
Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1908

HARNESSING REINFORCEMENT LEARNING IN FOG-
CLOUD COMPUTING: CHALLENGES, INSIGHTS, AND

FUTURE DIRECTIONS

MUSTAFA AL-HASHIMI1, AMIR RIZAAN RAHIMAN2, ABDULLAH MUHAMMED3, NOR
ASILAH WATI HAMID4

1,2,3,4 Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang

43400, Malaysia

E-mail: 1gs59883@student.upm.edu.my, 2amir_r@upm.edu.my, 3abdullah@upm.edu.my,
4asila@upm.edu.my

ABSTRACT

The fast-changing world of fog-cloud computing poses various challenges and opportunities, especially in
terms of optimizing resources, adaptability, and system efficiency. Reinforcement Learning (RL) is a
powerful tool to tackle these challenges due to its ability to learn and adjust from interactions. This article
explores the different RL algorithms, emphasizing their distinct strengths, weaknesses, and practical
implications in fog-cloud environments. We present a comprehensive comparative analysis, from the
deterministic nature of Q-Learning to the scalability of DQN and the adaptability of PPO, providing insights
that can assist both practitioners and researchers. Additionally, we discuss the ethical considerations, real-
world applicability, and scalability challenges associated with deploying RL in fog-cloud systems. In
conclusion, while integrating RL in fog-cloud computing shows promise, it requires a comprehensive,
interdisciplinary approach to ensure that advancements are ethical, efficient, and beneficial for everyone.

Keywords: Fog-Cloud Computing, Q-Learning, Deep Deterministic Policy Gradient (DDPG), Proximal
Policy Optimization (PPO), Deep Q-Network (DQN), Reinforcement Learning.

1. INTRODUCTION

We are living in a time where data
generation has reached unprecedented levels, largely
due to the widespread use of Internet of Things (IoT)
devices. These devices range from smart homes and
wearables to industrial sensors and urban
infrastructure, and they are drastically changing the
way we interact with the world [1]. The continuous
flow of data from these devices requires efficient
processing mechanisms to extract meaningful
insights in real-time. Historically, cloud computing
has been the backbone of data processing, providing
centralized solutions with substantial computational
power. However, as the number of IoT devices grew,
it became clear that the traditional cloud-centric
model had its limitations. The primary challenge was
latency. Transmitting data from edge devices to
distant cloud data centers introduced significant
delays, making real-time processing difficult [2].
Additionally, the large volume of data generated at
the edge overwhelmed network bandwidth, leading
to congestion and further delays [3]. Now, fog-cloud
computing has emerged as a paradigm shift that

promises to revolutionize data processing in the IoT
ecosystem. Fog-cloud computing decentralizes data
processing and brings computational resources
closer to the data source, effectively reducing latency
and ensuring real-time or near-real-time processing
[4]. This approach not only improves the
responsiveness of IoT applications but also reduces
the load on core networks, leading to more efficient
bandwidth utilization [5]. However, transitioning
from a centralized to a decentralized model is not
without its challenges. Fog-cloud computing
introduces complexities related to dynamic resource
management, task scheduling, energy optimization,
and fault tolerance [6]. These challenges are
compounded by the inherent variability and
unpredictability of fog nodes, which can range from
powerful edge servers to resource-constrained
devices [7].

Recently, Reinforcement Learning (RL) has
emerged as a promising solution to address these
challenges. RL, a type of machine learning, learns by
interaction. Agents in RL environments
continuously adapt their strategies based on
feedback, making them particularly suited for the

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1909

dynamic and ever-evolving landscape of fog-cloud
computing [8]. Early studies suggest that RL-based
algorithms can optimize task scheduling, reduce
energy consumption, and improve fault tolerance in
fog-cloud environments [9]. Despite the potential of
RL in fog-cloud computing, there is a significant gap
in the literature. While many studies have explored
specific RL algorithms, there is a lack of
comprehensive research comparing the performance,
adaptability, and efficiency of various RL-based
approaches in fog-cloud scenarios. This paper aims
to fill this gap by providing a detailed comparative
analysis that will serve as a foundation for future
research and practical implementations. The
significance of this research cannot be overstated. As
the world becomes increasingly interconnected, with
billions of IoT devices coming online, the need for
efficient, responsive, and robust data processing
mechanisms will continue to grow. By shedding
light on the strengths and weaknesses of various RL-
based algorithms in fog-cloud computing, this paper
aims to guide researchers, practitioners, and industry
stakeholders in their quest for optimal solutions.

 The remainder of this paper is structured as
follows: Section 2 provides a background on RL and
its applications in fog-cloud computing. Section 3
details the various RL-based algorithms considered
in this study. Section 4 outlines the evaluation
metrics, followed by the comparative analysis in
Section 5. We conclude with a discussion and future
research directions in Sections 6 and 7, respectively.

2. BACKGROUND

Over the past twenty years, there has been
a significant change in how data is processed and
stored. At first, cloud computing was a
revolutionary solution that allowed for centralized
data storage and processing in large data centers
[10]. This model worked well for applications that
did not require real-time processing. However, with
the rise of IoT devices, the need for real-time or
near-real-time data processing has become a top
priority. Sending data from edge devices to
centralized cloud data centers resulted in latency
issues, making the traditional cloud model less
practical for many IoT applications [11].

In response to these challenges, fog-cloud
computing was developed. By decentralizing data
processing and bringing computational resources
closer to the data source, fog-cloud computing
effectively bridged the gap between edge devices
and centralized cloud resources [12]. This shift was

not just a technological evolution but also a
conceptual one that highlighted the importance of
processing data where it was created [13].

2.1 Fundamental Principles of Fog-Cloud
Computing
Fog-cloud computing operates on several core
principles:

 Decentralization: Unlike traditional cloud
computing, which centralizes data
processing in large data centers, fog-cloud
computing distributes processing across
multiple nodes closer to the data source
[14].

 Low Latency: By processing data closer to
its source, fog-cloud computing
significantly reduces transmission delays,
ensuring real-time or near-real-time
processing [15].

 Scalability: Fog-cloud architectures are
inherently scalable, allowing for the
seamless addition of new nodes as the
network grows [16].

 Efficiency: By reducing the load on core
networks and optimizing bandwidth
utilization, fog-cloud computing enhances
overall system efficiency [17].

2.2 Reinforcement Learning: An Overview
Reinforcement Learning (RL) is a type of machine
learning where agents learn by interacting with their
environment. Unlike supervised learning, where
models are trained on labelled data, RL operates in
an environment where the correct decision or action
is not explicitly known. Instead, agents take action,
receive feedback through rewards or penalties, and
adjust their strategies accordingly [18].

The fundamental components of RL according to
[19] include:

 Agent: The decision-maker that interacts
with the environment.

 Environment: The external system with
which the agent interacts.

 State: A representation of the environment
at a given time.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1910

 Action: A decision or move made by the
agent.

 Reward: Feedback received by the agent
after acting in a particular state.

The goal of the agent is to maximize the cumulative
reward over time, which it achieves by exploring
various actions, learning from the feedback, and
refining its strategy.

2.3 RL in Fog-Cloud Computing
The dynamic and decentralized nature of fog-cloud
computing presents unique challenges, making
traditional algorithmic solutions less effective. RL,
with its ability to adapt and learn from interactions,
has shown significant promise in this domain [20]

Several studies have explored the application of RL
in fog-cloud scenarios, including:

 Task Scheduling: Using RL to determine
the optimal node for processing a given
task, considering factors like
computational power, energy
consumption, and current load [21].

 Resource Allocation: Dynamically
allocating resources based on current
demand and system constraints using RL-
based strategies [22].

 Fault Tolerance: Implementing RL-based
mechanisms to detect, predict, and
mitigate faults in fog-cloud systems [23].

2.4 Challenges in Integrating RL with Fog-
Cloud Computing

While RL offers numerous advantages, its
integration with fog-cloud computing is not
straightforward. Challenges include:

 Sparse Rewards: In many fog-cloud
scenarios, feedback (rewards) may be
infrequent, making it challenging for RL
agents to learn effectively [24].

 Continuous State and Action
Spaces: Fog-cloud environments often
have continuous state and action spaces,
complicating the RL problem [25].

 Dynamic Environments: The ever-
changing nature of fog-cloud systems,

with nodes joining or leaving the network,
introduces additional complexities [26].

Despite these challenges, the potential benefits of
integrating RL with fog-cloud computing are
immense, making it a research area of significant
interest and importance.

3. RL-BASED ALGORITHMS FOR FOG-

CLOUD COMPUTING

In the dynamic landscape of fog-cloud computing,
the need for adaptive and efficient resource
management is paramount. Reinforcement Learning
(RL) offers a promising avenue, with algorithms
tailored to learn and optimize from interactions
within such environments. This section delves into
various RL algorithms, highlighting their
applicability, unique features, and implementation
nuances in the context of fog-cloud computing.
3.1 Algorithm A: Q-Learning for Task

Scheduling
Description:
Q-Learning, a foundational model-free RL
algorithm, has been widely adopted in various
domains due to its simplicity and effectiveness. In
the context of fog-cloud computing, Q-Learning can
be tailored for task scheduling, determining the
optimal node for processing a given task based on
the current state of the system and historical data.

Implementation Details:
The core of Q-Learning revolves around the Q-
table, a matrix where each entry Q(s, a) represents
the expected future reward of taking action a in
state s. The Q-values are updated iteratively using
the Bellman Equation (1):

𝑄(𝑆, 𝑎) = (1 − 𝑎) × 𝑄(𝑠, 𝑎) + 𝛼 × 𝑟 + 𝛾 ×

𝑚𝑎𝑥 𝑄(𝑠 , 𝑎) (1)

Where:

 𝛼 is the learning rate, determining the
weight given to the new update.

 𝛾 is the discount factor, which models the
agent's consideration for future rewards.

 𝑟 is the immediate reward received after
taking action a in state s.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1911

 �́� is the subsequent state after taking action
a.

The Q-table is initialized with arbitrary values, and
as the agent interacts with the environment, it
updates the Q-values based on the received
rewards, gradually converging to the optimal
policy.

Unique Features:

1. Model-free Nature: Q-Learning doesn't
rely on a predefined model of the
environment's dynamics, granting it
versatility and adaptability across various
fog-cloud computing scenarios.

2. Exploration vs. Exploitation: Through
techniques like ε-greedy, Q-Learning
ensures a balance between exploring new
actions and exploiting known beneficial
actions, making it adept at decision-making
in dynamic environments.

3. Convergence Guarantee: Q-Learning
offers a theoretical assurance of converging
to the optimal policy, provided specific
conditions, such as ensuring every state-
action pair is visited infinitely often [27].

4. Adaptability in Dynamic
Environments: The model-free nature of
Q-Learning allows it to readily adapt to
changes in the environment, making it
suitable for the ever-evolving landscape of
fog-cloud systems.

5. Balanced Decision-making: The ε-greedy
approach in Q-Learning facilitates a
balance between exploration and
exploitation, ensuring efficient learning and
decision-making.

6. Stability in Learning: With its
convergence guarantee, Q-Learning
ensures that the Q-values stabilize over
time, leading to consistent and reliable
decision-making in fog-cloud systems.

3.2 Algorithm D: DQN (Deep Q-Network) for
Load Balancing Description:
DQN is an extension of Q-Learning that employs
deep neural networks to approximate the Q-value

function. This allows it to handle high-dimensional
state spaces efficiently.

Implementation Details:

Instead of a Q-table, DQN uses a neural network to
estimate Q-values. The network is trained to
minimize the difference between the predicted Q-
value and the target Q-value (derived from the
Bellman equation). Experience replay, where the
algorithm stores past experiences and samples from
them for training, and target networks, which
stabilize the training process, are key components of
DQN. The loss function for DQN is given by
Equation (2):

𝐿(𝜃) = 𝔼 , , , ~ () 𝑟 +

𝛾 𝑄(𝑠 , 𝑎 ; 𝜃) − 𝑄(𝑠, 𝑎; 𝜃)

(2)

Where:

 θ are the parameters of the primary Q-
network.

 𝜃 are the parameters of the target Q-
network.

 𝐷 is the experience replay buffer.

 𝑈(𝐷) represents a uniform random sample
from the buffer.

Unique Features:

1. Deep Neural Network Approximation:
Unlike traditional Q-Learning that uses a
table to store Q-values, DQN employs deep
neural networks to approximate the Q-
value function. This allows it to handle
high-dimensional state spaces, making it
scalable for complex environments.

2. Experience Replay: DQN introduces the
concept of experience replay, where it
stores past experiences (state, action,
reward, next state) in a replay buffer.
During training, it samples mini-batches
from this buffer to update the network. This
mechanism breaks the correlation between
consecutive experiences, stabilizing the
training process and improving data
efficiency.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1912

3. Target Network: DQN uses a separate
target network to compute the target Q-
values during training. This network's
weights are periodically updated with the
primary network's weights. The target
network stabilizes the learning process by
providing fixed Q-value targets for a set
number of updates.

4. Clip Rewards and Normalize Frames: In
specific implementations, especially for
tasks like game playing, DQN clips rewards
to a fixed range (e.g., -1 to 1) to ensure
stable training dynamics. Additionally,
input frames (like game screens) are often
normalized, ensuring consistent input data
scales.

5. Double DQN Extension: To address the
overestimation bias of Q-values in DQN,
the Double DQN (DDQN) variant was
introduced. DDQN decouples the action
selection from Q-value estimation, leading
to more accurate Q-value predictions and
improved performance.

6. Dueling Architecture: Another variant of
DQN, the Dueling DQN, employs a
specialized network architecture that
separately estimates the state value and the
advantage of each action. This separation
allows for a more nuanced Q-value
estimation, especially in scenarios where
the action choice doesn't significantly affect
the outcome.

3.3 Algorithm B: Deep Deterministic Policy
Gradient (DDPG) for Resource Allocation
Description:
DDPG, an off-policy actor-critic algorithm, is
designed for environments with continuous action
spaces. Its application in fog-cloud computing can
be particularly beneficial for resource allocation,
where decisions often lie in a continuous domain,
such as allocating a specific amount of bandwidth or
computational power.

Implementation Details:
DDPG employs two neural networks: the actor-
network, which determines the optimal action, and
the critic network, which evaluates the quality of the

action taken by the actor. The actor-network is
defined by:

𝜇(𝑠 ∣ 𝜃)

Where 𝜃 are the parameters of the actor-network.
The critic network estimates the Q-value of the taken
action:

𝑄(𝑆, 𝑎 ∣ 𝜃)

Where 𝜃 are the parameters of the critic network.

The critic is trained using the Bellman equation,
similar to Q-Learning, while the actor is trained
using the policy gradient derived from the critic's
output.

Unique Features:

1. Continuous Action Spaces: DDPG's
design for continuous action environments
makes it adaptable for fog-cloud computing
tasks like resource allocation [28].

2. Actor-Critic Architecture: The dual
network setup of DDPG ensures a balance
between action selection and evaluation,
enhancing training stability [29].

3. Experience Replay: DDPG's use of a
replay buffer boosts data efficiency and
training stability, ensuring robustness in
dynamic environments.

4. Off-Policy Learning: DDPG's ability to
learn from past experiences allows efficient
data utilization and adaptability.

5. Optimization in Continuous
Domains: DDPG's operation in continuous
action spaces makes it suitable for tasks
requiring granular control in fog-cloud
computing.

6. Neural Network-Based
Estimation: DDPG's use of neural
networks for both actor and critic allow
scalability in high-dimensional spaces,
making it versatile for complex scenarios
[30].

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1913

3.4 Algorithm C: Proximal Policy Optimization
(PPO) for Fault Tolerance
Description:
PPO, a state-of-the-art policy optimization
algorithm, has gained popularity due to its
effectiveness and stability across a wide range of
environments. In fog-cloud computing, PPO can be
instrumental in enhancing fault tolerance, ensuring
that the system remains robust and adaptive in the
face of unexpected challenges.

Implementation Details:
PPO modifies the standard policy gradient objective
to prevent large policy updates, which can
destabilize training. The objective function is given
by Equation (3):

𝐿(𝜃) =

𝑚𝑖𝑛
(∣)

(∣)
𝐴 (𝑠, 𝑎), 𝑐𝑙𝑖𝑝

(∣)

(∣)
, 1 −

𝜖, 1 + 𝜖 𝐴 (𝑠, 𝑎) (3)

Where:

 𝜋 is the policy parameterized by 𝜃.

 𝐴 is the advantage function under the
old policy.

 𝜖 is a hyperparameter that determines the
degree of clipping.

The clipping mechanism ensures that the policy
updates remain within a specified range, preventing
drastic changes that could harm performance.

Unique Features:

1. Stability: The implementation of the
clipping mechanism in PPO results in a
steady and reliable training process,
effectively overcoming the issues faced by
traditional policy gradient methods [31].

2. Simplicity and Efficiency: PPO is a
simpler and more efficient alternative to
trust region methods. It produces
comparable or better results, requiring
much less computing power [31].

3. Adaptability: PPO has an inherent
adaptability that makes it suitable for fog-
cloud infrastructures, which are known for
their constantly changing environments.

This feature allows PPO to adjust and
perform well even in dynamic settings [31].

4. EVALUATION METRICS

When evaluating RL algorithms in the context of
fog-cloud computing, it is essential to use a
comprehensive set of metrics. These metrics not
only measure the effectiveness of the algorithms but
also highlight areas that need improvement. This
section will discuss the key evaluation metrics
necessary for assessing RL algorithms in fog-cloud
computing scenarios.
4.1 Latency
Definition:

Latency refers to the time taken to process a task
from the moment it's initiated to its completion.

Importance:

In fog-cloud computing, where real-time or near-
real-time processing is often essential, latency
becomes a critical metric. Lower latency ensures
faster data processing, which is vital for applications
like autonomous driving, real-time analytics, and
emergency response systems.

Measurement:

Latency can be measured in milliseconds (ms) or
seconds, depending on the application's
requirements.

4.2 Energy Consumption
Definition:

Energy consumption measures the amount of energy
utilized by the fog nodes during data processing.

Importance:

With the proliferation of IoT devices and edge
nodes, energy efficiency becomes paramount.
Reducing energy consumption not only saves costs
but also enhances the sustainability of the system,
especially if nodes are battery-powered.

Measurement:

Energy consumption can be quantified in Joules (J)
or watt-hours (WH), depending on the duration and
intensity of the tasks.

4.3 Fault Tolerance
Definition:

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1914

Fault tolerance assesses the system's ability to
continue functioning correctly in the presence of
failures or faults within the system.

Importance:

Due to the distributed nature of fog-cloud
computing, nodes may encounter failures caused by
hardware malfunctions or network problems.
Therefore, it is crucial for an RL algorithm to tackle
these failures without compromising the overall
system performance.

Measurement:

Fault tolerance can be measured as a percentage,
representing the system's uptime or the number of
successfully processed tasks despite node failures.

4.4 Adaptability
Definition:

The adaptability of an algorithm refers to its capacity
to adapt to changes in the system dynamics or the
environment.

Importance:

In fog-cloud environments, the nodes are constantly
joining or leaving, the workload keeps changing, and
the network conditions are never static. Therefore, it
is crucial for RL algorithms to be able to adapt to
these changes so that they can deliver consistent
performance while utilizing resources optimally.

Measurement:

Adaptability can be assessed qualitatively through
scenarios or test cases that introduce changes to the
environment. Alternatively, it can be quantified by
measuring the algorithm's performance deviation
before and after the introduced changes.

4.5 Task Throughput
Definition:

Task throughput measures the number of tasks
processed per unit of time.

Importance:

In high-demand scenarios, the ability of the system
to handle a large number of tasks efficiently is
crucial. Higher throughput indicates better system
efficiency and resource utilization.

Measurement:

Throughput can be measured in tasks per second
(TPS) or tasks per minute (TPM), depending on the
system's scale and the granularity of the tasks.

4.6 Resource Utilization
Definition:

Resource utilization evaluates how effectively the
computational resources (like CPU, memory, and
bandwidth) of the fog nodes are used.

Importance:

Optimal resource utilization ensures that no node is
underutilized or overburdened, leading to balanced
system performance and prolonged hardware
lifespan.

Measurement:

Resource utilization can be quantified as a
percentage, indicating the proportion of the resource
used compared to its total availability.

In conclusion, these evaluation metrics provide a
holistic view of the RL algorithm's performance in
fog-cloud computing environments. By considering
these metrics, researchers and practitioners can make
informed decisions, refine their algorithms, and
ensure that the systems meet the desired
performance standards.

5. COMPARATIVE ANALYSIS

There are many different RL algorithms that are
designed specifically for fog-cloud computing. To
determine which algorithm will work best for a
particular application, it's important to do a thorough
comparative analysis. In this section, we will
examine the performance, adaptability, efficiency,
and fault tolerance of various RL algorithms and
discuss their strengths, weaknesses, and potential
uses.
 5.1 Performance
Performance is usually the primary metric of interest
when evaluating algorithms. It measures how well
an algorithm performs based on predefined metrics
such as latency, task throughput, and energy
consumption.

 Q-Learning: is a method that uses tables
and is known for its quick convergence in
smaller state-action spaces, resulting in
reduced latency. However, in larger and

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1915

more complex environments, its
performance may decrease due to the curse
of dimensionality.

 DQN: With the use of its deep neural
network, DQN is capable of efficiently
managing complex tasks that involve high-
dimensional state spaces. This makes it a
desirable option for intricate fog-cloud
computing scenarios.

 DDPG: With its continuous action space
optimization, DDPG often outperforms in
scenarios demanding fine-grained resource
allocation, ensuring optimal task
throughput and energy efficiency.
However, its reliance on neural networks
might introduce slight latency in decision-
making.

 PPO: When it comes to fog-cloud
scenarios, PPO is known for its stability
and consistent performance. The balance
between exploration and exploitation
allows for optimal latency and energy
consumption metrics. The clipped objective
function is a key factor in achieving these
results.

5.2 Adaptability
In the ever-evolving landscape of fog-cloud
computing, the ability of an algorithm to adapt to
changing conditions is paramount.

 Q-Learning: While Q-Learning can adapt
to changes, its table-based nature might
make it slower to respond to drastic shifts
in the environment, especially if the Q-table
is large.

 DQN: The neural network in DQN allows
it to generalize across states, making it
adaptable to changing conditions.
However, it might require retraining if the
changes are drastic.

 DDPG: The actor-critic architecture of
DDPG allows it to swiftly adapt to changes.
The actor, guided by the critic, can quickly
adjust its policy to accommodate new
environmental dynamics.

 PPO: PPO's adaptability is one of its
hallmarks. The algorithm's objective

function, designed to prevent large policy
updates, ensures that the agent remains
adaptable without making drastic,
potentially harmful changes to its policy.

5.3 Efficiency
Efficiency encompasses both resource consumption
and computational overhead, determining the
feasibility of deploying an algorithm in resource-
constrained fog nodes.

 Q-Learning: Q-Learning, being a simpler
algorithm, often has lower computational
overhead. However, in large state-action
spaces, the memory requirement for the Q-
table can become a bottleneck.

 DQN: While DQN can handle larger state
spaces than traditional Q-Learning, its
reliance on deep neural networks increases
computational overhead, especially during
training.

 DDPG: DDPG's neural network-based
approach can be computationally intensive,
especially during training. However, once
trained, the actor network's forward pass to
determine actions is relatively efficient.
Memory consumption, primarily due to the
replay buffer, can be significant but is
manageable with efficient data structures.

 PPO: PPO strikes a balance between
computational and memory efficiency.
While it employs neural networks like
DDPG, its simpler objective function often
leads to faster convergence and reduced
training overhead.

5.4 Fault Tolerance
In distributed systems like fog-cloud computing,
failures are unavoidable. The resilience of an
algorithm in the face of such challenges determines
its robustness and reliability.

 Q-Learning: Q-Learning's deterministic
nature can be a double-edged sword. While
it ensures consistent decision-making, it
might struggle in the face of unexpected
system failures, unless explicitly trained for
such scenarios.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1916

 DQN: experience replay mechanism allows
it to learn from past mistakes, enhancing its
fault tolerance. However, like other RL
algorithms, it's only as robust as the range
of experiences it has been exposed to.

 DDPG: DDPG's continuous action space
optimization allows it to find alternative
strategies in case of node failures or
resource constraints. The replay buffer,
storing past experiences, can help the
algorithm learn from previous failures and
enhance its fault tolerance.

 PPO: PPO's emphasis on stable and
incremental policy updates ensures that the
algorithm doesn't make rash decisions even
when faced with failures. Its ability to learn
from both positive and negative rewards
makes it inherently fault-tolerant, as it can
adjust its policy based on feedback from the
environment.

To summarize, the effectiveness of each RL
algorithm depends on the specific needs and
limitations of the fog-cloud computing scenario. A
thorough comprehension of these algorithms,
combined with extensive testing and validation, will
enable their successful implementation in real-life
situations.

6. DISCUSSION
The combination of Reinforcement Learning (RL)
and fog-cloud computing is a merging of two
revolutionary fields, each presenting unique
challenges and opportunities [32]. As we delve into
the intricacies of algorithms such as Q-Learning,
DDPG, PPO, and DQN, it's clear that the landscape
is varied and intricate. This discussion aims to
provide multiple perspectives on these algorithms,
providing valuable insights that can inform future
research and applications.
6.1 Strengths and Weaknesses of Each
Algorithm:

 Q-Learning:

o Strengths: Simplicity, rapid
convergence in smaller state-
action spaces, deterministic
policy.

o Weaknesses: Struggles with large
state-action spaces due to the
curse of dimensionality; table-

based approach might need to
generalize better across states.

 DQN:

o Strengths: Scalability to high-
dimensional state spaces,
experience replay stabilizes
training, target network ensures
consistent Q-value targets.

o Weaknesses: Potential
overestimation of Q-values,
reliance on deep networks
increases computational overhead

 DDPG:

o Strengths: Tailored for
continuous action spaces, actor-
critic architecture balances action
selection and evaluation, and
experience replay enhances data
efficiency.

o Weaknesses: Reliance on neural
networks can introduce latency,
and might require careful
hyperparameter tuning.

 PPO:

o Strengths: Stable and consistent
training, adaptability to changing
environments, simpler alternative
to trust region-based methods.

o Weaknesses: Might require more
samples for training compared to
other algorithms, hyperparameter
sensitivity.

6.2 Deep Dive into Algorithmic Nuances:
Q-Learning's Deterministic Policy: Although Q-
Learning deterministic policy provides consistency,
it may limit the algorithm's ability to explore new
strategies, especially in dynamic fog-cloud
environments where adaptability is essential [33].

DQN Scalability: DQN ability to handle high-
dimensional state spaces is impressive, but it raises
concerns about the interpretability of its decisions,

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1917

which is a vital aspect when deploying in critical
applications.

DDPG Continuous Action Space: DDPG
optimization of continuous action space offers
precise control, but it also presents challenges in
terms of convergence stability, particularly in
environments with sharp reward gradients.

PPO Balance: PPO prioritizes stable policy
updates, which is beneficial, but it also means the
algorithm may be slower to adapt to sudden,
significant changes in the environment.

6.3 Practical Implications of the Findings:
Beyond the metrics, the real-world implications of
these algorithms are profound:

 Infrastructure Considerations: The
choice of algorithm can influence
infrastructure requirements. For instance,
DDPG and DQN, with their reliance on
deep networks, might necessitate more
robust computational resources, impacting
deployment costs.

 Adaptability in Dynamic
Environments: In the ever-evolving
landscape of fog-cloud computing, where
nodes can frequently join or leave the
network, the adaptability of algorithms like
PPO becomes invaluable.

 Safety and Reliability: In applications
where safety is paramount, the
deterministic nature of Q-Learning might
be preferred, even if it sacrifices some level
of optimality.

6.4 Recommendations for Practitioners and
Researchers:

1. Bespoke Algorithm Design: Consider
designing algorithms tailored to specific
fog-cloud scenarios, leveraging the
strengths of existing algorithms while
mitigating their weaknesses.

2. Ethical Considerations: As RL
algorithms make decisions that can impact
real-world systems, ethical considerations,
especially in terms of fairness,

transparency, and accountability, become
paramount.

3. Interdisciplinary Collaboration: Engage
with experts from fields like distributed
computing, network design, and ethics to
ensure a holistic approach to RL in fog-
cloud computing.

4. Future Directions: Explore the potential
of combining RL with other AI domains,
like transfer learning or meta-learning, to
enhance the adaptability and efficiency of
algorithms in fog-cloud environments.

As we delve into the intricacies of RL in fog-cloud
computing, it becomes clear that we have only just
started our journey [34]. While there are numerous
challenges, there are also many opportunities. By
promoting a collaborative culture that emphasizes
continuous learning and ethical practices, we can
pave the way for RL's effective and responsible
implementation in fog-cloud systems.

7. CONCLUSION AND FUTURE WORKS

In our study of Reinforcement Learning (RL) in the
field of fog-cloud computing, we have encountered
many complexities, challenges, and possibilities.
There are various RL algorithms, each with unique
strengths and weaknesses, so it's important to choose
the appropriate one based on the context. Q-
Learning is deterministic, PPO is adaptable, and
DQN is scalable, and each has far-reaching
implications beyond just theoretical performance.
As computational resources become more
distributed and edge devices become more prevalent,
RL's role in optimizing, enhancing, and ensuring the
robustness of these systems becomes increasingly
significant.
While there are promising opportunities for the
future, there are also challenges. The integration of
RL in fog-cloud computing isn't just about
algorithmic efficiency, but it also involves ethical
considerations, real-world applicability, and
scalability. We've made significant progress, but
there's still a long way to go. Interdisciplinary
collaboration, a deeper understanding of real-world
dynamics, and a commitment to ethical and
transparent research are essential. RL and fog-cloud
computing offer a frontier of opportunities, but we
must use them in a holistic, inclusive, and forward-
thinking way to transform distributed computing.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1918

REFERENCES

[1] S. E. Shukri, R. Al-Sayyed, H. Al-Bdour, E.

Alhenawi, T. Almarabeh, and H. Mohammad,
“Internet of Things: Underwater routing based
on user’s health status for smart diving,”
International Journal of Data and Network
Science, vol. 7, no. 4, pp. 1715–1728, 2023, doi:
10.5267/J.IJDNS.2023.7.019.

[2] Y.-A. Daraghmi, E. Y. Daraghmi, R.
Daraghma, H. Fouchal, and M. Ayaida, “Edge-
Fog-Cloud Computing Hierarchy for Improving
Performance and Security of NB-IoT-Based
Health Monitoring Systems,” 2022, doi:
10.3390/s22228646.

[3] M. A. M. Al-Alwan, S. S. Al-Nawafah, H. M.
Al-Shorman, F. A. Khrisat, F. F. Alathamneh,
and S. I. S. Al-Hawary, “The effect of big data
on decision quality: Evidence from
telecommunication industry,” International
Journal of Data and Network Science, vol. 6,
no. 3, pp. 693–702, Jun. 2022, doi:
10.5267/J.IJDNS.2022.4.003.

[4] S. R. Hassan, M. Rashad, S. R. Hassan, and M.
Rashad, “Cloud Computing to Fog Computing:
A Paradigm Shift,” Edge Computing -
Technology, Management and Integration
[Working Title], Apr. 2023, doi:
10.5772/INTECHOPEN.110751.

[5] M. Sheikh Sofla, M. Haghi Kashani, E.
Mahdipour, and R. Faghih Mirzaee, “Towards
effective offloading mechanisms in fog
computing,” Multimed Tools Appl, vol. 81, no.
2, pp. 1997–2042, Jan. 2022, doi:
10.1007/S11042-021-11423-9/FIGURES/10.

[6] M. Hajvali, S. Adabi, A. Rezaee, and M.
Hosseinzadeh, “Decentralized and scalable
hybrid scheduling-clustering method for real-
time applications in volatile and dynamic Fog-
Cloud Environments,” Journal of Cloud
Computing, vol. 12, no. 1, pp. 1–35, Dec. 2023,
doi: 10.1186/S13677-023-00428-
4/FIGURES/21.

[7] F. Alenizi and O. Rana, “Dynamically
Controlling Offloading Thresholds in Fog
Systems,” Sensors (Basel), vol. 21, no. 7, Apr.
2021, doi: 10.3390/S21072512.

[8] M. Zdravković, H. Panetto, and G. Weichhart,
“AI-enabled Enterprise Information Systems
for Manufacturing,” vol. 2022, no. 4, pp. 688–
720, doi: 10.1080/17517575.2021.1941275ï.

[9] P. Lahande, P. Kaveri, and J. Saini,
“Reinforcement Learning for Reducing the
Interruptions and Increasing Fault Tolerance in
the Cloud Environment,” Informatics 2023, Vol.

10, Page 64, vol. 10, no. 3, p. 64, Aug. 2023,
doi: 10.3390/INFORMATICS10030064.

[10] M. Al Rawajbeh et al., “A new model for
security analysis of network anomalies for IoT
devices,” International Journal of Data and
Network Science, vol. 7, no. 3, pp. 1241–1248,
2023, doi: 10.5267/J.IJDNS.2023.5.001.

[11] R. O. Aburukba, T. Landolsi, and D. Omer, “A
heuristic scheduling approach for fog-cloud
computing environment with stationary IoT
devices,” Journal of Network and Computer
Applications, vol. 180, p. 102994, 2021, doi:
10.1016/j.jnca.2021.102994.

[12] A. Yousefpour, G. Ishigaki, R. Gour, and J. P.
Jue, “On Reducing IoT Service Delay via Fog
Offloading,” in IEEE Internet of Things
Journal, Institute of Electrical and Electronics
Engineers Inc., Apr. 2018, pp. 998–1010. doi:
10.1109/JIOT.2017.2788802.

[13] N. A. Perifanis and F. Kitsios, “Edge and Fog
Computing Business Value Streams through
IoT Solutions: A Literature Review for
Strategic Implementation,” Information 2022,
Vol. 13, Page 427, vol. 13, no. 9, p. 427, Sep.
2022, doi: 10.3390/INFO13090427.

[14] R. O. Aburukba, M. AliKarrar, T. Landolsi, and
K. El-Fakih, “Scheduling Internet of Things
requests to minimize latency in hybrid Fog–
Cloud computing,” Future Generation
Computer Systems, vol. 111, pp. 539–551,
2020, doi: 10.1016/j.future.2019.09.039.

[15] J. Li, X. Li, J. Yuan, and G. Li, “Load Balanced
Data Transmission Strategy Based on Cloud–
Edge–End Collaboration in the Internet of
Things,” Sustainability 2022, Vol. 14, Page
9602, vol. 14, no. 15, p. 9602, Aug. 2022, doi:
10.3390/SU14159602.

[16] F. Firouzi, B. Farahani, and A. Marinšek, “The
convergence and interplay of edge, fog, and
cloud in the AI-driven Internet of Things (IoT),”
Inf Syst, vol. 107, p. 101840, Jul. 2022, doi:
10.1016/J.IS.2021.101840.

[17] M. Vijarania, S. Gupta, A. Agrawal, M. O.
Adigun, S. A. Ajagbe, and J. B. Awotunde,
“Energy Efficient Load-Balancing Mechanism
in Integrated IoT–Fog–Cloud Environment,”
Electronics 2023, Vol. 12, Page 2543, vol. 12,
no. 11, p. 2543, Jun. 2023, doi:
10.3390/ELECTRONICS12112543.

[18] S. A. Fayaz, S. J. Sidiq, M. Zaman, and M. A.
Butt, “Machine Learning: An Introduction to
Reinforcement Learning,” Machine Learning
and Data Science: Fundamentals and
Applications, pp. 1–22, May 2021, doi:
10.1002/9781119776499.CH1.

Journal of Theoretical and Applied Information Technology
15th March 2024. Vol.102. No 5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1919

[19] R. Sutton and A. Barto, Reinforcement
learning: An introduction. 2018. Accessed:
Aug. 22, 2023. [Online]. Available:
https://books.google.com/books?hl=en&lr=&id
=uWV0DwAAQBAJ&oi=fnd&pg=PR7&ots=
miwGt7Z-l4&sig=9Az_l_Xu-
ERX04wzIb7ne8pad1o

[20] S. Iftikhar et al., “AI-based fog and edge
computing: A systematic review, taxonomy and
future directions,” Internet of Things, vol. 21, p.
100674, Apr. 2023, doi:
10.1016/J.IOT.2022.100674.

[21] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A.
Ali, and S. H. Ali, “A load balancing and
optimization strategy (LBOS) using
reinforcement learning in fog computing
environment,” J Ambient Intell Humaniz
Comput, vol. 11, no. 11, pp. 4951–4966, Nov.
2020, doi: 10.1007/S12652-020-01768-8.

[22] M. Zangooei, N. Saha, M. Golkarifard, and R.
Boutaba, “Reinforcement Learning for Radio
Resource Management in RAN Slicing: A
Survey,” IEEE Communications Magazine, vol.
61, no. 2, pp. 118–124, Feb. 2023, doi:
10.1109/MCOM.004.2200532.

[23] R. Besharati, M. H. Rezvani, and M. M.
Gilanian Sadeghi, “An Auction-Based Bid
Prediction Mechanism for Fog-Cloud
Offloading Using Q-Learning,” Complexity,
vol. 2023, 2023, doi: 10.1155/2023/5222504.

[24] L. Yu, T. Yu, C. Finn, and S. Ermon, “Meta-
Inverse Reinforcement Learning with
Probabilistic Context Variables,” Adv Neural
Inf Process Syst, vol. 32, 2019.

[25] D. H. Abdulazeez and S. K. Askar, “Offloading
Mechanisms Based on Reinforcement Learning
and Deep Learning Algorithms in the Fog
Computing Environment,” IEEE Access, vol.
11, pp. 12554–12585, 2023, doi:
10.1109/ACCESS.2023.3241881.

[26] R. K. Naha, S. Garg, and M. B. Amin, “Fuzzy
Logic-based Robust Failure Handling
Mechanism for Fuzzy Logic-based Robust
Failure Handling Mechanism for Fog
Computing,” arXiv preprint
arXiv:2103.06381., Mar. 2021, Accessed: Apr.
20, 2021. [Online]. Available:
http://arxiv.org/abs/2103.06381

[27] Y. Xie, S. Mou, and S. Sundaram,
“Communication-Efficient and Resilient
Distributed <inline-formula> <tex-math
notation="LaTeX">Q</tex-math> </inline-
formula>-Learning,” IEEE Trans Neural Netw
Learn Syst, 2023, doi:
10.1109/TNNLS.2023.3292036.

[28] H. Tran-Dang, S. Bhardwaj, T. Rahim, A.
Musaddiq, and D.-S. Kim, “Reinforcement
learning based resource management for fog
computing environment: Literature review,
challenges, and open issues,” Journal of
Communications and Networks, vol. 24, no. 1,
pp. 83–98, Feb. 2022, doi:
10.23919/JCN.2021.000041.

[29] Q. Yang and R. Parasuraman, “BSAC:
Bayesian Strategy Network Based Soft Actor-
Critic in Deep Reinforcement Learning,” Aug.
2022, Accessed: Aug. 23, 2023. [Online].
Available: https://arxiv.org/abs/2208.06033v1

[30] V. Padhye, K. Lakshmanan, and A. Chaturvedi,
“Proximal policy optimization based hybrid
recommender systems for large scale
recommendations,” Multimed Tools Appl, vol.
82, no. 13, pp. 20079–20100, May 2023, doi:
10.1007/S11042-022-14231-X/METRICS.

[31] J. Schulman, F. Wolski, P. Dhariwal, A.
Radford, and O. K. Openai, “Proximal Policy
Optimization Algorithms,” Jul. 2017, Accessed:
Aug. 23, 2023. [Online]. Available:
https://arxiv.org/abs/1707.06347v2

[32] M. K. Pandit, R. N. Mir, and M. A. Chishti,
“Adaptive task scheduling in IoT using
reinforcement learning,” International Journal
of Intelligent Computing and Cybernetics, vol.
13, no. 3, pp. 261–282, Aug. 2020, doi:
10.1108/IJICC-03-2020-0021/FULL/XML.

[33] M. M. Alam and S. Moh, “Survey on Q-
Learning-Based Position-Aware Routing
Protocols in Flying Ad Hoc Networks,”
Electronics 2022, Vol. 11, Page 1099, vol. 11,
no. 7, p. 1099, Mar. 2022, doi:
10.3390/ELECTRONICS11071099.

[34] Z. Wang and T. Hong, “Reinforcement learning
for building controls: The opportunities and
challenges,” Appl Energy, vol. 269, p. 115036,
Jul. 2020, doi:
10.1016/J.APENERGY.2020.115036.

