
Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2181

MULTI-STRATEGY BASED FUZZY ENHANCED MONARCH
BUTTERFLY OPTIMIZATION ALGORITHM (MS-FEMB0A)

FOR TASK SCHEDULING AND LOAD BALANCING IN
CLOUD ENVIRONMENTS

1DR.SARAVANAN.M.S, 2MADHAVI KARUMUDI,

1Professor, Department of Computer Science and Engineering,
Saveetha School of Engineering,

Saveetha Institute of Medical and Technical Sciences, Chennai.

2Research Scholar, Saveetha School of Engineering
Assistant Professor, St.Peter’s Engineering College

Email: madhavi.karumudi@gmail.com
Email: saravananms@saveetha.com / saranenadu@gmail.com

ABSTRACT

With the success of cloud computing, enterprises started reducing investments on computing resources by
using cloud resources. Outsourced tasks of those enterprises are to be processed in cloud without violating
Service Level Agreements (SLAs). Therefore, efficient scheduling of tasks in cloud, in presence of millions
of users and diversified workloads across the globe, is NP-hard problem. To solve this problem many bio-
inspired optimization algorithms came into existence. One such algorithm is known as Monarch Butterfly
Optimization (MBO) which suffers from insufficient exploration power and lack of balance between
exploration and exploitation. Moreover, most of the algorithms focused either on scheduling or load
balancing though they are related. To address all these problems, in this paper, we proposed an algorithm
known as Multi-Strategy based Fuzzy Enhanced Monarch Butterfly Optimization Algorithm (MS-FEMB0A)
for efficient task scheduling in cloud leading to load balancing. MS-FEMB0A considers multiple objectives
and also multiple strategies such as fuzzy, greedy and self-adaptive towards improving search capability and
convergence speed. Simulation study made using CloudSim framework showed that MS-FEMB0A
outperforms existing algorithms such as PSO and MOPSO.

Keywords – Cloud Computing, Load Balancing, Task Scheduling, CloudSim, Multi-Strategy Scheduling

1. INTRODUCTION

Task scheduling in cloud computing is found NP-
hard problem due to very dynamic nature of cloud
in terms of workloads, heterogeneity of resources
and SLAs to be satisfied. Existing techniques used
for task scheduling focused on efficient
scheduling of tasks but often the load balancing
factor is ignored [1]. Therefore, it is very
important to consider both to ensure improved
performance of cloud infrastructure that lead to
consumer satisfaction and growth of service
provider due to proper equilibrium. Traditional
scheduling approaches like round robin cannot
produce optimal results. Moreover, heuristics
used traditionally also could not render efficient
services. It was found from the literature that
evolutionary algorithms could perform better
optimization of scheduling in cloud.

Existing methods found in literature contributed
towards better scheduling procedures.
Evolutionary algorithms studied in [2], [4], [6], to
mention few, have potential to deal with different
runtime conditions and ensure optimization of
scheduling in cloud. At the same time, it was
observed that learning based phenomena were
widely used in the existing systems. They include
swarm intelligence with deep learning [3], online
learning based approach [5], deep learning and
genetic algorithm [26], hyperparameter
optimization based machine learning [39] and
oppositional-mutual approach based learning
strategy [40]. In [41], MBO is the bio-inspired
approach that could improve state of the art in
cloud scheduling. However, MBO has specific
limitations as discussed in Section 3. In this paper,
we enhanced MBO to overcome its drawbacks
towards better performance in scheduling and
load balancing.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2182

Our contributions in this paper are as follows. We
proposed an algorithm known as Multi-Strategy
based Fuzzy Enhanced Monarch Butterfly
Optimization Algorithm (MS-FEMB0A) for
efficient task scheduling in cloud leading to load
balancing. MS-FEMB0A considers multiple
objectives and also multiple strategies such as
fuzzy, greedy and self-adaptive towards
improving search capability and convergence
speed. The design goals of the proposed algorithm
are as follows. First, to enhance MBO
functionality to leverage task scheduling
performance. Second, to improve balance in
exploration and exploitation through self-adaptive
strategy. Third, application of greedy strategy
towards faster convergence. Fourth, the usage of
fuzzy dominance approach towards better
solution selection from a set of solutions.
Simulation study made using CloudSim
framework showed that MS-FEMB0A
outperforms existing algorithms such as PSO and
MOPSO. The remainder of the paper is structured
as follows. Section 2 reviews prior works on
scheduling and load balancing in cloud. Section 3
focuses on the preliminary details required by the
proposed system. Section 4 presents our method
for leveraging state of the art on task scheduling
and load balancing. Section 5 presents results of
experiments. Section 6 concludes our work.

2. RELATED WORK

This section reviews literature on existing works
related to scheduling and load balancing in cloud.
Many researchers focused on analysing
evolutionary methods that are used in the existing
literature for scheduling in cloud [1], [3], [4], [22],
[23], [25]. From their study, it was understood that
evolutionary methods with swarm intelligence
could improve task scheduling performance when
compared with traditional approaches. Transfer
parameter estimation is a novel approach along
with evolutionary methods explored in [2]. With
evolutionary algorithms, it was found in the
literature, there are contributions that focused on
multiple objectives [5], [13], [15], [35], [37]. The
essence of these research contributions is to
consider different objectives like makespan,
balance factor and convergence. They could
improve scheduling performance due to their
evolutionary nature.

In the existing research, machine learning is also
used widely to deal with scheduling in cloud [6],
[8], [9], [20]. Evolutionary method was explored
in [7] and [10] where intelligence is gained

through machine learning. Evolutionary models
were found to solve many problems including
security issues as discussed in [11] and [30].
Genetic algorithm based approach for workflow
scheduling is discussed in [12]. Evolutionary
methods for modelling and solving problems is
given important in [14], [17] while data-driven
approach towards evolutionary optimization is
explored in [16]. Deep learning models were also
found to be useful for solving problems in real
world besides scheduling issues in cloud [8], [9]
[17], [18] and [26]. An ensemble of evolutionary
algorithm with offline data-driven approach was
studied in [19]. Evolutionary approach and its
usage along with machine learning towards
intelligent systems is the main focus on [21] and
[24]. Autoencoding and evolutionary approaches
were combined in [27] for automatically
understanding the environment and perform
multi-tasking.

Along with evolutionary approach a memetic
differential technique is exploited with parallel
machine scheduling in [28]. Extreme learning
machine and learning based approaches are
explored in [29] while Random Forest (RF) based
machine learning along with evolutionary
information is the main focus in [31]. Explainable
AI is another important finding in the literature
that is used to exploit evolutionary fuzzy systems
[32]. Neuro-fuzzy and population-based swarm
intelligence were used in [33]. Other significant
contributions found in the literature include
optimal feature selection [34], gravitational
search approach [36], artificial neural network
[38], hyperparameter optimization [39] and
improved differential evolution algorithm [40]. In
[47] and [48] PSO and MOPOSO methods are
explored for task scheduling. These re
optimization methods based on PSO and the
proposed MBO based method is compared with
them. From the review of literature, it is
understood that enhancing bio-inspired methods
with novel strategies has potential to improve
scheduling and load balancing performance in
cloud.

3. ENHANCED MONARCH BUTTERFLY
OPTIMIZATION ALGORITHM

The proposed algorithm in this paper is an
extension to an existing algorithm known as
Monarch Butterfly Optimization (MBO) explored
in [41]. Monarch Butterfly (MB) is a spices in
North America. MB has characteristics that differ
from others in its behaviour with respect to long

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2183

distance migration. MB flies every year from the
USACanadaMexico. Its migration behaviour
influences the creation of another bio-inspired
optimization algorithm known as MBO. Like
every swarm intelligence method, exploration and
exploitation are two important methods that guide
the optimization process. These two methods are
performed by MBO in the form of solutions
migration and solutions adjusting. With respect to
solutions migration, given two sub populations
denoted as 𝑁௦௣ଵ and 𝑁௦௣ଶ, their initialization is
done as expressed in Eq. 1 and Eq. 2.

𝑁௦௣ଵ = 𝑐𝑒𝑖𝑙(𝑝. 𝑁௣),
(1)

𝑁௦௣ଶ = 𝑁௣ − 𝑁௦௣ଵ,
(2)

The whole population has number of solutions
denoted as 𝑁௣ and 𝑝 denotes the ratio of 𝑁௦௣ଵ and
𝑁௣. In the search process of MBO, 𝑝 plays
significant role. Therefore, adjustment of 𝑝 has its
influence in two subpopulations. If 𝑝 value is
large, resultant solutions from 𝑁௦௣ଵ, otherwise
from 𝑁௦௣ଶ. The value of 𝑝 is fixed at 5/12 in the
original MBO. The notion of solutions migration
has its advantage as it results in novel solution. It
is achieved by the application of Eq. 3 and Eq. 4.

𝑥௜,௝
௧ାଵ = 𝑥

௥భ,௝`
௧

(3)

𝑥௜,௝
௧ାଵ = 𝑥

௥మ,௝`
௧

(4)

The novel solutions at iteration 𝑡 + 1 are denoted
as 𝑥௥భ

 and 𝑥௥మ
. The jth parameter of the new

solution is denoted as 𝑥௜,௝
௧ାଵ while 𝑥

௥భ,௝`
௧ and

𝑥
௥మ,௝`
௧ indicate jth component of the two solutions.

The value of r determines whether given new
solution is associated with 𝑁௦௣ଵ or 𝑁௦௣ଶ and its
value is computed as in Eq. 5.

𝑟 = 𝑟𝑎𝑛𝑑. 𝑝𝑒𝑟𝑖,
(5)

The variable peri denotes the period of migration
to control MBO functionality and rand indicates a
number taken from a distribution. Original MBO
used peri value as 1.2. If 𝑟 ≤ 𝑝, Eq. 3 is used to
create jth component, otherwise Eq. 4 is used.
With respect to solutions adjustment is designed
for exploration and exploitation. Here search
process direction relies on a pseudo-random

number, denoted as rnd, and there are two
distinguished cases. With respect to first case, if
𝑟𝑛𝑑 ≤ 𝑝, the current solution is adjusted to
achieve a new solution as in Eq. 6.

𝑥௜,௝
௧ାଵ = 𝑥

௕௘௦௧,௝`
௧

(6)

The jth parameter of the novel solution is denoted
as 𝑥௜,௝

௧ାଵ while the current best solution’s jth
parameter associated with whole population is
denoted as 𝑥

௕௘௦௧,௝`
௧ . If 𝑟𝑛𝑑 > 𝑝, new solution is

obtained through Eq. 7.

𝑥௜,௝
௧ାଵ = 𝑥

௥య,௝`
௧

(7)

The randomly chosen solution is denoted as 𝑟ଷ
which comes from 𝑁௦௣ and its jth parameter is
denoted as 𝑥

௥య,௝`
௧ . On establishing 𝑟𝑛𝑑 > 𝑎𝑟, new

solutions are updated as in Eq. 8.

𝑥௜,௝
௧ାଵ = 𝑥௜,௝

௧ାଵ + 𝛼 × ቀ𝑑௫ೕ
− 0.5ቁ

(8)

The adjusting rate is denoted as ar and 𝑑𝑥 denotes
a walk step, considering Lévy flights formula as
expressed in Eq. 9.

𝑑𝑥 = 𝐿𝑒𝑣𝑦(𝑥௝
௧)

(9)

In Eq. 8, 𝛼 denotes a weighting factor which is
computed as in Eq. 10.

𝛼 = 𝑆௠௔௫ 𝑡ଶ⁄ ,
(10)

The maximum value for walk step is denoted by
𝑆௠௔௫ in which, a given solution moves one step at
a time and the current iteration is denoted by t.
The parameter 𝛼 is used to exploit trade-off
between exploration and exploitation. Based on
its value search step becomes longer or shorter.
The original MBO algorithm has significant
drawbacks. First, it has insufficient power in the
process of exploration as it relies on weighting
factor. Second, it has limitations in striking
balance between exploration and exploitation.

4. MULTI-STRATEGY BASED FUZZY
ENHANCED MONARCH BUTTERFLY
OPTIMIZATION ALGORITHM

This section presents the proposed solution to the
problem of efficient task scheduling and load

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2184

balancing in cloud. It throws light on the proposed
system model, problem context, proposed
algorithm and performance evaluation metrics.

4.1 System Model

In cloud computing environment, number
physical machines exist with underlying Virtual
Machines (VMs). Users of the cloud across the

globe send their tasks to cloud where the tasks are
to be executed by allocating them to appropriate
resources. The general approach in task
scheduling in cloud is shown in Figure 1. The
tasks submitted by ender users are kept in a queue
and they are scheduled to VMs based on their
availability, load and probably other factors. This
is where the task scheduling algorithms play vital
role.

Figure 1: General approach to task scheduling in cloud

The VMs are important resources in cloud where
tasks are actually executed. Hypervisor is the
software in host or physical machine which
enables creation of number of VMs through
virtualization technology. With such technology
in place, cloud resources are made affordable as it
enables reduction of cost in rendering cloud

computing services. When the tasks are allocated
to VMs appropriately, it has many benefits such
as honoring SLAs, resource optimization, load
balancing and consumer satisfaction. Having
understood this, Figure 2 shows our system model
on top of which our algorithm is implemented
using CloudSim framework

.

Hypervisor host Hypervisor host Hypervisor host

Resources(n)

VM VM VM

Resources(n) Resources(n)

VM VM VM VM VM VM

Task Scheduler

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2185

Figure 2: The system model used for proposed task scheduling algorithm

In cloud computing, data center plays crucial role
as it provides complete infrastructure required for
rendering different services to consumers. It has
thousands of physical machines on top of which
VMs are created to serve user requests. PaaS,
SaaS and IaaS are the three service layers in cloud
to provide specific services. Users of the cloud
need to interact with cloud and Internet
connectivity lets them to achieve this. There are
many components involved in the cloud to render
various services. Service analyzer takes care of
service analysis. SLA monitor is meant for
monitoring SLAs and their violations. Pricing and
accounting components are related to pay per use
model and account services respectively. Energy
monitor is meant for monitoring energy
consumption dynamics. Resource discovery and
monitoring component is used for dealing with

resources and their utilization. VM manager is
meant for VM management activities while task
scheduling component is used for scheduling of
tasks. This is the problem context where task
scheduling is the main problem considered in this
paper.

4.2 Problem Definition

User tasks in cloud should be executed without
violating Service Level Agreements (SLAs).
SLAs are certain agreements between service
provider and consumer with respect to expected
services. Efficient scheduling of tasks in cloud, in
presence of millions of users and diversified
workloads across the globe, is NP-hard problem.
Considering n number of tasks, denoted as Ti, that
are independent of each other, where i= {1,2,

Data center

VM

VM VM

VM VM

VM

VM

Task scheduling

Optimization Algorithms
PSO, MOPSO, Proposed

Energy monitor

VM Manager

Customer profiles Resource discovery
and monitoring

Accounting

Service analyzer SLA Monitor Pricing

Virtual machines

Software as service
(SaaS)

Platform as a
service (PaaS)

Infrastructure as a
service (IaaS)

Internet

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2186

3…n}. There is a set of resources in cloud, that
are heterogeneous in nature, denoted as Rj where
j= {1, 2, 3, …, m}. The execution time for given
task i on resource j is denoted as Pi,j. At any time
one resource can execute only one task. Satisfying
this condition, a permutation matrix, denoted as
Xi,j, can be constructed where each value can be
either 0 or 1 indicating a resource is free or already
task allocated respectively. The permutation
matrix is expressed as in Eq. 11 and Eq. 12.

𝑋௜,௝ =

ቄ
1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

∑ 𝑋௜,௝ = 1, 1 ≤ 𝑗 ≤ 𝑛௠
௜ୀଵ

(12)

A resource needs certain time to executed all
allocated tasks. This completion time is computed
as in Eq. 13.

𝐶௝ = ∑ 𝑃௜,௝ ∗ 𝑋௜,௝௜∈{ଵ…௡ೕ}

(13)

For a given resource Rj, the number of tasks
assigned is nj and Cj indicates the completion time
of tasks execution. An important objective of any
task scheduling algorithm is to minimize
makespan, as in Eq. 14, which indicates finish
time executing all tasks.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀𝑆 = 𝑚𝑎𝑥ଵஸ௝ஸ௠𝐶௝
(14)

While executing task assigned to a resource, there
may be hardware failure which should not affect
other resources. In the context, the probability
with which all tasks are completed is expressed in
Eq. 15.

𝑝௦௨௖௖
௜ = 𝑒ିఒ೔஼೔

(15)

As a failure is not dependent on other failures, for
a set of resources, their ability to reliably execute
tasks is expressed in Eq. 16 and at the same time
failure probability needs to be minimized as
expressed in Eq. 17.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅௦ = 𝑒ିఒ೔ ∑ ஼೔೔
(16)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹௣ = 𝜆௜ ∑ 𝐶௜௜
(17)

Here are multiple problems are such as
minimizing failure probability, maximizing
reliability and minimizing makespan. There is
resource heterogeneity in cloud that needs to be
consider in order to optimize resource utilization
and balance load among resources. Therefore,
load balancing is another objective function
considered in the proposed system which is
expressed as in Eq. 18 taken from [42].

𝛽 = ට
∑ ௅೔ି௅ത೘

೔సభ

௠

(18)

Where 𝛽 denotes load balancing index, L denotes
average load of resources and Li denotes load of
given resource. Task scheduling in cloud has its
impact on resource utilization and balancing load
as well.

4.3 Proposed Algorithm

We proposed an algorithm to address problems
associated with original MBO by considering
multiple objective functions and strategies. The
design goals of the proposed algorithm are as
follows. First, to enhance MBO functionality to
leverage task scheduling performance. Second, to
improve balance in exploration and exploitation
through self-adaptive strategy. Third, application
of greedy strategy towards faster convergence.
Fourth, the usage of fuzzy dominance approach
towards better solution selection from a set of
solutions. Since our algorithm is an extension to
MBO, it makes use of two swarms denoted as Nsa
and Nsb. The number of individuals in populations
is computed as ceil(r*Ns) and Ns-Nsa. Here r
denotes radio of individuals in Nsa while Ns

denotes individuals in both Nsa and Nsb. For the
migration purpose variable v is computed as in
Eq. 19.

𝑣 = 𝑟𝑎𝑛𝑑 ∗ 𝑚𝑝
(19)

Where rand indicates a random number obtained
from a uniform distribution while the migration
period id denoted as mp. We employ self-adaptive
strategy explored in [43] to deal with enhancing
search capability. A dynamic technique, denoted
as dt, is used for self-adaptive strategy as in Eq.
20.

𝑟 = 𝑐 + 𝑑𝑡
(20)

Where c and d are constants generated using Eq.
21 and Eq. 22 while t indicates current iteration.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2187

𝑐 =
௥೘೔೙௧೘ି௥೘ೌೣ

௧೘ିଵ

(21)

𝑑 =
௥೘ೌೣି௥೘೔೙

௧೘ିଵ

(22)

Where maximum iteration is denoted by tm. The
minimum and maximum values for variable r lie
in [0, 1] range. Update of r occurs in a linear
fashion from min to max value. In the original
MBO algorithm population (butterflies) are
generated afresh. Due to performance issues with
this approach, there is possibility of reducing
convergence speed. To overcome this limitation,
we used greedy strategy explored in [43] where
upcoming population is chosen based on higher
fitness. The greedy strategy is as expressed in Eq.
23.

𝑃௜,௡௘௪
(௧ାଵ)

= ቊ
𝑃௜

௧ାଵ, 𝑓(𝑃௜
௧ାଵ) < 𝑓(𝑃௜

௧)

𝑃௜
௧ , 𝑒𝑙𝑠𝑒

(23)

Here 𝑃௜
௧ and 𝑃௜

௧ାଵ are individuals while their
fitness values are denoted as 𝑓(𝑃௜

௧ାଵ) and
𝑓(𝑃௜

௧) respectively. The resultant individual,

denoted as 𝑃௜,௡௘௪
(௧ାଵ), is considered for the next

iteration. We also use butterfly adjustment
operator to modify location of individuals if
rand<=r. The modification operation is expressed
as in Eq. 24.

𝑃௠,௞
(௧ାଵ)

= 𝑃௕௘௦௧,௞
(௧)
(24)

Where t indicates current iteration while t+1

indicates the next iteration. 𝑃௕௘௦௧,௞
(௧) indicates best

individual’s kth component in the current iteration

among the two population while 𝑃௠,௞
(௧ାଵ) denotes

position of mth individual’s kth component. If the
rand value is greater than r, then, the modification
is done as in Eq. 25.

𝑃௠,௞
(௧ାଵ)

= 𝑃௩ଷ,௞
(௧)

(25)

With respect to adjustment rate, denoted as α, if
rand> α then, Eq. 26 is used to modify mth
individual’s position.

𝑃௠,௞
(௧ାଵ)

= 𝑃௠,௞
(௧ାଵ)

+ 𝛽 ∗ (𝑑𝑝௞ − 0.5)
(26)

With the usage of waiting factor, denoted as 𝛽, in
the current iteration, it is computed as in Eq. 27.

𝛽 = 𝑠𝑤௠௔௫ 𝑡ଶ⁄
(27)

The highest step walk is denoted as 𝑠𝑤௠௔௫ used
by an individual for a specific step. The step walk
for mth individual is computed as in Eq. 28 with
the help of Levy weight.

𝑑𝑝 = 𝐿𝑒𝑣𝑦(𝑃௠
௧)

(28)

The step size depends on 𝛽. Higher its values lead
to lengthy step and lower its value leads to
reduced step size. This will help in enhancing the
capability of the proposed algorithm to deal with
balancing exploration and exploitation. With
these strategies we improved MBO and proposed
an algorithm named Multi-Strategy based Fuzzy
Enhanced Monarch Butterfly Optimization
Algorithm (MS-FEMB0A).

Algorithm: Multi-Strategy based Fuzzy
Enhanced Monarch Butterfly Optimization
Algorithm

Inputs:
Number of tasks n
Number of VMs m
Iteration counter c
Maximum iteration maxIter
Output:
Efficient task scheduling and load balancing

1. Begin
2. Initialize swarm in Nsa and Nsb
3. Assess fitness function of individuals

in Nsa and Nsb
4. Use fuzzy dominance to sort

individuals in Nsa and Nsb
5. while c<maxIter
6. Order individuals in entire

population using fitness value
7. Split them into Nsa and Nsb
8. For each individual in Nsa
9. Compute r using self-adaptive

approach
10. Use migration operator to have

new population from Nsa
11. Apply greedy strategy to

optimize population
12. End For
13. For each individual in Nsb
14. Use migration operator to have

new population from Nsb
15. End For
16. Merge individuals of Nsa and Nsb

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2188

17. Assess individuals using fitness
function

18. Use fuzzy dominance for sorting
19. Keep solution in archive
20. c=c+1
21. Return solutions
22. End

Algorithm 1: Multi-Strategy based Fuzzy
Enhanced Monarch Butterfly Optimization

Algorithm

As presented in Algorithm 1, it takes number of
tasks n, number of VMs m, iteration counter c and
maximum iteration maxIter as inputs and
produces solutions that can help in mapping tasks
to resources for efficient scheduling and load
balancing.

4.4 Simulation Parameters

The proposed system with underlying algorithm
MS-FEMB0A needs number of parameters for its
functionality. After experimental study, the
parameter values are fixed the values that could
provide best performance.

Table 1: Shows different parameters and values used
in the proposed system

Parameter Value
swmax 1.0
mp 1.2
v 5/12
α 5/12
maxIter 200
Nsa 21
Nsb 29

As presented in Table 1, the simulation
parameters used in the proposed system are
provided along with the values set in the empirical
study.

5. RESULTS AND DISCUSSION

Our algorithm is implemented using Java
language. It is implemented on top of CloudSim
[44] for modelling and simulation of the proposed
algorithm. CloudSim provides API required to
model various components associated with the
system model illustrated in Figure 2. In the
simulation study two data centres are used with
three hosts in each data centre. The hosts are
configured to be heterogeneous with 2 and 4
cores. Each host is configured with 16 GB RAM
and 5 VMs are associated with each host. Two
datasets explored in [45] and [46] are used to
evaluate the proposed algorithm. Performance of

the proposed algorithm is compared with existing
methods such as PSO [47] and MOPSO [48].

Table 2: Makespan performance comparison with use
of 10 resources

Number of
Tasks

Makespan
MS-
FEMBOA

MOPSO PSO

50 400 410 410
100 420 430 435
150 450 460 465
200 480 490 495
250 520 525 535
300 550 555 570
350 600 610 630
400 650 660 690
450 700 720 770
500 720 750 820
550 760 780 810
600 800 830 860

As presented in Table 2, performance of the
proposed and existing methods is provided in
terms of makespan against given number of tasks.

Figure 3: Makespan performance analysis against
number of tasks using 10 resources

As presented in Figure 3, performance of different
methods used for task scheduling is provided in
terms of makespan. The less value for makespan
measure indicates better performance. There are
12 experiments made with different number of

300

400

500

600

700

800

900

1000
50 15

0
25

0
35

0
45

0
55

0

M
ak

es
pa

n

Number of Tasks

MS-FEMBOA

MOPSO

PSO

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2189

tasks starting with 50 and incremented by 50 each
time reaching up to 600 tasks. An important
observation is that number of tasks has its impact
on makespan. As the number of tasks increases,
the makespan also linearly increased. When
number of tasks is 50, MOPSO achieved 410 as
makepan, PSO 410 and proposed algorithm MS-
FEMBOA achieved 400. When the number of
tasks is 600, MOPSO achieved 830 as makepan,
PSO 860 and proposed algorithm MS-FEMBOA
achieved 800. From the results, it is observed that
MS-FEMBOA outperforms the existing methods
in terms of makespan.

Table 3: Failure Probability Rate Of Scheduling
Methods Against Number Of Resources

Number
of

Resources

Failure Probability Rate
MS-

FEMBOA
PSO MOPSO

10 0.0047 0.006 0.005
20 0.004 0.0057 0.0049
30 0.0039 0.0055 0.0048
40 0.0036 0.0053 0.0044
50 0.0034 0.0054 0.0046
60 0.0031 0.005 0.0045
70 0.0033 0.0048 0.0043
80 0.0028 0.0046 0.0039
90 0.0025 0.0044 0.0037
100 0.0022 0.0042 0.0035

As presented in Table 3, failure probability rate of
different scheduling methods is provided against
number of resources.

Figure 4: Comparison Of Failure Probability Rate Of
Scheduling Methods Against Number Of Resources

As presented in Figure 4, performance of different
methods used for task scheduling is provided in
terms of failure probability rate. The less value for
this measure indicates better performance. There
are 10 experiments made with different number of
resources starting with 10 and incremented by 10
each time reaching up to 100 resources. An
important observation is that number of resources
has its impact on failure probability. As the
number of resources increases, the failure
probability is linearly decreased. When number of
resources is 10, PSO exhibited 0.006 as failure
probability, MOPSO 0.005 and proposed
algorithm MS-FEMBOA showed 0.0047 as
failure probability. When the number of resources
is 100, PSO exhibited 0.0042 as failure
probability, MOPSO 0.0035 and proposed
algorithm MS-FEMBOA achieved 0.0022. From
the results, it is observed that MS-FEMBOA
outperforms the existing methods in terms of
failure probability rate.

Table 4: Failure Probability Rate Of Scheduling
Methods Against Number Of Tasks

Number
of Tasks

Failure Probability Rate
MS-

FEMBOA
PSO MOPSO

10 0.0019 0.0021 0.0025
20 0.0023 0.0028 0.0027
30 0.0026 0.0029 0.0026
40 0.0027 0.0031 0.0028
50 0.0028 0.0037 0.0036
60 0.0029 0.0038 0.0037
70 0.0032 0.0041 0.0039
80 0.0033 0.0043 0.0041
90 0.0034 0.0045 0.0043
100 0.0035 0.0048 0.0045

As presented in Table 4, failure probability rate of
different scheduling methods is provided against
number of tasks.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

10 30 50 70 90

Fa
ilu

re
 P

ro
ba

bi
lit

y
Ra

te

Number of Resources

MS-
FEMBOA

PSO

MOPSO

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2190

Figure 5: Comparison Of Failure Probability Rate Of
Scheduling Methods Against Number Of Tasks

As presented in Figure 5, performance of different
methods used for task scheduling is provided in
terms of failure probability rate against number of
tasks. The less value for this measure indicates
better performance. There are 10 experiments
made with different number of tasks starting with
10 and incremented by 10 each time reaching up
to 100 tasks. An important observation is that
number of tasks has its impact on failure
probability. As the number of tasks increases, the
failure probability is linearly increased. When
number of tasks is 10, PSO exhibited 0.0021 as
failure probability, MOPSO 0.0025 and proposed
algorithm MS-FEMBOA showed 0.0019 as
failure probability. When the number of tasks is
100, PSO exhibited 0.0048 as failure probability,
MOPSO 0.0045 and proposed algorithm MS-
FEMBOA achieved 0.0035. From the results, it is
observed that MS-FEMBOA outperforms the
existing methods in terms of failure probability
rate against number of tasks.

Table 5: Convergence Of Different Methods For
Makespan

Number of
Iterations

Makespan (Convergence
Speed Analysis)

MS-
FEMBOA

PSO MOPSO

0 630 795 700
200 520 635 530
400 380 635 480
600 380 600 470
800 380 600 430
1000 380 520 410
1200 380 510 410
1400 380 500 410
1600 380 500 410
1800 380 500 410
2000 380 500 410

As presented in Table 5, makespan of different
scheduling methods is provided against number of
iterations reflecting convergence speed.

Figure 6: Comparison Of Makespan Of Scheduling
Methods Against Number Of Iterations Reflecting

Convergence Speed

As presented in Figure 6, performance of different
methods used for task scheduling is provided in
terms of makespan against number of iterations.
The less value for this measure indicates better
performance. There are 11 experiments made with
different number of iterations starting with 0 and
incremented by 200 each time reaching up to 2000
iterations. An important observation is that

0

0.001

0.002

0.003

0.004

0.005

0.006

10 30 50 70 90

Fa
ilu

re
 P

ro
ba

bi
lit

y
Ra

te

Number of Tasks

MS-FEMBOA

PSO

MOPSO

0

100

200

300

400

500

600

700

800

900

0

40
0

80
0

12
00

16
00

20
00

M
ak

es
pa

n

Number of Iterations

MS-
FEMBOA

PSO

MOPSO

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2191

number of iterations has its impact on makespan.
As the number of iterations increases, the
makespan is linearly decreased. When number of
iterations is 0, PSO exhibited 795 as makespan,
MOPSO 700 and proposed algorithm MS-
FEMBOA showed 6630 makespan. When the
number of tasks is 2000, PSO exhibited 500 as
makespan, MOPSO 410 and proposed algorithm
MS-FEMBOA achieved 380. From the results, it
is observed that MS-FEMBOA outperforms the
existing methods in terms of makespan against
number of iterations reflecting its faster
convergence.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm known as
Multi-Strategy based Fuzzy Enhanced Monarch
Butterfly Optimization Algorithm (MS-
FEMB0A) for efficient task scheduling in cloud
leading to load balancing. MS-FEMB0A
considers multiple objectives and also multiple
strategies such as fuzzy, greedy and self-adaptive
towards improving search capability and
convergence speed. The design goals of the
proposed algorithm are as follows. First, to
enhance MBO functionality to leverage task
scheduling performance. Second, to improve
balance in exploration and exploitation through
self-adaptive strategy. Third, application of
greedy strategy towards faster convergence.
Fourth, the usage of fuzzy dominance approach
towards better solution selection from a set of
solutions. Simulation study made using CloudSim
framework showed that MS-FEMB0A
outperforms existing algorithms such as PSO and
MOPSO. In future we intend to explore
alternative scheduling approaches for task
scheduling and load balancing. Towards this end,
we intend to develop an evolutionary algorithm
based on stochastic systems theory that exploits
random variables involved in the cloud
infrastructure for scheduling and load balancing.

REFERENCES

[1] Boutaba, Raouf; Salahuddin, Mohammad A.;
Limam, Noura; Ayoubi, Sara; Shahriar,
Nashid; Estrada-Solano, Felipe and
Caicedo, Oscar M. (2018). A
comprehensive survey on machine learning
for networking: evolution, applications and
research opportunities. Journal of Internet
Services and Applications, 9(1), 16–.
http://doi:10.1186/s13174-018-0087-2

[2] Bali, Kavitesh Kumar; Ong, Yew-Soon;
Gupta, Abhishek and Tan, Puay Siew

(2019). Multifactorial Evolutionary
Algorithm with Online Transfer Parameter
Estimation: MFEA-II. IEEE Transactions
on Evolutionary Computation, 1–1.
http://doi:10.1109/TEVC.2019.2906927

[3] Darwish, Ashraf; Hassanien, Aboul Ella and
Das, Swagatam (2019). A survey of swarm
and evolutionary computing approaches for
deep learning. Artificial Intelligence
Review. http://doi:10.1007/s10462-019-
09719-2

[4] Drugan, Mădălina M. (2018). Reinforcement
learning versus evolutionary computation:
A survey on hybrid algorithms. Swarm and
Evolutionary Computation,
S2210650217302766–.
http://doi:10.1016/j.swevo.2018.03.011

[5] Zhao, Haitong and Zhang, Changsheng
(2020). An online-learning-based
evolutionary many-objective algorithm.
Information Sciences, 509, 1–21.
http://doi:10.1016/j.ins.2019.08.069

[6] Parisi, Luca and RaviChandran, Narrendar
(2020). Evolutionary Denoising-Based
Machine Learning for Detecting Knee
Disorders. Neural Processing Letters.
http://doi:10.1007/s11063-020-10361-1

[7] Wei, Leyi; Tang, Jijun and Zou, Quan (2016).
Local-DPP: An Improved DNA-binding
Protein Prediction Method by Exploring
Local Evolutionary Information.
Information Sciences,
S0020025516304509–.
http://doi:10.1016/j.ins.2016.06.026

[8] Assunção, Filipe; Lourenço, Nuno; Machado,
Penousal and Ribeiro, Bernardete (2018).
DENSER: deep evolutionary network
structured representation. Genetic
Programming and Evolvable Machines.
http://doi:10.1007/s10710-018-9339-y

[9] Zhang, Lu; Tan, Jianjun; Han, Dan and Zhu,
Hao (2017). From machine learning to deep
learning: progress in machine intelligence
for rational drug discovery. Drug Discovery
Today, 22(11), 1680–1685.
http://doi:10.1016/j.drudis.2017.08.010

[10] Kabra, Ritika and Singh, Shailza (2021).
Evolutionary artificial intelligence based
peptide discoveries for effective Covid-19
therapeutics. Biochimica et Biophysica Acta
(BBA) - Molecular Basis of Disease,
1867(1), 165978–.
http://doi:10.1016/j.bbadis.2020.165978

[11] Sahoo, Kshira Sagar; Tripathy, Bata Krishna;
Naik, Kshirasagar; Ramasubbareddy,

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2192

Somula; Balusamy, Balamurugan; Khari,
Manju and Burgos, Daniel (2020). An
Evolutionary SVM Model for DDOS Attack
Detection in Software Defined Networks.
IEEE Access, 8, 132502–132513.
http://doi:10.1109/ACCESS.2020.3009733

[12] Aziza, Hatem and Krichen, Saoussen (2020).
A hybrid genetic algorithm for scientific
workflow scheduling in cloud environment.
Neural Computing and Applications.
http://doi:10.1007/s00521-020-04878-8

[13] Ismayilov, Goshgar and Topcuoglu, Haluk
Rahmi (2020). Neural network based multi-
objective evolutionary algorithm for
dynamic workflow scheduling in cloud
computing. Future Generation Computer
Systems, 102, 307–322.
http://doi:10.1016/j.future.2019.08.012

[14] Pławiak, Paweł (2017). Novel Methodology
of Cardiac Health Recognition Based on
ECG Signals and Evolutionary-Neural
System. Expert Systems with Applications,
S0957417417306292–.
http://doi:10.1016/j.eswa.2017.09.022

[15] Onan, Aytuğ; Korukoğlu, Serdar and Bulut,
Hasan (2017). A hybrid ensemble pruning
approach based on consensus clustering and
multi-objective evolutionary algorithm for
sentiment classification. Information
Processing & Management, 53(4), 814–833.
http://doi:10.1016/j.ipm.2017.02.008

[16] Jin, Yaochu; Wang, Handing; Chugh, Tinkle;
Guo, Dan and Miettinen, Kaisa (2018).
Data-Driven Evolutionary Optimization: An
Overview and Case Studies. IEEE
Transactions on Evolutionary Computation,
1–1.
http://doi:10.1109/TEVC.2018.2869001

[17] Hu, Ya-Lan and Chen, Liang (2018). A
nonlinear hybrid wind speed forecasting
model using LSTM network, hysteretic
ELM and Differential Evolution algorithm.
Energy Conversion and Management, 173,
123–142.
http://doi:10.1016/j.enconman.2018.07.070

[18] Peng, Lu; Liu, Shan; Liu, Rui and Wang, Lin
(2018). Effective Long short-term Memory
with Differential Evolution Algorithm for
Electricity Price Prediction. Energy,
S0360544218308727–.
http://doi:10.1016/j.energy.2018.05.052

[19] Wang, Handing; Jin, Yaochu; Sun, Chaoli
and Doherty, John (2018). Offline Data-
Driven Evolutionary Optimization Using

Selective Surrogate Ensembles. IEEE
Transactions on Evolutionary Computation,
1–1.
http://doi:10.1109/TEVC.2018.2834881

[20] Tuan, Tong Anh; Long, Hoang Viet; Son, Le
Hoang; Kumar, Raghvendra; Priyadarshini,
Ishaani and Son, Nguyen Thi Kim (2019).
Performance evaluation of Botnet DDoS
attack detection using machine learning.
Evolutionary Intelligence.
http://doi:10.1007/s12065-019-00310-w

[21] Faris, Hossam; Al-Zoubi, Ala’ M.; Heidari,
Ali Asghar; Aljarah, Ibrahim; Mafarja,
Majdi; Hassonah, Mohammad A. and Fujita,
Hamido (2018). An Intelligent System for
Spam Detection and Identification of the
most Relevant Features based on
Evolutionary Random Weight Networks.
Information Fusion, S1566253518303968–.
http://doi:10.1016/j.inffus.2018.08.002

[22] J. Carrasco, S. García, M.M. Rueda, S. Das
and F. Herrera. (2020). Recent trends in the
use of statistical tests for comparing swarm
and evolutionary computing algorithms:
Practical guide. Elsevier. 54, pp.1-52.
https://doi.org/10.1016/j.swevo.2020.10066
5

[23] Praveen Kumar, D.; Amgoth, Tarachand and
Annavarapu, Chandra Sekhara Rao (2019).
Machine learning algorithms for wireless
sensor networks: A survey. Information
Fusion, 49, 1–25.
http://doi:10.1016/j.inffus.2018.09.013

[24] Abba, S.I.; Hadi, Sinan Jasim; Sammen,
Saad Sh.; Salih, Sinan Q.; Abdulkadir, R.A.;
Pham, Quoc Bao; Yaseen, Zaher Mundher
(2020). Evolutionary computational
intelligence algorithm coupled with self-
tuning predictive model for water quality
index determination. Journal of Hydrology,
587(), 124974–.
doi:10.1016/j.jhydrol.2020.124974

[25] Ben Chaabene, Wassim; Flah, Majdi and
Nehdi, Moncef L. (2020). Machine learning
prediction of mechanical properties of
concrete: Critical review. Construction and
Building Materials, 260, 119889–.
http://doi:10.1016/j.conbuildmat.2020.1198
89

[26] Heaton, Jeff (2017). Ian Goodfellow, Yoshua
Bengio, and Aaron Courville: Deep
learning. Genetic Programming and
Evolvable Machines, s10710-017-9314-z–.
http://doi:10.1007/s10710-017-9314-z

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2193

[27] Feng, Liang; Zhou, Lei; Zhong, Jinghui;
Gupta, Abhishek; Ong, Yew-Soon; Tan,
Kay-Chen and Qin, A. K. (2018).
Evolutionary Multitasking via Explicit
Autoencoding. IEEE Transactions on
Cybernetics, 1–14.
http://doi:10.1109/TCYB.2018.2845361

[28] Wu, Xueqi and Che, Ada (2018). A memetic
differential evolution algorithm for energy-
efficient parallel machine scheduling.
Omega, S0305048317307922–.
http://doi:10.1016/j.omega.2018.01.001

[29] Preksha Pareek and Ankit Thakkar; (2021).
RGB-D based human action recognition
using evolutionary self-adaptive extreme
learning machine with knowledge-based
control parameters . Journal of Ambient
Intelligence and Humanized Computing.
http://doi:10.1007/s12652-021-03348-w

[30] Su, Jiawei; Vargas, Danilo Vasconcellos and
Sakurai, Kouichi (2019). One Pixel Attack
for Fooling Deep Neural Networks. IEEE
Transactions on Evolutionary Computation,
1–1.
http://doi:10.1109/TEVC.2019.2890858

[31] Shi, Han; Liu, Simin; Chen, Junqi; Li, Xuan;
Ma, Qin and Yu, Bin (2018). Predicting
drug-target interactions using Lasso with
random forest based on evolutionary
information and chemical structure.
Genomics, S088875431830466X–.
http://doi:10.1016/j.ygeno.2018.12.007

[32Fernandez, Alberto; Herrera, Francisco;
Cordon, Oscar; Jose del Jesus, Maria and
Marcelloni, Francesco (2019). Evolutionary
Fuzzy Systems for Explainable Artificial
Intelligence: Why, When, What for, and
Where to?. IEEE Computational
Intelligence Magazine, 14(1), 69–81.
http://doi:10.1109/MCI.2018.2881645

[33] Chen, Wei; Panahi, Mahdi; Tsangaratos,
Paraskevas; Shahabi, Himan; Ilia, Ioanna;
Panahi, Somayeh; Li, Shaojun; Jaafari,
Abolfazl and Ahmad, Baharin Bin (2019).
Applying population-based evolutionary
algorithms and a neuro-fuzzy system for
modeling landslide susceptibility.
CATENA, 172, 212–231.
http://doi:10.1016/j.catena.2018.08.025

[34] Vivekanandan, T. and Sriman Narayana
Iyengar, N. Ch (2017). Optimal feature
selection using a modified differential
evolution algorithm and its effectiveness for
prediction of heart disease. Computers in
Biology and Medicine, 90, 125–136.

http://doi:10.1016/j.compbiomed.2017.09.0
11

[35] Jiménez, F.; Sánchez, G.; García, J.M.;
Sciavicco, G. and Miralles, L. (2017).
Multi-objective evolutionary feature
selection for online sales forecasting.
Neurocomputing, 234, 75–92.
http://doi:10.1016/j.neucom.2016.12.045

[36] Taradeh, Mohammad; Mafarja, Majdi;
Heidari, Ali Asghar; Faris, Hossam;
Aljarah, Ibrahim; Mirjalili, Seyedali and
Fujita, Hamido (2019). An Evolutionary
Gravitational Search-based Feature
Selection. Information Sciences,
S0020025519304414–.
http://doi:10.1016/j.ins.2019.05.038

[37] Pan, Linqiang; He, Cheng; He, Cheng; Tian,
Ye; Wang, Handing; Zhang, Xingyi and Jin,
Yaochu (2018). A Classification Based
Surrogate-Assisted Evolutionary Algorithm
for Expensive Many-Objective
Optimization. IEEE Transactions on
Evolutionary Computation, 1–1.
http://doi:10.1109/TEVC.2018.2802784

[38] Kumar, Jitendra and Singh, Ashutosh Kumar
(2018). Workload prediction in cloud using
artificial neural network and adaptive
differential evolution. Future Generation
Computer Systems, 81, 41–52.
http://doi:10.1016/j.future.2017.10.047

[39] Yang, Li and Shami, Abdallah (2020). On
Hyperparameter Optimization of Machine
Learning Algorithms: Theory and Practice.
Neurocomputing, S0925231220311693–.
http://doi:10.1016/j.neucom.2020.07.061

[40] Yunlang Xu; Xiaofeng Yang; Zhile Yang;
Xiaoping Li; Pang Wang; Runze Ding and
Weike Liu; (2021). An enhanced differential
evolution algorithm with a new
oppositional-mutual learning strategy .
Neurocomputing.
http://doi:10.1016/j.neucom.2021.01.003

[41] Wang, G.G.; Deb, S.; Cui, Z. Monarch
Butterfly Optimization. Neural Comput.
Appl. 2015.

[42] Palos-Sanchez, P.R.; Arenas-Marquez, F.J.;
Aguayo-Camacho, M. Cloud Computing
(SaaS) Adoption as a Strategic Technology:
Results of an Empirical Study. Mob. Inf.
Syst. 2017, 2017.

[43] Strumberger, I.; Tuba, E.; Bacanin, N.; Beko,
M.; Tuba, M. Monarch butterfly
optimization algorithm for localization in
wireless sensor networks. In Proceedings of
the 2018 28th International Conference

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2194

Radioelektronika
(RADIOELEKTRONIKA), Prague, Czech
Republic, 19–20 April 2018; pp. 1–6.

[44] Calheiros, R.N.; Ranjan, R.; Beloglazov, A.;
De Rose, C.A.F.; Buyya, R. CloudSim: A
Toolkit for Modeling and Simulation of
Cloud Computing Environments and
Evaluation of Resource Provisioning
Algorithms. Softw. Pract. Exp. 2011, 41,
23–50.

[45] M. Sivaram, D. Yuvaraj, A. S. Mohammed,
V. Manikandan, V. Porkodi et al.,
“Improved enhanced DBTMA with
contention-aware admission control to
improve the network performance in
MANET S,” computers, Materials &
Continua, vol. 60, no. 2, pp. 435W54, 2019.

[46] V. Manikandan, M. Sivaram, A. S.
Mohammed and V. Porkodi, “Nature
inspired improved firefly a lgorithm for
node clustering in WSNs,” computers,
Materials & Continua, vol. 64, no. 2, pp.
753-7 76, 2020.

[47] Huang, X., Li, C., Chen, H. et al. Task
scheduling in cloud computing using
particle swarm optimization with time
varying inertia weight strategies. Cluster
Comput 23, 1137–1147 (2020).
https://doi.org/10.1007/s10586-019-02983-
5

[48] Alkayal, Entisar S.; Jennings, Nicholas R.;
Abulkhair, Maysoon F. (2016). 2016 IEEE
41st Conference on Local Computer
Networks Workshops (LCN Workshops) -
Efficient Task Scheduling Multi-Objective
Particle Swarm Optimization in Cloud
Computing. , (), 17–24.
doi:10.1109/LCN.201 6.024

