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ABSTRACT 
 

The detection of overlapping communities in complex real-world networks is a difficult problem that is being 
addressed by different methods. The multiobjective evolutionary algorithm (MOEA) is a promising 
alternative that has shown competitive performance in this research over the past two decades. The 
representation scheme used by the MOEA affects the quality of the solutions obtained and the runtime of the 
algorithm. The length of the chromosome is significantly reduced when cliques are used as genes instead of 
the original nodes of the graph. The execution time of the evolutionary algorithm (EA) also depends on the 
combined execution times of the evolutionary operators, crossover and mutation. This paper proposes a novel 
mutation operator that uses community labels of cliques as genes rather than cliques. The proposed mutation 
operator results in fewer modifications on the chromosome than does the existing clique-based mutation. 
Experiments conducted on real-world and synthetic networks reveal that the proposed algorithm produces 
good community partitions of the network when compared with existing clique-based algorithms and state-
of-the-art community detection algorithms. 

Keywords: Community-Based Mutation, Maximal Clique, Quantile, Overlapping Community Detection, 
Multiobjective Evolutionary Algorithm. 

 
1. INTRODUCTION  
 

Many real-world applications, such as protein 
complexes, social network data, drug target 
interactions and metabolism mechanisms, are 
represented in terms of complex networks. These 
networks are modeled with objects as vertices and 
complex phenomena occurring in physical, social 
and biological systems as links connecting the 
vertices. Communities in a complex network are 
groups of closely associated objects and their 
interactions, as discussed in the seminal paper [1]. 
They represent groups of proteins in biological 
networks, different areas in brain networks, authors 
in collaboration networks, etc. Graphs are used to 
represent the objects in a network as nodes and their 
interactions as edges. The detection of groups in a 
network is equivalent to detecting communities in 
graphs. Some of the communities also have nodes 
that may belong to other communities. The detection 
of such overlapping communities can be 

accomplished by enumerating dense substructures, 
such as near-cliques, bicliques, and cliques. 

A maximal clique in a graph is a clique formed by 
a subset of nodes that are completely connected. The 
maximal cliques are being employed in real-world 
community detection applications, such as finding 
driver microbes involved in virus infection [2]. The 
CFinder algorithm [3]uses the clique percolation 
method to find k-cliques containing small groups 
with high density. An improved solution using the 
fuzzy method termed the pseudoclique extension [4] 
was proposed for finding maximal cliques in protein 
complexes. An alternative solution has been 
implemented using formal concept analysis [5] for k-
clique community detection in social networks. 

Engineering optimization techniques model the 
community detection problem where single or 
multiple objective functions are optimized. The 
optimization methods initially aimed at optimizing a 
single objective function that optimizes modularity 
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[6] and has a disadvantage in terms of resolution 
limit [7] Therefore, the single objective function 
needs to be designed effectively since the algorithm 
solely depends on the function and the failure of 
which will produce undesirable results. 
Alternatively, multiobjective optimization 
algorithms have greater flexibility in 
accommodating conflicting objectives, where one 
objective minimizes the strength of connections 
between communities and the other maximizes the 
strength of connections within a community [8]. 

The multiobjective optimization algorithm based 
on decomposition framework (MOEA/D) [9] has 
gained attention as an important framework owing to 
its low computational complexity when compared 
with NSGA-II. The representation scheme of a 
chromosome plays a vital role in MOEAs, affecting 
its runtime and the effectiveness of evolutionary 
operators. The representation scheme generally falls 
into one of three types, namely, node-based, 
prototype/community-based or clique-based [10]. 
The prototype-based representation considers 
community prototypes such as centroids and 
medoids as the genes in the chromosome. This 
approach transforms the community detection 
problem into a clustering problem, creating 
spherically shaped communities [11]. The node-
based representation has direct schemes [12] that are 
suited for nonoverlapping community detection. On 
the other hand, [13] proposed an indirect scheme for 
overlapping community representation in which 
decoding is performed to determine the community 
of a node. The clique-based representation 
introduced in MCMOEA [10] has the maximal 
cliques as genes in the chromosome. The cliques can 
share nodes, making them naturally fit for 
overlapping community detection. The encoding 
scheme of MEMOEA [14] is also based on cliques 
that further reduce the size of a chromosome, thereby 
reducing the dimensions of the solution search space. 

The crossover and mutation operators are as 
important as the representation scheme because their 
execution time affects the runtime of the 
evolutionary algorithm. Six different crossover 
operators have been studied in different MOEA 
frameworks [15], and the authors concluded that 
crossover parameters can be fixed and do not change 
much with respect to each framework. The mutation 
operator in MOEA/D is adaptively changed by [16], 
which improves the population diversity and the 
performance of the MOEA. The MOEA/D for crowd 
sensing [17] uses a problem-specific mutation 
operator rather than a random number. The mutation 
operator in the existing clique-based MOEAs 

consumes more computation time owing to its 
application on every clique node in the chromosome 
[10] [14]. The representation scheme of the 
MEMOEA has the chromosome as a solution with 
merged-maximal cliques as genes. For large 
networks,  the number of merged maximal cliques 
can be large, but  not as many as the basic maximal 
cliques of MCMOEA [10]. 

In accordance with the above observation, a 
merged-maximal-clique-based multiobjective 
evolutionary algorithm named (MEMOEA-m) is 
proposed with the following improvements:  

 An alternate representation scheme where each 
community is represented as a gene in the 
chromosome.  

 The new mutation operator considerably 
reduces the computation time of the existing 
algorithm.  

 The MEMOEA-m algorithm is evaluated on real 
and synthetic networks and compared with 
clique-based, non-clique-based and state-of-the-
art algorithms. The results show that the 
MEMOEA-m algorithm is better than the other 
algorithms in most of the networks and gets 
closer to the MEMOEA algorithm despite the 
smaller changes made to the chromosome 
during evolution. 

The paper is organized as follows: Section 2 
presents the methodology used in the work. Section 
3 explains the experimental setting, datasets used, 
and performance metrics employed and discusses the 
performance of MEMOEA-m. Section 4 concludes 
the work with future research directions. 

2. METHODOLOGY 

The flow diagram of the MEMOEA-m is 
shown in Fig. 1. The maximal cliques are generated 
from the graph, which represents the network and are 
recursively merged to produce merged-maximal 
cliques. A clique graph is constructed with the 
merged cliques as nodes, and the links between them 
are filtered by an appropriate quantile value of the 
link strength distribution. Then, the multiobjective 
evolutionary algorithm is applied to the 
chromosomes created from merged-maximal 
cliques. 

Evolutionary operators such as one-way 
crossover and community-based mutation are 
executed in a single run of the evolutionary 
algorithm to produce the Pareto optimal solutions. 
After a fixed number of runs, the best among the 
optimal solutions is output by the algorithm  
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2.1 Graph representation 
A network is represented by a graph G with 

N nodes and E edges. The edges of G are unweighted 
and undirected. Communities are defined in a 

weaker sense with the condition “total internal 
connections of all the communities should be greater 
than their total external  connections” assumed in 
this work [13]. 

 

 

Fig. 1 MEMOEA-m flow diagram 

     Every node in the network belongs to one or more 
communities, as implied in equation 1. 

𝑉 = ⋃ 𝐶௜  ௄
௜ୀଵ   (1) 

where 𝐶௜ ∩  𝐶௝  =  ∅; if the communities are strictly 

nonoverlapping,  𝐶௜ ∩  𝐶௝  ≠  ∅; if the communities 
are strictly overlapping, K is the total number of 
communities. 
 
2.2 Merged-maximal clique generation 

Maximal cliques are generated for each node of 
the graph [18] and are recursively merged using the 
algorithm in Fig. 2. (Line 1), and the process is 
summarized as follows. The nodes are arranged in 
increasing order of their degree frequency. The 
maximal cliques are generated for each node and 
sorted according to their size. The maximum-sized 
maximal cliques of the node are recursively merged. 
The nodes used for finding cliques are removed from 
the sorted list. Since the order of processing nodes is 
based on the degree frequency, higher-order nodes, 
usually fewer in number, are used to find cliques at 
the end. 
 
2.3 Link strength calculation 

The link strength between every pair of merged-
maximal cliques is determined next to construct the 
clique graph (Line 2, Fig. 2). The link strength is the 
weighted sum of three types of interconnections viz. 
overlapping nodes (ONs), overlapping edges (OEs) 
and joint edges (JEs). The link strengths for each of 

these interconnections 𝑙௢௡, 𝑙௢௘ and 𝑙௝௘  are 

determined as in MEMOEA.  

 
The total link strength (L) of each pair of 

cliques is calculated from the three interconnection 
link strengths as given in equation (2). 

𝐿 (𝑣௠
௠௘ , 𝑣௡

௠௘) = 𝛼 ∗ 𝑙௢௡(𝑣௠
௠௘ , 𝑣௡

௠௘)
+ 𝛽 ∗  𝑙௢௘(𝑣௠

௠௘ , 𝑣௡
௠௘) + 𝛾

∗  𝑙௝௘(𝑣௠
௠௘ , 𝑣௡

௠௘) 
      (2) 

𝛼 =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑂𝑁𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡
, 𝛽 =

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑂𝐸𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡
, 𝛾

=
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝐽𝐸𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡
 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 = 𝑠𝑢𝑚(𝑂𝑁𝑠, 𝑂𝐸𝑠, 𝐽𝐸𝑠) 
𝛼 + 𝛽 + 𝛾 = 1 

where the counts of each type of link are 
calculated, and their proportionate contributions (α, 
β and γ), which are introduced in this work, are 
computed. 
            The link strengths are not normalized since 
proportionality multipliers are used. Different 
quantiles, such as quartiles (Q1=0.25, Q2=0.5, 
Q3=0.75), deciles (Q4=0.80, and Q6=0.90), and 
ventile Q5=0.85), are used for severing the weaker 
links. The appropriate quantile (Q) threshold for a 
specific network can be fixed (Line 3, Fig. 2). Lower 
quantile values such as Q1 and Q2 are used for less 
complex networks that have clear community 
structures. The higher quantile values from Q3 and 
above are used in networks where community 
structures are hidden by date hub nodes or by dense 
interconnections. The hub nodes can be either date 
hubs with membership in multiple communities or 
party hubs [19], which are central nodes in a 
community. 
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Fig. 2. MEMOEA-m algorithm

 
2.4 Multiobjective evolutionary algorithm 

The proposed multiobjective evolutionary 
algorithm, as shown in Fig. 2, belongs to the 
MOEA/D category. The two objectives to be 
optimized are kernel K-means (KKM) [20] and ratio 
cut (RC) [21]. The second term of KKM is about the 
average internal degrees summed over all the 
communities that are to be maximized. Subtracting 
this term from the first term (a large constant) causes 
this objective to be minimized. RC is the average 
external degree summed over all the communities to 
be minimized. These conflicting objectives result in 
more than one solution termed the Pareto optimal 
solution. 

𝐾𝐾𝑀 =  2(𝑁 − 𝐾) − ෍
∑ 𝐴௠௡௠∈஼೔ ,௡∈஼೔

|𝐶௜|

௄

௜ୀଵ

 

     (3) 
𝑅𝐶 =  ∑

∑ ஺ೕೖೕ∈಴೔ ,ೖ∈{೅಴ష಴ ೔} 

|஼೔|

௄
௜ୀଵ            (4) 

where TC is the total number of communities and A 
is the adjacency matrix. 

The objective of the multiobjective optimization 
problem is to find community partitions by 
minimizing the KKM and RC to create Pareto 
optimal solutions. The Tchebycheff approach [13] is 
used to decompose the multiobjective optimization 
problem into PS number of scalar optimization 
subproblems, where PS is the size of the population. 
The subproblem uses the aggregation function given 
in equation (5) to find the optimal solution. 

 

Minimize 𝑓௧௖ ൫𝑥 ∶ 𝛾௜ , 𝑧∗൯ = 
𝑚𝑎𝑥(𝛾ଵ

௜|𝐾𝐾𝑀(𝑥) − 𝑧ଵ
∗|, 𝛾ଶ

௜ |𝑅𝐶(𝑥) − 𝑧ଶ
∗|)     

     (5) 
The optimal reference point is 𝑧∗, which 

represents the optimal values for KKM and RC pairs 
obtained from a fixed number of iterations. In each 
iteration of the evolutionary algorithm, the <KKM, 
RC> pair of the current offspring is compared with 
the current optimal solution 𝑧∗ and is updated 
accordingly. 

Each subproblem is associated with other 

subproblems by a uniform weight vector 𝛾௜ =<
𝛾ଵ

௜ , 𝛾ଶ
௜ >. The neighborhood of the subproblem is 

determined by the Euclidean distance with the 
weight vectors of the other subproblems. The final 
set of Pareto optimal solutions that cover the Pareto 
front is obtained from multiple runs of the 
MEMOEA-m algorithm (lines 9.1.10 – 9.1.15; Fig. 
2). 
 
2.4.1 Initial population 

The merged-maximal clique nodes are initially 
permuted, taken one at a time, and assigned to a 
community if doing so enhances the cohesiveness of 
the community. If not, start a fresh community and 
include the clique node in it. The cohesiveness is 
defined as the ratio of the total strength of the links 
within the community to the total strength of the 
links outside the community. An individual 𝐼௜ of the 
initial population is the chromosome where in each 
gene represents the community label of one clique 
node. Therefore, the size of the individual is equal to 
the total number of clique nodes. This procedure 
creates the initial population (lines 4 – 8, Fig. 2).  

 
2.4.2 Crossover 

The one-way crossover operator (lines 9.1.2 – 
9.1.4; Fig. 2) uses a clique-node-based 
representation, where each gene has the community 
label of the corresponding clique node in an ordered 
fashion from the first clique node to the last one. The 
decision to perform the crossover operation is made 
when the generated random number is less than a 
fixed crossover probability value (pc). The 
individual  𝐼௜ is mated with one of its neighbors 𝑁௜ 
chosen on a random basis. 

A clique node in the individual  𝐼௜ is chosen as 
the seed position for crossover with its neighbor. The 
clique node positions (P) of the seed and its 
community members in the individual  𝐼௜ are the 
positions in the offspring where the genetic 
information is transferred. The offspring 𝑂௜ is a copy 
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of the neighbor 𝑁௜, where the positions P are 
replaced with the community label of the seed in the 
individual  𝐼௜. This manuscript also uses 
renumbering to avoid duplicate solutions in the 
population. The computational complexity of 
crossover operation is  O(𝑀ଶ ∗ 𝑃𝑆), where M is the 
number of clique nodes and PS is the size of the 
population. 
 
2.4.3 Mutation 

The mutation operator of MEMOEA is clique-
based. If there are M cliques, M random numbers are 
generated, and each random number is compared 
with the cohesiveness value of the community of a 
particular clique. If this value is less than the random 
number, then the clique node is removed from its 
community and added to the community of its 
strongly connected neighbor. This neighbor is 
selected through the weighted roulette wheel 
method. The clique-based operator increases the run 
time of the mutation operator since there are a large 
number of cliques compared to the number of 
communities at any time during evolution. 

In this article, an efficient mutation operator is 
proposed based on communities (lines 9.1.5 – 9.1.7; 
Fig. 2) instead of the clique-based mutation operator. 
If there are NC number of communities, then NC 
random numbers are generated. This random number 
is compared with the cohesiveness value of the 
community, and if it is smaller, one clique is 
randomly selected from the community. Using the 
weighted roulette wheel selection, a neighbor of the 
clique is chosen. If the neighbor is in a different 
community, then the clique node is moved from its 
community to the neighbor’s community. 

As shown in Fig. 3, there are four communities 
in the community-based representation. In 
community C1, clique node 5 is chosen for mutation. 
Its strongest neighbor is in community C2; therefore, 
it is moved to C2. In a similar manner, clique node 6 
in C3 is moved to community C4. The clique nodes 
in C2 and C4 (8 and 19), which are selected for 
mutation, are not moved since the strongest neighbor 
is in the same community. 
 

Individual Ii  
(Unique community ids) 

Total communities (NC): 5 C1 C2 C3 C4 

Individual Ii (expanded with clique nodes)     Total clique nodes (M): 20 
 Communities before mutation 
C1 

 

1 4 5 9 10 11 
C2 

 

2 3 7 8 12 
C3 

 

6 15 17 20 
C4 

 

13 14 16 18 19 
 

 Communities after mutation 
C1 

 

1 4 9 10 11 
C2 

 

2 3 7 8 12 5 
C3 

 

15 17 20 
C4 

 

13 14 16 18 19 6 
 

  
Fig. 3. Community-Based Mutation Operation 

The computational complexity of the mutation in 
MEMOEA-m is 𝑂 (𝑔𝑒𝑛௠௔௫  𝑥 𝑃𝑆 𝑥 𝑁𝐶), where 
𝑔𝑒𝑛௠௔௫  is the total number of generations and NC is 
the total number of communities in the chromosome. 
Compared to the computational complexity of 
crossover in MEMOEA which is 
𝑂 (𝑔𝑒𝑛௠௔௫  𝑥 𝑃𝑆 𝑥 𝑀),  The speedup is still linear, 
but NC << M in large complex networks.  
 
3. RESULTS AND DISCUSSION 

In this section, we compare the performances of 
MEMOEA-m with those of three other MOEA 
algorithms and two state-of-the-art algorithms on six 
real-world and six synthetic networks using two 
metrics, the gNMI and Qov. The section concludes 
with a discussion about the community partitions 
obtained with respect to the gNMI and Qov values. 

The real-world networks (Table 1) are Zachary’s 
karate club [22], Bottlenose dolphins [23], American 
college football [1], U.S. political books [24], the 
jazz musicians’ network [25] and the yeast protein‒
protein interactions Yeast-D2 [26]. Among the real-
world networks, jazz does not have the ground truth. 
The synthetic networks are created from the well-
known LFR method [27], as displayed in Table 2. 
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Table 1. Real-world networks 

No Network 
Nodes 
(N) 

Edges 
Avg. 
degree 

Assortativity 
Coefficient 

Density Ground 
Truth 

1 karate 34 78 4.59 -0.4756 0.1390 2 

2 dolphin 62 159 5.13 -0.0436 0.0841 4 

3 football 115 613 10.66 0.1624 0.0935 12 

4 polbooks 105 441 8.4 -0.1279 0.0808 3 

5 jazz 198 2742 27.7 0.0202 0.1405 NA 

6 Yeast-D2 1443 6993 9.69 0.4179 0.0067 150 

Table 2. Synthetic Networks. Average Degree = 10, Max. Degree = 50, µ = 0.1, T1 = 2, T2 = 1, Minc = 
10, Maxc = 50, OM = 2 

No Network Nodes (N) Edges ON = N*10% 
Assortativity 
Coefficient 

Density Ground 
Truth 

1 LFR-1 100 527 10 -0.1018 0.1065 5 

2 LFR-2 200 923 20 -0.076 0.0464 9 

3 LFR-3 300 1461 30 -0.3085 0.0326 12 

4 LFR-4 400 1857 40 -0.2441 0.0233 18 

5 LFR-5 500 2615 50 -0.1917 0.0209 22 

6 LFR-6 1000 5019 100 -0.2351 0.0100 41 

 
The parameters for LFR network generation are 

the average degree of the nodes, the maximum 
degree a node can have, the mixing value μ that 
determines the fraction of connections a node can 
have outside its community, t1 for degree 
distribution, t2 for community distribution, the 
percentage of the nodes that belong to more than one 
community (ON), and how many community 
memberships a node can hold (OM). The density of 
the network is used to determine the relative 
sparseness of a network compared with other 
networks. The real-world networks are all sparse 
[28] from the density perspective since we cannot 
expect every node added to the network to have an 
edge to the majority of the existing nodes in the 
network. The density data are shown in Tables 1 and 
2 to illustrate the difference between the relatively 
high sparsity (Yeast D2) and low sparsity (except 
Yeast D2) networks. 

The metrics used for evaluating the performance 
of the algorithm are the generalized normalized 
mutual information (gNMI) [29] and the extended 
modularity (Qov) [30]. The gNMI is used for all the 
networks with ground truth, while the Qov is used 
for all the networks since ground truth is not required 
for its computation. 

The MEMOEA-m algorithm was compared with 
the other three existing clique-based MOEAs, 
namely, the MEMOEA, the maximal-clique-based 

multiobjective evolutionary algorithm (MCMOEA) 
[10], the multiobjective evolutionary algorithm for 
signed networks (MEAs_SN) [13], two state-of-the-
art community detection algorithms, the nonnegative 
matrix factorization (NMF) [31], and the Democratic 
Estimate of the Modular Organization of a Network 
(DEMON) [32]. 

The runtime setting of all the evolutionary 
algorithms are as follows: the size of the population 
is 100, the number of runs is 20, and the number of 
generations in each run is 50, the crossover 
probability is 0.7 to allow high exchange of 
information between individuals, and the total 
number of neighbors (T) for each individual is fixed 
at 20. The default parameters of the state-of-the-art 
community detection algorithms are used without 
any modification. 

In Table 3, gNMI_max is the maximum gNMI, 
and gNMI_avg is the average obtained from the 20 
runs of the algorithm. The Wilcoxon rank sum test 
was carried out between the gNMI values from the 
algorithms being compared. The null hypothesis is 
that the two sets of samples are drawn from the same 
distribution. The alternative hypothesis is that the 
values in one set are more likely to be larger than 
those in the other. The test is conducted with a 
significance level of 5%. The symbols +, -, and ≈ 
indicate that the corresponding samples are 
significantly larger than, significantly smaller than, 
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and statistically similar to those of MEMOEA-m, 
respectively, in terms of the community partitions 
obtained. 

Table 3. Comparison of gNMI values of MEMOEA-m with different algorithms. 

Network Metric 
MEMOEA-
m 

MEMOEA  MCMOEA  MEAs_SN  NMF  DEMON  

karate 

gNMI_max 0.8372 0.8372  0.2785  0.1709  0.2059  0.1612  

gNMI_avg 0.8372 0.8372 ≈ 0.2315 - 0.1709 - 0.2059 - 0.1612 - 

Std 0 0  0.0190  0  0  0  

dolphin 

gNMI_max 0.6170 0.6170  0.2759  0.1392  0.4125  0.2753  

gNMI_avg 0.5273 0.5871 + 0.2397 - 0.1308 - 0.4125 - 0.2753 - 

Std 0.0689 0.0435  0.0157  0.0066  0  0  

football 

gNMI_max 0.7682 0.8035  0.3534  0.5426  0.7828  0.3240  

gNMI_avg 0.7682 0.8011 + 0.3252 - 0.4803 - 0.7828 + 0.3240 - 

Std 0 0.0024  0.0137  0.0325  0  0  

polbooks 

gNMI_max 0.5057 0.5057  0.1926  0.2052  0.1952  0.4414  

gNMI_avg 0.5018 0.4503 - 0.1722 - 0.1902 - 0.1952 - 0.4414 + 

Std 0.0175 0.0373  0.0110  0.0075  0  0  

Yeast-
D2 

gNMI_max 0.3143 0.3164  0.2156  0.1916  0.2492  0.2592  

gNMI_avg 0.3036 0.3083 + 0.2101 - 0.1853 - 0.2492 - 0.2592 - 

Std 0.0045 0.0048  0.0036  0.0044  0  0  

LFR-1 

gNMI_max 0.7651 0.7651  0.9408  0.5857  0.5091  0.3588  

gNMI_avg 0.6983 0.7639 + 0.9345 + 0.3890 - 0.5091 - 0.3588 - 

Std 0.0625 0.0054  0.0102  0.1158  0  0  

LFR-2 

gNMI_max 0.8676 0.9016  0.9237  0.5842  0.6934  0.4567  

gNMI_avg 0.8146 0.8571 + 0.8557 + 0.5197 - 0.6934 - 0.4567 - 

Std 0.0323 0.0128  0.0342  0.0440  0  0  

LFR-3 

gNMI_max 0.8995 0.8995  0.9365  0.5977  0.6781  0.4512  

gNMI_avg 0.8955 0.8995 + 0.8681 - 0.5105 - 0.6781 - 0.4512 - 

Std 0.0099 0  0.0289  0.0660  0  0  

LFR-4 

gNMI_max 0.8788 0.9292  0.9306  0.5364  0.8330  0.5673  

gNMI_avg 0.8440 0.9265 + 0.8704 + 0.4648 - 0.8330 + 0.5673 - 

Std 0.0198 0.0046  0.0300  0.0487  0  0  

LFR-5 

gNMI_max 0.8985 0.9222  0.9603  0.5901  0.8019  0.7346  

gNMI_avg 0.8619 0.9060 + 0.9392 + 0.5298 - 0.8019 - 0.7346 - 

Std 0.0161 0.0132  0.0139  0.0507  0  0  

LFR-6 

gNMI_max 0.9102 0.9315  0.8536  0.5931  0.8910  0.7333  

gNMI_avg 0.8736 0.9197 + 0.8224 - 0.5337 - 0.8910 + 0.7333 - 

Std 0.0171 0.0075  0.0176  0.0385  0  0  
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Table 3 shows that the MEMOEA-m algorithm 
yields statistically similar results on the karate 
network, which has two communities. In each 
community, one party hub node is the central 
component holding that community together. The 
MEMOEA-m performed significantly better than all 
the other algorithms in polbooks network. In all the 
remaining networks, the performance of MEMOEA-
m is significantly worse than that of the MEMOEA 
algorithm, but it is very close to that of MEMOEA. 
The MCMOEA algorithm outperforms the 

MEMOEA-m algorithm on all the synthetic 
networks except for LFR3 and LFR6. The 
MCMOEA uses single nodes and edges as cliques in 
its chromosome representation. It is obvious that the 
density of the networks gradually decreases from 
LFR1 to LFR6 because the average degree is fixed 
at 10 in all the synthetic networks. The average 
degree also contributes to a node having more 
connections with other nodes, irrespective of 
whether they are inside or outside a community. 

Table 4. Communities found by different algorithms – gNMI perspective 

Number of communities 

Network Ground Truth MEMOEA-m MEMOEA MCMOEA MEAs_SN NMF DEMON 

karate 2 2 2 10 26 5 2 

dolphin 4 4 4 30 38 7 4 

football 12 14 12 42 19 10 9 

polbooks 3 2 2 39 30 5 5 

jazz NA : : : : : : 

Yeast-D2 150 162 163 756 573 100 96 

LFR-1 5 4 4 5 8 6 5 

LFR-2 9 9 9 9 16 10 7 

LFR-3 12 12 12 12 20 17 8 

LFR-4 18 17 18 19 35 22 14 

LFR-5 22 23 22 22 43 29 23 

LFR-6 41 40 41 46 87 39 42 

 
Therefore, the MEMOEA-m performs well when 

the networks become sparser. Sparsity also 
introduces fewer intraconnections, causing 
communities to break with higher threshold values. 
This performance improvement is also obvious in 
the case of real-world networks such as Yeast-D2 
and polbooks. 

The reason for the good performance of 
MEMOEA is that it allows all the clique nodes in the 
chromosome to be mutated, whereas the MEMOEA-
m allows for only one clique node from each 
community to be mutated. If this clique node’s 

community has a greater cohesiveness value than the 
generated random number, the community will not 
be modified by mutation. MEMOEA-m showed 
good results despite making few changes in the 
chromosome. Interestingly, the communities found 
by MEMOEA-m are close to the ground truth and to 
the number of communities found by MEMOEA, as 
shown in Table 4. In Table 4, the values (shown in 
bold) are the total community partitions found by the 
best performing algorithm corresponding to the 
highest gNMI_max value. 

 

Table 5. Comparison of Qov values of MEMOEA-m with different algorithms. 

Network Metric 
MEMOEA-
m 

MEMOEA  MCMOEA  MEAs_SN  NMF  DEMON  

karate 

Qov_max 0.2108 0.2166  0.0868  0.0533  0.1297  0.0998  

Qov_avg 0.2108 0.2163 + 0.0822 - 0.0533 - 0.1297 - 0.0998 - 

Std 0 0.0013  0.0116  0  0  0  
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dolphin 

Qov_max 0.2573 0.2570  0.1137  0.1122  0.1747  0.0917  

Qov_avg 0.2380 0.2527 + 0.0939 - 0.1101 - 0.1747 - 0.0917 - 

Std 0.0010 0.0083  0.0093  0.0014  0  0  

football 

Qov_max 0.2936 0.3059  0.0731  0.2213  0.2957  0.1494  

Qov_avg 0.2936 0.3051 + 0.0675 - 0.2056 - 0.2957 + 0.1494 - 

Std 0 0.0006  0.0041  0.0132  0  0  

polbooks 

Qov_max 0.2508 0.2531  0.0792  0.2054  0.1809  0.0948  

Qov_avg 0.2445 0.2464 + 0.0696 - 0.2009 - 0.1809 - 0.0948 - 

Std 0.0048 0.0031  0.0055  0.0043  0  0  

jazz 

Qov_max 0.1703 0.1887  0.1629  0.1995  0.0620  0.0035  

Qov_avg 0.1631 0.1789 + 0.1491 - 0.1114 - 0.0620 - 0.0035 - 

Std 0.0065 0.0076  0.0085  0.0824  0  0  

Yeast-
D2 

Qov_max 0.3734 0.3793  0.0853  0.3336  0.2721  0.2212  

Qov_avg 0.3658 0.3723 + 0.0819 - 0.3159 - 0.2721 - 0.2212 - 

Std 0.0053 0.0032  0.0017  0.0075  0  0  

LFR-1 

Qov_max 0.1871 0.1871  0.2031  0.1671  0.1009  0.0326  

Qov_avg 0.1608 0.1868 + 0.1996 + 0.1169 - 0.1009 - 0.0326 - 

Std 0.0200 0.0013  0.0029  0.0342  0  0  

LFR-2 

Qov_max 0.3267 0.3302  0.3234  0.3036  0.2541  0.1144  

Qov_avg 0.3065 0.3226 + 0.3091 ≈ 0.2890 - 0.2541 - 0.1144 - 

Std 0.0067 0.0026  0.0074  0.0073  0  0  

LFR-3 

Qov_max 0.3612 0.3612  0.3620  0.3413  0.2585  0.1886  

Qov_avg 0.3576 0.3544 - 0.3554 ≈ 0.3216 - 0.2585 - 0.1886 - 

Std 0.0030 0.0058  0.0040  0.0136  0  0  

LFR-4 

Qov_max 0.3613 0.3679  0.3644  0.3341  0.3135  0.1764  

Qov_avg 0.3545 0.3654 + 0.3557 + 0.3166 - 0.3135 - 0.1764 - 

Std 0.0040 0.0010  0.0052  0.0094  0  0  

LFR-5 

Qov_max 0.3672 0.3711  0.3682  0.3460  0.2901  0.1633  

Qov_avg 0.3625 0.3708 + 0.3646 + 0.3343 - 0.2901 - 0.1633 - 

Std 0.0018 0.0007  0.0026  0.0091  0  0  

LFR-6 

Qov_max 0.3780 0.3798  0.3651  0.3534  0.3565  0.2080  

Qov_avg 0.3747 0.3780 + 0.3572 - 0.3478 - 0.3565 - 0.2080 - 

Std 0.0030 0.0013  0.0046  0.0041  0  0  

Table 5 shows the average and maximum Qov 
values from the 20 runs of the MEMOEA-m 
algorithm. The Wilcoxon rank sum test was 
conducted on the average Qov values from the 20 
runs for every pair of algorithms being compared. 
According to the Qov metric, the performance of 
MEMOEA-m is significantly better than that of 
MEMOEA and MCMOEA for LFR3.  

MEMOEA-m outperforms MCMOEA on all the 
real-world networks. For the case of the jazz network 
for which the ground truth is unavailable, 
MEMOEA-m yields better results than does 
MCMOEA. The proposed algorithm outperforms 
NMF and DEMON in all the synthetic networks 
when the Qov metric is used. 
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Table 6. Communities found by different algorithms – Qov perspective 

Network Ground Truth 
Number of communities    

MEMOEA-m MEMOEA MCMOEA MEAs_SN NMF DEMON 

karate 2 2 3 10 26 5 2 

dolphin 4 4 4 20 38 7 4 

football 12 14 11 40 19 10 9 

polbooks 3 3 4 31 28 5 5 

jazz NA 5 6 14 18 39 1 

Yeast-D2 150 157 157 727 556 100 96 

LFR-1 5 4 4 5 6 6 5 

LFR-2 9 9 9 8 17 10 7 

LFR-3 12 11 9 10 17 17 8 

LFR-4 18 16 15 18 39 22 14 

LFR-5 22 22 20 22 43 29 23 

LFR-6 41 36 39 45 76 39 42 

From the perspective of the Qov metric, the total 
communities identified by MEMOEA-m (Table 6) 
are closer to the ground truth, although they are not 
better than those identified by MEOMEA; however, 
getting closer for the sparser LFR6 network (refer 
the density values in Table 2). Compared with 
MEMOEA, MEMOEA-m shows consistently 
similar performance. 

From the above discussions, it is evident that 
although the MEMOEA-m algorithm does not 
always yield statistically better solutions than the 
MEMOEA algorithm does, it has similar 
performance with respect to the gNMI average 
values and Qov average values. The total number of 
communities detected by MEMOEA-m is closer to 
the ground truth than that detected by MCMOEA 
and other state-of-the-art algorithms. 

 
4. CONCLUSION 

The networks that model the interactions 
between entities in the real world are of different 
kinds when viewed from different perspectives, such 
as the density of the networks, well-formedness of 
communities, and embeddedness of communities 
[33]. The problem of finding overlapping 
communities is difficult because the communities 
may have weak intraconnectivity, they may be 
embedded in dense interconnections, or they may be 
blurred by the date hub nodes that behave as the 
influential nodes connecting to multiple 
communities. 

In this article, a new mutation operator is 
designed that works on a community-based 
chromosome representation scheme. The execution 
of the mutation operation now depends on the 
number of communities rather than the large number 
of clique nodes thereby reducing the computation 
time considerably. The mutation operator of 
MEMOEA-m yields good results when compared 
with those of state-of-the-art community detection 
algorithms. Also, it showcases comparable 
performance with the best performing clique-based 
algorithm, MEMOEA based on the gNMI and Qov 
outcome measures. The MEMOEA-m algorithm 
performs on par with MEMOEA in networks that are 
relatively sparse, such as LFR6, and that have ill-
formed community structures, such as Yeast D2. 

The proposed mutation operator gives equal 
importance to all communities irrespective of their 
size in its procedure by choosing only one clique 
node per community to participate in the mutation. 
This research can be further improved by adapting 
the mutation operator to consider the different sizes 
of communities. Another research direction is to 
redesign the algorithm to work on undirected 
weighted networks either with certain or uncertain 
edges. The mutation operator can also be applied to 
other MOEA frameworks, such as NSGA-III [34] or 
knee point-driven EA [35], to detect communities in 
large networks. 

 
 
 



Journal of Theoretical and Applied Information Technology 
15th March 2024. Vol.102. No 5 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1829 

 

AVAILABILITY OF SUPPORTING DATA

  
The real-world networks, karate, dolphin, 

polbooks and jazz can be downloaded from the 
network repository1. The football network from The 
KONECT Project2 and the Yeast-D2 from ProRank: 
Supplementary Materials3, hosted by Nazar Zaki. 
The LFR synthetic networks can be generated using 
package 1 from the Resources4 page provided by 
Santo Fortunato. 
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