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ABSTRACT 

With the success of cloud computing, enterprises started reducing investments on computing resources by 
using cloud resources. Outsourced tasks of those enterprises are to be processed in cloud without violating 
Service Level Agreements (SLAs). Therefore, efficient scheduling of tasks in cloud, in presence of millions 
of users and diversified workloads across the globe, is NP-hard problem. To solve this problem many bio-
inspired optimization algorithms came into existence. One such algorithm is known as Monarch Butterfly 
Optimization (MBO) which suffers from insufficient exploration power and lack of balance between 
exploration and exploitation. Moreover, most of the algorithms focused either on scheduling or load 
balancing though they are related. To address all these problems, in this paper, we proposed an algorithm 
known as Multi-Strategy based Fuzzy Enhanced Monarch Butterfly Optimization Algorithm (MS-FEMB0A) 
for efficient task scheduling in cloud leading to load balancing. MS-FEMB0A considers multiple objectives 
and also multiple strategies such as fuzzy, greedy and self-adaptive towards improving search capability and 
convergence speed. Simulation study made using CloudSim framework showed that MS-FEMB0A 
outperforms existing algorithms such as PSO and MOPSO.  

Keywords – Cloud Computing, Load Balancing, Task Scheduling, CloudSim, Multi-Strategy Scheduling 

1. INTRODUCTION  

Task scheduling in cloud computing is found NP-
hard problem due to very dynamic nature of cloud 
in terms of workloads, heterogeneity of resources 
and SLAs to be satisfied. Existing techniques used 
for task scheduling focused on efficient 
scheduling of tasks but often the load balancing 
factor is ignored [1]. Therefore, it is very 
important to consider both to ensure improved 
performance of cloud infrastructure that lead to 
consumer satisfaction and growth of service 
provider due to proper equilibrium. Traditional 
scheduling approaches like round robin cannot 
produce optimal results. Moreover, heuristics 
used traditionally also could not render efficient 
services. It was found from the literature that 
evolutionary algorithms could perform better 
optimization of scheduling in cloud.  

Existing methods found in literature contributed 
towards better scheduling procedures. 
Evolutionary algorithms studied in [2], [4], [6], to 
mention few, have potential to deal with different 
runtime conditions and ensure optimization of 
scheduling in cloud. At the same time, it was 
observed that learning based phenomena were 
widely used in the existing systems. They include 
swarm intelligence with deep learning [3], online 
learning based approach [5], deep learning and 
genetic algorithm [26], hyperparameter 
optimization based machine learning [39] and 
oppositional-mutual approach based learning 
strategy [40]. In [41], MBO is the bio-inspired 
approach that could improve state of the art in 
cloud scheduling. However, MBO has specific 
limitations as discussed in Section 3. In this paper, 
we enhanced MBO to overcome its drawbacks 
towards better performance in scheduling and 
load balancing.  
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Our contributions in this paper are as follows. We 
proposed an algorithm known as Multi-Strategy 
based Fuzzy Enhanced Monarch Butterfly 
Optimization Algorithm (MS-FEMB0A) for 
efficient task scheduling in cloud leading to load 
balancing. MS-FEMB0A considers multiple 
objectives and also multiple strategies such as 
fuzzy, greedy and self-adaptive towards 
improving search capability and convergence 
speed. The design goals of the proposed algorithm 
are as follows. First, to enhance MBO 
functionality to leverage task scheduling 
performance. Second, to improve balance in 
exploration and exploitation through self-adaptive 
strategy. Third, application of greedy strategy 
towards faster convergence. Fourth, the usage of 
fuzzy dominance approach towards better 
solution selection from a set of solutions. 
Simulation study made using CloudSim 
framework showed that MS-FEMB0A 
outperforms existing algorithms such as PSO and 
MOPSO. The remainder of the paper is structured 
as follows. Section 2 reviews prior works on 
scheduling and load balancing in cloud. Section 3 
focuses on the preliminary details required by the 
proposed system. Section 4 presents our method 
for leveraging state of the art on task scheduling 
and load balancing. Section 5 presents results of 
experiments. Section 6 concludes our work.  

2. RELATED WORK 

This section reviews literature on existing works 
related to scheduling and load balancing in cloud. 
Many researchers focused on analysing 
evolutionary methods that are used in the existing 
literature for scheduling in cloud [1], [3], [4], [22], 
[23], [25]. From their study, it was understood that 
evolutionary methods with swarm intelligence 
could improve task scheduling performance when 
compared with traditional approaches. Transfer 
parameter estimation is a novel approach along 
with evolutionary methods explored in [2]. With 
evolutionary algorithms, it was found in the 
literature, there are contributions that focused on 
multiple objectives [5], [13], [15], [35], [37]. The 
essence of these research contributions is to 
consider different objectives like makespan, 
balance factor and convergence. They could 
improve scheduling performance due to their 
evolutionary nature.  

In the existing research, machine learning is also 
used widely to deal with scheduling in cloud [6], 
[8], [9], [20].  Evolutionary method was explored 
in [7] and [10] where intelligence is gained 

through machine learning. Evolutionary models 
were found to solve many problems including 
security issues as discussed in [11] and [30]. 
Genetic algorithm based approach for workflow 
scheduling is discussed in [12]. Evolutionary 
methods for modelling and solving problems is 
given important in [14], [17] while data-driven 
approach towards evolutionary optimization is 
explored in [16]. Deep learning models were also 
found to be useful for solving problems in real 
world besides scheduling issues in cloud [8], [9] 
[17], [18] and [26]. An ensemble of evolutionary 
algorithm with offline data-driven approach was 
studied in [19]. Evolutionary approach and its 
usage along with machine learning towards 
intelligent systems is the main focus on [21] and 
[24]. Autoencoding and evolutionary approaches 
were combined in [27] for automatically 
understanding the environment and perform 
multi-tasking.  

Along with evolutionary approach a memetic 
differential technique is exploited with parallel 
machine scheduling in [28]. Extreme learning 
machine and learning based approaches are 
explored in [29] while Random Forest (RF) based 
machine learning along with evolutionary 
information is the main focus in [31]. Explainable 
AI is another important finding in the literature 
that is used to exploit evolutionary fuzzy systems 
[32]. Neuro-fuzzy and population-based swarm 
intelligence were used in [33]. Other significant 
contributions found in the literature include 
optimal feature selection [34], gravitational 
search approach [36], artificial neural network 
[38], hyperparameter optimization [39] and 
improved differential evolution algorithm [40]. In 
[47] and [48] PSO and MOPOSO methods are 
explored for task scheduling. These re 
optimization methods based on PSO and the 
proposed MBO based method is compared with 
them. From the review of literature, it is 
understood that enhancing bio-inspired methods 
with novel strategies has potential to improve 
scheduling and load balancing performance in 
cloud.  

3. ENHANCED MONARCH BUTTERFLY 
OPTIMIZATION ALGORITHM 

The proposed algorithm in this paper is an 
extension to an existing algorithm known as 
Monarch Butterfly Optimization (MBO) explored 
in [41]. Monarch Butterfly (MB) is a spices in 
North America. MB has characteristics that differ 
from others in its behaviour with respect to long 
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distance migration. MB flies every year from the 
USACanadaMexico. Its migration behaviour 
influences the creation of another bio-inspired 
optimization algorithm known as MBO. Like 
every swarm intelligence method, exploration and 
exploitation are two important methods that guide 
the optimization process. These two methods are 
performed by MBO in the form of solutions 
migration and solutions adjusting. With respect to 
solutions migration, given two sub populations 
denoted as 𝑁௦௣ଵ and 𝑁௦௣ଶ, their initialization is 
done as expressed in Eq. 1 and Eq. 2.  

𝑁௦௣ଵ = 𝑐𝑒𝑖𝑙(𝑝. 𝑁௣),                                                                                    
(1) 

𝑁௦௣ଶ = 𝑁௣ − 𝑁௦௣ଵ,                                                                                     
(2) 

The whole population has number of solutions 
denoted as 𝑁௣ and 𝑝 denotes the ratio of 𝑁௦௣ଵ and 
𝑁௣. In the search  process of MBO,  𝑝 plays 
significant role. Therefore, adjustment of 𝑝 has its 
influence in two subpopulations. If 𝑝 value is 
large, resultant solutions from 𝑁௦௣ଵ, otherwise 
from 𝑁௦௣ଶ. The value of 𝑝 is fixed at 5/12 in the 
original MBO. The notion of solutions migration 
has its advantage as it results in novel solution. It 
is achieved by the application of Eq. 3 and Eq. 4.  

𝑥௜,௝
௧ାଵ = 𝑥

௥భ,௝`
௧                                                                                               

(3) 

𝑥௜,௝
௧ାଵ = 𝑥

௥మ,௝`
௧                                                                                              

(4) 

The novel solutions at iteration 𝑡 + 1 are denoted 
as 𝑥௥భ

 and 𝑥௥మ
. The jth parameter of the new 

solution is denoted as 𝑥௜,௝
௧ାଵ while 𝑥

௥భ,௝`
௧  and 

𝑥
௥మ,௝`
௧ indicate jth component of the two solutions. 

The value of r determines whether given new 
solution is associated with 𝑁௦௣ଵ or 𝑁௦௣ଶ and its 
value is computed as in Eq. 5.  

𝑟 = 𝑟𝑎𝑛𝑑. 𝑝𝑒𝑟𝑖,                                                                                      
(5) 

The variable peri denotes the period of migration 
to control MBO functionality and rand indicates a 
number taken from a distribution. Original MBO 
used peri value as 1.2. If 𝑟 ≤  𝑝, Eq. 3 is used to 
create jth component, otherwise Eq. 4 is used. 
With respect to solutions adjustment is designed 
for exploration and exploitation. Here search 
process direction relies on a pseudo-random 

number, denoted as rnd, and there are two 
distinguished cases. With respect to first case, if 
𝑟𝑛𝑑 ≤  𝑝, the current solution is adjusted to 
achieve a new solution as in Eq. 6.  

𝑥௜,௝
௧ାଵ = 𝑥

௕௘௦௧,௝`
௧                                                                                             

(6) 

The jth parameter of the novel solution is denoted 
as  𝑥௜,௝

௧ାଵ  while the current best solution’s jth 
parameter associated with whole population is 
denoted as 𝑥

௕௘௦௧,௝`
௧ . If 𝑟𝑛𝑑 >  𝑝, new solution is 

obtained through  Eq. 7.  

𝑥௜,௝
௧ାଵ = 𝑥

௥య,௝`
௧                                                                                              

(7) 

The randomly chosen solution is denoted as 𝑟ଷ 
which comes from 𝑁௦௣  and its jth parameter is 
denoted as 𝑥

௥య,௝`
௧ . On establishing 𝑟𝑛𝑑 > 𝑎𝑟, new 

solutions are updated as in Eq. 8.  

𝑥௜,௝
௧ାଵ = 𝑥௜,௝

௧ାଵ + 𝛼 × ቀ𝑑௫ೕ
− 0.5ቁ                                                             

(8) 

The adjusting rate  is denoted as ar and 𝑑𝑥 denotes 
a walk step, considering Lévy flights formula as 
expressed in Eq. 9.  

𝑑𝑥 = 𝐿𝑒𝑣𝑦(𝑥௝
௧)                                                                                        

(9) 

In Eq. 8, 𝛼 denotes a weighting factor which is 
computed as in Eq. 10.  

𝛼 = 𝑆௠௔௫ 𝑡ଶ⁄ ,                                                                                        
(10) 

The maximum value for walk step is denoted by 
𝑆௠௔௫  in which, a given solution moves one step at 
a time and the current iteration is denoted by t. 
The parameter 𝛼 is used to exploit trade-off 
between exploration and exploitation. Based on 
its value search step becomes longer or shorter. 
The original MBO algorithm has significant 
drawbacks. First, it has insufficient power in the 
process of exploration as it relies on weighting 
factor. Second, it has limitations in striking 
balance between exploration and exploitation.  

4. MULTI-STRATEGY BASED FUZZY 
ENHANCED MONARCH BUTTERFLY 
OPTIMIZATION ALGORITHM 

This section presents the proposed solution to the 
problem of efficient task scheduling and load 
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balancing in cloud. It throws light on the proposed 
system model, problem context, proposed 
algorithm and performance evaluation metrics.  

4.1 System Model 

In cloud computing environment, number 
physical machines exist with underlying Virtual 
Machines (VMs). Users of the cloud across the 

globe send their tasks to cloud where the tasks are 
to be executed by allocating them to appropriate 
resources. The general approach in task 
scheduling in cloud is shown in Figure 1. The 
tasks submitted by ender users are kept in a queue 
and they are scheduled to VMs based on their 
availability, load and probably other factors. This 
is where the task scheduling algorithms play vital 
role.  

 

Figure 1: General approach to task scheduling in cloud 

The VMs are important resources in cloud where 
tasks are actually executed. Hypervisor is the 
software in host or physical machine which 
enables creation of number of VMs through 
virtualization technology. With such technology 
in place, cloud resources are made affordable as it 
enables reduction of cost in rendering cloud 

computing services. When the tasks are allocated 
to VMs appropriately, it has many benefits such 
as honoring SLAs, resource optimization, load 
balancing and consumer satisfaction. Having 
understood this, Figure 2 shows our system model 
on top of which our algorithm is implemented 
using CloudSim framework

.  

Hypervisor host Hypervisor host Hypervisor host 
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Figure 2: The system model used for proposed task scheduling algorithm 

In cloud computing, data center plays crucial role 
as it provides complete infrastructure required for 
rendering different services to consumers. It has 
thousands of physical machines on top of which 
VMs are created to serve user requests. PaaS, 
SaaS and IaaS are the three service layers in cloud 
to provide specific services. Users of the cloud 
need to interact with cloud and Internet 
connectivity lets them to achieve this.  There are 
many components involved in the cloud to render 
various services. Service analyzer takes care of 
service analysis. SLA monitor is meant for 
monitoring SLAs and their violations. Pricing and 
accounting components are related to pay per use 
model and account services respectively. Energy 
monitor is meant for monitoring energy 
consumption dynamics. Resource discovery and 
monitoring component is used for dealing with 

resources and their utilization. VM manager is 
meant for VM management activities while task 
scheduling component is used for scheduling of 
tasks. This is the problem context where task 
scheduling is the main problem considered in this 
paper.  

4.2 Problem Definition  

User tasks in cloud should be executed without 
violating Service Level Agreements (SLAs).  
SLAs are certain agreements between service 
provider and consumer with respect to expected 
services. Efficient scheduling of tasks in cloud, in 
presence of millions of users and diversified 
workloads across the globe, is NP-hard problem. 
Considering n number of tasks, denoted as Ti, that 
are independent of each other, where i= {1,2, 
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3…n}. There is a set of resources in cloud, that 
are heterogeneous in nature, denoted as Rj where 
j= {1, 2, 3, …, m}. The execution time for given 
task i on resource j is denoted as Pi,j. At any time 
one resource can execute only one task. Satisfying 
this condition, a permutation matrix, denoted as 
Xi,j, can be constructed where each value can be 
either 0 or 1 indicating a resource is free or already 
task allocated respectively. The permutation 
matrix is expressed as in Eq. 11 and Eq. 12.  

𝑋௜,௝ =

ቄ
1,     𝑖𝑓 𝑡𝑎𝑠𝑘 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

                                        

(11) 

∑ 𝑋௜,௝ = 1,     1 ≤ 𝑗 ≤ 𝑛௠
௜ୀଵ                                                                              

(12) 

A resource needs certain time to executed all 
allocated tasks. This completion time is computed 
as in Eq. 13.  

𝐶௝ = ∑ 𝑃௜,௝ ∗ 𝑋௜,௝௜∈{ଵ…௡ೕ}                                                                                  

(13) 

For a given resource Rj, the number of tasks 
assigned is nj and Cj indicates the completion time 
of tasks execution. An important objective of any 
task scheduling algorithm is to minimize 
makespan, as in Eq. 14, which indicates finish 
time executing all tasks.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀𝑆 = 𝑚𝑎𝑥ଵஸ௝ஸ௠𝐶௝                                                                       
(14) 

While executing task assigned to a resource, there 
may be hardware failure which should not affect 
other resources. In the context, the probability 
with which all tasks are completed is expressed in 
Eq. 15.  

𝑝௦௨௖௖
௜ = 𝑒ିఒ೔஼೔                                                                                                

(15) 

As a failure is not dependent on other failures, for 
a set of resources, their ability to reliably execute 
tasks is expressed in Eq. 16 and at the same time 
failure probability needs to be minimized as 
expressed in Eq. 17.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅௦ = 𝑒ିఒ೔ ∑ ஼೔೔                                                                              
(16) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹௣ = 𝜆௜ ∑ 𝐶௜௜                                                                                 
(17) 

Here are multiple problems are such as 
minimizing failure probability, maximizing 
reliability and minimizing makespan. There is 
resource heterogeneity in cloud that needs to be 
consider in order to optimize resource utilization 
and balance load among resources. Therefore, 
load balancing is another objective function 
considered in the proposed system which is 
expressed as in Eq. 18 taken from [42]. 

𝛽 = ට
∑ ௅೔ି௅ത೘

೔సభ

௠
                                                                             

(18) 

Where 𝛽 denotes load balancing index, L denotes 
average load of resources and Li denotes load of 
given resource. Task scheduling in cloud has its 
impact on resource utilization and balancing load 
as well.  

4.3 Proposed Algorithm  

We proposed an algorithm to address problems 
associated with original MBO by considering 
multiple objective functions and strategies. The 
design goals of the proposed algorithm are as 
follows. First, to enhance MBO functionality to 
leverage task scheduling performance. Second, to 
improve balance in exploration and exploitation 
through self-adaptive strategy. Third, application 
of greedy strategy towards faster convergence. 
Fourth, the usage of fuzzy dominance approach 
towards better solution selection from a set of 
solutions. Since our algorithm is an extension to 
MBO, it makes use of two swarms denoted as Nsa 
and Nsb. The number of individuals in populations 
is computed as ceil(r*Ns) and Ns-Nsa. Here r 
denotes radio of individuals in Nsa while Ns 

denotes individuals in both Nsa and Nsb. For the 
migration purpose variable v is computed as in 
Eq. 19.  

𝑣 = 𝑟𝑎𝑛𝑑 ∗ 𝑚𝑝                                                                      
(19) 

Where rand indicates a random number obtained 
from a uniform distribution while the migration 
period id denoted as mp. We employ self-adaptive 
strategy explored in [43] to deal with enhancing 
search capability. A dynamic technique, denoted 
as dt, is used for self-adaptive strategy as in Eq. 
20.  

𝑟 = 𝑐 + 𝑑𝑡                                                                             
(20) 

Where c and d are constants generated using Eq. 
21 and Eq. 22 while t indicates current iteration.  
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𝑐 =
௥೘೔೙௧೘ି௥೘ೌೣ

௧೘ିଵ
                                                                                           

(21) 

𝑑 =
௥೘ೌೣି௥೘೔೙

௧೘ିଵ
                                                                                              

(22) 

Where maximum iteration is denoted by tm. The 
minimum and maximum values for variable r lie 
in [0, 1] range. Update of r occurs in a linear 
fashion from min to max value. In the original 
MBO algorithm population (butterflies) are 
generated afresh. Due to performance issues with 
this approach, there is possibility of reducing 
convergence speed. To overcome this limitation, 
we used greedy strategy explored in [43] where 
upcoming population is chosen based on higher 
fitness. The greedy strategy is as expressed in Eq. 
23.  

𝑃௜,௡௘௪
(௧ାଵ)

= ቊ
𝑃௜

௧ାଵ,   𝑓(𝑃௜
௧ାଵ  ) < 𝑓(𝑃௜

௧)

𝑃௜
௧ ,                    𝑒𝑙𝑠𝑒  

                                                             

(23) 

Here 𝑃௜
௧ and 𝑃௜

௧ାଵ  are individuals while their 
fitness values are denoted as    𝑓(𝑃௜

௧ାଵ  ) and 
𝑓(𝑃௜

௧) respectively. The resultant individual, 

denoted as 𝑃௜,௡௘௪
(௧ାଵ), is considered for the next 

iteration. We also use butterfly adjustment 
operator to modify location of individuals if 
rand<=r. The modification operation is expressed 
as in Eq. 24.  

𝑃௠,௞
(௧ାଵ)

= 𝑃௕௘௦௧,௞
(௧)                                                                                              
(24) 

Where t indicates current iteration while t+1 

indicates the next iteration. 𝑃௕௘௦௧,௞
(௧)  indicates best 

individual’s kth component in the current iteration 

among the two population while 𝑃௠,௞
(௧ାଵ) denotes 

position of mth individual’s kth component. If the 
rand value is greater than r, then, the modification 
is done as in Eq. 25.  

𝑃௠,௞
(௧ାଵ)

= 𝑃௩ଷ,௞
(௧)                                                                                                

(25) 

With respect to adjustment rate, denoted as α, if 
rand> α then, Eq. 26 is used to modify mth 
individual’s position.  

𝑃௠,௞
(௧ାଵ)

= 𝑃௠,௞
(௧ାଵ)

+ 𝛽 ∗ (𝑑𝑝௞ − 0.5)                                                              
(26) 

With the usage of waiting factor, denoted as 𝛽, in 
the current iteration, it is computed as in Eq. 27.  

𝛽 = 𝑠𝑤௠௔௫ 𝑡ଶ⁄                                                     
(27) 

The highest step walk is denoted as 𝑠𝑤௠௔௫ used 
by an individual for a specific step. The step walk 
for mth individual is computed as in Eq. 28 with 
the help of Levy weight.  

𝑑𝑝 = 𝐿𝑒𝑣𝑦(𝑃௠
௧ )                                                 

(28) 

The step size depends on 𝛽. Higher its values lead 
to lengthy step and lower its value leads to 
reduced step size. This will help in enhancing the 
capability of the proposed algorithm to deal with 
balancing exploration and exploitation. With 
these strategies we improved MBO and proposed 
an algorithm named Multi-Strategy based Fuzzy 
Enhanced Monarch Butterfly Optimization 
Algorithm (MS-FEMB0A).  

Algorithm: Multi-Strategy based Fuzzy 
Enhanced Monarch Butterfly Optimization 
Algorithm  
 
Inputs: 
Number of tasks n 
Number of VMs m 
Iteration counter c 
Maximum iteration maxIter 
Output: 
Efficient task scheduling and load balancing  
 

1. Begin 
2. Initialize swarm in Nsa and Nsb 
3. Assess fitness function of individuals 

in Nsa and Nsb 
4. Use fuzzy dominance to sort 

individuals in Nsa and Nsb 
5. while c<maxIter 
6.    Order individuals in entire 

population using fitness value 
7.    Split them into Nsa and Nsb 
8.    For each individual in Nsa 
9.        Compute r using self-adaptive 

approach 
10.        Use migration operator to have 

new population from Nsa 
11.        Apply greedy strategy to 

optimize population  
12.    End For 
13.    For each individual in Nsb 
14.        Use migration operator to have 

new population from Nsb 
15.    End For 
16.    Merge individuals of Nsa and Nsb 
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17.    Assess individuals using fitness 
function  

18.    Use fuzzy dominance for sorting 
19.    Keep solution in archive 
20.    c=c+1 
21.    Return solutions  
22. End 

Algorithm 1: Multi-Strategy based Fuzzy 
Enhanced Monarch Butterfly Optimization 

Algorithm 

As presented in Algorithm 1, it takes number of 
tasks n, number of VMs m, iteration counter c and 
maximum iteration maxIter as inputs and 
produces solutions that can help in mapping tasks 
to resources for efficient scheduling and load 
balancing.  

4.4 Simulation Parameters  

The proposed system with underlying algorithm 
MS-FEMB0A needs number of parameters for its 
functionality. After experimental study, the 
parameter values are fixed the values that could 
provide best performance.  

Table 1: Shows different parameters and values used 
in the proposed system 

Parameter Value 
swmax  1.0 
mp 1.2 
v 5/12 
α 5/12 
maxIter 200 
Nsa 21 
Nsb 29 

As presented in Table 1, the simulation 
parameters used in the proposed system are 
provided along with the values set in the empirical 
study.  

5. RESULTS AND DISCUSSION 

Our algorithm is implemented using Java 
language. It is implemented on top of CloudSim 
[44] for modelling and simulation of the proposed 
algorithm. CloudSim provides API required to 
model various components associated with the 
system model illustrated in Figure 2. In the 
simulation study two data centres are used with 
three hosts in each data centre. The hosts are 
configured to be heterogeneous with 2 and 4 
cores. Each host is configured with 16 GB RAM 
and 5 VMs are associated with each host. Two 
datasets explored in [45] and [46] are used to 
evaluate the proposed algorithm. Performance of 

the proposed algorithm is compared with existing 
methods such as PSO [47] and MOPSO [48]. 

Table 2: Makespan performance comparison with use 
of 10 resources  

Number of 
Tasks 

Makespan 
MS-
FEMBOA 

MOPSO PSO 

50 400 410 410 
100 420 430 435 
150 450 460 465 
200 480 490 495 
250 520 525 535 
300 550 555 570 
350 600 610 630 
400 650 660 690 
450 700 720 770 
500 720 750 820 
550 760 780 810 
600 800 830 860 

As presented in Table 2, performance of the 
proposed and existing methods is provided in 
terms of makespan against given number of tasks.  

 

Figure 3: Makespan performance analysis against 
number of tasks using 10 resources 

As presented in Figure 3, performance of different 
methods used for task scheduling is provided in 
terms of makespan. The less value for makespan 
measure indicates better performance. There are 
12 experiments made with different number of 
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tasks starting with 50 and incremented by 50 each 
time reaching up to 600 tasks. An important 
observation is that number of tasks has its impact 
on makespan. As the number of tasks increases, 
the makespan also linearly increased. When 
number of tasks is 50, MOPSO achieved 410 as 
makepan, PSO 410 and proposed algorithm MS-
FEMBOA achieved 400. When the number of 
tasks is 600, MOPSO achieved 830 as makepan, 
PSO 860 and proposed algorithm MS-FEMBOA 
achieved 800. From the results, it is observed that 
MS-FEMBOA outperforms the existing methods 
in terms of makespan. 

Table 3: Failure Probability Rate Of Scheduling 
Methods Against Number Of Resources 

Number 
of 

Resources 

Failure Probability Rate 
MS-

FEMBOA 
PSO MOPSO 

10 0.0047 0.006 0.005 
20 0.004 0.0057 0.0049 
30 0.0039 0.0055 0.0048 
40 0.0036 0.0053 0.0044 
50 0.0034 0.0054 0.0046 
60 0.0031 0.005 0.0045 
70 0.0033 0.0048 0.0043 
80 0.0028 0.0046 0.0039 
90 0.0025 0.0044 0.0037 
100 0.0022 0.0042 0.0035 

As presented in Table 3, failure probability rate of 
different scheduling methods is provided against 
number of resources.  

 

Figure 4: Comparison Of Failure Probability Rate Of 
Scheduling Methods Against Number Of Resources 

As presented in Figure 4, performance of different 
methods used for task scheduling is provided in 
terms of failure probability rate. The less value for 
this measure indicates better performance. There 
are 10 experiments made with different number of 
resources starting with 10 and incremented by 10 
each time reaching up to 100 resources. An 
important observation is that number of resources 
has its impact on failure probability. As the 
number of resources increases, the failure 
probability is linearly decreased. When number of 
resources is 10, PSO exhibited 0.006 as failure 
probability, MOPSO 0.005 and proposed 
algorithm MS-FEMBOA showed 0.0047 as 
failure probability. When the number of resources 
is 100, PSO exhibited 0.0042 as failure 
probability, MOPSO 0.0035 and proposed 
algorithm MS-FEMBOA achieved 0.0022. From 
the results, it is observed that MS-FEMBOA 
outperforms the existing methods in terms of 
failure probability rate. 

Table 4: Failure Probability Rate Of Scheduling 
Methods Against Number Of Tasks 

Number 
of Tasks 

Failure Probability Rate 
MS-

FEMBOA 
PSO MOPSO 

10 0.0019 0.0021 0.0025 
20 0.0023 0.0028 0.0027 
30 0.0026 0.0029 0.0026 
40 0.0027 0.0031 0.0028 
50 0.0028 0.0037 0.0036 
60 0.0029 0.0038 0.0037 
70 0.0032 0.0041 0.0039 
80 0.0033 0.0043 0.0041 
90 0.0034 0.0045 0.0043 
100 0.0035 0.0048 0.0045 

As presented in Table 4, failure probability rate of 
different scheduling methods is provided against 
number of tasks.  
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Figure 5: Comparison Of Failure Probability Rate Of 
Scheduling Methods Against Number Of Tasks 

As presented in Figure 5, performance of different 
methods used for task scheduling is provided in 
terms of failure probability rate against number of 
tasks. The less value for this measure indicates 
better performance. There are 10 experiments 
made with different number of tasks starting with 
10 and incremented by 10 each time reaching up 
to 100 tasks. An important observation is that 
number of tasks has its impact on failure 
probability. As the number of tasks increases, the 
failure probability is linearly increased. When 
number of tasks is 10, PSO exhibited 0.0021 as 
failure probability, MOPSO 0.0025 and proposed 
algorithm MS-FEMBOA showed 0.0019 as 
failure probability. When the number of tasks is 
100, PSO exhibited 0.0048 as failure probability, 
MOPSO 0.0045 and proposed algorithm MS-
FEMBOA achieved 0.0035. From the results, it is 
observed that MS-FEMBOA outperforms the 
existing methods in terms of failure probability 
rate against number of tasks. 

 

 

 

 

 

Table 5: Convergence Of Different Methods For 
Makespan 

Number of 
Iterations 

Makespan (Convergence 
Speed Analysis) 

MS-
FEMBOA 

PSO MOPSO 

0 630 795 700 
200 520 635 530 
400 380 635 480 
600 380 600 470 
800 380 600 430 
1000 380 520 410 
1200 380 510 410 
1400 380 500 410 
1600 380 500 410 
1800 380 500 410 
2000 380 500 410 

As presented in Table 5, makespan of different 
scheduling methods is provided against number of 
iterations reflecting convergence speed.  

 

Figure 6: Comparison Of Makespan Of Scheduling 
Methods Against Number Of Iterations Reflecting 

Convergence Speed 

As presented in Figure 6, performance of different 
methods used for task scheduling is provided in 
terms of makespan against number of iterations. 
The less value for this measure indicates better 
performance. There are 11 experiments made with 
different number of iterations starting with 0 and 
incremented by 200 each time reaching up to 2000 
iterations. An important observation is that 
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number of iterations has its impact on makespan. 
As the number of iterations increases, the 
makespan is linearly decreased. When number of 
iterations is 0, PSO exhibited 795 as makespan, 
MOPSO 700 and proposed algorithm MS-
FEMBOA showed 6630 makespan. When the 
number of tasks is 2000, PSO exhibited 500 as 
makespan, MOPSO 410 and proposed algorithm 
MS-FEMBOA achieved 380. From the results, it 
is observed that MS-FEMBOA outperforms the 
existing methods in terms of makespan against 
number of iterations reflecting its faster 
convergence. 

6. CONCLUSION AND FUTURE WORK  

In this paper, we proposed an algorithm known as 
Multi-Strategy based Fuzzy Enhanced Monarch 
Butterfly Optimization Algorithm (MS-
FEMB0A) for efficient task scheduling in cloud 
leading to load balancing. MS-FEMB0A 
considers multiple objectives and also multiple 
strategies such as fuzzy, greedy and self-adaptive 
towards improving search capability and 
convergence speed. The design goals of the 
proposed algorithm are as follows. First, to 
enhance MBO functionality to leverage task 
scheduling performance. Second, to improve 
balance in exploration and exploitation through 
self-adaptive strategy. Third, application of 
greedy strategy towards faster convergence. 
Fourth, the usage of fuzzy dominance approach 
towards better solution selection from a set of 
solutions. Simulation study made using CloudSim 
framework showed that MS-FEMB0A 
outperforms existing algorithms such as PSO and 
MOPSO. In future we intend to explore 
alternative scheduling approaches for task 
scheduling and load balancing. Towards this end, 
we intend to develop an evolutionary algorithm 
based on stochastic systems theory that exploits 
random variables involved in the cloud 
infrastructure for scheduling and load balancing. 
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