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ABSTRACT 

The science keeps advancing rapidly, new research topics keep emerging daily, and one such field is 
neuroscience. New computer models are being proposed that mimic human visual and auditory systems, with 
the former being the central area of focus. Humans are very good at focusing their attention on a required 
sound. This is not possible for people with hearing impairment because hearing aids amplify all the incoming 
signals. Our objective is to try and model the auditory system of humans, specifically on the topic of auditory 
attention. Our ears are always active and are fed with a large variety of sounds at each moment. We aim to 
model when our attention is grabbed by a particular sound amongst a large cacophony of sounds. If this is 
implemented on a hardware system, people with hearing issues can focus only on required sounds. This can 
be developed by using the concept of temporal response functions (TRFs), which show the linear relation 
between audio and EEG signals. We proposed a new mathematical framework to overcome the current 
challenges to predict the sound envelope. This obtained envelope is compared with the audio input given 
while the EEG data was recorded, using the concept of correlation. The correlation coefficients obtained for 
different values of regularization parameters are discussed. The proposed mathematical technique gave a 
better result compared to the existing state-of-the-art techniques. 

Keywords: Mathematical Modeling, Regression, Cocktail Party Problem, Auditory Scene Analysis, Auditory 
Attention Detection, Hearing Impairment solutions, Regression. 

 

1. INTRODUCTION  
 
Humans have incredibly complicated auditory 
systems, and research in this field is gaining traction 
in recent times due to the advance in medical 
equipment. There is a big motivation to understand 
the human brain's response to audio stimuli as it can 
lead to progress in neuroscience, robotics, and 
brain-computer interfaces. Cognition is the 
capability to process information through stimuli 
that we get from the environment around us. There 
are different types of cognitive processes, and 
attention is the process that allows us to concentrate 
on certain activities or stimuli[1][2]. Attention is 
used in most daily tasks to be performed, and it 
controls and regulates the other cognitive processes 
like perception, thought, language, and learning [3]. 
The focus of this paper is on auditory attention, 
more specifically, selective auditory attention. It 
involves the auditory cortex of the human brain, and 
it is signified as the action which enables people to 
pay attention to specific sounds or speech stimuli. 

The scenario of a party where there are lots of 
sources of sound being heard simultaneously was 
popularized as the "cocktail party problem" in the 
1950s [4]. It suggested that humans were adept at 
focusing on a specific sound source that they were 
interested in listening to and tuning out all the other 
disturbances [5]. Familiar characteristics of the 
speaker, like their tone of voice and distance from 
the speaker, helped filter out the other sounds. To 
completely understand the underlying processes in 
the brain, this area has been gaining more recent 
recognition from researchers. 
 
2 LITERATURE 
 
Every human ear can concentrate on one sound 
even though multiple sounds exist in the 
environment or surroundings. It happens for all the 
living beings in the environment. This is known as 
the "Cocktail Party Problem" [6]. Every human 
voice which is present in a noisy environment 
overlap with the frequency and time, which leads to 
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acoustic interference and can impair the clarity of 
speech [6]. It has been submitted that one's sensory 
memory subconsciously removes the entire 
unwanted event that evokes a specific functional 
reaction in an organ and identifies the required 
pieces, and transfers it to the human brain. This is 
the effect in which most people can listen to one 
voice instead in a group of noises [7]. This is a 
similar phenomenon that occurs when one suddenly 
detects a word with high importance rather than the 
unwanted event that evokes a specific functional 
reaction in an organ [8][9][10]. 
Most humans undergo cocktail party problems due 
to communicating groups and noisy surroundings. 
Similarly, the people with hearing impairment will 
receive the voice signal appropriately for 
communication, or due to the hearing aids, all the 
signals will be amplified and received [11][12]. We 
want to focus on the reception of the signals to make 
their lives more feasible. 

The process in which every sound that we hear 
naturally is divided by the auditory system, and the 
sounds are overlapped and interleaved in time is 
auditory scene analysis (ASA) [13][14][15]. The 
components of these sounds are overlapped and 
interleaved in frequency. ASA is complicated 
because the human ear can access the single 
pressure wave that summates all the sound waves in 
the environment (human breath, sound of lighting, 
people walking etc.). A unique process to evaluate 
every incoming voice signal creates a mental 
description for each source [16]. These processes 
are based on the sound's incoming signals, which is 
the summation of all the other signals in the 
environment. ASA consists of the top-down and 
bottom-up methods. The bottom-Up method is 
operated only on basic cues which are present in the 
received signal. They are mandatory and automatic, 
which means they mostly don't depend on attention, 
which is very different from the top-down method, 
which focuses on the listener's expectations and 
experience, thus involving a high range of cognitive 
processes [13]. Most of the Bottom-up process for 
ASA is operated at low levels of the auditory 
system. Forward suppression and spectral filtering 
are crucial for the bottom-up process in ASA. On 
the other side, the top-down mechanism is used to 
work on the output based on the bottom-up 
mechanism, which occurs at the lower levels of 
sensory organs.  

It is still unknown that how humans apparent 
cocktail party problem. The results are evidence 
that the amplitude of the speech envelope can be 
decoded out of EEG recordings. The stimulus 
reconstruction technique is used with EEG and 
MEG to analyze the continuous speech's 
neurophysiology aspects [8]. As EEG and MEG are 

non-invasive techniques, it is easy to implement the 
real-life scenario for any hearing-impaired person. 
EEG and MEG data is used to decode the attentional 
selection in any given environment where many 
speakers exist [17]. Temporal Response Function 
(TRF) is responsible for correlating the 
characteristics of the input speech signal, and its 
stimulus in the cortical response recorded 
respectively. Therefore, by existing a correlation for 
the data collected, we can conclude which TRF's 
can be widely used for the extraction of the required 
signal that is needed for the people with the 
impairment. The required TRF's can be used in the 
software connected to the hardware material, which 
can be developed for helping people with 
impairment. The methods like evoked response 
potential (ERP), when an audio stimulus was 
provided to the subject, only worked when the 
stimulus was short and had to be repetitive. 
Recently, newer studies were able to use continuous 
stimuli such as speech signals by employing the 
TRFs. However, these speech signals needed to 
have slowly varying envelopes to get accurate 
results. The TRF approach requires both audio 
stimulus and the corresponding EEG data to 
establish a linear relationship between the two. 
There are different methods to find TRFs, some of 
which have been mainly focused since they are 
relatively easy for implementation with good 
accuracies. 

The concept of TRFs evolved due to the 
shortcomings of ERP as these required short stimuli 
in repeated intervals [17]. For continuous stimuli, a 
new approach was needed, and hence TRFs served 
the purpose. TRF is a linear stimulus-response 
model that provides a linear relationship between 
the provided input signal, which is speech, and the 
output signals, i.e., cortical response. TRF is used 
to predict the cortical response from the speech 
envelope, which is termed a forward model. 
Similarly, the equations can be altered so that the 
speech is predicted from the available cortical 
response, which is called the backward model. The 
backward model involves fewer complex 
calculations to find the TRF coefficients and is 
relatively easier to implement when compared to 
the forward model. Forward models are also called 
generative or encoding models as they define how 
the system generates or encodes information. 
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Fig. 1. Forward Model Block Diagram 

 
 

Fig. 1 shows the forward model of TRF where EEG 
is predicted from the stimulus. The two speech 
streams are given to the pre-processing units, where 
the raw speech streams are converted to the required 
format. Pre-processing unit takes care of missing 
and noisy data in the input, if any. It converts the 
raw data into how the forward model of TRF needs 
the input data. After the pre-processed signals are 
passed, we may get the predicted EEG as output. 

On the other hand, original cortical recordings of 
the experiment are applied to the pre-processing 
unit to process the noisy parts of the data. The 
output from the pre-processing of cortical 
recordings includes 66 EEG signals. The predicted 
EEG out of the TRF and pre-processed cortical 

signals are applied to the correlation blocks 
separately. For each speech stream, 66 correlation 
coefficients are produced out of the correlation 
block. These 66 correlation coefficients are the 
features to decide which speech stream listener has 
attended to. 

The backward model of TRF is shown in fig. 2, 
where the envelope of the audio is approximated 
from the EEG. After pre-processing of cortical 
signals, the result is applied to TRF, which produces 
the predicted audio. From each speech stream, a 
correlation coefficient is produced from each 
correlation block. The decision block decides the 
attended speech stream by comparing the 
correlation coefficients, whichever the more 
significant is the attended.  

 Fig. 2. Backward Model Block Diagram 

 

3 EXPERIMENT AND DATA 
PROCESSING 

 
The experiment consists of audio or speech stimuli 
recorded while a male and a female speaker read a 
fictional story. The sampling rate for the audio was 
48KHz. Stories are divided into a total of 65 
segments, each with 50-second-long samples. 
These stories (speech stimuli) are played via 

earphones, and the trials were randomized to 
represent a practical scenario best. The experiment 
was conducted in an electrically shielded room. 
When the subjects are listening to the speech 
stimulus, their cortical responses (EEG) are 
recorded. The Biosemi Active Two device with 64 
channels and a 512 Hz sampling rate was used. Its 
high-resolution ADC meant that the sampling 
process gave precise values with minimal loss of 
information. 50 Hz line noise was eliminated from 
the EEG data and is passed through a 0.1Hz cut-off 
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frequency high pass filter. This filtered EEG data, 
and all the audio recordings were made available 
online publicly as a standardized dataset. By using 
further processing, the audio and EEG data were 
stored into a data structure which made it easy to 
access the information. For ease of processing and 
storage, both the speech and EEG signals were 
down sampled to 128 HZ. 

The 𝟓𝟎𝑯𝒛 line noise and harmonics we filtered are 

by applying convolution with 
𝟓𝟏𝟐

𝟓𝟎
 sample square 

window of the EEG data. By using the FieldTrip 
EEG processing toolbox, the artifacts are removed   

 

 

accordingly. From the EEG data, an artifact 
covariance matrix was computed at the samples 
𝒂𝝐𝑨 to solve the eigenvalues problem. So that the 
resultant eigenvalues, sorted by eigenvalues, 
explain the artifact and data covariance matrix 
maximum difference invariance. For further 
analysis, EEG is 𝟏 − 𝟗𝑯𝒛 band passed from a 
windowed synchronous linear finite impulse 
response filter. The window is shifted to produce a 
zero phase by its group delay. The estimation 
techniques to decode attention strive to draw a 
relationship between the features of the speech data 
and the cortical  response. From the input speech 
data, we calculated the temporal envelope without 
reverberation. To glean the envelope rendition, 
gammatone filter bank is used and processes the 
attended and unattended speech streams. The audio 
envelope data was eventually down sampled using 
FFT based resampling technique, the sampling 
frequency of EEG. 

 

4 MATHEMATICAL MODELING OF THE 
CORRELATION FUNCTION 

 
Mathematically, there exist several ways that output 
is dependent on its input to any system. The 
coefficient of correlation which an important 
parameter in connecting the input and output of the 
experiment can be written as  

𝒓 =  
∑ 𝐏𝐐

ඥ∑ 𝐏𝟐𝐐𝟐
 

where 𝑷- deviation of 𝒑, Q - deviation of 𝒒 and 

𝑷 = (𝒑 − 𝑷ഥ), 𝑸 = (𝒒 − 𝑸ഥ) 

where 𝑷ഥ, 𝑸ഥ  are means of the series p, q 

When deviations are taken from an assumed mean 

𝒓 =  
∑ 𝑷𝑸 −

∑ 𝑷 ∑ 𝑸
𝑵

ට൤∑ 𝑷𝟐 −
(∑ 𝑷)𝟐

𝑵
൨ ൤∑ 𝑸𝟐 −

(∑ 𝑸)𝟐

𝑵
൨

 

 

where,  

N = no. of terms 

∑ 𝑷𝑸- product of derivations of p and q from 
assumed mean 

∑ 𝑷𝟐 - total of the squares of the deviations of 'p' 
from assumed mean 

∑ 𝑸𝟐- total of the squares of the deviations of 'q' 
from assumed mean 

∑ 𝑷 - total of the deviations of 'p' from assumed 
mean 

∑ 𝑸 - total of the deviations of 'q' from assumed 
mean 

 

When the number of observations is very large the 
data is classified into a two-way frequency 
distribution. Then correlation of coefficient is 

 

𝒓 =  
∑ 𝒇𝑷𝑸 −

∑ 𝒇𝑷 ∑ 𝒇𝑸
𝑵

ට൤∑ 𝒇𝑷𝟐 −
(∑ 𝒇𝑷)𝟐

𝑵
൨ ൤∑ 𝒇𝑸𝟐 −

(∑ 𝒇𝑸)𝟐

𝑵
൨

 

 

where f - frequency, P, Q - 
deviated values  

 

The correlation coefficient is a measure of the 
degree of covariability between 2 variables. At the 
same time, the regression establishes a functional 
relation between dependent and independent 
variables so that the former can be predicted for a 
given value of the latter. In correlation, both p and q 
are random variables, while in regression, p is a 
random variable, and q is a fixed variable.  

The general format of the regression equation of Q 
on P can be represented as 

 

෍ 𝑸 = 𝑵𝒂 + 𝒃 ෍ 𝑷 

 



Journal of Theoretical and Applied Information Technology 
31st March 2024. Vol.102. No 6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2396  

෍ 𝑷𝑸 = 𝒂 ෍ 𝑷 + 𝒃 ෍ 𝑷𝟐 

 

The derivations of P and Q from their means can be 
represented as 

𝑸 −  𝑸ഥ = 𝒓
𝝈𝒒

𝝈𝒑
(𝐏 − 𝑷ഥ) 

where 𝑷ഥ - mean of p, 𝑸ഥ  - mean of q 

 

The regression coefficient of Q on P is 

𝒃𝑸𝑷  =  
∑ 𝑷𝑸

∑ 𝑷𝟐
 =  𝒓

𝝈𝒒

𝝈𝒑
 

 

𝒓𝟐 =  𝒃𝑷𝑸. 𝒃𝑸𝑷 

If we take deviations from the assumed mean, the 
relation can be represented as, 

 

𝑸 − 𝑸ഥ = 𝒓
𝝈𝒒

𝝈𝒑
(𝐏 −  𝑷ഥ) 

 

𝒓
𝝈𝒒

𝝈𝒙
=  

∑ 𝒅𝒑𝒅𝒒 −
∑ 𝒅𝒑 ∑ 𝒅𝒒

𝑵

∑ 𝒅𝒒𝟐 −
(∑ 𝒅𝒒)𝟐

𝑵

 

Considering the above correlation and regression 
relations in forward models, input, p, is speech and 
output, q, is EEG and for backward model, it is the 
receiver. 

It can be represented in the form of an equation as 

𝑸෡ = 𝑷𝑾 

where 𝑸෡  – model prediction of time dimension 't' 
vector 

P – model input matrix with the channel dimension 
'c' and dimension 't' 

W – linear TRF model parameter 

𝑷 = ൣ𝒑(𝒕,𝒇),𝒄൧ 

and 𝑸 =  [𝒒𝒕] 

 

As discussed, backward models outperform forward 
models, and our interest here is working on 

backward 
model. 

Hence the 

input applied to the model is 66 channel EEG data, 
and output is predicted speech. 

Filter coefficients can be estimated by the existing 
regression techniques [18] 

 

𝑾 = (𝑷𝑻𝑷)ି𝟏𝑷𝑻𝑸 (1) 

where 𝑷𝑻𝑷 − estimated covariance matrix 

𝑷𝑻𝑸 − estimated cross-covariance matrix 

By following this technique, no additional 
hyperparameters need optimization.  

Therefore, (1) can be expressed as 

෍ 𝒑(𝒕,𝒇)𝑾𝒋 =  𝑸𝒊

𝒂

𝒋ୀ𝟏

 (2) 

    

where 𝒊 = 𝟏, 𝟐, 𝟑, … … . 𝒏 

(2) can be written in the form of a matrix as 

𝑸 = 𝑷𝑾 (3) 

 

where 𝑷 = ൦

𝒑𝟏𝟏 𝒑𝟏𝟐…… 𝒑𝟏𝒑

𝒑𝟐𝟏....

𝒑𝟐𝟐……....

𝒑𝟐𝒑
....

𝒑𝒏𝟏 𝒑𝒏𝟐 𝒑𝒏𝒑

൪ 

𝑾 = ൦

𝒘𝟏

𝒘𝟐.....
𝒘𝒑

൪ 

 

𝑸 = ൦

𝒒𝟏

𝒒𝟐.....
𝒒𝒏

൪ 

The (2) is applicable for an overdetermined system. 
For such a system, no exact solution can be 
determined. 

Method 1[19]: 

In linear regression, an 𝒏𝒙 𝟏 column vector 𝒒 is 
projected onto the column space of the 𝒏𝒙𝒂 design 
matrix 𝑷, whose columns are highly correlated. The 
estimator coefficient in the earlier model 𝑾 ∈  𝑹 by 
which the columns are multiplied to get the 
orthogonal projection 𝑷𝑾 is 

 

𝑾 =  (𝑷𝑻𝑷)ି𝟏𝑷𝑻𝑸  
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𝑾 =  (𝑷𝑻𝑷 + 𝑰)ି𝟏𝑷𝑻𝑸 (4) 

where I is an identity matrix of size a x a,  is 
regularization parameter. 

Method 2: 

(𝟒) can be reframed as 

𝑾 =  ൫(𝟏 − )𝑷𝑻𝑷 + 𝒃𝑰൯
ି𝟏

𝑷𝑻𝑸 (5) 

where 𝒃 −average eigenvalue trace of the 
covariance matrix. 

when regularization parameter,  becomes zero, (𝟓) 
becomes (𝟏). Similarly, when  = 𝟏, the covariance 
estimator becomes diagonal. Therefore, this method 
penalizes extreme eigenvalues more smoothly. 

 

Proposed method:  

In continuation to the earlier relations between 𝑷, 𝑸 
and 𝑾 

Assume  

𝛛𝒘𝒊

𝝏𝒊
 ≈  (𝒘𝒊ା𝟏 −  𝒘𝒊) (6) 

where 𝒘𝒊and 𝒘𝒊ା𝟏 are neighboring filter pairs. 

The new function of the filter can be approximated 
as 

 

𝑾 =  [(𝑷𝑻𝑷 + 𝑪)ି𝟏𝑷𝑻𝑸] (7) 

 

In this model, the adjacent columns of 𝑷 have a 
strong correlation when 𝑷 includes the shifts. The 
filter endpoints may be affected due to the channels 
of their neighbours. 
 
5 RESULTS 
 
We considered the correlation coefficient to 
substantially differentiate in a more analogizing 
approach to measure the classification performance. 
The behavior of different relations taken from the 

existing methods are compared with the proposed 
model. This lets us understand a behavioral, 
experimental, and quantitative perspective how it 
can impact future research and the state-of-the-art 
models. All the models, including the proposed 
(except method 1), have a regularization parameter, 
λ, that plays a formidable and consequential role in 
affecting the overall accuracy in correlating and 
predicting the produced audio attended with the 
original speech streams. The regularization 
parameter, λ, is varied with five different values for 
all the methods i.e., 𝟎. 𝟏, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓, 𝟏. 𝟎. 
Different methods discussed above are applied with 
the regularization parameter, λ, with the said values 
for comparison.  
Table 1. Comparison Of Regularization Parameter 

And Obtained Correlation Coefficients For The 
Existing Methods And Proposed Method 

Regularization 
parameter, 

λ 

Obtained correlation 
coefficients 

Method 
1 

Method 
2 

Proposed 

0.1 0.5911 0.5589 0.5589 
0.25 0.5917 0.5594 0.5915 
0.5 0.5915 0.5608 0.5912 

0.75 0.5914 0.5673 0.6121 
1 0.5913 0.5869 0.5909 

 
In table. 1, the obtained correlation 
coefficient values for different 
regularization parameters are applied to the 
methods discussed. The variation between 
the obtained correlation coefficients 
fluctuates asymmetrically when the 
regularization parameter is changed. From 
the observed values, we cannot conclude 
how speech can correlate to the audio 
envelope predicted from the change in 
regularized parameters. But the proposed 
model gave a better correlation value at 
λ=0.75, whereas method 1 gave a better 
correlation value at 0.25 

Fig. 3 shows the area under the curve of the 
correlation  coefficient for the transition of 
regularized parameters from 0.1 to 1.0. The 
area under the curve in fig. 3 gives the 
average value of sensitivity (or specificity) 
for all possible values of specificity (or 
sensitivity)[20], i.e., the three-dimensional 
variation of change of correlation 
coefficient with the change of 
regularization parameter can observe. 

 

 

𝑪 = 

 

     (8) 
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Fig. 3. Area Under Curve Of Correlation Coefficient For Transition Of Regularized Parameters From 0.1 To 1.0 

 

In fig. 4, the plot shows the variance of 
aggregate values of correlation coefficient 
with regularization parameter for 𝝀 =
𝟎. 𝟏, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓, 𝟏. 𝟎. The variation 
of the proposed model is also functioning 
similarly because the dependencies on the 
regularization parameter are multiplied 

with the identity matrix of size 𝒂𝑿𝒂 to fit 
the model to correlate the audio envelope 
from TRF with the speech stream. A 
sharper transition can be observed in fig. 3 
(c), which can give the possible correlation 
between predicted and attended signals.  

 
Fig. 4. Variance of the aggregate values of correlation coefficient with regularization parameter for 𝜆 =

0.1, 0.25, 0.5, 0.75, 1.0 
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Fig. 5. Population Observation From Table. 1 

between methods 1,2, and proposed 
We can observe from fig. 5, that, in all the 
methods including proposed, more 
commonly the correlation coefficient is 
ranging between 0.55 to 0.59 according to 
the regularization parameter taken from 
0.1 to 1.0. But the proposed model shows 

that there is a huge rise in prediction 
accuracy of the model to correlate the 
envelope of the audio to speech stream. 
Fig. 6 shows the regularization parameter 
wise comparison of different models for 
the obtained correlation coefficients. 

 
Fig. 6 Regularization Parameter Wise Comparison Of Different Models For The Obtained Correlation Coefficients 

 
6 CONCLUSION 
 
The central ground to study and explore the 
possibilities of auditory attention detection is to 
build up a better hearing aid technology that allows 
hearing-impaired people to retrieve the normal 
hearing, at least to some part. In a multi-speaker 
scenario, the current methods' performance is down 
because hearing aids indistinctly amplify all the 
speakers. To overcome this hindrance, there is a 
strong need to inform hearing aids, i.e., the hearing 
aid should auto detect the user attention and 
attenuate all other sounds than what they are 
attending. So that, the signal processing or machine 
learning techniques can help to improve the 
enhancement of the speakers attending. The 
proposed model can achieve a correlation accuracy 

of about 62%. Overall, if real-time hints of an 
individual's attentional state are provided, there is a 
chance for better hearing aid technology to assist 
older people or any hearing-impaired listener. The 
current pace of research in this field may deliver a 
more productive system to perform better in real-
time scenarios by overcoming the limitations in 
decoding, which can serve other domain 
applications like education, health, BCI games. 
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