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ABSTRACT 
 
As the size of mixed databases increases, challenges arise in improving the true positive rate. Several 
critical issues such as missing values, attribute noise, and imbalanced classes substantially impact data 
accuracy. High-quality input data becomes imperative to optimize classification algorithms, especially in 
the context of imbalanced mixed data types. Thus, the optimization of classic machine learning models 
becomes essential to ensure accurate predictions on imbalanced datasets. This study addresses these 
challenges inherent in hemodialysis mixed datasets by proposing an enhanced ensemble classification 
model incorporating optimal filtering and classification algorithms. A novel framework  is proposed to 
handle missing data with classes, feature ranking, and ensemble classification approaches to improve the 
true positive rate and error rate on imbalance hemodialysis databases. Experimental results have 
demonstrated that the proposed approach outperforms conventional techniques in terms of statistical 
metrics. 
Keywords: Imbalance Hemodialysis Dataset, Probabilistic Classification  , Support Vector Machine,  

Ensemble Learning Model. 
. 

1. INTRODUCTION  
 

Data mining and machine learning heavily rely 
on classification, the process of assigning items to 
predetermined groups according to their 
characteristics. This essential activity is 
foundational to many real-world applications, 
including medical diagnosis, picture and text 
classification, among others. Unfortunately, 
unbalanced data makes classification difficult, and 
existing models aren't always accurate. One major 
reason for this is that imbalanced datasets often 
have under-represented and undervalued minority 
classes, which can negatively impact the accuracy 
of the model [1]. When the distribution of classes in 
a dataset is not uniform, a typical problem in real-
world applications is class imbalance. In medical 
diagnosis data, for example, there can be far fewer 
cases of a particular condition compared to cases 
without the disease. This disparity in data 
distribution can cause biased findings, and current 
models may fail to account for the minority class, 
leading to poor performance [2]. Several 
approaches, such as cost-sensitive learning, 

oversampling, and undersampling, have been 
suggested to deal with imbalanced datasets. 
However, these approaches aren't without their 
flaws, and they frequently lead to overfitting or data 
loss. They are also computationally expensive and 
require a lot of resources. When one category has a 
disproportionately high number of instances 
compared to another, we say that there is a class 
imbalance. This kind of skewed hemodialysis 
dataset is commonly used in real-world applications 
including medical diagnostics, credit scoring, and 
fraud detection [3-5]. However, in cases of class 
distribution imbalance, the numbers of instances in 
each class are not drastically different, but there is 
an uneven distribution of the classes. Overfitting, 
skewed results, and inaccurate results can result 
from using machine learning algorithms on 
imbalanced datasets. Subpar performance and 
skewed results are common outcomes when current 
algorithms fail to account for minority classes in 
imbalanced datasets [6]. One way to get the most 
out of machine learning models is to employ 
ensemble learning, which involves combining 
many models into one prediction. This method has 
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demonstrated promising results in actual 
applications, despite being computationally 
demanding and requiring large resources. To tackle 
imbalanced datasets, various strategies have been 
suggested, including deep learning and transfer 
learning, in addition to traditional machine learning 
techniques. These methods provide many 
approaches to deal with the problem of biased 
datasets in machine learning, and they've been 
successful in the real world. There are several 
oversampling methods to choose from, such as 
adaptive synthetic oversampling, random 
oversampling, and synthetic oversampling [7]. 

Both binary and multi-class imbalanced 
classification types can be effectively handled by 
resampling techniques, including oversampling and 
undersampling. The main benefit of these methods 
is their independence from the underlying classifier. 
According to the data, pre-processing is an 
effective strategy for achieving a more uniform 
distribution of classes in variables. The goal of 
random oversampling is to achieve a more equal 
distribution of classes by randomly replicating 
instances from the minority class. While this 
method is simple and easy to grasp, it may increase 
calculation time and lead to overfitting. Creating 
artificial members of the minority group using 
methods like bagging and bootstrapping is known 
as synthetic oversampling [8]. The task at hand and 
the properties of the data will dictate which of the 
two oversampling methods is most suited for 
analysis. However, it has been demonstrated that 
these resampling strategies effectively reduce class 
imbalance in ML classification models.Predictive 
model bias, overfitting, and metric 
misrepresentation are some of the challenges that 
can arise from hemodialysis dataset imbalances in 
real-time machine learning systems. Oversampling 
and undersampling are two sampling approaches 
that can be used to even out an unbalanced dataset's 
class distribution. However, these techniques also 
carry the risk of information loss and an increase in 
data noise [9]. Creating data samples of the 
minority class using synthetic methods, like 
SMOTE (Synthetic Minority Over-sampling 
Technique), is possible; nevertheless, there is a risk 
of overfitting and worse model performance. 
Careful analysis and resolution of these difficulties 
are critical for building and deploying machine 
learning models in real-time applications. These are 
among the most important problems with 
imbalanced datasets in machine learning systems 
that run in real-time.Important steps in preparing a 
dataset for ML include cleaning it up, eliminating 
noise, filling in missing values, and handling 

attribute and class noise. Converting data into a 
numerical representation, dealing with missing 
values, and scaling features to the same range are 
all possible steps in this process [10]. The term 
"noise filtering" refers to the steps used to eliminate 
or fix data instances that are inaccurate or 
inconsistent, such as outliers or duplicates. This 
step can be useful in improving the performance of 
machine learning systems and preventing 
overfitting. Incomplete or missing feature values in 
dataset instances might lead to missing values, 
while mistakes or discrepancies in dataset features 
are referred to as attribute noise. 

This could be the result of features that are 
either inaccurately measured or reported or that 
include unnecessary details. Eliminating 
superfluous features, fixing data mistakes, or 
rescaling all features to the same value can all help 
reduce attribute noise. Traditional classifiers 
commonly misclassify minority class instances 
when faced with imbalanced learning, a 
phenomenon observed in many areas of computer 
science and finance [11]. This includes areas such 
as fraud detection, software defect prediction, credit 
scoring, and cancer malignancy grading.In binary 
class imbalance, there is a clear dominance of either 
the majority or the minority class. However, if the 
minority group is crucial to the prediction system, 
incorrect results or unreliable system performance 
may occur. Class imbalance is a typical issue in 
data mining, which can arise due to the ratio of the 
majority and minority classes. Incorrect 
categorization of uncommon occurrences, distinct 
behaviors, or anomalous trends can lead to negative 
outcomes. Attempts to artificially balance the data 
may exacerbate the problem rather than resolving 
it.New methods in healthcare, cybersecurity, IMS, 
and software defect prediction can learn from 
datasets and historical instances to forecast future 
outcomes, thereby enhancing system performance. 
Predictive systems have numerous potential 
applications in fields including healthcare, 
cybersecurity, and finance. Predictive analytics in 
healthcare, for instance, can utilize regular patient 
data such as blood pressure, heart rate, and blood 
sugar levels. Since producing reliable predictions is 
the primary objective of these systems, high-quality 
datasets are of paramount importance. Balanced 
and imbalanced datasets are terms used to describe 
dataset quality. Accurate forecasts and enhanced 
system performance result from a balanced 
dataset.Computer systems can now autonomously 
examine data using machine learning (ML) 
techniques. To maximize the efficiency of ML-
based systems, enhancing the quality of datasets is 
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crucial [12]. Methods at the data level modify the 
distribution of classes by updating training datasets. 
The data level technique employs two methods for 
updating datasets: over-sampling and under-
sampling. Under-sampling removes outliers from 
samples taken from the majority class to achieve 
statistical parity, while over-sampling evenly 
distributes outliers from the minority class by 
randomly duplicating them. Traditional clustering 
approaches cannot handle the massive amount of 
data due to their complexity and processing 
expense. The main goal is to increase the 
throughput of existing clustering techniques with 
minimal degradation in clustering quality.Because 
it is possible to achieve high accuracy numbers in 
these cases even if no instance of the minority class 
is correctly predicted, leading to the 
misclassification of important class occurrences, 
the accuracy measures used to evaluate classifiers 
fail in these situations. Conventional classifiers 
struggle to perform well on unbalanced data. To 
tackle this, a number of approaches and 
performance measures have been suggested. While 
there is a lack of data for model learning, ensemble 
approaches like boosting and bagging can improve 
the performance of poor classifiers. Data-level 
solutions, which often include resampling 
approaches, are frequently utilized to improve 
learning by balancing training datasets [13]. Such 
methods are flexible and not dependent on the 
classifier in use since they do not necessitate 
alterations to the algorithms. The one-class learning 
method relies on learning from a single class and 
can be more easily implemented with resampling 
techniques than the cost-sensitive learning method, 
which requires a cost matrix for different types of 
samples used in classification.This paper is 
organized as follows: A thorough analysis of the 
pertinent literature is presented in Section 2. The 
suggested method is described in depth in Section 
3. Section 4 offers the results of the empirical 
evaluation of the proposed method. Finally, in 
Section 5, the report wraps up by summarizing the 
study's key findings and contributions. 
  
Research Gaps: 

1 One research gap in the field of software 
reliability estimation is the need to incorporate the 
dynamic nature of user experience and the learning 
effect over time. While existing models consider the 
fault detection rate and assume reliability growth with 
the fixing of underlying faults, they often overlook the 
impact of user familiarity and their ability to adapt to the 
software. As users gain experience, they tend to develop 
workarounds to handle situations that previously caused 

failures, resulting in an increase in reliability over time. 
However, current models do not explicitly capture this 
phenomenon. 

2. Moreover, software reliability models make various 
assumptions related to fault detection rates, the location 
of faults in the software and data space, and the testing 
environment. These assumptions may not always hold 
true in practical scenarios, leading to limitations in the 
accuracy and applicability of the models. 

3. Another research gap lies in the classification and 
characterization of software reliability models. While 
some models treat the software as a black box without 
considering its internal structure, others, known as white 
box models, explicitly incorporate the software's 
architecture and module interactions. There is a need to 
explore and develop more comprehensive and flexible 
models that can effectively handle diverse software 
systems and testing scenarios. 

4. Additionally, there is a distinction between 
parametric and non-parametric models in terms of the 
interpretation and limitations of model parameters. 
Parametric models assume that the parameters have 
physical meanings and explicit ranges, while non-
parametric models lack such restrictions. Exploring and 
comparing the strengths and weaknesses of these 
different modeling approaches can provide valuable 
insights for improving software reliability estimation. 
 
2. RELATED WORK 
 
To address the issue of class imbalance, ensembles 
prove to be effective. An ensemble is defined as a 
collection of classifiers that employ an aggregation 
approach to combine their judgments for 
classifying new input data [14–16]. The method 
involves running the basic learner multiple times 
with the training dataset to alter its distribution. The 
resulting base classifiers are then concatenated to 
create the final classifier for categorizing the testing 
dataset. Decision trees, neural networks, and naive 
Bayes are some of the alternatives for base 
learners.Differentiating small classes from the 
majority class becomes more challenging when 
there are highly distinct patterns within each class 
or when patterns overlap between classes, 
especially in cases where the classes are very small. 
In classes with a lot of overlap, there may be a 
significant decrease in the proportion of minority 
class samples correctly identified. A person's 
sensitivity to class imbalance increases in direct 
correlation with the degree of conceptual 
complexity.The K-Nearest Neighbor (KNN) 
method is an example of a lazy learner; it predicts 
output based on training cases but discards the 
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abstraction it learned from. However, if there is 
bias in the training data, instances from minority 
classes may be over- or under-classified due to their 
rarity.Vapnik's Support Vector Machines (SVMs) 
are among the most popular binary classifiers, 
based on the concept of maximum margin. 
Originally, they aimed to find the optimal 
separation hyperplane with the largest margin in 
linearly separable two-class issues involving 
margin. By applying nonlinear functions to 
nonlinearly separable issues, we can transform 
them into high-dimensional feature spaces, 
allowing linearly separable support vector machines 
to be used in nonlinear scenarios [17]. 

 
For the purpose of classifying instances into a 
small number of classes, decision trees utilize a 
simple knowledge representation. The tree 
consists of nodes representing features, edges 
connecting those features to their values, and 
leaves representing class labels. It becomes easy 
to categorize test instances after constructing a 
decision tree. Modeling a decision tree classifier 
involves two steps: constructing the tree and 
pruning it. In the first phase, the training set is 
partitioned repeatedly using locally optimal 
criteria until every partition contains tuples with 
the same class label. After building the decision 
trees, the next step involves pruning them to 
prevent overfitting of the training dataset. Pruning 
is performed based on the forecast of a lower 
predicted error rate for hemodialysis when a 
subtree is replaced with a tree leaf or its most 
commonly utilized branch [18]. 
Decision trees require a battery of tests to 
differentiate between majority and minority 
classes when the data is skewed toward one or the 
other. After analyzing the training samples 
covered by each leaf's class label, a decision tree 
is constructed, and the class with the highest 
weight is selected. Undersampling was found to 
be more effective than bagging in resolving 
binary class imbalance. Accurate predictions are 
achieved by using the Data Level approach and 
improving the balance of datasets by class. 
Prediction accuracy is enhanced through feature 
extraction. 
The EUSBoost ensemble classifier has been 
shown to be the most successful approach in 
rectifying class imbalance in medical diagnostics, 
including malignant breast cancer diagnosis. The 
severity of class imbalance, dataset complexity, 
training data amount, and hemodialysis classifiers 
all contribute to the binary class imbalance 
problem. 

The concept behind ensemble learning is to 
construct numerous classifiers using the training 
dataset, which are then combined to produce a 
final judgment. It is understood that all classifiers 
will make mistakes because they are trained on 
different sets of data. However, it's not 
necessarily the same samples of patterns that 
different classifiers get wrong. Classifiers can be 
broken down into their intrinsic error, bias error, 
and variance using the bias-variance 
decomposition. Furthermore, the issue of merging 
redundant ensembles is studied in connection with 
the notions of bias and variance. 
In practical settings, managing several classes 
with unequal distributions poses difficulties. In 
scenarios with more than two classes, the 
procedures used to address two-class imbalance 
won't work. Data-level solutions that alter the 
class size ratio of two classes by under- or 
oversampling the majority class and then 
iteratively running the classification algorithm to 
discover the optimal distribution don't work when 
there are more than two classes. Algorithmic-
level solutions are employed to make algorithms 
more biased in favor of the minority class. 
However, adapting the algorithm becomes more 
complicated when dealing with many minority 
classes [19]. 
While undersampling could enhance classifier 
sensitivity, it could lead to data loss. Therefore, 
the study's goals and the dataset's characteristics 
should be carefully considered when choosing the 
optimal method. Classification modeling, by 
distinguishing between common and rare 
samples, is a practical way to handle the issue of 
uneven class distribution. A critical factor in 
determining the model's ability to deal with class 
imbalance is the sample size. Expanding the 
training set to a larger size can greatly enhance 
the model's accuracy when looking for patterns in 
the tiny class of hemodialysis [20]. 
Classifiers are already complicated, and within-
class imbalance adds further challenges, as a 
single class may have subclasses or subconcepts 
with different numbers of examples. Decision 
trees typically examine the class label associated 
with a leaf by analyzing the training instances it 
covered and selecting the most common class. 
Modifying decision trees may be necessary to 
increase the accuracy of the categorization model. 
Ensuring that smaller classes aren't excluded from 
the learning process should be a top priority: 
developing assessments that can distinguish 
between large and small classes. Refining the 
model by removing a branch that predicts a minor 
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class is akin to carefully trimming a tree; it 
produces a healthy leaf node with a distinct label. 
One useful tool for dealing with classification 
problems is the multi-layer perceptron (MLP) 
trained using the backpropagation (BP) approach. 
The exceptional classification and categorization 
capabilities of the MLP result from its complex 
neural network, composed of interconnected 
layers of neurons. Each neuron in this network is 
an integral component, linked to every other 
neuron in the layers above and below it. While 
some neurons in the input layer may not activate, 
others are ready to take action [21]. 
Feature selection approaches are necessary to 
handle imbalanced datasets [22], as imbalance 
problems often involve high-dimensional data. 
Instead of using independent hemodialysis 
features, highly associated features should be 
explored when adding features to imbalanced 
datasets [23]. To handle small samples of 
imbalanced datasets, a novel feature selection 
metric called Feature Assessment by Sliding 
Threshold (FAST) was devised [24]. An 
imbalance in the relationship between feature 
distributions based on the probability density 
function can be addressed by unsupervised feature 
selection based on the filtering technique [25]. 
Iterative feature selection using different sample 
datasets enables the finding and ranking of 
effective feature lists [26]. Optimal Feature 
Weighting (OFW) and one-versus-one support 
vector machines (SVMs) are two stochastic 
techniques that can be employed to extract 
optimal features from a high-dimensional, 
imbalanced feature space [27]. 
Cost sensitivity serves as a feature weight, 
determining which characteristics are included in 
the Chaos Algorithm technique's feature selection 
[28]. The characteristics of the experimental 
datasets dictate the best feature selection method 
[4]. Under the data level method, training datasets 
can be updated using sampling approaches. To 
achieve statistical parity, under-sampling removes 
outliers from samples taken from the majority 
class, while over-sampling randomly duplicates 
the minority class. If better results are desired 
compared to utilizing only one sampling method, 
combining algorithms and sampling strategies is 
recommended [29]. However, because this 
method uses original datasets, the training dataset 
could be biased, and the subset of features that 
emerges could be inappropriate for different 
samples [30].Adaptive semi-unsupervised 
weighted oversampling is one method for 
sampling imbalanced datasets with overlapping 

classes [31]. Another approach to handling 
overlaps in unbalanced datasets using 
evolutionary fuzzy systems was suggested in [32] 
as feature weighting. To avoid overfitting 
problems, another study suggested using an 
oversampling method with rejection to create 
synthetic data for the minority class [33]. 
Addressing the issue of class imbalance, one 
solution was proposed in [34] by combining 
various ensemble approaches. A new strategy for 
unbalanced biological dataset classification was 
suggested in [35] with an ensemble of sampling 
and two classification techniques (SMOTE, 
Rotation Forest, and AdaBoost) [36]. 

  
Problem Statement: 

Imbalanced mixed datasets, such as those encountered in 
hemodialysis databases, pose significant challenges for 
accurate predictive modeling due to missing values, 
attribute noise, and class imbalance. Conventional 
techniques often struggle to effectively handle these 
issues, leading to suboptimal performance in 
classification tasks. There is a pressing need for robust 
frameworks that can address these challenges and 
improve the accuracy of predictive models in the context 
of imbalanced mixed datasets. 

 

Research Objectives and contributions  

 

To address the challenges inherent in handling 
imbalanced mixed datasets, particularly in the context of 
hemodialysis datasets. 

To propose an enhanced ensemble classification model 
incorporating optimal filtering and classification 
algorithms. 

To evaluate the effectiveness of the proposed framework 
in improving the true positive rate and error rate on 
imbalanced hemodialysis databases. 

To compare the performance of the proposed framework 
with conventional techniques using statistical metrics 
such as accuracy, precision, recall, and F1 score. 

The proposed framework offers a systematic approach 
to handle missing data, perform feature ranking, and 
apply ensemble classification techniques in the context 
of imbalanced mixed datasets. 

By incorporating optimal filtering and classification 
algorithms, the framework aims to optimize accuracy 
and reduce error rates in predictive modeling, 
particularly for hemodialysis datasets. 
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The experimental evaluation provides empirical 
evidence of the effectiveness of the proposed approach 
in outperforming conventional techniques, highlighting  

its potential for improving classification accuracy in 
medical diagnostics and other fields with imbalanced 
datasets. 

 

 

 

 

 

 

3. PROPOSED MODEL 
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Figure 1: Proposed Model

The framework is designed to handle 
hemodialysis datasets containing both nominal and 
numeric attributes. It commences with pre-
processing steps, including data filtering to address 
missing values and outliers. Attribute importance is 
then evaluated using ensemble feature ranking 
measures, which combine various ranking 
techniques for comprehensive analysis. The 
subsequent phase applies ensemble learning 
strategies that utilize the results of the ranking 

process. For classification tasks, the framework 
employs optimal support vector machines (SVM) 
and density probability function-based k-nearest 
neighbors (KNN) algorithms, leveraging SVM's 
capability to find optimal hyperplanes and KNN's 
density-based predictions. The models' performance 
is evaluated using statistical classification metrics, 
considering factors such as accuracy, precision, 
recall, F1 score, and other metrics. Overall, this 
framework offers an organized and robust approach 
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to handling mixed datasets, encompassing effective 
preprocessing, feature ranking, ensemble learning, 
and accurate classification utilizing SVM, density 
probability-based KNN, and statistical metrics for 
evaluation as shown in Figure 1. 

 
Filtering approach : 
Input: Training dataset with missing values 
Separate the dataset into two subsets: 
- Training data: The subset of data without any 
missing values. 
- Missing data: The subset of data with missing 
values. 
For each nominal attribute in the dataset: 
    Calculate the mode (most frequent value) of the 
attribute from the training data. 
    Replace missing values in the nominal attribute 
of the missing data subset with the calculated mode. 
For each numeric attribute in the dataset: 
    Calculate the mean of the attribute from the 
training data. 
    Replace missing values in the numeric attribute 
of the missing data subset with the calculated mean. 
Class missing value prediction using eq (1) 

    
 

( ) ( )

( )

( )

,
,

t t
i i it

i i t
i

P x z k P z k
P z k x

P x

 




 
 

∣ ∣
∣

∣
 

Output: The dataset with missing values replaced 
using modes for nominal attributes and means for 
numeric attributes. 
The missing values in the numeric attribute of the 
missing data subset are replaced with the calculated 
mean. This approach uses the average value of the 
attribute to fill in the missing values, providing a 
reasonable estimate.Finally, the paragraph mentions 
"Class missing value prediction using eq (1)," 
which suggests that a specific equation or algorithm 
is used to predict missing values in the class 
variable (the target variable to be predicted). 
 
2.Feature ranking measures 

Feature ranking is an essential step in 
developing effective machine learning models for 
imbalanced datasets. To enhance model 
performance and avoid overfitting, selecting the 
most relevant features for imbalanced datasets is 
crucial, especially when the majority and minority 
classes are strongly imbalanced. 
A variety of feature ranking measures can be 
applied to imbalance datasets, including: 
ReliefF: This feature selection algorithm assesses 
the differences between the closest instances of the 
same and other classes when determining the 
significance of each feature. It is useful in 

identifying the features that most effectively 
differentiate the majority class from the minority 
class. 
Gini Index: The Gini index measures the 
probability of an instance being incorrectly 
classified based on the distribution of classes in a 
node. It can help identify the features that provide 
the most information for classification and is 
commonly used in decision trees. 
Chi-squared test: This analysis determines whether 
two categorical variables are independent of each 
other. It can be employed to identify the features 
that significantly influence the class variable. 
Mutual Information (MI): MI measures the amount 
of information a feature contributes to the class 
variable. It is frequently used in feature selection 
algorithms to identify the most informative features 
for classification. 
 
Ensemble Feature ranking algorithm 
Function EnsembleFeatureRanking(Dataset, Class, 
Corr_threshold) 
    Inputs: 
        Dataset: the imbalanced dataset 
        Class: the target variable 
        Corr_threshold: the correlation threshold for 
identifying redundant features 
    Outputs: 
        Important_features: the subset of important 
features 
    Step 1: Calculate the Chi-Squared statistic for 
each feature: 
        For each feature X in Dataset: 
            Calculate the observed and expected 
frequencies 
            Calculate the Chi-Squared statistic for 
feature X 
        Identify the set of important features using a 
threshold or statistical test 
    Step 2: Calculate the Mutual Information for 
each feature: 
        For each feature X in Dataset: 
            Calculate the Mutual Information between 
feature X and the target variable Class 
        Identify the set of important features using a 
threshold or statistical test 
    Step 3: Calculate the Gain Ratio for each feature: 
        For each feature X in Dataset: 
            Calculate the entropy of the target variable 
Class 
            Calculate the entropy of feature X given 
Class 
            Calculate the Gain Ratio for feature X 
        Identify the set of important features using a 
threshold or statistical test 
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    Step 4: Identify the set of highly correlated 
features: 
        Calculate the correlation matrix between all 
pairs of features 
        Identify pairs of features with a correlation 
greater than Corr_threshold 
        Create a set of highly correlated features 
    Step 5: Combine the sets of important features 
from the Chi-Squared Test, Mutual Information, 
and Gain Ratio: 
        Create a set of important features from the 
intersection of the three feature ranking measures 
    Step 6: Select the set of highly correlated 
features from the set of important features: 
        Return the subset of important features. 
End Function 
The EnsembleFeatureRanking function is designed 
to identify and select the most important features 
from an imbalanced dataset for predictive 
modeling. It takes three inputs: the imbalanced 
dataset itself, denoted as Dataset, the target 
variable, denoted as Class, and a correlation 
threshold, denoted as Corr_threshold, for 
identifying redundant features. The function aims to 
output a subset of important features, referred to as 
Important_features.Firstly, it calculates the Chi-
Squared statistic for each feature in the dataset. 
This involves computing observed and expected 
frequencies for each feature and deriving the Chi-
Squared statistic. The set of important features is 
then identified based on a specified threshold or 
statistical test.Next, the function calculates the 
Mutual Information for each feature, measuring the 
dependency between each feature and the target 
variable Class. Similarly, it identifies the set of 
important features using a threshold or statistical 
test.In the third step, the function computes the 
Gain Ratio for each feature. This involves 
determining the entropy of the target variable Class 
and the entropy of each feature given Class, 
followed by calculating the Gain Ratio for each 
feature. Again, the set of important features is 
identified using a threshold or statistical test.In the 
fourth step, the function identifies highly correlated 
features by calculating the correlation matrix 
between all pairs of features. Features with a 
correlation greater than the specified 
Corr_threshold are considered highly correlated, 
and a set of highly correlated features is 
created.Subsequently, the function combines the 
sets of important features obtained from the Chi-
Squared Test, Mutual Information, and Gain Ratio. 
It creates a unified set of important features from 
the intersection of these three feature ranking 
measures.Finally, the function selects the set of 

highly correlated features from the set of important 
features and returns this subset of important 
features as the output. Overall, the 
EnsembleFeatureRanking function systematically 
analyzes the dataset and selects the most relevant 
features for predictive modeling, considering both 
their individual statistical properties and their 
interrelationships. 
 
 
3. Ensemble classification framework 
SVM optimization with kernel function  
1. Ensemble classification framework: 
    a) SVM optimization with kernel function: 
        Function SVM_Optimization_with_Kernel(D, 
sigma, n, c): 
            Inputs: 
                D: Number of dimensions 
                sigma: Parameter controlling the width of 
the radial basis function (RBF) 
                n: Degree vector specifying the degree of 
each variable in the polynomial 
                c: Coefficients vector for the polynomial 
function 
            Output: 
                Kernel function for SVM optimization 
            Step 1: Compute the radial basis function 
(RBF) term: 
                Compute P(x) = exp^(-(sigma^2)*(d1^2 + 
... + dD^2)) where d1, ..., dD are input vectors 
                (Note: d1^2, ..., dD^2 represent the 
squared distances from the origin along each 
dimension) 
            Step 2: Compute the normalization constant 
term: 
                Compute B(d, n) = 
sqrt((2*sigma^2)^(c1+...+cD) / (c1! * ... * cD!) * 
d1^n1 * ... * dD^nD) 
                (Note: d1^n1, ..., dD^nD represent the 
degrees specified in the degree vector n) 
 
            Step 3: Compute the polynomial function 
term: 
                Compute A(c) = P(x) * B(d, n) 
            Step 4: Return the kernel function: ker_n(d) 
= A(c) 
        End Function 
 
Radial Basis Function (RBF): The first term, 
represented by P(x), is a radial basis function (RBF) 
that measures the similarity between pairs of input 
vectors based on their distance from the origin. It 
decreases exponentially as the distance between 
vectors increases, and its width is controlled by the 
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parameter sigma, which balances the tradeoff 
between bias and variance in the SVM. 
Normalization Constant: The second term, denoted 
as B(d, n), serves as a normalization constant 
ensuring that the kernel function is positive and 
finite. It is computed using the multinomial 
coefficient formula and is proportional to the 
number of possible monomials of degree n in D 
dimensions. 
Polynomial Function: The third term, represented 
by A(c), is a polynomial function of the input 
vector x and the degree vector n. This term captures 
the non-linear interactions between the input 
features and enables the SVM to model complex 
decision boundaries. 
 
b) Local Probability  estimator  based KNN  
 
Function Improved_KNN(data_set, test_instance, 
k_neighbors): 
    Inputs: 
        data_set: The dataset containing training 
instances 
        test_instance: The sample for which the class 
is to be predicted 
        k_neighbors: The number of nearest neighbors 
to consider 
        Output: 
        Predicted_class: Predicted class label for the 
test_instance 
        Step 1: Compute the Euclidean distance 
between test_instance and each instance in the 
dataset: 
        For each instance p in data_set: 
            Calculate the Euclidean distance using the 
formula:  
            Euclidean_distance(p, test_instance) = 
sqrt(Σ((pi - pj)²)) 
     
    Step 2: Calculate the log normal likelihood for 
the computed distances: 
        For each computed Euclidean distance: 
            Calculate the log normal likelihood using 
the formula: 
            Log_Normal_Likelihood(distance) = ln(1 / 
(sqrt(2π) * σ)) * e^(-0.5 * ((distance / σ)²)) 
            where σ is the standard deviation of the 
distances 
     
    Step 3: Select the k-nearest neighbors of the 
test_instance based on the maximum Euclidean 
distance and log normal likelihood: 
        Sort the dataset based on the computed 
Euclidean distances and log normal likelihoods in 
descending order 

        Select the top k instances as the nearest 
neighbors 
     
    Step 4: Compute distance probabilities for the 
selected k-nearest neighbors: 
        For each neighbor in the k-neighbors: 
            Compute the distance probability using the 
formula:  
            Distance_Probability(neighbor) = (1 / 
√(2π)) * ∫ e^(-0.5 * ((distance / σ)²)) d(distance) / 
|N|, 
            where N is the total number of attributes 
     
    Step 5: Compute class membership probabilities 
for each class: 
        For each neighbor in the k-neighbors: 
            Compute the membership probabilities of 
each class using the classifier 
     
    Step 6: Assign the class label to the test_instance 
based on the highest probability: 
        Select the class with the highest probability as 
the predicted class label for the test_instance 
     
    Return the predicted class label 
 
End Function 

 
4.Experimental Analysis 
This section presents experimental results to 
evaluate our proposed framework in terms of 
accuracy, precision, recall, and F-measure, 
specifically on classification tasks on different 
imbalance datasets.  The chronic 
disease(hemodialysis) dataset serves as an 
invaluable tool for conducting comprehensive 
analysis, identifying risk factors, building 
predictive models, and gaining deeper insights into 
the intricacies of chronic kidney disease. With a 
total of 25 columns, the dataset comprises both 
nominal and numerical attributes. The nominal 
attributes encompass critical indicators such as 
hypertension, diabetes mellitus, coronary artery 
disease, appetite, pedal edema, anemia, and the 
overall classification of CKD. Additionally, they 
include the presence of abnormalities in red blood 
cells, pus cells, pus cell clusters, and bacteria. On 
the other hand, the numerical attributes provide 
quantitative measurements for various blood 
components, including urea, creatinine, sodium, 
potassium, hemoglobin, and cell counts. They also 
encompass essential factors such as age, blood 
pressure, and blood glucose levels. By harnessing 
this extensive repository of medical data, 
researchers and medical practitioners gain a 



Journal of Theoretical and Applied Information Technology 
15th March 2024. Vol.102. No 5 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
2239 

 

valuable resource to explore, comprehend, and 
manage chronic kidney disease effectively. 

 

Table 1: Hemodialysis dataset with mixed longitudinal datatypes and sparse null values. 

 
Table 1 presents the hemodialysis dataset, which 
consists of mixed data types and missing values. 
Upon examination of the table, it becomes evident 
that many attributes exhibit sparse values. Both 
numerical and categorical attributes within the 
dataset have sparse null values, indicating the 
presence of missing data points in these variables. 
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Table 2: Hemodialysis Dataset With Mixed Longitudinal Datatypes And Filled Null Values. 

 
Table 2 provides an overview of the hemodialysis 
dataset after addressing sparse values through a data 
preprocessing approach. The approach involved 
filling the sparse values in both numerical and 
nominal attributes with the mean or mode of the 
respective attributes. Additionally, missing class 

values were addressed by utilizing a probabilistic 
measure to fill in the gaps. As a result of this 
preprocessing step, the dataset is now devoid of 
sparse values, ensuring a more complete and reliable 
representation of the hemodialysis data. 
 

Figure 2: Proposed Ensemble Classification Model 
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The classification results for the given dataset are 
highly accurate, with 98.5% of instances correctly 
classified and only 1.5% misclassified. Figure 2, 
demonstrates the effectiveness of the classification 
model in accurately predicting the classes of the 
instances. Overall, these results highlight the 
effectiveness of the classification model in 
accurately predicting the classes of instances in the 

hemodialysis dataset. The high accuracy, along with 
the detailed accuracy metrics and confusion matrix, 
demonstrate the model's ability to discriminate 
between the "ckd" and "notckd" classes with a high 
level of precision and recall. These findings provide 
valuable insights for understanding and managing 
chronic kidney disease based on the dataset. 
 

Existing Ensemble Learning Model 
 

 
Figure 3: Existing Ensemble Classification Model 

The existing algorithm used for classification in this 
scenario achieved an overall accuracy of 95.75%, 
correctly classifying 383 instances out of 400. The 
algorithm's performance is evaluated using various 
metrics.  
 

 
Figure 4 Illustrates A Comparison Of Abnormality 
Between The Proposed Model And Conventional 

Models(Accuracy). 
The accuracy values represent the proportion of 
correctly classified instances by each model, 
reflecting their performance in predicting class 
labels accurately. A higher accuracy signifies 

superior performance in classification. According to 
the findings, the Proposed model exhibited the 
highest accuracy at 98%, indicating its superior 
performance in accurately classifying instances. 
Naive Bayes also demonstrated a commendable 
accuracy of 95%, closely followed by Logistic 
Regression with 93% accuracy. In comparison, K-
Nearest Neighbors achieved the lowest accuracy 
among the evaluated models, reaching 90%. 

 
Figure 5: Illustrates A Comparison Of Abnormality 

Between The Proposed Model And Conventional Models( 
Recall) 
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Recall, also recognized as sensitivity or the true 
positive rate, quantifies the proportion of actual 
positive instances correctly identified by the model. 
Figure 5 highlights the model's capability to 
accurately detect positive instances. According to 
the provided recall values, the Proposed model 
attained the highest recall of 0.976, indicating its 
exceptional performance in correctly identifying 
positive instances. Naive Bayes also exhibited a 
high recall of 0.932, followed by Logistic 
Regression with a recall of 0.912. In contrast, K-
Nearest Neighbors showed a relatively lower recall 
of 0.84 among the evaluated models. 

 
Figure 6: Illustrates A Comparison Of Abnormality 

Between The Proposed Model And Conventional Models( 
MCC) 

 
The Matthews Correlation Coefficient (MCC) is a 
metric that synthesizes true positive, true negative, 
false positive, and false negative rates to offer a 
comprehensive evaluation of a model's 
performance. It considers the balance among these 
rates and yields a score ranging from -1 to +1, 
where +1 signifies perfect classification, 0 indicates 
random classification, and -1 implies inverse 
classification. Analyzing the provided MCC values, 
the Proposed model attained the highest MCC of 
0.969, signifying outstanding performance in terms 
of overall classification quality. Naive Bayes also 
demonstrated strong performance with an MCC of 
0.915, followed by Logistic Regression with an 
MCC of 0.868. In contrast, K-Nearest Neighbors 
displayed a lower MCC of 0.814 compared to the 
other models. 

 
Figure 7: Illustrates A Comparison Of Abnormality 

Between The Proposed Model And Conventional Models( 
F-Measure) 

The F-measure serves as a metric that harmonizes 
precision and recall to offer a well-rounded 
evaluation of a model's performance. It represents 
the harmonic mean of these two measures and 
provides an overall assessment of the model's 
capability to balance between accurately identifying 
positive instances (precision) and capturing all 
positive instances (recall). Assessing the provided 
F-measure values, the Proposed model attained the 
highest F-measure of 0.988, underscoring its 
exceptional ability to balance precision and recall in 
classifying instances effectively. Naive Bayes also 
showcased a commendable F-measure of 0.965, 
followed closely by Logistic Regression with an F-
measure of 0.946. However, K-Nearest Neighbors 
displayed a comparatively lower F-measure of 
0.913 among the evaluated models. 

 
5. CONCLUSION 

 
In this paper, an ensemble cluster-based 
classification model to address challenges 
associated with imbalanced datasets. In conclusion, 
the proposed framework presents a comprehensive 
solution for handling imbalanced mixed datasets, 
with a specific focus on hemodialysis databases. By 
incorporating optimal filtering, feature ranking, and 
ensemble classification techniques, the framework 
offers a systematic approach to address missing 
data, optimize feature selection, and improve 
classification accuracy. Experimental results 
demonstrate the superiority of the proposed 
approach over conventional techniques, 
underscoring its potential to enhance predictive 
modeling in medical diagnostics and other domains 
with imbalanced datasets. Moving forward, further 
research can explore extensions and refinements of 
the proposed framework to tackle additional 
challenges in predictive modeling and data analysis. 
The experiments conducted on imbalanced 
hemodialysis databases demonstrated that the 
proposed model outperforms conventional 
techniques in terms of statistical metrics such as 
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accuracy, recall, and the Matthews Correlation 
Coefficient.  The results indicate that the proposed 
model achieved higher accuracy compared to other 
models, correctly classifying instances with an 
accuracy of 98%. It also demonstrated a high recall, 
correctly identifying positive instances with a recall 
of 0.976. The Matthews Correlation Coefficient 
further substantiates the excellent performance of 
the proposed model, with a value of 0.969. 

 
REFERENCES 
 
[1] T. K. J. Kam and C. T. Chan, “14 - Home 

Preparation and Installation for Home 
Hemodialysis,” in Handbook of Dialysis 
Therapy (Sixth Edition), A. R. Nissenson, R. 
N. Fine, R. Mehrotra, and J. Zaritsky, Eds., 
New Delhi: Elsevier, 2023, pp. 149–153. doi: 
10.1016/B978-0-323-79135-9.00014-8. 

[2] “33 Distinct Subtypes of Hepatorenal Syndrome 
and Associated Outcomes as Identified by 
Machine Learning Consensus Clustering,” 
American Journal of Kidney Diseases, vol. 
81, no. 4, Supplement 1, p. S10, Apr. 2023, 
doi: 10.1053/j.ajkd.2023.01.035. 

[3] “380 Animal-assisted Intervention for 
Hemodialysis Patients’ Treatment Adherence, 
Pain, and Depression,” American Journal of 
Kidney Diseases, vol. 81, no. 4, Supplement 
1, p. S111, Apr. 2023, doi: 
10.1053/j.ajkd.2023.01.382. 

[4] “381 Experience of Starting a Rural Home 
Hemodialysis Program,” American Journal of 
Kidney Diseases, vol. 81, no. 4, Supplement 
1, p. S111, Apr. 2023, doi: 
10.1053/j.ajkd.2023.01.383. 

[5] “383 Associations of Skeletal Muscle Mass 
Index and Protein Markers in Patients With 
Stage 5 Chronic Kidney Disease Receiving 
Maintenance Hemodialysis,” American 
Journal of Kidney Diseases, vol. 81, no. 4, 
Supplement 1, pp. S111–S112, Apr. 2023, 
doi: 10.1053/j.ajkd.2023.01.385. 

[6] M. Asghari and S. M. J. Mirzapour Al-e-
hashem, “A green delivery-pickup problem 
for home hemodialysis machines; sharing 
economy in distributing scarce resources,” 
Transportation Research Part E: Logistics and 
Transportation Review, vol. 134, p. 101815, 
Feb. 2020, doi: 10.1016/j.tre.2019.11.009. 

[7] T. Matsuzaki, Y. Kato, H. Mizoguchi, and K. 
Yamada, “A machine learning model that 
emulates experts’ decision making in 
vancomycin initial dose planning,” Journal of 
Pharmacological Sciences, vol. 148, no. 4, pp. 

358–363, Apr. 2022, doi: 
10.1016/j.jphs.2022.02.005. 

[8] Y. Wang, Y. Zhu, G. Lou, P. Zhang, J. Chen, 
and J. Li, “A maintenance hemodialysis 
mortality prediction model based on anomaly 
detection using longitudinal hemodialysis 
data,” Journal of Biomedical Informatics, vol. 
123, p. 103930, Nov. 2021, doi: 
10.1016/j.jbi.2021.103930. 

[9] P. Kotanko and G. N. Nadkarni, “Advances in 
Chronic Kidney Disease Lead Editorial 
Outlining the Future of Artificial 
Intelligence/Machine Learning in 
Nephrology,” Advances in Kidney Disease 
and Health, vol. 30, no. 1, pp. 2–3, Jan. 2023, 
doi: 10.1053/j.akdh.2022.11.008. 

[10] J. Hu et al., “An effective model for predicting 
serum albumin level in hemodialysis 
patients,” Computers in Biology and 
Medicine, vol. 140, p. 105054, Jan. 2022, doi: 
10.1016/j.compbiomed.2021.105054. 

[11] X. Yang et al., “An optimized machine 
learning framework for predicting 
intradialytic hypotension using indexes of 
chronic kidney disease-mineral and bone 
disorders,” Computers in Biology and 
Medicine, vol. 145, p. 105510, Jun. 2022, doi: 
10.1016/j.compbiomed.2022.105510. 

[12] Y. Liu, J. Xue, and J. Jiang, “Application of 
machine learning algorithms in electronic 
medical records to predict amputation-free 
survival after first revascularization in 
patients with peripheral artery disease,” 
International Journal of Cardiology, Apr. 
2023, doi: 10.1016/j.ijcard.2023.04.040. 

[13] K. Hegerty et al., “Australian Workshops on 
Patients’ Perspectives on Hemodialysis and 
Incremental Start,” Kidney International 
Reports, vol. 8, no. 3, pp. 478–488, Mar. 
2023, doi: 10.1016/j.ekir.2022.11.012. 

[14] X. Yang et al., “Boosted machine learning 
model for predicting intradialytic hypotension 
using serum biomarkers of nutrition,” 
Computers in Biology and Medicine, vol. 
147, p. 105752, Aug. 2022, doi: 
10.1016/j.compbiomed.2022.105752. 

[15] S. K. Dey, K. M. M. Uddin, H. Md. H. Babu, 
Md. M. Rahman, A. Howlader, and K. M. A. 
Uddin, “Chi2-MI: A hybrid feature selection 
based machine learning approach in diagnosis 
of chronic kidney disease,” Intelligent 
Systems with Applications, vol. 16, p. 
200144, Nov. 2022, doi: 
10.1016/j.iswa.2022.200144. 



Journal of Theoretical and Applied Information Technology 
15th March 2024. Vol.102. No 5 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
2244 

 

[16] Z. Zheng, Q. H. Soomro, and D. M. Charytan, 
“Deep Learning Using Electrocardiograms in 
Patients on Maintenance Dialysis,” Advances 
in Kidney Disease and Health, vol. 30, no. 1, 
pp. 61–68, Jan. 2023, doi: 
10.1053/j.akdh.2022.11.009. 

[17] K. Misumi et al., “Derivation and validation of 
a machine learning-based risk prediction 
model in patients with acute heart failure,” 
Journal of Cardiology, vol. 81, no. 6, pp. 531–
536, Jun. 2023, doi: 
10.1016/j.jjcc.2023.02.006. 

[18] T. Kalelioglu et al., “Detecting biomarkers 
associated with antipsychotic-induced 
extrapyramidal syndromes by using machine 
learning techniques,” Journal of Psychiatric 
Research, vol. 158, pp. 300–304, Feb. 2023, 
doi: 10.1016/j.jpsychires.2023.01.003. 

[19] T. Ferguson et al., “Development and External 
Validation of a Machine Learning Model for 
Progression of CKD,” Kidney International 
Reports, vol. 7, no. 8, pp. 1772–1781, Aug. 
2022, doi: 10.1016/j.ekir.2022.05.004. 

[20] S. Sulaiman et al., “Development and 
Validation of a Machine Learning Score for 
Readmissions After Transcatheter Aortic 
Valve Implantation,” JACC: Advances, vol. 
1, no. 3, p. 100060, Aug. 2022, doi: 
10.1016/j.jacadv.2022.100060. 

[21] J. Yang et al., “Development of a machine 
learning model for the prediction of the short-
term mortality in patients in the intensive care 
unit,” Journal of Critical Care, vol. 71, p. 
154106, Oct. 2022, doi: 
10.1016/j.jcrc.2022.154106. 

[22] A. V. Karhade et al., “Development of 
machine learning algorithms for prediction of 
mortality in spinal epidural abscess,” The 
Spine Journal, vol. 19, no. 12, pp. 1950–1959, 
Dec. 2019, doi: 10.1016/j.spinee.2019.06.024. 

[23] F. Miller et al., “Evaluation of a wearable 
biosensor to monitor potassium imbalance in 
patients receiving hemodialysis,” Sensing and 
Bio-Sensing Research, vol. 40, p. 100561, 
Jun. 2023, doi: 10.1016/j.sbsr.2023.100561. 

[24] M. Hecking, M. Madero, F. K. Port, D. 
Schneditz, P. Wabel, and C. Chazot, “Fluid 
volume management in hemodialysis: never 
give up!,” Kidney International, vol. 103, no. 
1, pp. 2–5, Jan. 2023, doi: 
10.1016/j.kint.2022.09.021. 

[25] Y. Komaru, T. Yoshida, Y. Hamasaki, M. 
Nangaku, and K. Doi, “Hierarchical 
Clustering Analysis for Predicting 1-Year 
Mortality After Starting Hemodialysis,” 

Kidney International Reports, vol. 5, no. 8, 
pp. 1188–1195, Aug. 2020, doi: 
10.1016/j.ekir.2020.05.007. 

[26] S. D. Bieber and B. A. Young, “Home 
Hemodialysis: Core Curriculum 2021,” 
American Journal of Kidney Diseases, vol. 
78, no. 6, pp. 876–885, Dec. 2021, doi: 
10.1053/j.ajkd.2021.01.025. 

[27] W. F. Hussein, P. N. Bennett, and B. Schiller, 
“Innovations to Increase Home Hemodialysis 
Utilization: The Transitional Care Unit,” 
Advances in Chronic Kidney Disease, vol. 28, 
no. 2, pp. 178–183, Mar. 2021, doi: 
10.1053/j.ackd.2021.02.009. 

[28] J. J. Squiers et al., “Machine learning analysis 
of multispectral imaging and clinical risk 
factors to predict amputation wound healing,” 
Journal of Vascular Surgery, vol. 75, no. 1, 
pp. 279–285, Jan. 2022, doi: 
10.1016/j.jvs.2021.06.478. 

[29] S. Chaudhuri et al., “Machine learning directed 
interventions associate with decreased 
hospitalization rates in hemodialysis 
patients,” International Journal of Medical 
Informatics, vol. 153, p. 104541, Sep. 2021, 
doi: 10.1016/j.ijmedinf.2021.104541. 

[30] C. T. Ryan et al., “Machine learning for 
dynamic and early prediction of acute kidney 
injury after cardiac surgery,” The Journal of 
Thoracic and Cardiovascular Surgery, Oct. 
2022, doi: 10.1016/j.jtcvs.2022.09.045. 

[31] A. J. Weiss et al., “Machine learning using 
institution-specific multi-modal electronic 
health records improves mortality risk 
prediction for cardiac surgery patients,” 
JTCVS Open, Apr. 2023, doi: 
10.1016/j.xjon.2023.03.010. 

[32] A. M. McKnite, K. M. Job, R. Nelson, C. M. 
T. Sherwin, K. M. Watt, and S. C. Brewer, 
“Medication based machine learning to 
identify subpopulations of pediatric 
hemodialysis patients in an electronic health 
record database,” Informatics in Medicine 
Unlocked, vol. 34, p. 101104, Jan. 2022, doi: 
10.1016/j.imu.2022.101104. 

[33] P. Escandell-Montero et al., “Optimization of 
anemia treatment in hemodialysis patients via 
reinforcement learning,” Artificial 
Intelligence in Medicine, vol. 62, no. 1, pp. 
47–60, Sep. 2014, doi: 
10.1016/j.artmed.2014.07.004. 

[34] K.-Y. Lin et al., “Optoelectronic online 
monitoring system for hemodialysis and its 
data analysis,” Sensors and Actuators B: 



Journal of Theoretical and Applied Information Technology 
15th March 2024. Vol.102. No 5 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
2245 

 

Chemical, vol. 364, p. 131859, Aug. 2022, 
doi: 10.1016/j.snb.2022.131859. 

[35] R. C. Walker, D. Tipene-Leach, A. Graham, 
and S. C. Palmer, “Patients’ Experiences of 
Community House Hemodialysis: A 
Qualitative Study,” Kidney Medicine, vol. 1, 
no. 6, pp. 338–346, Nov. 2019, doi: 
10.1016/j.xkme.2019.07.010. 

[36] M. Lavoie-Cardinal and A.-C. Nadeau-
Fredette, “Physical Infrastructure and 
Integrated Governance Structure for Home 
Hemodialysis,” Advances in Chronic Kidney 
Disease, vol. 28, no. 2, pp. 149–156, Mar. 
2021, doi: 10.1053/j.ackd.2021.02.008. 


