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ABSTRACT 
 
The fast-changing world of fog-cloud computing poses various challenges and opportunities, especially in 
terms of optimizing resources, adaptability, and system efficiency. Reinforcement Learning (RL) is a 
powerful tool to tackle these challenges due to its ability to learn and adjust from interactions. This article 
explores the different RL algorithms, emphasizing their distinct strengths, weaknesses, and practical 
implications in fog-cloud environments. We present a comprehensive comparative analysis, from the 
deterministic nature of Q-Learning to the scalability of DQN and the adaptability of PPO, providing insights 
that can assist both practitioners and researchers. Additionally, we discuss the ethical considerations, real-
world applicability, and scalability challenges associated with deploying RL in fog-cloud systems. In 
conclusion, while integrating RL in fog-cloud computing shows promise, it requires a comprehensive, 
interdisciplinary approach to ensure that advancements are ethical, efficient, and beneficial for everyone. 

Keywords: Fog-Cloud Computing, Q-Learning, Deep Deterministic Policy Gradient (DDPG), Proximal 
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1. INTRODUCTION  
 

We are living in a time where data 
generation has reached unprecedented levels, largely 
due to the widespread use of Internet of Things (IoT) 
devices. These devices range from smart homes and 
wearables to industrial sensors and urban 
infrastructure, and they are drastically changing the 
way we interact with the world [1]. The continuous 
flow of data from these devices requires efficient 
processing mechanisms to extract meaningful 
insights in real-time. Historically, cloud computing 
has been the backbone of data processing, providing 
centralized solutions with substantial computational 
power. However, as the number of IoT devices grew, 
it became clear that the traditional cloud-centric 
model had its limitations. The primary challenge was 
latency. Transmitting data from edge devices to 
distant cloud data centers introduced significant 
delays, making real-time processing difficult [2]. 
Additionally, the large volume of data generated at 
the edge overwhelmed network bandwidth, leading 
to congestion and further delays [3]. Now, fog-cloud 
computing has emerged as a paradigm shift that 

promises to revolutionize data processing in the IoT 
ecosystem. Fog-cloud computing decentralizes data 
processing and brings computational resources 
closer to the data source, effectively reducing latency 
and ensuring real-time or near-real-time processing 
[4]. This approach not only improves the 
responsiveness of IoT applications but also reduces 
the load on core networks, leading to more efficient 
bandwidth utilization [5]. However, transitioning 
from a centralized to a decentralized model is not 
without its challenges. Fog-cloud computing 
introduces complexities related to dynamic resource 
management, task scheduling, energy optimization, 
and fault tolerance [6]. These challenges are 
compounded by the inherent variability and 
unpredictability of fog nodes, which can range from 
powerful edge servers to resource-constrained 
devices [7]. 

Recently, Reinforcement Learning (RL) has 
emerged as a promising solution to address these 
challenges. RL, a type of machine learning, learns by 
interaction. Agents in RL environments 
continuously adapt their strategies based on 
feedback, making them particularly suited for the 
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dynamic and ever-evolving landscape of fog-cloud 
computing [8]. Early studies suggest that RL-based 
algorithms can optimize task scheduling, reduce 
energy consumption, and improve fault tolerance in 
fog-cloud environments [9]. Despite the potential of 
RL in fog-cloud computing, there is a significant gap 
in the literature. While many studies have explored 
specific RL algorithms, there is a lack of 
comprehensive research comparing the performance, 
adaptability, and efficiency of various RL-based 
approaches in fog-cloud scenarios. This paper aims 
to fill this gap by providing a detailed comparative 
analysis that will serve as a foundation for future 
research and practical implementations. The 
significance of this research cannot be overstated. As 
the world becomes increasingly interconnected, with 
billions of IoT devices coming online, the need for 
efficient, responsive, and robust data processing 
mechanisms will continue to grow. By shedding 
light on the strengths and weaknesses of various RL-
based algorithms in fog-cloud computing, this paper 
aims to guide researchers, practitioners, and industry 
stakeholders in their quest for optimal solutions. 

 The remainder of this paper is structured as 
follows: Section 2 provides a background on RL and 
its applications in fog-cloud computing. Section 3 
details the various RL-based algorithms considered 
in this study. Section 4 outlines the evaluation 
metrics, followed by the comparative analysis in 
Section 5. We conclude with a discussion and future 
research directions in Sections 6 and 7, respectively. 
 
2. BACKGROUND  

Over the past twenty years, there has been 
a significant change in how data is processed and 
stored. At first, cloud computing was a 
revolutionary solution that allowed for centralized 
data storage and processing in large data centers 
[10]. This model worked well for applications that 
did not require real-time processing. However, with 
the rise of IoT devices, the need for real-time or 
near-real-time data processing has become a top 
priority. Sending data from edge devices to 
centralized cloud data centers resulted in latency 
issues, making the traditional cloud model less 
practical for many IoT applications [11]. 

In response to these challenges, fog-cloud 
computing was developed. By decentralizing data 
processing and bringing computational resources 
closer to the data source, fog-cloud computing 
effectively bridged the gap between edge devices 
and centralized cloud resources [12]. This shift was 

not just a technological evolution but also a 
conceptual one that highlighted the importance of 
processing data where it was created [13]. 

 
2.1 Fundamental Principles of Fog-Cloud 
Computing 
Fog-cloud computing operates on several core 
principles: 

 Decentralization: Unlike traditional cloud 
computing, which centralizes data 
processing in large data centers, fog-cloud 
computing distributes processing across 
multiple nodes closer to the data source 
[14]. 

 Low Latency: By processing data closer to 
its source, fog-cloud computing 
significantly reduces transmission delays, 
ensuring real-time or near-real-time 
processing [15]. 

 Scalability: Fog-cloud architectures are 
inherently scalable, allowing for the 
seamless addition of new nodes as the 
network grows [16]. 

 Efficiency: By reducing the load on core 
networks and optimizing bandwidth 
utilization, fog-cloud computing enhances 
overall system efficiency [17]. 

2.2 Reinforcement Learning: An Overview 
Reinforcement Learning (RL) is a type of machine 
learning where agents learn by interacting with their 
environment. Unlike supervised learning, where 
models are trained on labelled data, RL operates in 
an environment where the correct decision or action 
is not explicitly known. Instead, agents take action, 
receive feedback through rewards or penalties, and 
adjust their strategies accordingly [18]. 

The fundamental components of RL according to 
[19] include: 

 Agent: The decision-maker that interacts 
with the environment. 

 Environment: The external system with 
which the agent interacts. 

 State: A representation of the environment 
at a given time. 
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 Action: A decision or move made by the 
agent. 

 Reward: Feedback received by the agent 
after acting in a particular state. 

The goal of the agent is to maximize the cumulative 
reward over time, which it achieves by exploring 
various actions, learning from the feedback, and 
refining its strategy. 

2.3 RL in Fog-Cloud Computing 
The dynamic and decentralized nature of fog-cloud 
computing presents unique challenges, making 
traditional algorithmic solutions less effective. RL, 
with its ability to adapt and learn from interactions, 
has shown significant promise in this domain [20] 

Several studies have explored the application of RL 
in fog-cloud scenarios, including: 

 Task Scheduling: Using RL to determine 
the optimal node for processing a given 
task, considering factors like 
computational power, energy 
consumption, and current load [21]. 

 Resource Allocation: Dynamically 
allocating resources based on current 
demand and system constraints using RL-
based strategies [22]. 

 Fault Tolerance: Implementing RL-based 
mechanisms to detect, predict, and 
mitigate faults in fog-cloud systems [23]. 

2.4 Challenges in Integrating RL with Fog-
Cloud Computing 

While RL offers numerous advantages, its 
integration with fog-cloud computing is not 
straightforward. Challenges include: 

 Sparse Rewards: In many fog-cloud 
scenarios, feedback (rewards) may be 
infrequent, making it challenging for RL 
agents to learn effectively [24]. 

 Continuous State and Action 
Spaces: Fog-cloud environments often 
have continuous state and action spaces, 
complicating the RL problem [25]. 

 Dynamic Environments: The ever-
changing nature of fog-cloud systems, 

with nodes joining or leaving the network, 
introduces additional complexities [26]. 

Despite these challenges, the potential benefits of 
integrating RL with fog-cloud computing are 
immense, making it a research area of significant 
interest and importance. 

 
3. RL-BASED ALGORITHMS FOR FOG-

CLOUD COMPUTING 
 

In the dynamic landscape of fog-cloud computing, 
the need for adaptive and efficient resource 
management is paramount. Reinforcement Learning 
(RL) offers a promising avenue, with algorithms 
tailored to learn and optimize from interactions 
within such environments. This section delves into 
various RL algorithms, highlighting their 
applicability, unique features, and implementation 
nuances in the context of fog-cloud computing. 
3.1 Algorithm A: Q-Learning for Task 

Scheduling 
Description: 
Q-Learning, a foundational model-free RL 
algorithm, has been widely adopted in various 
domains due to its simplicity and effectiveness. In 
the context of fog-cloud computing, Q-Learning can 
be tailored for task scheduling, determining the 
optimal node for processing a given task based on 
the current state of the system and historical data. 

Implementation Details: 
The core of Q-Learning revolves around the Q-
table, a matrix where each entry Q(s, a) represents 
the expected future reward of taking action a in 
state s. The Q-values are updated iteratively using 
the Bellman Equation (1): 

 

𝑄(𝑆, 𝑎) = (1 − 𝑎) × 𝑄(𝑠, 𝑎)  + 𝛼 × 𝑟 + 𝛾 ×

𝑚𝑎𝑥  𝑄(𝑠 , 𝑎)                                       (1) 

Where: 

 𝛼 is the learning rate, determining the 
weight given to the new update. 

 𝛾 is the discount factor, which models the 
agent's consideration for future rewards. 

 𝑟  is the immediate reward received after 
taking action a in state s. 
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 �́� is the subsequent state after taking action 
a. 

The Q-table is initialized with arbitrary values, and 
as the agent interacts with the environment, it 
updates the Q-values based on the received 
rewards, gradually converging to the optimal 
policy. 

Unique Features: 

1. Model-free Nature: Q-Learning doesn't 
rely on a predefined model of the 
environment's dynamics, granting it 
versatility and adaptability across various 
fog-cloud computing scenarios. 

2. Exploration vs. Exploitation: Through 
techniques like ε-greedy, Q-Learning 
ensures a balance between exploring new 
actions and exploiting known beneficial 
actions, making it adept at decision-making 
in dynamic environments. 

3. Convergence Guarantee: Q-Learning 
offers a theoretical assurance of converging 
to the optimal policy, provided specific 
conditions, such as ensuring every state-
action pair is visited infinitely often [27]. 

4. Adaptability in Dynamic 
Environments: The model-free nature of 
Q-Learning allows it to readily adapt to 
changes in the environment, making it 
suitable for the ever-evolving landscape of 
fog-cloud systems. 

5. Balanced Decision-making: The ε-greedy 
approach in Q-Learning facilitates a 
balance between exploration and 
exploitation, ensuring efficient learning and 
decision-making. 

6. Stability in Learning: With its 
convergence guarantee, Q-Learning 
ensures that the Q-values stabilize over 
time, leading to consistent and reliable 
decision-making in fog-cloud systems. 

3.2 Algorithm D: DQN (Deep Q-Network) for 
Load Balancing Description: 
DQN is an extension of Q-Learning that employs 
deep neural networks to approximate the Q-value 

function. This allows it to handle high-dimensional 
state spaces efficiently. 

Implementation Details: 

Instead of a Q-table, DQN uses a neural network to 
estimate Q-values. The network is trained to 
minimize the difference between the predicted Q-
value and the target Q-value (derived from the 
Bellman equation). Experience replay, where the 
algorithm stores past experiences and samples from 
them for training, and target networks, which 
stabilize the training process, are key components of 
DQN. The loss function for DQN is given by 
Equation (2): 

𝐿(𝜃)  =  𝔼 , , , ~ ( ) 𝑟 +

𝛾  𝑄(𝑠  , 𝑎 ; 𝜃 )  − 𝑄(𝑠, 𝑎; 𝜃)                                 

(2) 

Where: 

 θ are the parameters of the primary Q-
network. 

 𝜃  are the parameters of the target Q-
network. 

 𝐷 is the experience replay buffer. 

 𝑈(𝐷) represents a uniform random sample 
from the buffer. 

Unique Features: 

1. Deep Neural Network Approximation: 
Unlike traditional Q-Learning that uses a 
table to store Q-values, DQN employs deep 
neural networks to approximate the Q-
value function. This allows it to handle 
high-dimensional state spaces, making it 
scalable for complex environments. 

2. Experience Replay: DQN introduces the 
concept of experience replay, where it 
stores past experiences (state, action, 
reward, next state) in a replay buffer. 
During training, it samples mini-batches 
from this buffer to update the network. This 
mechanism breaks the correlation between 
consecutive experiences, stabilizing the 
training process and improving data 
efficiency. 
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3. Target Network: DQN uses a separate 
target network to compute the target Q-
values during training. This network's 
weights are periodically updated with the 
primary network's weights. The target 
network stabilizes the learning process by 
providing fixed Q-value targets for a set 
number of updates. 

4. Clip Rewards and Normalize Frames: In 
specific implementations, especially for 
tasks like game playing, DQN clips rewards 
to a fixed range (e.g., -1 to 1) to ensure 
stable training dynamics. Additionally, 
input frames (like game screens) are often 
normalized, ensuring consistent input data 
scales. 

5. Double DQN Extension: To address the 
overestimation bias of Q-values in DQN, 
the Double DQN (DDQN) variant was 
introduced. DDQN decouples the action 
selection from Q-value estimation, leading 
to more accurate Q-value predictions and 
improved performance. 

6. Dueling Architecture: Another variant of 
DQN, the Dueling DQN, employs a 
specialized network architecture that 
separately estimates the state value and the 
advantage of each action. This separation 
allows for a more nuanced Q-value 
estimation, especially in scenarios where 
the action choice doesn't significantly affect 
the outcome. 

 

3.3 Algorithm B: Deep Deterministic Policy 
Gradient (DDPG) for Resource Allocation 
Description: 
DDPG, an off-policy actor-critic algorithm, is 
designed for environments with continuous action 
spaces. Its application in fog-cloud computing can 
be particularly beneficial for resource allocation, 
where decisions often lie in a continuous domain, 
such as allocating a specific amount of bandwidth or 
computational power. 

Implementation Details: 
DDPG employs two neural networks: the actor-
network, which determines the optimal action, and 
the critic network, which evaluates the quality of the 

action taken by the actor. The actor-network is 
defined by: 

𝜇(𝑠 ∣ 𝜃 ) 

Where 𝜃  are the parameters of the actor-network. 
The critic network estimates the Q-value of the taken 
action: 

𝑄(𝑆, 𝑎 ∣ 𝜃 ) 

Where 𝜃  are the parameters of the critic network. 

The critic is trained using the Bellman equation, 
similar to Q-Learning, while the actor is trained 
using the policy gradient derived from the critic's 
output. 

Unique Features: 

1. Continuous Action Spaces: DDPG's 
design for continuous action environments 
makes it adaptable for fog-cloud computing 
tasks like resource allocation [28]. 

2. Actor-Critic Architecture: The dual 
network setup of DDPG ensures a balance 
between action selection and evaluation, 
enhancing training stability [29]. 

3. Experience Replay: DDPG's use of a 
replay buffer boosts data efficiency and 
training stability, ensuring robustness in 
dynamic environments. 

4. Off-Policy Learning: DDPG's ability to 
learn from past experiences allows efficient 
data utilization and adaptability. 

5. Optimization in Continuous 
Domains: DDPG's operation in continuous 
action spaces makes it suitable for tasks 
requiring granular control in fog-cloud 
computing. 

6. Neural Network-Based 
Estimation: DDPG's use of neural 
networks for both actor and critic allow 
scalability in high-dimensional spaces, 
making it versatile for complex scenarios 
[30]. 
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3.4 Algorithm C: Proximal Policy Optimization 
(PPO) for Fault Tolerance 
Description: 
PPO, a state-of-the-art policy optimization 
algorithm, has gained popularity due to its 
effectiveness and stability across a wide range of 
environments. In fog-cloud computing, PPO can be 
instrumental in enhancing fault tolerance, ensuring 
that the system remains robust and adaptive in the 
face of unexpected challenges. 

Implementation Details: 
PPO modifies the standard policy gradient objective 
to prevent large policy updates, which can 
destabilize training. The objective function is given 
by Equation (3): 

𝐿(𝜃) =

𝑚𝑖𝑛
( ∣ )

( ∣ )
𝐴  (𝑠, 𝑎), 𝑐𝑙𝑖𝑝

( ∣ )

( ∣ )
, 1 −

𝜖, 1 + 𝜖 𝐴 (𝑠, 𝑎)                         (3) 

Where: 

 𝜋  is the policy parameterized by 𝜃. 

 𝐴  is the advantage function under the 
old policy. 

 𝜖 is a hyperparameter that determines the 
degree of clipping. 

The clipping mechanism ensures that the policy 
updates remain within a specified range, preventing 
drastic changes that could harm performance. 

Unique Features: 

1. Stability: The implementation of the 
clipping mechanism in PPO results in a 
steady and reliable training process, 
effectively overcoming the issues faced by 
traditional policy gradient methods [31]. 

2. Simplicity and Efficiency: PPO is a 
simpler and more efficient alternative to 
trust region methods. It produces 
comparable or better results, requiring 
much less computing power [31]. 

3. Adaptability: PPO has an inherent 
adaptability that makes it suitable for fog-
cloud infrastructures, which are known for 
their constantly changing environments. 

This feature allows PPO to adjust and 
perform well even in dynamic settings [31]. 

 
4. EVALUATION METRICS 
 
When evaluating RL algorithms in the context of 
fog-cloud computing, it is essential to use a 
comprehensive set of metrics. These metrics not 
only measure the effectiveness of the algorithms but 
also highlight areas that need improvement. This 
section will discuss the key evaluation metrics 
necessary for assessing RL algorithms in fog-cloud 
computing scenarios. 
4.1 Latency 
Definition: 

Latency refers to the time taken to process a task 
from the moment it's initiated to its completion. 

Importance: 

In fog-cloud computing, where real-time or near-
real-time processing is often essential, latency 
becomes a critical metric. Lower latency ensures 
faster data processing, which is vital for applications 
like autonomous driving, real-time analytics, and 
emergency response systems. 

Measurement: 

Latency can be measured in milliseconds (ms) or 
seconds, depending on the application's 
requirements. 

4.2 Energy Consumption 
Definition: 

Energy consumption measures the amount of energy 
utilized by the fog nodes during data processing. 

Importance: 

With the proliferation of IoT devices and edge 
nodes, energy efficiency becomes paramount. 
Reducing energy consumption not only saves costs 
but also enhances the sustainability of the system, 
especially if nodes are battery-powered. 

Measurement: 

Energy consumption can be quantified in Joules (J) 
or watt-hours (WH), depending on the duration and 
intensity of the tasks. 

4.3 Fault Tolerance 
Definition: 
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Fault tolerance assesses the system's ability to 
continue functioning correctly in the presence of 
failures or faults within the system. 

Importance: 

Due to the distributed nature of fog-cloud 
computing, nodes may encounter failures caused by 
hardware malfunctions or network problems. 
Therefore, it is crucial for an RL algorithm to tackle 
these failures without compromising the overall 
system performance. 

Measurement: 

Fault tolerance can be measured as a percentage, 
representing the system's uptime or the number of 
successfully processed tasks despite node failures. 

4.4 Adaptability 
Definition: 

The adaptability of an algorithm refers to its capacity 
to adapt to changes in the system dynamics or the 
environment. 

Importance: 

In fog-cloud environments, the nodes are constantly 
joining or leaving, the workload keeps changing, and 
the network conditions are never static. Therefore, it 
is crucial for RL algorithms to be able to adapt to 
these changes so that they can deliver consistent 
performance while utilizing resources optimally. 

Measurement: 

Adaptability can be assessed qualitatively through 
scenarios or test cases that introduce changes to the 
environment. Alternatively, it can be quantified by 
measuring the algorithm's performance deviation 
before and after the introduced changes. 

4.5 Task Throughput 
Definition: 

Task throughput measures the number of tasks 
processed per unit of time. 

Importance: 

In high-demand scenarios, the ability of the system 
to handle a large number of tasks efficiently is 
crucial. Higher throughput indicates better system 
efficiency and resource utilization. 

Measurement: 

Throughput can be measured in tasks per second 
(TPS) or tasks per minute (TPM), depending on the 
system's scale and the granularity of the tasks. 

4.6 Resource Utilization 
Definition: 

Resource utilization evaluates how effectively the 
computational resources (like CPU, memory, and 
bandwidth) of the fog nodes are used. 

Importance: 

Optimal resource utilization ensures that no node is 
underutilized or overburdened, leading to balanced 
system performance and prolonged hardware 
lifespan. 

Measurement: 

Resource utilization can be quantified as a 
percentage, indicating the proportion of the resource 
used compared to its total availability. 

In conclusion, these evaluation metrics provide a 
holistic view of the RL algorithm's performance in 
fog-cloud computing environments. By considering 
these metrics, researchers and practitioners can make 
informed decisions, refine their algorithms, and 
ensure that the systems meet the desired 
performance standards. 

 
5.  COMPARATIVE ANALYSIS 
 
There are many different RL algorithms that are 
designed specifically for fog-cloud computing. To 
determine which algorithm will work best for a 
particular application, it's important to do a thorough 
comparative analysis. In this section, we will 
examine the performance, adaptability, efficiency, 
and fault tolerance of various RL algorithms and 
discuss their strengths, weaknesses, and potential 
uses. 
 5.1 Performance 
Performance is usually the primary metric of interest 
when evaluating algorithms. It measures how well 
an algorithm performs based on predefined metrics 
such as latency, task throughput, and energy 
consumption. 

 Q-Learning: is a method that uses tables 
and is known for its quick convergence in 
smaller state-action spaces, resulting in 
reduced latency. However, in larger and 
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more complex environments, its 
performance may decrease due to the curse 
of dimensionality. 

 DQN: With the use of its deep neural 
network, DQN is capable of efficiently 
managing complex tasks that involve high-
dimensional state spaces. This makes it a 
desirable option for intricate fog-cloud 
computing scenarios. 

 DDPG: With its continuous action space 
optimization, DDPG often outperforms in 
scenarios demanding fine-grained resource 
allocation, ensuring optimal task 
throughput and energy efficiency. 
However, its reliance on neural networks 
might introduce slight latency in decision-
making. 

 PPO: When it comes to fog-cloud 
scenarios, PPO is known for its stability 
and consistent performance. The balance 
between exploration and exploitation 
allows for optimal latency and energy 
consumption metrics. The clipped objective 
function is a key factor in achieving these 
results. 

5.2 Adaptability 
In the ever-evolving landscape of fog-cloud 
computing, the ability of an algorithm to adapt to 
changing conditions is paramount. 

 Q-Learning: While Q-Learning can adapt 
to changes, its table-based nature might 
make it slower to respond to drastic shifts 
in the environment, especially if the Q-table 
is large. 

 DQN: The neural network in DQN allows 
it to generalize across states, making it 
adaptable to changing conditions. 
However, it might require retraining if the 
changes are drastic. 

 DDPG: The actor-critic architecture of 
DDPG allows it to swiftly adapt to changes. 
The actor, guided by the critic, can quickly 
adjust its policy to accommodate new 
environmental dynamics. 

 PPO: PPO's adaptability is one of its 
hallmarks. The algorithm's objective 

function, designed to prevent large policy 
updates, ensures that the agent remains 
adaptable without making drastic, 
potentially harmful changes to its policy. 

 

5.3 Efficiency 
Efficiency encompasses both resource consumption 
and computational overhead, determining the 
feasibility of deploying an algorithm in resource-
constrained fog nodes. 

 Q-Learning: Q-Learning, being a simpler 
algorithm, often has lower computational 
overhead. However, in large state-action 
spaces, the memory requirement for the Q-
table can become a bottleneck. 

 DQN: While DQN can handle larger state 
spaces than traditional Q-Learning, its 
reliance on deep neural networks increases 
computational overhead, especially during 
training. 

 DDPG: DDPG's neural network-based 
approach can be computationally intensive, 
especially during training. However, once 
trained, the actor network's forward pass to 
determine actions is relatively efficient. 
Memory consumption, primarily due to the 
replay buffer, can be significant but is 
manageable with efficient data structures. 

 PPO: PPO strikes a balance between 
computational and memory efficiency. 
While it employs neural networks like 
DDPG, its simpler objective function often 
leads to faster convergence and reduced 
training overhead. 

5.4 Fault Tolerance 
In distributed systems like fog-cloud computing, 
failures are unavoidable. The resilience of an 
algorithm in the face of such challenges determines 
its robustness and reliability. 

 Q-Learning: Q-Learning's deterministic 
nature can be a double-edged sword. While 
it ensures consistent decision-making, it 
might struggle in the face of unexpected 
system failures, unless explicitly trained for 
such scenarios. 
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 DQN: experience replay mechanism allows 
it to learn from past mistakes, enhancing its 
fault tolerance. However, like other RL 
algorithms, it's only as robust as the range 
of experiences it has been exposed to. 

 DDPG: DDPG's continuous action space 
optimization allows it to find alternative 
strategies in case of node failures or 
resource constraints. The replay buffer, 
storing past experiences, can help the 
algorithm learn from previous failures and 
enhance its fault tolerance. 

 PPO: PPO's emphasis on stable and 
incremental policy updates ensures that the 
algorithm doesn't make rash decisions even 
when faced with failures. Its ability to learn 
from both positive and negative rewards 
makes it inherently fault-tolerant, as it can 
adjust its policy based on feedback from the 
environment. 

To summarize, the effectiveness of each RL 
algorithm depends on the specific needs and 
limitations of the fog-cloud computing scenario. A 
thorough comprehension of these algorithms, 
combined with extensive testing and validation, will 
enable their successful implementation in real-life 
situations. 

6. DISCUSSION  
The combination of Reinforcement Learning (RL) 
and fog-cloud computing is a merging of two 
revolutionary fields, each presenting unique 
challenges and opportunities [32]. As we delve into 
the intricacies of algorithms such as Q-Learning, 
DDPG, PPO, and DQN, it's clear that the landscape 
is varied and intricate. This discussion aims to 
provide multiple perspectives on these algorithms, 
providing valuable insights that can inform future 
research and applications. 
6.1 Strengths and Weaknesses of Each 
Algorithm: 

 Q-Learning: 

o Strengths: Simplicity, rapid 
convergence in smaller state-
action spaces, deterministic 
policy. 

o Weaknesses: Struggles with large 
state-action spaces due to the 
curse of dimensionality; table-

based approach might need to 
generalize better across states. 

 DQN: 

o Strengths: Scalability to high-
dimensional state spaces, 
experience replay stabilizes 
training, target network ensures 
consistent Q-value targets. 

o Weaknesses: Potential 
overestimation of Q-values, 
reliance on deep networks 
increases computational overhead 

 DDPG: 

o Strengths: Tailored for 
continuous action spaces, actor-
critic architecture balances action 
selection and evaluation, and 
experience replay enhances data 
efficiency. 

o Weaknesses: Reliance on neural 
networks can introduce latency, 
and might require careful 
hyperparameter tuning. 

 PPO: 

o Strengths: Stable and consistent 
training, adaptability to changing 
environments, simpler alternative 
to trust region-based methods. 

o Weaknesses: Might require more 
samples for training compared to 
other algorithms, hyperparameter 
sensitivity. 

 

6.2 Deep Dive into Algorithmic Nuances: 
Q-Learning's Deterministic Policy: Although Q-
Learning deterministic policy provides consistency, 
it may limit the algorithm's ability to explore new 
strategies, especially in dynamic fog-cloud 
environments where adaptability is essential [33]. 

DQN Scalability: DQN ability to handle high-
dimensional state spaces is impressive, but it raises 
concerns about the interpretability of its decisions, 



Journal of Theoretical and Applied Information Technology 
15th March 2024. Vol.102. No 5 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1917 

 

which is a vital aspect when deploying in critical 
applications. 

DDPG Continuous Action Space: DDPG 
optimization of continuous action space offers 
precise control, but it also presents challenges in 
terms of convergence stability, particularly in 
environments with sharp reward gradients. 

PPO Balance: PPO prioritizes stable policy 
updates, which is beneficial, but it also means the 
algorithm may be slower to adapt to sudden, 
significant changes in the environment. 

 

6.3 Practical Implications of the Findings: 
Beyond the metrics, the real-world implications of 
these algorithms are profound: 

 Infrastructure Considerations: The 
choice of algorithm can influence 
infrastructure requirements. For instance, 
DDPG and DQN, with their reliance on 
deep networks, might necessitate more 
robust computational resources, impacting 
deployment costs. 

 Adaptability in Dynamic 
Environments: In the ever-evolving 
landscape of fog-cloud computing, where 
nodes can frequently join or leave the 
network, the adaptability of algorithms like 
PPO becomes invaluable. 

 Safety and Reliability: In applications 
where safety is paramount, the 
deterministic nature of Q-Learning might 
be preferred, even if it sacrifices some level 
of optimality. 

6.4 Recommendations for Practitioners and 
Researchers: 

1. Bespoke Algorithm Design: Consider 
designing algorithms tailored to specific 
fog-cloud scenarios, leveraging the 
strengths of existing algorithms while 
mitigating their weaknesses. 

2. Ethical Considerations: As RL 
algorithms make decisions that can impact 
real-world systems, ethical considerations, 
especially in terms of fairness, 

transparency, and accountability, become 
paramount. 

3. Interdisciplinary Collaboration: Engage 
with experts from fields like distributed 
computing, network design, and ethics to 
ensure a holistic approach to RL in fog-
cloud computing. 

4. Future Directions: Explore the potential 
of combining RL with other AI domains, 
like transfer learning or meta-learning, to 
enhance the adaptability and efficiency of 
algorithms in fog-cloud environments. 

As we delve into the intricacies of RL in fog-cloud 
computing, it becomes clear that we have only just 
started our journey [34]. While there are numerous 
challenges, there are also many opportunities. By 
promoting a collaborative culture that emphasizes 
continuous learning and ethical practices, we can 
pave the way for RL's effective and responsible 
implementation in fog-cloud systems. 

7. CONCLUSION AND FUTURE WORKS  
 

In our study of Reinforcement Learning (RL) in the 
field of fog-cloud computing, we have encountered 
many complexities, challenges, and possibilities. 
There are various RL algorithms, each with unique 
strengths and weaknesses, so it's important to choose 
the appropriate one based on the context. Q-
Learning is deterministic, PPO is adaptable, and 
DQN is scalable, and each has far-reaching 
implications beyond just theoretical performance. 
As computational resources become more 
distributed and edge devices become more prevalent, 
RL's role in optimizing, enhancing, and ensuring the 
robustness of these systems becomes increasingly 
significant. 
While there are promising opportunities for the 
future, there are also challenges. The integration of 
RL in fog-cloud computing isn't just about 
algorithmic efficiency, but it also involves ethical 
considerations, real-world applicability, and 
scalability. We've made significant progress, but 
there's still a long way to go. Interdisciplinary 
collaboration, a deeper understanding of real-world 
dynamics, and a commitment to ethical and 
transparent research are essential. RL and fog-cloud 
computing offer a frontier of opportunities, but we 
must use them in a holistic, inclusive, and forward-
thinking way to transform distributed computing. 
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