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ABSTRACT 

The problem addressed in this research is a timely one in modern healthcare: the establishment of advanced 
health monitoring systems that are capable of drawing intelligent inferences and predictions in real time. By 
bringing together Internet of Things (IoT) technology and Deep Learning techniques, this research proposes 
a new approach to the realization of remote patient monitoring (RPM). This system is capable of achieving 
pervasiveness with today’s vital signs — such as blood pressure, heart rate, oxygen saturation level and 
cerebral blood flow data — and can provide fall detection using radar sensors, as well as air pollution analysis 
in indoor environments, thus making the system augmentative and pervasive, not just comprehensive. The 
research demonstrates the highest accuracy in health anomaly detection and health risk stratification when 
utilizing Advanced Convolutional Neural Networks for Health Anomaly Detection (ACN-HAD) which are 
developed and Health Risk Stratification Neural Networks (HRS-NN) to realize the potential for both 
personalized healthcare and predictive analysis, thus advancing the state of the art in smart healthcare 
technologies. The results presented have significant potential to revolutionize healthcare delivery and its 
efficiencies, with the prospect for better patient outcomes. 
Keywords: Remote Patient Monitoring, Internet of Things, Deep Learning, Health Anomaly Detection, 

Predictive Healthcare 
 

1. INTRODUCTION 

Integration of IoT (Internet of Things) 
technology in healthcare marks an unprecedented 
transformation, promising significant enhancements 
in patient outcomes, operational efficiencies and 
remote monitoring capabilities. Messinis et al. [1] 
underscore IoT infrastructure's proliferation across 
medical settings highlights its promise as a 
transformation agent in healthcare practices via 
smart devices, wearables and AI-powered telehealth 
care systems that employ IoT and Artificial 
Intelligence for remote diagnosis and treatment - 
further underscoring its relevance during public 
health emergencies, where Dhabarde et al. [2] have 
explored COVID-19 Pandemic with the 
implementation of smart healthcare systems.  

 
The Internet of Things (IoT) holds great 

promise as a technology for improving healthcare 

frameworks conducted by Parihar et al. [3]. Patient-
specific targeted solutions are provided for diseases 
within the IoT framework. The wearable devices 
with embedded machine-learning technologies 
provide early disease detection and beaconing for 
proactive healthcare management as mentioned by 
Ziwei et al. [4], creating smart environments, with 
Learning Health Systems in which they do function. 
With the growing adoption of IoT technology in 
healthcare, peers, researchers, and consultancies 
have done surveys and studies exploring how IoT 
applications can be used to monitor patient health in 
real-time and how it can serve as the main source of 
managing chronic conditions studied by Roy et al. 
[5], as well as the challenges of having such as 
meeting technology integration challenges, data 
privacy and security and interoperability explored by 
Subashini et al. [6]. 
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IoT, combined with deep learning, is spawning 
a new era of innovations in healthcare systems 
across the globe. Roy et al. [7] discuss how the 
efficiency and efficacy are being greatly increased as 
a result of this technology when applied remotely. 
Some remote AIoT based healthcare system is using 
IoT and AI to deliver personalized healthcare 
services, real-time data monitoring and analysis like 
never before studied by Anand et al. [8]. An AIoT 
remote healthcare system can be seen as a clear 
example of how AIoT systems can be transformative 
by delivering personalized patient services which 
combine both the IoT and AI, for efficient healthcare 
delivery discussed by Cabri et al. [9]. 

 
Artificial Intelligence and the Internet of Things 

are also transforming. An example is the 
combination in Zhou et al. [10] of Artificial 
Intelligence and the Internet of Things for 
monitoring and tracking the patient outcomes in real 
time for more accountable care. It also shows how 
the Internet of Things architectures with deep 
learning capabilities can optimize quality service 
within the ecosystem that is needed for more 
scalable, secure, and resilient healthcare applications 
that require deep learning of the sort used by Damre 
et al. [11] to improve experience in data processing 
and decision support across devices that guarantees 
high-quality service delivery with privacy preserved. 

 
1.1 Problem Statement 

Though there have been advancements in 
analytics and data processing technology, modern 
health monitoring is far from perfect. Integration and 
analysis of disparate sensor data poses difficulties 
thus making it impossible to create an all-inclusive 
interpretation of patients' health based solely on this 
information. Remote Patient Monitoring (RPM) 
systems play a significant role in eldercare 
management as well as chronic disease care. The 
smart healthcare has now become an indispensable 
element of healthcare delivery. Prognostication and 
risk stratification are central but inefficient 
components of existing health monitoring 
frameworks, which primarily act in reactive mode 
rather than being predictive. An aging global 
population with delayed onset and limited continuity 
of care presents health monitoring systems with little 
options for proactive interventions that would 
address its near exponential rise of chronic diseases, 
necessitating early detection, continuous monitoring 
and pre-emptive action in order to mitigate 
healthcare systems worldwide. 

 

1.2 Motivation 
This research endeavour seeks to overcome the 

limitations of current traditional health monitoring 
systems. When delivering healthcare in hospitals, 
the methods evolve over time with the need, but the 
necessity of personal care that fulfils an individual 
patient's exact requirements is evident everywhere as 
the healthcare delivery shifts more into home 
environments. Driving the adoption of technology to 
deliver healthcare with that in mind sees the 
motivations to adopt IoT and Deep Learning Model 
integration. The eventual promise is of a healthcare 
system that becomes more proactive, predictive and 
personalized. Long before then, Deep Learning 
powered monitoring tools could change patient 
outcomes and quality of life, managing demand on 
healthcare systems around the world. The final 
quantum leap still required, is processing massive 
data streams generated from IoT based connected 
devices using deep learning algorithms for anomaly 
detection and risk stratification purposes. 

 
1.3 Objectives 

This research aims at developing a health 
monitoring framework based on Internet of Things 
(IoT) and Deep Learning for collecting sensor data 
from a variety of sensors, interpreting it and then 
highlighting any relevant information to offer quick 
and precise anomaly detection, and stratifying risk 
possibly better than ever. The system can monitor 
several health determinants and measure accurately.  

The system aims to monitor Blood Pressure 
(systolic and diastolic pressure), Heart Rate (HR), 
oxygen saturation in the blood (SpO2) exactly in 
terms of percentage, and Hemoencephalography 
(HEG), in a non-invasive manner and for the 
evaluation of neurological health states. The system 
uses the HEGduino sensor for the detailed analysis 
blood flow in the cerebral area. Also, the radar 
sensor has implemented which paves the way for fall 
detection of a person. Furthermore, the system 
exhibits ambient intelligence and can keep 
monitoring for pollutant levels including particulate 
matter concentrations (PM1, PM2.5 and PM10), for 
insights into the indoor air quality monitoring system 
which has direct effect on certain health conditions. 

 
 
1.4. Foundational Justification for Core Research 

Concerns 
The core concern of this research stems from the 

recognition of the limitations and challenges within 
the current healthcare systems, particularly in the 
field of patient monitoring and predictive healthcare. 
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The paper justifies this concern by highlighting 
several key factors: 
a) Need for Remote Patient Monitoring (RPM): 

The paper underlines the potential of combining 
IoT technology with advanced Deep Learning 
techniques - to turbo-charge patient monitoring. 
By combining IoT-compliant sensors that 
monitor a patient's health in real-time, with 
Deep Learning  algorithms that can sift through 
and make sense of the data generated in real-
time, the research aims to get past the limitations 
of traditional methods and unleash a powerful 
form of personalised care 

b) Integration of IoT and Deep Learning: The 
paper emphasizes the potential of integrating 
IoT technologies with advanced Deep Learning 
techniques to enhance patient monitoring 
capabilities. By leveraging IoT sensors to 
collect real-time health data and employing 
deep learning algorithms for analysis, the 
research aims to overcome the limitations of 
traditional monitoring methods and enable 
proactive healthcare interventions. 

c) Importance of Health Anomaly Detection and 
Risk Stratification: The research is focused on 
the accurate detection of health anomalies and 
stratification of health risk, critical to improving 
patient outcomes. It underscores that advanced 
Convolutional Neural Networks (CNNs) will be 
capable of achieving such high accuracy in 
these tasks, which will ultimately be the 
gateway to early intervention and highly 
personalized treatment strategies. 

d) Environmental Health Monitoring: In 
acknowledgment of the fact that environmental 
factors are the most important determinants of 
health, the paper suggests that it could make a 
lot of sense to integrate environmental 
monitoring into healthcare systems. By adding 
real-time particulate matter monitoring to the 
collection of traditional health parameters, the 
research could make it possible to build up a 
much more complete picture of the often-
complex interplay between the environment and 
human health.  
 
 

1.5 Organization 
This research paper is focused on the 

development and deployment of an innovative smart 
healthcare monitoring system. The section II 
designated as the literature review which has a 
comprehensive survey of the existing academic and 
industry work related to smart healthcare monitoring 

systems. It surveys relevant literature on existing 
systems, prior studies, their methodologies, and 
findings. Finally, this section also sets the stage for 
the contribution by highlighting the gaps or 
limitations in the current land scape that the 
proposed work is going to overcome. The details of 
the sensor setup and communication protocol is 
elaborated in section III, followed by the 
presentation of the deep learning algorithms in 
section IV. Section V outlines the results and 
discussion, providing the valuable insights into the 
proposed work. Further elaboration on the 
challenges, the proposed and implemented solutions, 
and potential future work in smart healthcare is 
presented in the conclusion section. 

 
2. LITERATURE REVIEW 

Kondaka et al. [12] have meticulously reviewed 
the literature and proposed iCAIDL algorithm, the 
merger of IoT with a cloud-assisted deep learning 
(CAIDL) approach, making significant strides in the 
establishment of the IoT frameworks with deep 
learning applications. Highlighting significant 
strides for data management and communication 
with goals toward future work of accurate accuracy 
quantification evaluations. Nwibor et al. [13] have 
proposed a health monitoring system in IoT using 
photoplethysmography (PPG). Where peak 
detection algorithm is designed using the PPG 
signal. Precision is being demonstrated by this work 
without providing accurate accuracy data 
comparison. 

 
Kavitha et al. [14], have proposed a four-

module architecture that integrate IoT data 
acquisition with contextually aware computational 
strategies. The system achieved a good accuracy, 
scalabilities and response times by utilizing Back 
Propagation Neural Network and an Adaptive 
Grasshopper Optimization Algorithm. Kishor et al. 
[15] have delved into how AI and IoT can be 
implemented in health monitoring. Throughout their 
work they have explored predicting diseases using 
various machine learning classifiers. The system 
achieved a good accuracy by implementing Random 
Forest classifier.  

Shaik et al. [16] have conducted an exhaustive 
review of AI applications for remote patient 
monitoring (RPM) covering patient-centric 
architectures and technologies like cloud, fog, edge 
and, blockchain. Basu et al. [17] developed an IoT-
enabled system for remote health monitoring, highly 
relevant to the proposed research, enabling remote 
health monitoring capable of predicting 
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cardiovascular conditions without internet access, 
emphasizing the importance of reliable health 
predictors for remote patient monitoring.  

 
Sahoo et al. [18] engaged in research utilizing 

sensor fusion with machine learning for heart disease 
prediction using the RBF SVM algorithm, achieving 
notable accuracy and setting a high standard in 
predictive analytics for healthcare research. Zhuang 
et al. [19] used an IoT-assisted Intelligent 
Monitoring Model, integrating deep learning 
networks with Bayes theorem for disease 
monitoring, achieving an 87.87% accuracy rate in 
disease prediction, underscoring its relevance to the 
proposed work. These experimental results from 
existing studies proved that machine learning 
models such as NB, RF, LR, and SVM in monitoring 
and diagnosing diseases related to cardiovascular, 

diabetes, etc. as well as their accuracy in the 
prediction of disease are very promising and 
beneficial.  

 
Dritsas et al. [20] experiment an SVM, RF, LR 

and NB on Kaggle dataset to diagnose a 
cardiovascular disease for heart disease diagnosis 
and the accuracy are from 59.59% to 72%. On other 
hand, Hossain et al [21] presented their research to 
monitor diabetes using the telehealth care centre data 
and their models range from LR, NB, RF as well as 
accuracy from 67.80% to 97.40% that promoted a 
basis for continuous monitoring in chronic disease 
management and significantly improving patient’s 
outcomes.  

 
. 

 

Table 1: Comparison of Existing Systems. 

Study Reference Methodology Algorithms Used Results 

IoT-Based Blood 
Pressure and HR 
Monitoring [13] 

IoT-based remote 
monitoring of BP, HR, 
SpO2 

AMBP detection algorithm 
Comparison with standard 
devices and graphical 
representation constructed 

IoT-Based Health 
Monitoring [14] 

IoT sensors, four-
module architecture 

BPNN with Adaptive 
Grasshopper Optimization 

83% Accuracy 

AI and IoT in 
Healthcare [15] 

Comparison of seven 
ML algorithms for 
disease prediction 

Random Forest, Decision 
Tree, SVM, Naïve Bayes, 
AdaBoost, ANN, KNN 

97.62% accuracy with 
Random Forest 

AI Applications in 
RPM [16] 

Review of AI 
applications in RPM 

Reinforcement learning, 
federated learning (review) 

Review with no specific 
outcomes 

Remote Health 
Monitoring [17] 

Sensors for vital health 
parameters, IoT 

SVM 
100% for 'GOOD' and 
'RISKY', 71% for 
'AVERAGE' 

Heart Attack 
Prediction [18] 

IoT-based system, 
analysis of ECG and 
vital signs 

RBF SVM algorithm 
80% accuracy for heart attack 
prediction 

IoT-Assisted Health 
Monitoring [19] 

IoT-based system, 
Enhanced Deep 
Learning Network 

Enhanced Deep Learning 
Network using Bayes 
Theorem (EDLN-BT) 

94.2% Accuracy 

Cardiovascular Disease 
Risk Prediction [20] 

Machine Learning 
based prediction system 

Naive Bayes, SVM, Logistic 
Regression, Random Forest 

Logistic Regression: 72.1% 
accuracy, 78.4% AUC 

Cardiac Arrest 
Prediction [21] 

Analysis of EHR vital 
signs 

Random Forest 
>80% accuracy, with a >10% 
improvement using data from 
the preceding 60 min 

Heart Disease 
Prediction System [23] 

Swarm-ANN strategy 
with two-phase weight 
modification 

Swarm-Artificial Neural 
Network (Swarm-ANN) 

95.78% accuracy 

Furthermore, researching an approach to 
monitor diabetes in by Mahesh et al. [22] with 

patient survey and NB, LR, KNN, DTRF, and SVM 
as a machine learning algorithm, the accuracy from 
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81% to 90% as the machine learning can give a 
crucial part of long-term management of diabetes. 
Liet al. [23] focused on the heart disease prediction 
and used two types of machine learning algorithms 
namely the SVM and the LR performances on 
Cleveland HD dataset, the accuracy obtained were 
92.37% and 88.67%, which further this research also 
extends the machine learning application feasibility 
of as early warning symptoms of heart disease 

 
Soudan et al. [24] examined the use of the 

MIMIC-III dataset to build an array of algorithms, 
NB, RF, KNN, SVM, MLP, and CNN, for the 
prediction of cardiac arrest. Accuracy rates from 
61%-81% were reported, speaking to the complexity 
of the prediction of a vital area within emergency 
medicine. IoT applications in smart healthcare 
frameworks are being transformed by bio-inspired 
optimization techniques, as evidenced in the recent 
studies by Ramkumar [24]-[49] have been shown to 
significantly enhance network efficiency and 
security, both imperative when it comes to the secure 
dissemination of healthcare data. 

 
2.1. Gaps Identified from Literature Review 

Most existing systems focus on conventional 
vital signs, lacking the incorporation of real-time 
processing and predictive analytics. Instead, they 
rely on static data analysis, failing to effectively 
leverage the Internet of Things (IoT) and deep 
learning for proactive health interventions. 
Furthermore, lower accuracy and increased 
overfitting have been reported in some recent 
machine learning research efforts, pinpointing a 
need for developing robust models. Lack of anomaly 
detection further limits the breadth of 
comprehensive health monitoring such a system can 
offer. Consequently, there is a gap in stratifying 
health risks effectively based solely on a myriad of 
physical health indicators, necessitating more 
sophisticated advances in health risk assessment. 

The proposed study elevates health monitoring 
through IoT integration of multiple vital signs: 
Blood Pressure, Heart Rate, SpO2, Particulate 
Matter (PM) levels (PM1, PM2.5 and PM10) as well 
a Non-invasive Hemoencephalography (HEG) 
measurement along with fall detection radar sensor. 
With this system's dual model framework of 
Advanced Convolutional Neural Network for Health 
Anomaly Detection and Health Risk Stratification 
Neural Network for anomaly detection and 
stratification - not only does this fill significant gaps 
found in traditional systems but it sets new standards 

in proactive healthcare with precise monitoring and 
timely interventions for smart healthcare provision. 

 
3. METHODOLOGY 

The unique aspect of this approach to health 
monitoring lies primarily in its incorporation of 
cutting-edge sensor technology with sophisticated 
data processing to create an all-inclusive yet 
minimally intrusive health monitoring system. At the 
core of this system is the Raspberry Pi, which 
interfaces with MAX32664 to read and process 
sensor data in real-time, enabling real-time 
monitoring not only of blood oxygen saturation but 
also heart rate and blood pressure. Air Quality 
Monitoring sensors include Particulate Matter 
sensors that measure air quality; 
Hemoencephalography sensors for neurological 
health; radar fall detectors are particularly beneficial 
to elderly care, and all this data is transmitted 
securely over an SSH connection using both MQTT 
and HTTP protocols to the cloud. 

 
3.1 Sensor Integration and Data Acquisition 

Block diagram of an integrated health 
monitoring system reveals its architecture in the 
figure 1. This system contains various sensors such 
as estimated Blood Pressure and Heart Rate 
monitors, SpO2 Sensors to gauge blood oxygen 
levels, Hemoencephalography Sensor (HEGduino) 
for brain blood flow evaluation purposes, Particulate 
Matter Sensors evaluating PM1, PM2.5 and PM10 
levels evaluation as well as Radar sensors which 
detect movement or fall detection; all connected 
directly to a Raspberry Pi 4B which acts as the 
central processing unit responsible for gathering 
health metrics from this array. All sensors are 
connected directly to a central processing unit for 
collecting various health metrics directly.  

 
Raspberry Pi has been used in this research for 

collecting the data which is then transmitted to a 
cloud server. The IoT Dashboard has implemented 
to display the various health parameters such as 
blood oxygen level (SpO2), Blood Pressure (Systolic 
and Diastolic) and heart rate in real time. Anomaly 
Detection and Health Risk Prediction models using 
neural network architectures for anomaly detection 
and predictive health risk prediction of a patient 
based on different health parameters. With this 
research a Pro-Active approach has been taken in the 
healthcare and patient monitoring. 
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3.1.1 Raspberry Pi and MAX32664 sensor 
interface 

Integrating Raspberry Pi with MAX32664 
sensors for accurate health readings (SpO2, heart 
rate, systolic and diastolic blood pressure as well as 
real time monitoring. It’s crucial for this research as 
the MAX32664 sensor provides a non-invasive and 
highly accurate continuous health measurements. 

 
DataRPi-MAX32664 = I2C(MAX32664,Param) (1) 

Eq. (1) shows how to get parameters from the 
MAX32664 through I2C protocol in a Raspberry pi 
setup. 

 
3.1.2 Particulate matter sensor 

Air Quality is important for indoor insolation. 
The indoor air pollution may have serious adverse 
impacts on respiratory and cardiovascular and 
respiratory health. For air quality monitoring this 
system uses the Particulate Matter sensor. It is a 
digital sensor that is capable of measuring three 
levels of particulate matter: PM1, PM2.5 and PM10. 

These levels pose potential harm to the patients live 
with such preexisting conditions. 

PMlevels = Sensor(PM1, PM2.5, PM10)     (2) 

 Eq. (2) shows the output from a PM sensor for 
PM1, PM2.5 and PM10 levels.  
 
3.1.3 Hemoencephalography (HEG) sensor 
          Hemoencephalography is a single sensor 
FNIRS device meant to give a basic indication of 
cerebral blood flow changes in the brain. Users then 
combine this indicator - the ratio of red to infrared 
light returned to the photodiode from the LEDs on 
the forehead - with simple visualization tools to help 
them increase or decrease metabolic/blood flow 
activity in the cerebral area. 

.HEGdata = FNIRS(HEG sensor) (3) 

Eq. (3) represents HEG data collected via 
Functional Near Infrared Spectroscopy technology 
from its sensor. 

 
 
 

 
Figure 1: Block Diagram 

 
3.1.4 Radar sensor for fall detection 

This system prioritizes patient mobility and 
safety by including a radar sensor designed to detect 
fall prevention which offers continuous monitoring 
in its operational scope. This sensor's primary role is 
to detect sudden movements or posture shifts of a 
person which might indicate impending fall and 
emphasizing its preventive nature of care. 

Falldetection = RadarOutput(motion position)     (4) 

Eq. (4) represents the output from a radar 
sensor used to analyze motion and position in 
order to detect falls. 
 
3.2 Data Transfer Mechanism 

Secure IoT data transfer in this research comes 
from the melding of two different protocols: MQTT 
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(Message Queuing Telemetry Transport) for its 
small messaging footprint as it uses a publish-
subscribe model which is ideal for applications with 
low-bandwidth applications and HTTP (Hypertext 
Transfer Protocol), which is used for devices to 
register and firmware updates (it uses a request-
response model). As for data security, it's encrypted 
using the AES-256 standard.  

MQTTtransmission = PubSub(data topic)      (5) 

       Eq. (5) illustrates MQTT protocols publish-
subscribe model of data transmission.  

HTTPcommunication = 
RequestResponse(device server)     

 
(6) 

       Eq. (6) indicates the HTTP protocol’s request-
response communication method. 

EncryptedData = AES256(OriginalData 
Key)     

 (7) 

       Eq. (7) illustrates AES-256 encryption using 
OriginalData as its 256-bit Key.  
 
3.3 Data Visualization and Cloud Integration 

The sensor data collected by the central unit 
instantly transmits it to an IoT dashboard hosted in 
the cloud for analysis and visualization which is 
accessible across all the kind of browsers. This 
platform serves both healthcare providers and 
patients by quickly providing access to health data 
quickly and alerting stakeholders of any sudden 
changes that require intervention. 
 
3.4 Deep Learning Implementation 

The proposed research brings two algorithms 
altogether, anomaly detection and risk prediction. 
Advanced Convolutional Neural Network for Health 
Anomaly Detection (ACN-HAD) identifies complex 
anomalies on health data for proactive health 
monitoring, while Health Risk Prediction using 
Health Risk Stratification Neural Network (HRS-
NN) uses multilayer perceptron models to analyse 
health parameters to predict potential health risks. 

 
In this research the deep learning models have 

been trained using an extensive simulated dataset. 
This dataset is featuring 10,000 data points from 
each of 100 subjects. It covered vital health 
parameters such as oxygen saturation in blood, blood 
pressure (systolic and diastolic), heart rate and 
hemoencephalography levels with the timestamps. 
This made it ideal for the deep learning models to 
learn to identify anomalies and categorize health 
risks as early as possible. The simulated data fed to 
the models also included several outlier points which 
represented adverse readings. The abnormal 

readings placed to ensure the usage of deep learning 
models that would result in a far more reliable 
system during both real-time health monitoring and 
early diagnosis of disease conditions. 

 
3.5     Advanced Convolutional Neural Network 

for Health Anomaly Detection (ACN-
HAD) 

This research consists of an advanced deep 
learning model, Advanced Convolutional Neural 
Network for Health Anomaly Detection (ACN-
HAD). ACN-HAD uses an advanced deep learning 
algorithm to make predictions from multivariate 
health data collected via sensors which detects health 
anomalies. 

Cl+1 = ReLU(Wl ∗Cl +bl)Pl+1 = 
MaxPooling(Cl+1)Fl+1 = ReLU(Wf ·Fl +bf) 

(8) 

The convolutional layer applies filters Wl to the 
input Cl, adding bias bl, and applying the ReLU 
activation function. The pooling layer reduces the 
spatial dimensions, and the fully connected layer 
further processes the features. 

 
3.5.1 Data pre-processing and feature 
engineering 

The proposed model uses an expansive data set, 
gathering measurements of various health 
parameters such as Blood Pressure (Systolic and 
Diastolic), Heart rate, SpO2 levels, as well as 
Hemoencephalography (HEG) readings. Since the 
Timestamp column contains string values instead of 
datetime values for analysis purposes it has been 
converted to datetime format to track trends over 
time. 

Xnorm =
ଡ଼ିଡ଼min

ଡ଼maxିଡ଼min
    (9) 

Feng = EngineerFeatures(Xnorm) (9a) 

 
3.5.2 Outlier detection and handling 

Outlier detection and handling are integral 
aspects of the proposed deep learning model which 
may produce an inaccurate anomaly detection result. 
Statistical techniques have been utilized such as 
Interquartile Range (IQR) method to effectively 
identify and handle the outliers. For each feature the 
model calculates its respective IQR value 
representing distance from 25th percentile up to 75th 
percentile to detect outliers which lie outside either 
first quartile or third quartile by some factor of its 
respective IQR value. The removal of these outliers 
based upon prevalence within the dataset. 
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IQR = Q3 − Q1Ohandled = 

HandleOutliers(X IQR)     

 (10) 

The IQR is computed as the difference between 
the 75th percentile Q3 and the 25th percentile Q1. 
Outliers in the data X are handled based on the IQR. 

 
3.5.3 Data splitting for model validation 

To ensure the model generalizes well to 
unfamiliar and novel data sets, the data has been 
divided into training and test sets. Here, the model is 
trained on one subset before its hyperparameters are 
tuned on another subset before its performance is 
reviewed on data never seen before - providing 
consistent estimates across random subsets of the 
data as an indicator of its potential real-world 
applications. 

 
3.5.4 Utilization of autoencoders for feature 
extraction 

Autoencoders enable automated feature 
selection and extraction through low-dimensional 
encodings learned that effectively reconstruct input 
data. Such reconstructions identify salient features 
from their input data that enable processing data with 
numerous dimensions. 

 
.3.5.5 Sequence modelling for temporal 
anomalies 

Sequence modelling techniques are used to 
capture temporal dependencies within data. More 
specifically, Long Short-Term Memory (LSTM) 
networks are integrated into model architecture 
which makes them suitable for learning from data 
with long-term dependencies - which makes them 
especially appropriate when applied to time series 
data where anomalies depend upon sequence of 
events.  

ft = σ(Wf • [ht−1,xt] + bf)  (11) 

it = σ(Wi • [ht−1,xt] + bi)  (11a) 

C˜t = tanh(WC • [ht−1,xt] + bC) (11b) 

Ct = ft ∗ Ct−1 + it ∗ C˜t  (11c) 

ot = σ(Wo [ht−1,xt] + bo)  (11d) 

ht = ot ∗ tanh(Ct)   (11e) 

LSTM cells use gates to regulate the flow of 
information. Here, ft and it are the forget and input 
gates, C˜

t is the candidate cell state, and ht is the 
output. 
3.5.6 Layered convolutional architecture 

The ACN-HAD model uses a multilayered 
architecture composed of multiple Conv1D layers 

with differing filter sizes. The system utilizes these 
multiple Conv1D layers in order to extract advanced 
features from input data using this deep layered 
architecture, using them together with multiple 
Conv1D layers with differing filter sizes to capture 
increasingly complex features from input data. While 
initial layers might detect simple patterns like sudden 
spikes in heart rate, deeper ones can detect 
anomalous increases such as gradual but abnormal 
spikes in blood pressure levels. 

Cl+1 = LeakyReLU(Wl ∗ Cl + bl) (12) 
Pl+1 = MaxPooling(Cl+1)  (12a) 
Sl+1 = SpatialDropout(Pl+1,rate) (12b) 
Al+1 = AlphaDropout(Fl,rate)  (12c)

   
The convolutional layer applies filters with 

LeakyReLU activation. MaxPooling reduces 
dimensions, and SpatialDropout and AlphaDropout 
are applied for regularization. 

 
3.5.7 Activation functions and pooling layers 

Leakage ReLU activation functions have been 
utilized to enable the proposed model to make sense 
of complex data sets. The MaxPooling1D pooling 
layers have also been implemented to lower feature 
map dimensionality and generalize more easily. 
Even when units become inactive due to gradient 
leakage, some information still leaks through the 
MaxPooling layers which serve as down sampling 
filters. This reduces the computational costs while 
decreasing overfitting and making detection 
independent from the orientation changes. 

Al+1 = LeakyReLU(Cl+1)  (13) 
Pl+1 = MaxPooling(Al+1)  (13a) 
The LeakyReLU function introduces non-

linearity, allowing the proposed model to learn more 
complex patterns. 

Sl+1 = SpatialDropout(Cl+1 rate) (14) 
Al+1 = AlphaDropout(Dl,rate)  (14a) 
Advanced regularization techniques obtained by 

implementing spatial dropout and alpha dropout 
regularization algorithms have proven highly 
successful when applied to Conv1D layers with 
dense structures, particularly when combined with 
activation function ELU (Exponential Linear Unit). 
Spatial Dropout regularizes Conv1D layers by 
dropping entire feature maps. Alpha Dropout, on the 
other hand, is specifically tailored to dense layers - 
especially effective with ELU activations. 

 
3.5.8 Training process and hyperparameter 
optimization  

Optimization of deep learning models utilizes 
both manual tuning and automated hyperparameter 
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optimization techniques like Bayesian Optimization 
to achieve an equitable result. To find the best 
combination of hyperparameters and efficiently 
managing model complexity the trade-off can be 
used and calculated as 

Θ∗ = 

argminΘBayesianOptimization(L(D;Θ)) 

(15) 

Bayesian Optimization have been implemented 
for a set of hyperparameters Θ∗ which minimizes the 
loss function L over the dataset D. 

Lcustom = Xwi • Li(D;Θ)  (16) 
With custom loss functions in the Eq. (16), 

different types of anomalies are weighted using the 
weights for each type of anomaly. Each individual 
loss function is represented in equation Li and then 
multiplied by its weight wi, which is then summed 
and returned by custom loss. 

 
3.5.9 Advanced training strategies 

Creating and training a model involves more 
than feeding the batches of data. Several techniques 
have been deployed such as Gradient Accumulation 
which allows for training with larger datasets 
without impacting computational efficiency. The 
Learning Rate Annealing implemented for the 
models which can gradually lower learning rates 
during training to improve convergence over time. 

Θnew = Θ − η • ∇L(D;Θ)  (17) 
ηnew = LearningRateAnnealing(η) (18) 
Gradient Accumulation updates the model 

parameters Θ using the gradient of the loss function 
∇L. Learning Rate Annealing gradually reduces the 
learning rate η for better convergence. 

 
3.5.10 Cross-Validation techniques 

Robust model evaluation can be achieved using 
advanced cross-validation techniques such as 
timeseries cross-validation which assess the temporal 
nature of data points, to test on unseen points that 
simulate real-world scenarios and ensure robust 
anomaly detection models are created. A variety of 
visual and statistical approaches are used to assess 
anomaly detection models' performance. 

CVscore

=
1

k
෍ ℱ൫Model൫Dtrain౟

; Θ൯, Dtest౟൯

୩

୧ୀଵ

 
(19) 

Time-series cross-validation evaluates the model 

across different folds. The model trained on trainD
(௜) is 

tested on testD
(௜)

, 𝑎𝑛𝑑 𝐹 is the evaluation function. 
 

3.5.11 Interpretability 
Analysis requires using both visual and 

statistical methods to assess an anomaly detection 
model's performance, which utilizes traditional 
metrics as well as innovative visualizations for an in-
depth evaluation. By plotting anomaly scores across 
a test dataset, prediction confidence of the model can 
be easily gauged while distinguishing levels of 
anomalous behavior. Time series analysis has been 
employed to demonstrate the model's temporal 
anomaly detection capabilities, showing its 
proficiency and limitations when it comes to 
recognizing temporal irregularities - an essential task 
in real-time monitoring. Three distinct metrics were 
designed that are automatically calculated and 
visualized to provide both quantitative and 
qualitative evaluations, creating a holistic evaluation 
of its practical performance. 

 
The Accuracy measures the overall correctness 

of the model and is defined as the ratio of correctly 
predicted instances (both positive and negative) to 
the total number of instances. 

Accuracy =
Correct Predictions

Total Predictions
         

(20) 

Where True Positives (TP) are correctly 
identified positives and True Negatives (TN) are 
correctly identified negatives. 

Precision assesses the model’s ability to 
correctly identify only relevant instances. It is 
particularly important in scenarios where the cost of 
false positives is high.  

 Precision =
TP

TPାFP
 (21) 

Recall measures the model’s ability to correctly 
identify all actual positives. It is crucial in situations 
where missing a positive instance (false negative) is 
undesirable. 

Recall =
TP

TP + FN
 

(22) 

The objective of the algorithm module is to 
provide a structured outline describing the Advanced 
CNN for Health Anomaly Detection in the algorithm 
1, from data preprocessing to model evaluation, 
including critical steps such as data normalization, 
model architecture definition, training with early 
stopping, performance visualization, etc. A 
comprehensive deep learning pipeline to detect 
health anomalies in the dataset. 
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3.6 Health Risk Prediction Using Health Risk 
Stratification Neural Network 

The Health Risk Stratification Neural Network 
(HRS-NN) model is a multi-layer perceptron (MLP) 
which is a type of feedforward artificial neural 
network. Consisting of multiple dense layers with a 
’ReLU’ activation function which introduces non-
linearity thus allowing the model to learn complex 
patterns in the data. 

                 H୪ାଵ = ReLU(W୪ ⋅ H୪ + b୪)        (23) 

Eq. (23) represents the ReLU activation function 
applied in a dense layer of the MLP. It introduces 
non-linearity, allowing the model to learn complex 
patterns.  

பୌౢశభ

பୌౢ
= ReLUᇱ(W୪ ⋅ H୪ + b୪) ⋅ W୪  (24) 

Eq. (24) represents the derivative of the ReLU 
activation function, which is crucial for 
backpropagation during training. It calculates the 
gradient of the activation function with respect to the 
input. 

 
3.6.1 Data Preprocessing for health risk 
prediction 

While the feature set is consisting of various 
health parameters have been carefully engineered. 
The new features are created to capture the 
complexity of the health data better. For instance, 
polynomial features have created to model non-linear 
relationships between health parameters and risk 
levels. 

Feng = PolynomialFeatures(X) (25) 

Eq. (25) is the summation of polynomially 
engineered features across the dataset which is 
showing the collective impact of these features. 

න Feng  dX

= ∫ PolynomialFeatures(X) dX 
(26) 

Eq. (26) represents the summation of 
polynomially engineered features over the dataset 
which indicates the accumulation of the features’ 
effects. 

 
3.6.2 Target variable encoding 

The target variable has been transformed using 
the label encoding. It also converts the categorical 
labels into a numerical form. The next process is to 
transform the numerical labels into a binary matrix 
by the One-Hot Encoding method which is essential 
for multi-class classification. 

 Ylabel = LabelEncode(Y) (27) 

 
Eq. (27) performs the conversion of 

categorical labels to a form which could be 
provided to further processing for preparing the 
target variable. 

 Yone-hot = OneHotEncode(Ylabel) (28) 

Eq. (28) converts the encoded target variable 
into a binary matrix form which is necessary for the 
multi-class classification in neural networks 

 
 
 

Algorithm 1: Advanced CNN for Health Anomaly Detection 
1: Load and preprocess the health data from CSV. 
2: Normalize the data excluding non-feature columns. 
3: Split the dataset into training and testing sets. 
4: Define the CNN model with layers: Conv1D, MaxPooling1D, Dropout, Flat- ten, and 

Dense. 
5: Compile the model with the Adam optimizer and binary crossentropy loss. 
6: Train the model using early stopping based on validation loss. 
7: Evaluate the model’s performance and generate a classification report. 
8: Visualize the training and validation metrics over epochs. 

  

3.6.3 Feature normalization 
The input features of the dataset undergo 

normalization using MinMaxScaler and scaling 
the feature values to a range of 0 to 1. The purpose 
of the normalization is to ensure that various 
measurements of health are on the same scale and 
therefore equally contribute to the ability of the 
model to make predictions. 

Xnorm =
X − Xmin

Xmax − Xmin
 

(29) 

Eq. (29) normalizes the input features of the 
data to a range of 0 to 1 which ensures a uniform 
contribution of each feature to the model. 

dXnorm

dX
=

1

Xmax − Xmin
 

(30) 
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Eq. (30) represents derivative of the 
normalization feature indicates the sensitive 
normalized value’s changes in the original 
feature. 

 
3.6.4 Encoding and normalization 

The target variable undergoes label encoding 
followed by one-hot encoding to convert it into a 
format suitable for multi-class classification j. 
The input features are normalized using 
MinMaxScaler, ensuring that all variables 
contribute equally to the model’s learning 
process.  

Yencoded

= OneHotEncode൫LabelEncode(Y)൯ 

(31) 

Xnorm =
X − min(X)

max(X) − min(X)
 

(32) 

Eq. (32) is vital as it normalizes the input 
features so that they all contribute approximately 
proportionately to the learning, hence maintaining 
a balance across various scales of data. 

 
3.6.5 Model architecture: HRS-NN 

The model is a Sequential model comprising 
two Dense layers, each with 50 neurons. These 
layers use ’ReLU’ (Rectified Linear Unit) 
activation functions to introduce non-linearity, 
allowing the model to capture complex 
relationships in the dataset. 

H୪ାଵ = ReLU(W୪ ⋅ H୪ + b୪) (33) 

Eq. (33) represents the HRS-NN model 
architecture where each layer applies the ReLU 
activation function to introduce non-linearity to 
enable the model to learn complex data patterns. 
 
3.6.6 Model compilation 

The model is compiled using the ‘Adam’ 
optimizer. This is a very efficient optimizer that 
works well with large datasets and with a deep 
network architecture. The loss function is 
‘categorical cross-entropy’. This is the metric 
used by neural networks that are trained to 
classify objects into multiple categories. 

Compile(HRS-
NN,'adam','categorical_crossentropy') (34) 

Eq. (34) shows how HRS-NN model is 
compiled where ‘adam’ optimizer is used and 
‘categorical cross-entropy’ is the loss function 
that is being used. Which is called for multi-class 
classification tasks. 

 

3.6.7 Training and optimization  
Advanced techniques like grid search and 

random search have been implemented for 
hyperparameter optimization. These methods 
work by systematically testing different 
combinations of hyperparameters (e.g., number of 
neurons, layers, learning rate) to see which work 
most effectively. 
Θ∗

= argmin
஀

HyperparameterOptimization(ℒ, D) (35) 
Eq. (35) represents the process of finding the 

optimal set of hyperparameters of the model by 
minimizing the loss function L over the dataset D. 
 
3.6.8 Customized loss function and 
evaluation metrics 

To get the best performance possible the 
custom loss functions that can incorporate the 
unique structure of health risk prediction have 
been explored, in addition to using categorical 
cross-entropy as the loss. The evaluation metrics 
were expanded to include weighted precision, 
recall, and F1-score, as these will provide a more 
comprehensive idea of how well the model is 
performing across the various health risk 
categories. 

ℒcso = ෍ w୧ ⋅ ℒ𝒾(D; Θ) (36) 

Eq. (36) describes a custom loss function 
which is customized to the specific nature of 
health risk prediction, where wi are weights 
assigned to different types of health risks. 
 
3.6.9 Model training 

The HRS-NN model was trained for 75 
epochs in total with a batch size of 32. 
Performance on unseen data during training is also 
crucial for avoiding overfitting and was made 
possible by using a validation split of 20% of the 
training data. 

Train(HRS-NN, Dtrain,epochs =

75,batch_size = 32)      

(37) 

Eq. (37) details the training process of the 
HRS-NN model, which is specifying the number 
of epochs, batch size, and emphasizing the 
importance of validation data to avoid the 
overfitting. 
 
3.6.10 Cross-Validation and robust 
evaluation 

The model is rigorously evaluated using 
techniques such as stratified k-fold cross 
validation that ensure the model is evaluated 
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consistently across different subsets of the dataset 
to ensure the evaluations are less biased. 

CVscore

=
1

k
෍ ModelEvaluate൫Dtrain

(୧) , Dtest
(୧) ൯

୩

୧ୀଵ

 
(38) 

 Eq. (38) represents the stratified k-fold cross-
validation process. The dataset is then divided 
into k folds, and the model is trained and 
evaluated k times. It performs N folds of cross 
validation by train the data and testing by each 
fold as the test set. The remaining folds are used 
in order as the training set. 

  VarCV =
ଵ

୩ିଵ
∑ ൫CVscore

(୧) −୩
୧ୀଵ

CVscore൯
ଶ
 

(39) 

Eq. (39) calculates the variance in cross-
validation scores across folds. If the variance is 
high, then it’s possible that the model doesn’t 
generalize well to new data. 
 
3.6.11 Confusion matrix and performance 
metrics 

A confusion matrix has been generated with 
percentage values to understand the model’s 
predictive accuracy for each class against every 
other class. The confusion matrix shows the 
model is particularly good at identifying the 
normalcy class versus the abnormal class. 

C୧୨ = ෍ 𝟙൫ytrue
(୬)

= i ∧ ypred
(୬)

= j൯

୒

୬ୀଵ

 (40) 

Eq. (40) defines the confusion matrix element 
Cij, which counts the number of instances where 
the true class is i and the predicted class is j. 
  

Accuracy
୧

=
C୧୧

∑ C୧୨
୑
୨ୀଵ

 
(41) 

Eq. (41) calculates the accuracy for each class 
i based on the confusion matrix. It is the ratio of 
correctly predicted instances of class i to the total 
instances of class i. 

 
3.6.12 Training and validation performance 
visualization 

Training and Validation Accuracy calculates 
the proportion of correct predictions (both true 
positives and true negatives) out of all predictions 
made by the model on the training and validation 
sets. 

Accuracy =
Correct Predictions

Total Predictions
 (42) 

 
Test Accuracy measures how well the model 

performs on unseen data (the test set). It is the 
ratio of correct predictions to total predictions 
made on the test set. 

 
Test Accuracy

=
Correct Predictions on Test Set

Total Predictions on Test Set
 

(43) 

 
Training and Validation Loss Represents the 

loss function used during the training and 
validation of the model. Here, yi is the true label, 
and ˆyi is the predicted label. The loss function 
quantifies how well the model’s predictions match 
the actual labels. 

Loss = − ෍ y୧ log(yనෝ)

୒

୧ୀଵ

 (44) 

 
To monitor the model’s ability to learn from 

the data, the training and validation accuracy over 
epochs have plotted. This allowed us to observe 
the model’s improvement over time and to verify 
that the model was not overfitting, as indicated by 
the convergence of training and validation 
accuracy. 

Accuracyepoch =
Correct Predictions

Total Predictions
 (45) 

Eq. (45) measures the accuracy of the model 
at each epoch during training and validation. It 
helps in observing the learning curve of the 
model. 

Lossepoch = ℒ൫Dtrain; Θepoch൯              (46) 

 

Eq. (46) represents the computation of loss 
function for each epoch. Monitoring this helps in 
understanding the model’s convergence behavior. 

 
The procedure for a deep learning process 

using a Multilayer Perceptron (MLP) shown in 
the algorithm 2. The process consists of loading 
and preprocessing health risk data from a CSV 
file, specifying the MLP's architecture with two 
hidden layers, as well as compiling the model 
with specific hyperparameters, training the 
model, and evaluating its accuracy across training 
data. 
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Algorithm 2: Health Risk Stratification Neural Network 
1: CSV file ‘healthdata.csv’ with health risk data 
2: Target column ’Health Risk’ 
3: Model architecture parameters: 2 hidden layers each with 50 neurons, ’relu’ activation 
4: Output layer parameters: ’softmax’ activation, number of classes derived from target 
5: Training parameters: 75 epochs, 32 batch size, 20% validation split 
6: Random state for split: 42 
7: Optimizer:  ’adam’ 
8: Loss function: ‘ categorical crossentropy’ 
9: Metrics: ‘ Train, Test and Overall Accuracy’ 

10: procedure   TRAIN_HEALTH_RISK_CLASSIFIER_MLP 
11:    Load Data: Import CSV data into DataFrame. 
12:    Preprocess Data: Drop non-feature columns from DataFrame. 
13:       Encode target ‘ Health Risk’ and normalize features. 
14:    Split Data: Partition data into training and test sets. 
15:    Build Model: Initialize Sequential model and add layers. 
16:    Compile Model: Set optimizer, loss function, and metrics. 
17:    Train Model: Fit model on training data. 

18: end procedure 

4. RESULTS AND DISCUSSION 
These results show that using algorithms for 

health risk prediction and anomaly detection in 
person-specific long-term patterns turn out to yield 
significant results, the ACN-HAD model showed 
potential to detect anomalies in the data as it 
reaches high accuracy, precision, and recall, which 
shows it is capable of distinguishing among the 
normal and abnormal health state of a person. 

The health risk prediction tailored model 
HRS-NN achieved a remarkable accuracy further 
highlighting that specialized models are the best fit 
for any given task. The choice of two separate 
algorithms not only allowed for optimized 
performance on diagnostics but also for each 
algorithm to be best suited for the complex and 
nuanced characteristic of its respective task, early 
health risk detection or vital-sign-based health 
anomaly detection. Overall, this dual-algorithm 
approach enhanced the performance of the entire 
system and highlights the importance of task-
specific model selection across the domain of 
healthcare analytics. 

 
4.1 Anomaly Detection 

In addition to diagnostics the exceptional 
performance of the ACN-HAD model for real-
time health anomaly detection in IoT-based 
healthcare has been demonstrated. With an 
improved accuracy of approximately 98.8% and 
precision and recall rates of approximately 99% 

for both anomaly classes this model achieves high 
reliability and balanced class performance to 
differentiate between normal and anomalous 
states for critical health parameters. This level of 
accuracy and precision in real-time patient 
monitoring and early health risk detection marks 
a significant leap forward in-patient healthcare. 

 
Figure 2: CDF of Anomaly Scores Indicating 

Detection Thresholds 
 
The Cumulative Distribution Function (CDF) 

plot in the figure 2 gives a holistic view of the 
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anomaly scores assigned to the test data. The plot 
is the CDF of absolute error (anomaly scores) 
values. A generally increasing curve indicates that 
the model recognizes a majority of the data by 
marking it with low outlier scores. The steep rise 
at the end of the curve indicates a small number 
of data points with high outlier scores. This sharp 
rise would be the point at which the model begins 
to recognize true anomalies at an increasing rate. 
The placement of this outlying score threshold is 
critical; it is directly reflective of the concept of 
normal behavior of the dataset and it becomes the 
balance between the sensitivity to true anomalies 
and the positives. 

 

The Time Series Anomaly Highlighting plot 
in the figure 3 the plot of continuous stream of 
time-series data in blue and position the instances 
identified as anomalies by the model as a red line 
above the data. This separation of the data stream 
allows one to observe the efficacy of the model in 
real time anomaly detection and to understand the 
temporal patterns of anomalous behavior present 
in the data. In this case the model is very sparse in 
its predictions, only flagging those data points 
which very strongly do not fit the established 
pattern. Understanding the construction and 
operation of the model in this way is essential for 
understanding the dynamical properties of its 
detection capability and for controlling false 
positive rates in continuous monitoring 
applications. 

 
Figure 3: Temporal Visualization of Anomaly 

Detection Performance 

The Anomaly Scores Plot in the figure 4 is a 
scatter plot of the anomaly scores for the test data. 
It visualizes individual data points as a function of 
their respective anomaly score. The data points 
clustered near the bottom with lower scores 
represent normal behavior. The data points with 
higher scores are the potential anomalies. The 
clear segregation of lower and higher scores 
demonstrates the model’s ability to discern 
between normal and anomalous states quite 
effectively. The distribution of these scores can be 
particularly critical for setting up a threshold-
based system for anomaly alerts.  

 
Figure 4: Distribution of Anomaly Scores 

 

This ROC plot in the figure 5 clearly displays 
that classification was perfect with an area under 
the curve (AUC) value of 1, which signifies no 
errors were committed when differentiating 
between classes using this model. Furthermore, its 
steep rise at threshold close to zero signifies its 
superior sensitivity/specificity capabilities as well 
as an exceptional discriminative power for 
detecting anomalies. 
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Figure 5: ROC Curve Depicting Model’s 

Discriminatory Capacity 

 

Figure 6: Comparison of Accuracies of Different 
Models 

 

Compared with the existing studies, the 
proposed model in the figure 6 shows a notable 
improvement. In the work of Pasquale Arpaia et 
al. [49], which focuses wearable technology on 
vital monitoring, the Long-Short-Term-Memory 
Autoencoder algorithm was used and achieved 
just above 93% accuracy. The high accuracy by 
the proposed model is more effective in 
identifying subtle and complex anomalies in 
health data. This is an essential task for proactive 
patient monitoring. 

 

When compared with the work conducted by 
S. Arun Kumar et al. [50], the proposed model 
outperforms Kumar et al. on two key aspects in 
which, a smart health monitoring system based on 
the Support Vector Machine (SVM) model have 
proposed for disease detection. Several sensors 
were used to record the patient’s health, and the 
system communicated with the doctors through 
the ThingSpeak cloud. A trained machine 
learning model was used to detect diseases, and it 
achieved an accuracy of 86% in real-time 
scenarios. 

 

In comparison, the proposed ACN-HAD 
model achieves superior accuracy and precision 
of 98.8% and 99%, respectively, in health 
anomaly detection. This outperforms the other 
systems. The strength of this ACN-HAD model 
lies in the ability to provide high accuracy on the 
multifarious time-series comparison and the use 
of the LSTM networks provides a comprehensive 
understanding of the evolution of health data, 
which is important for accurate predictions of 
health risks. Another important property of the 
ACN-HAD is its high recall rate which is very 
important in healthcare applications as missing a 
health anomaly may redound to unintended 
consequences. 

Comparisons with state-of-the-art studies in 
the literature show that the ACNHAD model 
builds on solid foundations set by research that 
precedes it while performing with greater 
accuracy, precision, and recall, to stand as a 
significant contribution to the application of smart 
healthcare in the field, improving patient care and 
health outcomes. 

 

4.2 Prediction 

The proposed model for prediction 
capitalizes on a dataset that embeds vital health 
parameters, namely, systolic and diastolic blood 
pressure (BPsys, BPdia), heart rate, oxygen 
saturation levels (SpO2), and 
hemoencephalography (HEG) data. These 
measurements form the background on which the 
Health Risk Stratification Neural Network (HRS-
NN) is laid; allowing us to twine a sophisticated 
tapestry for health risk assessment. These 
parameters have analyzed to stratify health risk as 
Low, Medium, and High, offering a clear, 
categorical view of the immediately impending 
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health risks based on collected measurements. By 
analyzing the correlations between the collected 
vital signs, the HRS-NN has indeed demonstrated 
a successful approach to predicting health risks. 
As intended, its predictive model can identify 
those with an increased cardiovascular, 
respiratory, or neurological disease risk, including 
cardiovascular diseases. By combining data such 
as heart rate measurements as well as blood 
pressure (BPsys, BPdia), the HRS-NN predicts 
diseases related to cardiovascular before the 
patient is even aware. In addition to providing an 
early warning, this is yet another clear 
demonstration of its success at providing 
preventative healthcare. By analyzing SpO2 
levels, this model allows for accurate predictions 
of respiratory disorders like asthma and COPD - 
emphasizing the value of oxygen saturation 
monitoring in terms of respiratory health 
assessment. 

 

The evolution of the model's accuracy during 
the training process is summarized in this figure 
7. The figure shows how both training and 
validation accuracies surge during the first 20 
epochs, denoting a phase of rapid learning where 
the HRS-NN is adept at capturing the underlying 
patterns of the dataset. Once both lines converge 
and continue running in parallel beyond epoch 20, 
this indicates that the model's learning has 
stabilized. It's also worth noticing that the 
validation accuracy does not drop significantly 
below the training accuracy, as is common in the 
case of overfitting. Instead, the model eschews 
overfitting, showing generalizable performance 
throughout training. 

 
Figure 7: Training and Validation Accuracy over 

Epochs 

 

Figure 8: Training and Validation Loss over Epochs 

 

Unlike the accuracy plot, in the figure 8 the 
loss over time is the figure plotted. The loss 
function is a measure of how far off the model's 
predictions are from the actual values. Initially, 
the loss drops rapidly so the model is quickly 
learning the weights and biases that minimize its 
predictions. As the epochs progress, the training 
and validation losses level off which indicates that 
the model isn't learning to further reduce the error 
significantly below a certain threshold, meaning 
that the model has reached the optimal weights. 
This "plateauing" is a good sign that the model is 
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converging. Furthermore, the proximity of the 
training and validation loss lines at the very end 
of training demonstrates that the model had a 
great ability to generalize. Finally, the curves 
being smooth signifies that the model is not 
exhibiting high variance or erratic learning 
behavior which can happen when models are too 
complex. 

 
The accuracy of the predictions is not only 

high but also balanced across different classes, as 
shown in the bar chart comparing actual and 
predicted counts for each class in the figure 9. 
This balance is crucial for ensuring the model is 
not biased towards any class, which is often a 
challenge in multi-class health risk predictions. 
The model’s precision in classification is further 
validated by the confusion matrix shown in the 
figure 10 which shows a high percentage of true 
positive rates with minimal false positives and 
false negatives. 

 
The confusion matrix is a fundamental 

evaluation tool for classification models as shown 
in the figure 10 which presents the model’s 
performance in detail for each class, showing the 
percentage of predictions that are true positive, 
false positive, false negative, and true negative, 
respectively. High percentages in the diagonal 
from the upper left to the lower right reflect a high 
true positive rate. Low percentages off the 
diagonal demonstrate the few false positives and 
false negatives that are needed to minimize 
misdiagnoses in a health risk stratification 
context. The uniformity of diagonal percentages 
across classes also shows that the model is not 
only accurate, but is consistent in its predictions 
across different types of risk, which is essential 
for its usage in a clinical setting, where 
consistency is key for patient trust and clinical 
decision-making. 

 
The plot is a comparative visualization of the 

actual versus predicted classification distribution 
for three classes class 0, class 1, and class 2 in 
Figure 11. Indicated by the density of data at 
different values. The width represents the 
probability density of the data at different values, 
with wider sections containing more densely 
packed data points. The actual data distribution 
appears to have a greater spread across the classes, 
indicating a more varied actual class distribution. 
The predicted data has a greater concentration 
around the median, suggesting the model’s 

predictions are more confident, or less varied. The 
’necks’ being thin suggests there is a lower 
density or fewer data points at the extremes, 
which is common in classification tasks where the 
central classes are often more populated. The 
internal box plots show the median and 
interquartile ranges, providing a quick visual 
reference to the central. 

Figure 9: Comparison of Actual Versus Predicted 
Counts by Class 

 

Figure 10: Confusion Matrix with Percentage Values 

 

The Health Risk Stratification Neural 
Network (HRS-NN) model has illustrated 
exemplary performance within the landscape of 
health risk prediction. Finally, a training accuracy 
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of 99.64%, validation accuracy of 99.5%, and 
overall test accuracy of 99.3% indicate that the 
model can accurately predict health risks based 
upon a comprehensive analysis of several health 
parameters. 

 
Figure 11: Plot of Actual vs. Predicted Class 

Distributions 

 

The distinctiveness of the model is further 
evidenced in comparison with existing studies, 
mentioned in Figure 14. For instance, Mohana et 
al. [51] explored IoT in healthcare using CNN. 
Their study demonstrated a training accuracy of 
99.6% and a testing accuracy of 86.3%. It is 
remarkable to note that there existed substantial 
disparity in their accuracies, suggesting 
overfitting. This issue is seemingly curtailed in 
the proposed model which stands out in terms of 
consistently high accuracy, in all phases, pointing 
towards a balanced and more generalizable 
approach to predicting health risks. 

 
The proposed model also significantly 

outperforms the LovHealth system [52] by Rafly 
Arief Kanza et al., which uses Random Forest and 
achieved an accuracy of 82.6%. In comparison, 
the proposed model demonstrates significantly 
higher accuracy thus showing its ability to handle 
complex health data. Additionally, the work of 
Md. Reazul Islam et al. on an IoT-based remote 
monitoring system [53] which uses a CNN model 
and achieves 98.2% overall accuracy, is surpassed 
by the proposed model's greater accuracy and 

high precision which are crucial for health risk 
prediction. 

 
The superior performance of the HRS-NN 

model, especially against overfitting and high 
accuracy is maintained over three phases of 
evaluation illustrating its reliability and 
effectiveness concerning healthcare application. 
As a high precision, early prediction of health risk 
is what can be vital in a healthcare setup the 
model’s performance in precision is highly 
promising and can play a big part in timely and 
effective medical interventions.

 
Figure 14: Comparison of Different Models’ Accuracy 

 

The comparative study of these models 
establishes its advancement over existing 
methodologies especially in terms of complex 
health data-based predictions and positioning this 
work as a significant contribution in health risk 
prediction using advanced deep learning 
techniques. 

 

5. CONCLUSION 

This research paper has concentrated on 
fulfilling the objective with capability of 
combining several diverse technologies, which is 
a key step towards addressing various complex 
environmental issues facing the world. The 
application of IoT enabled cutting edge Deep 
Learning algorithms will assist the healthcare 
industries to meet the challenges ahead. The 
research exhibits an innovative solution for 
Remote Patient Monitoring (RPM), which 
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outperforms the existing techniques by 
introducing, data collection and analytics, which 
demonstrate remarkably accurate results, by 
identification of health anomalies and 
stratification of risks, validating the approach and 
proving its value. Successful care transformation 
lies in providing healthcare professionals with 
disruptive, state-of-the-art tools. The success of 
the system is its unique ability to give healthcare 
providers tools that are designed specifically for 
the patient. Accurate, timely insights into patient 
health allow for proactive intervention and 
immediate, customized treatment strategies. The 
system's wider application as in real-time 
particulate matter monitoring integrated with 
health parameters further operates to excite. 
Environmental influences on individual health 
outcomes have long been recognized as 
intertwined; the study of this complex relationship 
serves to further advance knowledge. The future 
implications of the research couldn't be more 
dramatic: by giving hope to patients. As 
healthcare becomes more personalized, data-
driven, and responsive to patient needs, the 
imperative becomes inescapable. Revolutionizing 
healthcare delivery depends on arming healthcare 
providers with breakthrough technologies tailored 
for patient needs. These capabilities transform the 
technology from traditional healthcare systems 
which are inherently limited in their capabilities 
to this integrated technology that can expand 
exponentially. The introduction of this integrated 
technology may well begin to define an entirely 
new paradigm for medical treatment and its 
results are crystal clear. The research study 
uncovers the dramatic realities of reduced 
healthcare costs and system burdens. 
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