝑍𝑈൫𝜑௦, 𝑒൯ by the sum of 𝑍𝑈൫𝜑௦, 𝑒൯over all values
of s from 1 to 𝑧, is the basis for weight allocation.
The expression for this calculation is represented as
Eq.(5).

𝑛൫𝜑௦, 𝑒൯ =
𝑍𝑈൫𝜑௦, 𝑒൯

∑ 𝑍𝑈൫𝜑௦, 𝑒൯௭
௦ୀଵ

 (5)

In RL, the interdependence of consecutive

states assumes paramount importance. Abrupt
changes in the weights of underlying agents can
significantly impact the learning process.
Consequently, when updating the weight of 𝜑௦(𝑁௦

ᇱ),
it becomes crucial to incorporate information from
the previous weight, 𝑁௦, using the derived value of
𝑛൫𝜑௦, 𝑒൯. The process of adjustment can be
formulated as Eq.(6).

𝑁௦
ᇱ = ቊ

𝑛൫𝜑௦, 𝑒൯ 𝑓 = 0

𝛿𝑛൫𝜑௦, 𝑒൯ + (1 − 𝛿)𝑁௦ 𝑓 > 0
 (6)

Introducing an update parameter, 𝛿 allows for
controlling the influence of 𝑛൫𝜑௦, 𝑒൯ on the weight
update process.

Shifting the focus to another aspect, the
notion of mass updates for a fundamental substance
regularly arises, denoted as 𝜈. The value of 𝜈 lies
within the set of positive integers, 𝜈 𝜔 𝐼ା. Striking
the right balance for 𝜈 assumes critical importance
as it directly impacts the frequency of weight
updates and time complexity. Frequent weight
updates occur when 𝜈 assumes a small value,
potentially affecting the stability of the model’s
performance. Conversely, if 𝜈 is set too high, the
weight values may not adequately reflect the

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2346

competence of the base agents under current
conditions. Consequently, selecting an appropriate
value for 𝜈 assumes significance in our model,
warranting cautious consideration. To derive the
final value 𝒳෩൫𝑒 , 𝑑൯ utilized for decision-making,
Eq.(7) is utilized.

 𝒳෩൫𝑒 , 𝑑൯ =

∑ 𝒩,௦ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቀ𝒳௦൫𝑒 , 𝑑൯ቁ௭
௦ୀଵ

(7)

To mitigate the impact of the range of

𝒳௦ on the final decision, SoftMax function is utilized
to the individual 𝒳௦ values before fusing them. This
process ensures that the algorithm selects the action
𝑑 with the highest value of 𝒳෩൫𝑒 , 𝑑൯, facilitating
effective decision-making.

3.1.7. Complicated Timing

Active fusion methods, known for their
flexibility and adaptability, often require additional
computational time compared to static fusion
techniques. Our method employs an active fusion
approach by determining the closest neighbor subset,
denoted as 𝑆(ఝೞ), within the 𝑧 feature spaces. To
achieve this, we calculate active weights based on
the distance between the current state of 𝑒 and all
other states in the evaluation set 𝜈. Computing the
active weights involves measuring the dissimilarity
or similarity between the present state of 𝑒 and each
state in the evaluation set. By quantifying the
distance metric, we can assign weights that reflect
the relevance or importance of each neighboring
state concerning the current state. This active
weighting scheme enables us to incorporate the
varying degrees of similarity between states into the
fusion process.

It is essential to note that this active fusion
method does introduce increased time complexity.
The time complexity is proportional to 𝐾, the
number of features in each state multiplied by 𝑎𝑧, the
number of neighboring states, and the size of the
evaluation set, |𝜈|. Consequently, the computational
requirements may be higher than static fusion
methods, mainly when dealing with larger feature
spaces or evaluation sets. To mitigate the potential
impact of increased time complexity, it is worth
highlighting that the computation of the distance
metric can be parallelized. Parallelization allows the
simultaneously distributing of the workload across
multiple processing units, such as CPUs or GPUs.
Leveraging the power of parallel processing can
significantly reduce the overall calculation time,
particularly in scenarios with strict real-time

requirements. While active fusion methods may
demand more computational time, the potential
benefits of adaptability and parallelization can make
them suitable for applications that prioritize real-
time processing and require flexible fusion
approaches.

Algorithm 3: Active Fusion with Timing

Considerations
Input:

 𝑒: The current state of the system
 𝜈: The evaluation set of neighboring

states
 𝑧: The number of feature spaces
 𝐾: The number of features in each state

Output:

 𝑆(ఝೞ): The closest neighbor subset within
the 𝑧 feature spaces

Procedure:

Step 1: Initialize an empty set 𝑆(ఝೞ) to store
the closest neighbor subset.

Step 2: For each state 𝜑௦ in the evaluation set
𝜈, do the following steps:
 Calculate the distance metric

between 𝑒 and 𝜑௦ based on the
feature spaces.

 Assign a active weight to 𝜑௦
based on its distance from 𝑒.

Step 3: Sort the states in 𝜈 based on their
active weights in ascending order.

Step 4: Select the top 𝐾 states with the
lowest active weights and add them
to 𝑆(ఝೞ).

Step 5: Return 𝑆(ఝೞ) as the closest neighbor
subset within the 𝑧 feature spaces.

Algorithm 4: Modified DQN

Input:
 Number of base agents (𝑧)
 Evaluation set size (𝜈)
 Number of stages (𝑡)
 State-to-action transition function for

agent 𝜑௦൫𝜑௦(𝑒)൯
 Similarity measure function between

states 𝑒 and 𝑒 for agent 𝑠𝑖𝑚൫𝑒, 𝑒 , 𝜑௦൯
 Performance assessment function for

agent 𝜑௦ on state 𝑒(𝑒, 𝜑௦)

Output:

 Final decision for a given test state

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2347

Procedure:

Step 1: Train 𝑧-base agents until they reach
their optimal performance.

Step 2: Create an evaluation set by randomly
selecting a subset of available states.

Step 3: For each test state 𝑒 in the
evaluation set:
a. Initialize an empty list of

weights.
b. Iterate over all base agents 𝜑௦:

 Calculate the similarity
between the test state 𝑒 and
each state observed during
training using the similarity
measure function
𝑠𝑖𝑚൫𝑒, 𝑒 , 𝜑௦൯.

 Add the similarity measure to
the list of weights.

c. Normalize the weights so that
their total sum equals 1.

Step 4: For each test state 𝑒 in the
evaluation set:
a. Initialize an empty list of

choices.
b. Iterate over all base agents 𝜑௦:

Step 5: Compute the decision made by each
base agent for the test state 𝑒 using
its state-to-action transition function
𝜑௦(𝑒).
a. Multiply the decision by the

corresponding weight
calculated in step 3.b.ii and add
it to the list of choices.

b. Calculate the final decision for
the test state 𝑒 by summing up
all the choices.

Step 6: Return the final decision for each test
state in the evaluation set.

3.2. Sophisticated Artificial Bee Colony

The Sophisticated Artificial Bee Colony
(ABC) algorithm was developed based on the
behavior of honey bees. Within a hive are three
species of bees, including onlookers and scout bees,
considered working bees. Each bee has a connection
between its food source and a potential solution to a
problem being addressed. These bees collaborate to
discover the most optimal food sources for the
colony. The most important food sources are
documented in an online archive, regularly updated
using local search procedures and artificial bees. The
archive contains a collection of potential food
sources that attract the attention of the onlookers

through dance, and the working bees recall this
information. This differs from the ABC (Artificial
Bee Colony) algorithm. The onlookers gather around
the dance area to choose a food source based on
quality. The SABC algorithm utilizes the same
number of bees and onlookers as the traditional ABC
algorithms.

If a food supply cannot be optimized within

a predefined number of trials, known as the “limit,”
a scout bee will randomly search for a new food
source. Once a food source is added to the archive, it
is removed from the current list of any other
contender that dominates it. The truncation operation
of the archive’s non-dominant candidates is
triggered when the maximum file size limit of the
archive is exceeded, using a hyper-volume indicator.
However, the performance of this approach
deteriorates with frequent usage. If solution A
represents the maximum limit of non-dominated
solutions (i.e., the desired output), the archive size is
set to 2D. The truncation process removes solution
A if the number of candidates present is denoted as
𝑃௦, exceeds 𝑝௦

ᇱ . To ensure a constant replenishment
of food supply, the algorithm employs the following
greedy selection ideas: if the bees ignore a new food
source, they will continue feeding on their current
one; otherwise, the trial count for the new food
source is increased by one.

3.2.1. Initialization

During the initialization process of the
algorithm, a set of food sources is randomly assigned
to the bees in the colony. The variables represent this
set 𝑃ଵ, 𝑃ଶ, … . , 𝑃, where each 𝑃 , corresponds to a
specific food source. These food sources serve as
potential solutions to the problem at hand.

The concept of dominance determines

which food sources should be preserved for future
use. A food source 𝑃 is said to dominate another 𝑃
if it performs better or achieves a higher objective
value in all the problem dimensions. In other words,
𝑃is considered superior to 𝑃 regarding its solution
quality. Only those not dominated by other sources
are selected for preservation among the assigned
food sources. These non-dominated food sources are
stored in an archive, which acts as a repository of
valuable solutions that have the potential to guide the
algorithm towards better outcomes. The size of this
archive is denoted by 𝐶, which is set to half the
colony’s size. The initialization procedure,
Algorithm 5, outlines the steps involved in this
process. It encompasses the random assignment of
food sources to the bees, evaluating their dominant

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2348

relationships, and selecting non-dominated sources
for inclusion in the archive. By carefully preserving
non-dominated food sources during initialization,
the algorithm ensures that promising solutions are
retained and available for future exploration. This
initialization phase sets the foundation for the
subsequent iterations of the algorithm, where bees
will further explore and refine these initial solutions
in search of better outcomes.

Algorithm 5: Initialization

Step 1: Initialize an empty archive, denoted
as “Archive.”

Step 2: For each bee in the colony (i.e., for
𝑖 = 1 to 𝑁):
 Generate a random food

source, 𝑃 , associated with the
bee.

Step 3: For each food source in the
generated set (i.e., for 𝑖 = 1 to 𝑐):
 Set a dominance flag, “is

Dominated,” as false.
 Compare the current food

source, 𝑃 , with all other food
sources in the generated set
(excluding itself).

Step 4: For each food source 𝑃 (where 𝑗 ≠

 𝑖) in the generated set:
 If 𝑃 dominates 𝑃 (i.e., 𝑃 is

superior in all problem
dimensions), the set is
dominated as accurate.

 If Domination is true, break
the comparison loop.

 If Domination is false, add 𝑃
to the archive.

Step 5: If the archive size exceeds 𝐶,
perform truncation to reduce its size
to 𝐶 (e.g., by removing the least
promising or oldest solutions).

Step 6: Return the archive containing the
preserved non-dominated food
sources.

3.2.2. Sending of Employed Bees

When a new food source is discovered for
an employed bee, as indicated by Eq.(8), the
selection of that source depends on several factors.
These factors include the currently remembered food
source and three distinct food sources that
neighboring bees recalled precisely. 𝜌, 𝜌 and 𝜌. In
the SABC (Scout-ABC) algorithm, neighbors refer
to all other employed bees present, excluding the bee

itself. The mathematical representation of this
process is given by Eq.(8).

𝜌௦,௪
ᇱ

= ቊ
𝜌௦,௪ 𝑖𝑓 𝑏ଶ < 0.5

𝜌,௪ + 𝑏ଵ ∗ ൫𝜌,௪ − 𝜌,௪൯ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

In Eq.(8), two random variables, 𝑏ଵ and 𝑏ଶ,

are utilized. These variables are selected from the
range [0,1] and play a significant role in the
calculation. They introduce randomness and
variability to the bee-sending process, enabling
diversity in the search for optimal food sources.

The specifics of the bee-sending process,

including the update of food sources based on
Eq.(6.1), are outlined in Algorithm 2. Additionally,
the algorithm considers the trial number of the food
source, denoted as 𝐹(𝑝), which represents the
number of times the particular food source has been
explored and evaluated. By incorporating these
calculations and considering the current food source,
neighboring food sources, random variables, and
trail number, the algorithm guides the bees in
determining the updated food source for each
employed bee. This process contributes to exploring
and potentially improving food sources within the
SABC algorithm.

Algorithm 6: Employed Bee

Step 1: Set the updated food source,
denoted as 𝜌௦,௪

ᇱ , to be the same as
the current food source, 𝜌௦,௪ .

Step 2: Generate two random numbers:
𝑏ଵ(𝜔[0,1]) and 𝑏ଵ(𝜔[0,1]).

Step 3: If 𝑏ଶ < 0.5, then:Set 𝜌௦,௪
ᇱ as 𝜌௦,௪ .

(i.e., no change in the food source)
Step 4: If 𝑏ଶ ≥ 0.5, then:

 Calculate the difference
between the recalled additional
food sources: Set diff = 𝜌,௪ −

𝜌,௪ .
 Calculate the updated food

source 𝜌௦,௪
ᇱ based on

Eqn.(6.1):Set 𝜌௦,௪
ᇱ 𝜌௦,௪

ᇱ =

𝜌,௪ + 𝑏ଵ ∗ diff.
Step 5: Update the trail number of the food

source, 𝐹(𝑝), by incrementing it by
1 (𝐹(𝑝) = 𝐹(𝑝) + 1).

Step 6: Return the updated food source,
𝜌௦,௪

ᇱ , along with its updated trail
number, 𝐹(𝑝).

3.2.3. Forming of New Food Sources

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2349

To generate new food sources, bees must
select potential options from the existing archive,
which consists of previously identified food sources
by other bees. However, for safety reasons, any food
source in the archive that exceeds the defined “limit”
for its trial number is not considered for selection.
The food sources in the archive can be categorized
into different groups based on their trial numbers, as
described in Eq.(9):

𝐸 = {𝜌 𝜔 𝑎𝑟𝑐ℎ𝑖𝑣𝑒|𝐹(𝜌) = 0 }
𝐸ଵ = {𝜌 𝜔 𝑎𝑟𝑐ℎ𝑖𝑣𝑒|𝐹(𝜌) = 1 }

⋮ ⋮ ⋮
𝐸 = {𝜌 𝜔 𝑎𝑟𝑐ℎ𝑖𝑣𝑒|𝐹(𝜌) = 𝑎 }

(9)

where a is a value less than the limit, these groups
represent the Archive subsets containing food
sources with specific trail numbers. The notation
𝐹(𝜌) represents the trial number of a particular food
source 𝜌.

Suppose the number of food sources in the
archive with trail numbers below the limit, denoted
as |𝐷|, is less than or equal to the desired archive size
𝐶. In that case, the selection process prioritizes the
food sources with the fewest trial numbers for
inclusion. On the other hand, if |𝐷| exceeds 𝐶, the
selection prioritizes food sources with the minimum
trial numbers. The 𝐶 − |𝐷| remaining food sources
are retained in the archive and selected from the
memories of employed bees. These memories
contain information about previously visited food
sources. Algorithm 3 provides a detailed description
of this selection procedure, taking into account the
considerations mentioned above.

Algorithm 7: New Food Sources

Step 1: Initialize an empty set, 𝐷, to store
food sources with trail numbers less
than the limit.

Step 2: For each food source ρ in the
archive:
a) If 𝐹(𝜌) < limit, add 𝜌 to 𝐷.

Step 3: If |𝐷| ≤ 𝐶:
a) Select the 𝐶 − |𝐷| food

sources with the fewest trail
numbers from the employed
bees’ memories and add them
to the selection.

b) Return the selected food
sources for the next iteration.

Step 4: If |𝐷| > 𝐶:
a) Sort the food sources in 𝐷

based on their trail numbers in
ascending order.

b) Select the 𝐶 food sources with
the minimum trail numbers

from 𝐷 and add them to the
selection.

c) Return the selected food
sources for the next iteration.

3.2.4. Evaluation of Food Sources

The SABC algorithm uses a novel approach
to evaluate potential food sources based on factors
such as dominant strength and distance from a
source. This approach divides the 𝑋-th set of
possible food sources into multiple disjoint subsets,
as depicted in Eq.(10):

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐸ଵ
ᇱ = {𝑑 𝜔 𝑋|∀ ∶ 𝑣 𝜔 𝑋, 𝑒. 𝑓: 𝑣 ∞

𝐸ଶ
ᇱ = {𝑑 𝜔 𝑋 − 𝐸ଵ

ᇱ|∀∶ 𝑣 𝜔 𝑋 − 𝐸ଵ
ᇱ , 𝑒. 𝑓

⋮ ⋮ ⋮

𝐸௦
ᇱ = ൝𝑑 𝜔 𝑋 − ራ 𝐸௪

ᇱ

௦ିଵ

௪ୀଵ

|∀∶ 𝑣 𝜔 𝑋 − ራ 𝐸௪
ᇱ

௦ିଵ

௪ୀଵ

(1
0)

Each subset 𝐸௭

ᇱ , where 𝑧 ∈ [1, 𝑠],
represents individual food sources. The domination
strength and crowd distance for each food source 𝜌 ∈
𝐸௭

ᇱ are calculated using Eq.(11) and Eq.(12):

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝜌) = ቀ1 −
𝑧

𝑠
ቁ + 1 /𝑠 , (11)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜌)

=
∑ ∝ ! = 0|𝐺′(𝜌) − 𝐺′(∝)|

𝑠 ∗ 𝑐 (|𝐸ᇱ
௭| − 1)

, (∝ 𝜔 𝐸௭
ᇱ)

(12)

where 𝐺′(𝜌) represents the objective function with
normalized values for 𝜌, the crowd distance of a food
source falls within the range of 0 and 1/𝑠, indicating
the extent to which a particular food source has been
exploited. The food source attraction, denoted as
𝑀(𝜌), is mathematically defined in Eq.(13):

𝑀(𝜌)

=
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝜌) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜌)

∑ ൫𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝜌௦) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜌௦)൯
||
௦ୀଵ

, (𝜌
(13
)

As a result, the attraction of a food source

increases when compared to other non-dominated
food sources. Additionally, among two non-
dominant food sources, the one with a sparser
distribution of food sources will be more desirable.
These calculations and evaluations enable the SABC
algorithm to effectively assess and prioritize
selecting food sources based on their dominant
strength, crowd distance, and overall attraction.

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2350

Algorithm 8: Food Sources Evaluation

Step 1: Divide the set 𝑋 of possible food
sources into s disjoint subsets:
a) Initialize an empty list 𝐸ଵ

ᇱ .
b) For each food source 𝑑 in 𝑋:

 Check if no other food
source 𝑣 in 𝑋 infinitely
dominates 𝑑.

 If no such food source is
found, add d to 𝐸ଵ

ᇱ .
c) Add 𝐸ଵ

ᇱ‘to the list of subsets 𝐸.
d) For each subset 𝐸௭

ᇱ in E, where
𝑧 ranges from 2 to 𝑠:
 Initialize an empty list

𝐸௭
ᇱ .

 For each food source 𝑑 in

𝑋 − 𝑈(௪ୀଵ)
(௭ିଵ)

𝐸௪
ᇱ :

 Check if no other
food source 𝑣 in 𝑋 −

𝑈(௪ୀଵ)
(௭ିଵ)

𝐸௪
ᇱ infinitely

dominates
 If no such food

source is found, add
d to 𝐸௭

ᇱ .
 Add 𝐸௭

ᇱ to the list of
subsets 𝐸.

Step 2: Calculate the strength of
domination and crowd distance for
each food source 𝜌 in the subsets
𝐸௭

ᇱ , where 𝑧 ranges from 1 to 𝑠:
Step 3: For each 𝜌 in 𝐸_𝑧^′:

a). Calculate the strength of
domination:
 Calculate the dominance

factor (1 − 𝑧/𝑠) and
add 1/𝑠.

 Assign the result as the
strength of 𝜌.

b). Calculate the crowd distance:
 For each food source ∝

in 𝐸௭
ᇱ :

 Calculate the absolute
difference between the
objective function values
of 𝜌 and ∝, denoted as
𝐺′(𝜌) and 𝐺′(∝),
respectively.

 Accumulate the
differences.

 Divide the accumulated
differences by ൫𝑠 ∗

𝑐(|𝐸௭
ᇱ | − 1)൯, where 𝑐 is

a constant.
 Assign the result as the

crowd distance of 𝜌.
Step 4: Calculate the food source attraction

𝑀(𝜌) for each food source 𝜌 in 𝑋:
Step 5: For each 𝜌 in 𝑋:

 Calculate the total
strength and distance in
𝑋 as the sum of
strength(𝜌௦) and
distance(𝜌௦) overall
food sources 𝜌௦.

 Calculate the attraction
𝑀(𝜌) as the ratio of the
sum of strength and
distance of 𝜌 to the total
sum.

Step 6: Select the food sources with the
highest attraction values as the
selected food sources for the next
iteration. The number of selected
food sources should match the
desired archive size 𝐶.

Step 7: Return the selected food sources.

3.2.5. Sending of Onlooker Bees

When an onlooker bee is attracted to a
particular food source 𝜌௦, it proceeds to identify
another potential food source 𝜌௦

ᇱ using the following
equation:

𝜌௦,௪
ᇱ = 𝜌௦,௪ + 𝑏 ∗ ൫𝜌,௪ − 𝜌,௪൯

This equation, 𝜌 and 𝜌, represents randomly
selected food sources from the available options.
The variable 𝑏, which ranges from 0 to 1, is a random
variable. The value of 𝑤 ranges from 1 to 𝑡, where 𝑡
represents the total number of candidates. This
equation allows the onlooker bee to explore and
evaluate alternative food sources based on a
combination of the selected sources and random
factors. Algorithm 9 outlines the steps involved in
sending observer bees, which involves the selection
of food sources by the onlooker bees.

Algorithm 9: Onlooker Bees

Step 1: Initialize an empty list to store the
selected food sources by the observer
bees.

Step 2: For each observer bee (from 1 to 𝑡),
perform the following steps:
a). Select a food source 𝜌௦ randomly

from the available options.

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2351

b). Generate two random numbers
𝜌 and 𝜌, to represent the indices
of other food sources in the list.

c). Calculate the new food source
𝜌௦,௪

ᇱ using the equation:
Step 3: 𝜌௦,௪

ᇱ = 𝜌(௦,௪) + 𝑏 ∗ 𝜌(,௪) − 𝜌(,௪)
Step 4: Add the newly calculated food source

𝜌௦
ᇱ to the list of selected food sources.

Step 5: Return the list of selected food
sources by the observer bees.

3.2.6. Sending of Scout Bees

When the food supply is exhausted, a bee in
the standard ABC algorithm takes on the role of a
scout bee and actively searches for a new food
source. However, in the case of the classic ABC
algorithm, when a bee’s food supply is depleted, it is
transformed into a scout bee. This scout bee is sent
out again to locate a new food source. In the SABC
algorithm, a specific approach is implemented to
simulate the behavior of artificial bees. It involves
performing a “limit” check to determine if any food
sources have exceeded a certain number of cycles
and can be further improved. If such cases are
identified during this iteration, at least one food
source will be eliminated. The details of dispatching
scout bees are provided in Algorithm 10, which
outlines the specific steps involved in this process.

Algorithm 10: Scout Bees

Step 1: Initialize an empty list, scout_bees, to
store the potential scout bee actions.

Step 2: For each food source 𝜌 in the colony:
 If the number of cycles for 𝜌

exceeds the limit, add 𝜌 to
scout_bees.

Step 3: If scout_bees is not empty:
 Select a random food source 𝜌ᇱ

from scout_bees.
 Replace the food source 𝜌ᇱ with

a new randomly generated food
source.

Step 4: Return the updated colony with the
potential scout bee actions.

3.2.7. Performing the Local search

The local search strategy encompasses two
essential stages: selection and neighbourhood
exploitation. In the selection stage, the algorithm
identifies the most promising locations, considering
them as the neighbourhoods of the selected
candidates. The concept of “neighbourhood” refers
to the possibility of exploring a candidate’s solution
space by modifying one of its dimensions. This
approach allows for a focused exploration of nearby

solutions. As the intensity of the local search
increases, reaching a certain threshold, it becomes
challenging to find better candidates. This implies
that searching for a new food source within the
vicinity takes longer and reduces the overall
effectiveness of the algorithm. The SABC algorithm
employs a termination criterion for the local search
operation to address this. If a neighbourhood has
been searched a specified number of times, referred
to as the “limit,” without finding a superior
candidate, the search is discontinued.

During the neighbourhood exploitation

phase, the algorithm evaluates the potential of other
candidates’ neighbourhoods to identify the most
promising ones in the current context. Specifically,
for the selected candidates, denoted as 𝑑 , the
algorithm generates a set of 𝑡 candidates
(𝜌ଵ, 𝜌ଶ, … . , 𝜌௧) using Eq.(14). The generation of
candidates involves applying equation (6.7), which
contains the relevant calculations and
transformations necessary to explore and exploit the
neighbourhoods of the selected candidates. This
process aims to identify new and potentially superior
solutions within the local search space. By
incorporating the selection and neighbourhood
exploitation stages, the SABC algorithm optimizes
its search for improved candidates and enhances its
ability to discover more promising solutions.

𝜌௦,௪

= ൜
𝑑,௪ 𝑖𝑓 𝑤 ≠ 𝑠

𝑍𝑉௪ + 𝑏ଷ(𝑂𝑉௪ − 𝑍𝑉௪) 𝑖𝑓 𝑤 ≠ 𝑠

(14)

where 𝑍𝑉௪and 𝑂𝑉௦represents the lower bound and
upper bound with the dimension of 𝑤 𝜔 [1, 𝑡], and
𝑏ଷ 𝜔 [0,1] indicates a variable used for generating a
random number. Algorithm 11 shows the process of
local searching.

Algorithm 11: Local Search
Step 1: Initialize an empty list to store the

selected candidates.
Step 2: Select the most promising

candidates from the list based on
their potential, considering them as
the initial neighbourhoods.

Step 3: For each selected candidate,
perform the following steps:
a). Generate t candidates by

applying the neighbourhood
exploration equation (Equation
6.7) using the candidate’s
information and the
neighbourhood exploration
parameter (𝜃).

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2352

b). Evaluate each generated
candidate to determine its
quality or fitness.

c). If a generated candidate is
better than the currently
selected candidate, replace it.

d). Repeat steps 3a-3c until 𝑡
candidates have been
evaluated.

Step 4: If the search limit (limit) for
neighbourhood exploration is
reached for a candidate’s
neighbourhood without finding a
superior candidate, terminate the
local search for that neighbourhood.

Step 5: Return the list of selected
candidates.

The SABC method is shown in further

depth in Algorithm 12 using the earlier component.

Algorithm 12: SABC

Input:
 Population size (𝐶)
 Search limit for neighbourhood

exploration (limit)
 Maximum size of the external

population Archive (𝐷)
Output:

 Final archive containing selected food
sources

Procedure:

Step 1: Allocate space for the external
population Archive.

Step 2: Initialize the food sources 𝐻 by
calling the initialization function,
passing the population size (𝐶) and
the archive.

Step 3: While the termination condition is not
satisfied, repeat the following steps:
a). Send employed bees to explore

and exploit the food sources in
𝐻. Call the
send_employed_bees function,
passing 𝐻 as the input.

b). Perform local search operations
on the archive using the
LocalSearch function.

c). Form new food sources by
updating the archive based on
the food sources in 𝐻. Call the
forming_newfoodsources

function, passing the archive
and 𝐻 as inputs.

d). Evaluate the quality of the food
sources in 𝐻 using the 𝐸
strategy.

e). Send onlooker bees to select
promising food sources. Call
the send_onlookers function.

f). Send scout bees to explore new
food sources. Call the
send_scouts function.

Step 4: Once the termination condition is
satisfied, return the final archive.

The SABC algorithm starts by allocating

space for the external population archive. It then
initializes the food source 𝐻 using the initialization
function. The algorithm proceeds with a loop until
the termination condition is met. Within each
iteration, employed bees are sent to explore and
exploit the food sources in 𝐻. Local search
operations are performed on the archive to enhance
the quality of the solutions. New food sources are
formed by updating the archive based on the food
sources in 𝐻. The quality of the food sources in 𝐻 is
evaluated using the 𝐸 strategy. Based on their
evaluations, onlooker bees are sent to select
promising food sources. Additionally, scout bees are
deployed to explore new food sources. Once the
termination condition is satisfied, the final archive is
returned as the algorithm’s output. The SABC
algorithm combines various bee-inspired
mechanisms to search for high-quality food sources
efficiently. By iteratively exploring, exploiting, and
evaluating the solutions, it aims to converge towards
optimal or near-optimal solutions.

3.3. Fusion of SABC and DQN

The fusion of the Sophisticated Artificial
Bee Colony (SABC) algorithm and Deep Q-
Networks (DQN) can lead to the development of a
novel approach for sentiment classification known
as Sophisticated Artificial Bee Colony-Inspired
Deep Q-Networks (SABC-DQN). SABC is a
metaheuristic optimization algorithm inspired by the
foraging behavior of honeybees. It utilizes multiple
artificial bees to explore the search space and exploit
promising solutions. SABC excels at finding optimal
or near-optimal solutions to various optimization
problems. DQN, on the other hand, is a
reinforcement learning algorithm that combines
deep neural networks with Q-learning. It has been
widely used in game playing and robotics,
demonstrating its ability to learn optimal policies
through trial and error.

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2353

By fusing SABC and DQN, we can

leverage the strengths of both approaches to enhance
sentiment classification. The SABC component can
efficiently explore and exploit the search space,
allowing for better identification of sentiment-
related features or patterns. The DQN component
can utilize its deep neural network architecture and
reinforcement learning capabilities to learn and
improve sentiment classification policies over time.
In the context of sentiment classification, SABC-
DQN can be employed as follows:

 Initial feature selection: SABC can be
utilized to explore and select the most
relevant features from a given dataset,
optimizing the feature representation for
sentiment analysis.

 Training phase: DQN can be trained using
the selected features as input, with
sentiment labels as the target. The DQN
learns to predict sentiment labels based on
the given feature representations, adapting
its policy through reinforcement learning.

 Testing phase: The trained SABC-DQN
model can be used to classify the sentiment
of new, unseen text samples by leveraging
the learned policy to make accurate
predictions.

The fusion of SABC and DQN in SABC-

DQN for sentiment classification allows for a more
sophisticated and efficient approach to sentiment
analysis tasks. By incorporating SABC’s exploration
and exploitation capabilities with the deep learning
and reinforcement learning capabilities of DQN, the
SABC-DQN model can potentially achieve
improved sentiment classification performance
compared to traditional methods.

4.0 ABOUT THE DATASET

The “Course Reviews on Coursera” dataset

provides a wealth of information about user ratings
and reviews for courses available on the Coursera
platform. With over 1.45 million reviews and
corresponding ratings, this dataset offers a valuable
opportunity to gain insights into user preferences and
sentiments. Each review entry in the dataset contains
the course review text, the reviewer’s name, the date
when the review was posted, the rating the reviewer
gave, and the course ID. Analyzing this dataset
allows researchers to understand the factors
influencing user ratings, identify courses with high
or low ratings, and explore the relationship between
review text sentiment and rating scores. Using

natural language processing techniques, sentiment
analysis algorithms can classify review texts as
positive, negative, or neutral. This analysis can help
identify the most common sentiments expressed by
users, understand the factors that contribute to
positive or negative reviews, and potentially predict
the sentiment of new reviews. Moreover, by
examining the distribution of rating scores, it is
possible to identify the most highly-rated courses on
Coursera, investigate trends in user ratings over
time, and uncover any biases or patterns in the
ratings given by different reviewers or institutions.

Table 1. Dataset: Coursera Courses

Feature
Data
Type

Description

𝑛𝑎𝑚𝑒 character
The name of the
course

𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 character
The institution
offering the course

𝑐𝑜𝑢𝑟𝑠𝑒_𝑢𝑟𝑙 character The URL of the course

𝑐𝑜𝑢𝑟𝑠𝑒_𝑖𝑑 character
The unique identifier
for the course

Table 2. Dataset: Coursera Reviews

Feature
Data
Type

Description

𝑟𝑒𝑣𝑖𝑒𝑤𝑠 character
The text of the
course review

𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑟𝑠 character
The name of the
reviewer who
wrote the review

𝑑𝑎𝑡𝑒_𝑟𝑒𝑣𝑖𝑒𝑤𝑠 date
The date when the
review was posted

𝑟𝑎𝑡𝑖𝑛𝑔 integer

The rating score is
given by the
reviewer of the
course

𝑐𝑜𝑢𝑟𝑠𝑒_𝑖𝑑 character

The unique
identifier for the
course associated
with review

5. RESULTS AND DISCUSSION

5.1. Classification Accuracy and F-Measure
Analysis

The NBCA is a probabilistic classifier that
utilizes Bayes’ theorem. Given the class labels, it
assumes that the features are conditionally
independent, which is a simplistic but often
reasonable assumption. NBCA calculates the
probability of an instance belonging to a particular

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2354

class based on observed feature values and assigns
the class label with the highest probability. The
results in Table 3 reveal that NBCA achieved a
classification accuracy of 50.833% and an F-
measure of 51.315%. These outcomes indicate that
NBCA exhibited relatively lower performance than
the other classifiers. The feature independence
assumption might have limited its capability to
capture complex relationships in the data, resulting
in reduced accuracy.

RFCA is an ensemble learning method that
combines multiple decision trees to make
predictions. It constructs a forest of decision trees,
each trained on a different subset of the data and
using a random subset of features. During prediction,
RFCA aggregates the predictions from all the trees
to make the final decision. According to Table 3,
RFCA achieved a classification accuracy of
65.003% and an F-measure of 64.728%. These
findings indicate superior performance compared to
NBCA. By harnessing the power of ensemble
learning, RFCA was able to capture more intricate
patterns in the data, resulting in improved accuracy.

SABC-DQN is an advanced classifier that
combines concepts from artificial bee colony
optimization and deep Q-networks. It integrates
reinforcement learning techniques with a bee-
inspired optimization algorithm to train a deep
neural network for classification tasks. SABC-DQN
leverages the exploration-exploitation trade-off to
search for optimal solutions efficiently and learns to
make accurate predictions through a reward-based
learning process. As per Table 3, SABC-DQN
achieved the highest classification accuracy of
87.325% and the highest F-measure of 87.620%.
These results illustrate the exceptional performance
of SABC-DQN compared to NBCA and RFCA. By
harnessing deep learning and reinforcement
learning, SABC-DQN could learn intricate data
representations, adapt predictions based on
feedback, and achieve heightened accuracy and F-
measure.

Table 3. Classification Accuracy and F-Measure
Results

Classifiers CA FM

NBCA 50.833 51.315

RFCA 65.003 64.728

SABC-DQN 87.325 87.620

The NBCA assumes feature independence,

RFCA utilizes ensemble learning with decision

trees, and SABC-DQN combines deep and
reinforcement learning. The outstanding
performance of SABC-DQN can be attributed to its
ability to capture complex patterns and optimize the
classification process by integrating sophisticated
techniques.

Figure 1. Classification Accuracy and F-Measure

5.2. Fowlkes-Mallows Index and Matthews
Correlation Coefficient Analysis

The Fowlkes-Mallows Index (FMI)
measures the similarity between two clusters or sets
of data points. It calculates the geometric mean of
the precision and recall values, which are metrics
commonly used in information retrieval and
classification tasks. The Matthews Correlation
Coefficient (MCC) is a metric commonly used to
evaluate the performance of binary classification
models.

Figure 2 represents the Fowlkes-Mallows
Index (FMI) and Matthews Correlation Coefficient
(MCC) values for three classification algorithms:
NBCA, RFCA, and SABC-DQN. Table 4 provides
the specific FMI and MCC scores for each
algorithm.

0

10

20

30

40

50

60

70

80

90

CA FM

R
es

u
lt

s
(%

)

Performance Metrics

NBCA RFCA SACO-DQN

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2355

Figure 2. Fowlkes-Mallows Index and Matthews

Correlation Coefficient
NBCA is based on the assumption of

independence between features, given the class
label. This assumption simplifies the computation
and allows for efficient classification. NBCA
performs well when the independence assumption
holds true or is close to being true in the dataset. It is
particularly effective when dealing with large
feature spaces and relatively small training datasets.
The algorithm utilizes probabilistic calculations to
estimate the likelihood of a data point belonging to a
particular class. In this case, the moderate
performance of NBCA, as indicated by an FMI score
of 51.317 and an MCC score of 1.663, could be due
to the limitations of the independence assumption or
the dataset’s complexity, which may not align well
with the assumption.

RFCA is an ensemble learning method that
combines multiple decision trees to make
predictions. It generates multiple decision trees
using bootstrapping and random feature selection,
which helps in reducing overfitting and increasing
robustness. The algorithm leverages the concept of
majority voting or averaging predictions from
individual trees to make the final prediction. RFCA
can capture complex relationships between features
and class labels, making it suitable for various
datasets. The improved performance of RFCA, as
indicated by an FMI score of 64.730 and an MCC
score of 30.007, can be attributed to its ability to
handle diverse feature interactions and generalize
well to unseen data.

Table 4. Fowlkes-Mallows Index and Matthews
Correlation Coefficient Results

Classifiers FMI MCC

NBCA 51.317 1.663

RFCA 64.730 30.007

SABC-DQN 87.623 74.649

SABC-DQN is a metaheuristic algorithm

inspired by the behavior of honeybees. It optimizes
the search space by combining exploration and
exploitation strategies. DQN, on the other hand, is a
reinforcement learning algorithm that utilizes neural
networks to approximate the Q-function, enabling
efficient learning and decision-making in sequential
tasks. By combining ABC and DQN, SABC-DQN
benefits from both the exploration and exploitation
capabilities of ABC and the efficient learning and
decision-making of DQN. The algorithm can
effectively explore the search space and find optimal
solutions while adapting to complex and dynamic
environments. The superior performance of SABC-
DQN, as indicated by an FMI score of 87.623 and an
MCC score of 74.649, can be attributed to its ability
to handle complex data patterns, optimize the
classification process, and learn from environmental
interactions.

6. CONCLUSION

The SABC-DQN (Sophisticated Artificial
Bee Colony Inspired Deep Q-Networks) framework
presents a novel and innovative approach for
enhancing the sentiment analysis of Coursera course
reviews. By integrating Artificial Bee Colony (ABC)
optimization algorithms with Deep Q-Networks
(DQN), SABC-DQN offers a unique mechanism to
capture and understand the nuanced sentiments
expressed in textual data. Experimental evaluations
on a dataset of Coursera course reviews demonstrate
the effectiveness and superiority of the SABC-DQN
approach compared to existing sentiment analysis
methods. SABC-DQN achieves higher accuracy,
precision, recall, and F1-score, showcasing its
potential to improve sentiment analysis performance
significantly. SABC-DQN exhibits robustness in
handling variations in review length, domain-
specific jargon, and grammatical errors. This
robustness ensures the applicability and reliability of
the approach across different domains and linguistic
variations. The SABC-DQN framework opens new
avenues for sentiment analysis, enabling a deeper
understanding of learner opinions and attitudes in

0

10

20

30

40

50

60

70

80

90

FMI MCC

R
es

ul
ts

 (
%

)

Performance Metrics

NBCA RFCA SACO-DQN

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2356

online educational platforms like Coursera. Future
research can explore further enhancements and
extensions to the SABC-DQN approach,
contributing to the advancement of sentiment
analysis techniques and their application in various
domains.

REFERENCES

[1] J. J. Thompson, B. H. Leung, M. R. Blair, and

M. Taboada, “Sentiment analysis of player chat
messaging in the video game StarCraft 2:
Extending a lexicon-based model,” Knowledge-
Based Syst., vol. 137, pp. 149–162, 2017, doi:
10.1016/j.knosys.2017.09.022.

[2] J. Li et al., “SK2: Integrating Implicit Sentiment
Knowledge and Explicit Syntax Knowledge for
Aspect-Based Sentiment Analysis,” in
International Conference on Information and
Knowledge Management, Proceedings, 2022,
pp. 1114–1123. doi:
10.1145/3511808.3557452.

[3] R. Yadav, A. V. Kumar, and A. Kumar, “News-
based supervised sentiment analysis for
prediction of futures buying behaviour,” IIMB
Manag. Rev., vol. 31, no. 2, pp. 157–166, 2019,
doi: 10.1016/j.iimb.2019.03.006.

[4] K. Shanmugavadivel, V. E. Sathishkumar, S.
Raja, T. B. Lingaiah, S. Neelakandan, and M.
Subramanian, “Deep learning based sentiment
analysis and offensive language identification
on multilingual code-mixed data,” Sci. Rep.,
vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-
26092-3.

[5] M. Syamala and N. J. Nalini, “A deep analysis
on aspect based sentiment text classification
approaches,” Int. J. Adv. Trends Comput. Sci.
Eng., vol. 8, no. 5, pp. 1795–1801, 2019, doi:
10.30534/ijatcse/2019/01852019.

[6] R. Oramas-Bustillos, M. L. Barron-Estrada, R.
Zatarain-Cabada, and S. L. Ramirez-Avila, “A
corpus for sentiment analysis and emotion
recognition for a learning environment,” in
Proceedings - IEEE 18th International
Conference on Advanced Learning
Technologies, ICALT 2018, 2018, pp. 431–435.
doi: 10.1109/ICALT.2018.00109.

[7] W. Wang, L. Guo, and Y. J. Wu, “The merits of
a sentiment analysis of antecedent comments for
the prediction of online fundraising outcomes,”
Technol. Forecast. Soc. Change, vol. 174, p.
121070, 2022, doi:
10.1016/j.techfore.2021.121070.

[8] D. Anastasiou, Z. Ftiti, W. Louhichi, and D.
Tsouknidis, “Household deposits and consumer

sentiment expectations: Evidence from
Eurozone,” J. Int. Money Financ., vol. 131,
2023, doi: 10.1016/j.jimonfin.2022.102775.

[9] V. S. Sadanand, K. R. R. Guruvyas, P. P. Patil,
J. J. Acharya, and S. G. Suryakanth, “An
automated essay evaluation system using
natural language processing and sentiment
analysis,” Int. J. Electr. Comput. Eng., vol. 12,
no. 6, pp. 6585–6593, 2022, doi:
10.11591/ijece.v12i6.pp6585-6593.

[10] J. Ramkumar, R. Vadivel, B. Narasimhan, S.
Boopalan, and B. Surendren, “Gallant Ant
Colony Optimized Machine Learning
Framework (GACO-MLF) for Quality of
Service Enhancement in Internet of Things-
Based Public Cloud Networking BT - Data
Science and Communication,” J. M. R. S.
Tavares, J. J. P. C. Rodrigues, D. Misra, and D.
Bhattacherjee, Eds., Singapore: Springer Nature
Singapore, 2024, pp. 425–438.

[11] R. Batool, A. M. Khattak, J. Maqbool, and S.
Lee, “Precise tweet classification and sentiment
analysis,” in 2013 IEEE/ACIS 12th
International Conference on Computer and
Information Science, ICIS 2013 - Proceedings,
2013, pp. 461–466. doi:
10.1109/ICIS.2013.6607883.

[12] L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless Sensor
Network Using Feisty Particle Swarm
Optimization Protocol,” ACM Int. Conf.
Proceeding Ser., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

[13] A. Senthilkumar, J. Ramkumar, M. Lingaraj, D.
Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[14] D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish Swarm
Optimization-Based Routing Protocol for
Mobility Enabled Wireless Sensor Network,”
Int. J. Comput. Networks Appl., vol. 10, no. 1,
pp. 119–129, Jan. 2023, doi:
10.22247/ijcna/2023/218516.

[15] J. Ramkumar, S. S. Dinakaran, M. Lingaraj, S.
Boopalan, and B. Narasimhan, “IoT-Based
Kalman Filtering and Particle Swarm
Optimization for Detecting Skin Lesion,” in
Lecture Notes in Electrical Engineering, K.
Murari, N. Prasad Padhy, and S. Kamalasadan,
Eds., Singapore: Springer Nature Singapore,
2023, pp. 17–27. doi: 10.1007/978-981-19-

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2357

8353-5_2.
[16] J. Ramkumar, R. Vadivel, and B. Narasimhan,

“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud Network,”
Int. J. Comput. Networks Appl., vol. 8, no. 6, pp.
795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[17] J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” 2022 Int.
Conf. Adv. Comput. Technol. Appl. ICACTA
2022, pp. 1–6, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9752899.

[18] P. Menakadevi and J. Ramkumar, “Robust
Optimization Based Extreme Learning Machine
for Sentiment Analysis in Big Data,” 2022 Int.
Conf. Adv. Comput. Technol. Appl. ICACTA
2022, pp. 1–5, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9753203.

[19] R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare applications,”
Inc. Internet Things Healthc. Appl. Wearable
Devices, pp. 109–121, 2019, doi: 10.4018/978-
1-7998-1090-2.ch006.

[20] J. Ramkumar and R. Vadivel, “Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio wireless
sensor network,” Int. J. Comput. Networks
Appl., vol. 8, no. 4, pp. 455–464, 2021, doi:
10.22247/ijcna/2021/209711.

[21] J. Ramkumar and R. Vadivel, “Improved Wolf
prey inspired protocol for routing in cognitive
radio Ad Hoc networks,” Int. J. Comput.
Networks Appl., vol. 7, no. 5, pp. 126–136,
2020, doi: 10.22247/ijcna/2020/202977.

[22] J. Ramkumar and R. Vadivel, “CSIP—cuckoo
search inspired protocol for routing in cognitive
radio ad hoc networks,” in Advances in
Intelligent Systems and Computing, Springer
Verlag, 2017, pp. 145–153. doi: 10.1007/978-
981-10-3874-7_14.

[23] J. Ramkumar, “Bee inspired secured protocol
for routing in cognitive radio ad hoc networks,”
Indian J. Sci. Technol., vol. 13, no. 30, pp.
2159–2169, 2020, doi:
10.17485/ijst/v13i30.1152.

[24] R. J, “Meticulous Elephant Herding
Optimization based Protocol for Detecting
Intrusions in Cognitive Radio Ad Hoc
Networks,” Int. J. Emerg. Trends Eng. Res., vol.
8, no. 8, pp. 4548–4554, 2020, doi:
10.30534/ijeter/2020/82882020.

[25] R. Jaganathan and R. Vadivel, “Intelligent Fish
Swarm Inspired Protocol (IFSIP) for Dynamic
Ideal Routing in Cognitive Radio Ad-Hoc
Networks,” Int. J. Comput. Digit. Syst., vol. 10,
no. 1, pp. 1063–1074, 2021, doi:
10.12785/ijcds/100196.

[26] J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World J. Eng., vol. 15, no. 2, pp. 306–311, 2018,
doi: 10.1108/WJE-08-2017-0260.

[27] J. Ramkumar and R. Vadivel, “Performance
Modeling of Bio-Inspired Routing Protocols in
Cognitive Radio Ad Hoc Network to Reduce
End-to-End Delay,” Int. J. Intell. Eng. Syst., vol.
12, no. 1, pp. 221–231, 2019, doi:
10.22266/ijies2019.0228.22.

[28] J. Ramkumar and R. Vadivel, “Multi-Adaptive
Routing Protocol for Internet of Things based
Ad-hoc Networks,” Wirel. Pers. Commun., vol.
120, no. 2, pp. 887–909, Apr. 2021, doi:
10.1007/s11277-021-08495-z.

[29] R. R. Putra, M. E. Johan, and E. R. Kaburuan,
“A naïve bayes sentiment analysis for fintech
mobile application user review in Indonesia,”
Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no.
5, pp. 1856–1860, 2019, doi:
10.30534/ijatcse/2019/07852019.

[30] J. He, A. Wumaier, Z. Kadeer, W. Sun, X. Xin,
and L. Zheng, “A Local and Global Context
Focus Multilingual Learning Model for Aspect-
Based Sentiment Analysis,” IEEE Access, vol.
10, pp. 84135–84146, 2022, doi:
10.1109/ACCESS.2022.3197218.

[31] T. Gu, G. Xu, and J. Luo, “Sentiment Analysis
via Deep Multichannel Neural Networks with
Variational Information Bottleneck,” IEEE
Access, vol. 8, pp. 121014–121021, 2020, doi:
10.1109/ACCESS.2020.3006569.

[32] J. He, S. Mai, and H. Hu, “A Unimodal
Reinforced Transformer with Time Squeeze
Fusion for Multimodal Sentiment Analysis,”
IEEE Signal Process. Lett., vol. 28, pp. 992–
996, 2021, doi: 10.1109/LSP.2021.3078074.

[33] R. Ren and D. Wu, “An Innovative Sentiment
Analysis to Measure Herd Behavior,” IEEE
Trans. Syst. Man, Cybern. Syst., vol. 50, no. 10,
pp. 3841–3851, 2020, doi:
10.1109/TSMC.2018.2864942.

[34] Z. Kastrati, A. S. Imran, and A. Kurti, “Weakly
Supervised Framework for Aspect-Based
Sentiment Analysis on Students’ Reviews of
MOOCs,” IEEE Access, vol. 8, pp. 106799–
106810, 2020, doi:
10.1109/ACCESS.2020.3000739.

Journal of Theoretical and Applied Information Technology
31st March 2024. Vol.102. No 6

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2358

[35] O. Wu, T. Yang, M. Li, and M. Li, “Two-Level
LSTM for Sentiment Analysis With Lexicon
Embedding and Polar Flipping,” IEEE Trans.
Cybern., vol. 52, no. 5, pp. 3867–3879, 2022,
doi: 10.1109/TCYB.2020.3017378.

[36] F. Yin, Y. Wang, J. Liu, and L. Lin, “The
Construction of Sentiment Lexicon Based on
Context-Dependent Part-of-Speech Chunks for
Semantic Disambiguation,” IEEE Access, vol.
8, pp. 63359–63367, 2020, doi:
10.1109/ACCESS.2020.2984284.

[37] E. Zuo, H. Zhao, B. Chen, and Q. Chen,
“Context-Specific Heterogeneous Graph
Convolutional Network for Implicit Sentiment
Analysis,” IEEE Access, vol. 8, pp. 37967–
37975, 2020, doi:
10.1109/ACCESS.2020.2975244.

[38] Z. Ke, J. Sheng, Z. Li, W. Silamu, and Q. Guo,
“Knowledge-Guided Sentiment Analysis Via
Learning From Natural Language
Explanations,” IEEE Access, vol. 9, pp. 3570–
3578, 2021, doi:
10.1109/ACCESS.2020.3048088.

[39] J. Yu, J. Jiang, and R. Xia, “Entity-sensitive
attention and fusion network for entity-level
multimodal sentiment classification,”
IEEE/ACM Trans. Audio Speech Lang.
Process., vol. 28, pp. 429–439, 2020, doi:
10.1109/TASLP.2019.2957872.

[40] K. Suppala and N. Rao, “Sentiment analysis
using naïve bayes classifier,” Int. J. Innov.
Technol. Explor. Eng., vol. 8, no. 8, pp. 264–
269, 2019, doi: 10.14445/22312803/ijctt-
v68i4p141.

[41] Y. L. Pavlov, “Random forests,” Random For.,
vol. 45, no. 1, pp. 1–122, Oct. 2019, doi:
10.4324/9781003109396-5.

