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ABSTRACT 
 

The prevention of recurring failures in modern manufacturing systems is of paramount importance for 
minimizing costs and downtime. Despite the potential for real-time data analysis using sensors offered by 
Industry 4.0 technologies, their widespread adoption, particularly among smaller manufacturing systems, 
remains a challenge. In response, this paper introduces an alternative approach to predictive maintenance 
planning, utilizing historical maintenance intervention data in the absence of sensor-based information. The 
study investigates the pivotal role of Artificial Intelligence (AI), specifically Machine Learning (ML) and 
Prognostics and Health Management (PHM), in augmenting the efficiency of predictive maintenance. 
Utilizing a comprehensive dataset from Schleuniger cutting machines spanning June 2021 to June 2023, our 
research evaluates two predictive maintenance approaches: Precision-Based Maintenance Prediction 
(PBMP) and Occurrence-Driven Maintenance Prediction (ODMP). The objective is to extract valuable 
insights from historical maintenance data, enabling proactive decision-making and preventing future 
failures. The deployment results presented in this study demonstrate the effectiveness of predicting the 
number of failures, providing valuable information that can enhance maintenance planning and reduce total 
downtime. By addressing the practical challenges faced by smaller companies in adopting sensor 
technologies, this research contributes valuable insights to the broader landscape of predictive maintenance 
in manufacturing. 

Keywords: Industry 4.0, Predictive maintenance, Artificial Intelligence, Prognostics and Health 
Management, Schleuniger Cutting Machines, Data-Driven Decision-Making 

 
 
1. INTRODUCTION 
 

Maintenance planning has traditionally relied on 
Key Performance Indicators (KPIs) to evaluate 
equipment health and fine-tune maintenance 
strategies. Well-established KPIs like Mean Time 
Before Failure (MTBF), Mean Time to Repair 
(MTTR), Overall Equipment Effectiveness (OEE), 
and Asset Utilization (AU) provide valuable 
insights into equipment reliability, maintenance 
efficiency, and overall production performance. 
These metrics enable organizations to make data-
driven decisions and effectively reduce downtime. 
In the modern era of Industry 4.0, the integration of 
advanced technologies such as Artificial 

Intelligence (AI), Intelligent Automation (IA), 
Machine Learning (ML), and Predictive 
Maintenance (PdM) has become increasingly 
essential across various industrial sectors [6, 26]. 
ML excels in uncovering hidden insights within 
data while enabling machines to learn from 
examples and past experiences. PdM significantly 
improves machine uptime by proactively preventing 
failures through advanced analytics applied to data 
collected from condition monitoring and sensors 
[35, 7, 13]. The PdM strategy relies on Prognostic 
and Health Management (PHM) techniques for 
predicting the Remaining Useful Life (RUL) of 
equipment, which has gained prominence due to its 
ability to early identify potential breakdowns [36, 4, 
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22], thereby reducing overall maintenance costs and 
mitigating industrial accidents [16, 5]. 

Numerous research papers have explored ML’s 
use in monitoring and predicting machine behavior, 
with a focus on sensor-based datasets [19, 10, 17]. 
However, this approach may pose challenges for 
smaller companies with resource constraints. 
Despite the transformative impact of Industry 4.0 
technologies on PdM practices, their 
implementation is hindered by preparatory work, 
such as sensor installation and effective data 
management. Many manufacturing systems, 
hesitant to fully adopt these technologies, persist 
with traditional maintenance strategies, relying on 
KPIs like MTBF and MTTR. This raises questions 
about the adequacy of solely relying on these KPIs 
when sophisticated predictive maintenance models 
or sufficient datasets are lacking. Hence, an 
exploration into the standalone efficacy of MTBF 
and MTTR as predictive metrics for breakdowns is 
warranted, alongside an inquiry into the nature of 
information extractable from these indicators and 
their potential for future projections. 

In response to the cited research questions, our 
investigation focuses on predicting machine failures 
by applying ML algorithms using KPIs historical 
data. This generic algorithm-driven approach adapts 
to historical data patterns, constructing logic for 
predictions based on previously encountered data. 
A notable example is found in [22], where a 
probabilistic risk assessment approach utilizing 
historical maintenance data accurately predicted 
post-maintenance failures during training. 
Leveraging the Weibull distribution, often referred 
to as the “bathtub curve,” the study extended its 
analysis to testing data, facilitating precise health 
assessments. Integral to the study was the 
examination of part replacements and MTTR, 
instrumental in identifying preventative 
maintenance and gauging asset health risks. 
Moreover, the study established a correlation 
between corrective maintenance and post 
maintenance failure probabilities by scrutinizing 
failures following these actions in the testing data. 
In a related study, the work by [29] emphasizes the 
importance of factors such as reliability, 
availability, Time Between Failures (TBF), and 
Time To Repair (TTR) in ensuring the 
uninterrupted functionality of an industrial system. 
This research conducted a preliminary examination 
with the goal of enhancing the reliability of specific 
workstations within the milk powder and curd 
production lines at a dairy plant, with the ultimate 
aim of improving availability under authentic 

working conditions. Through the utilization of field 
failure and repair data, coupled with Weibull based 
software and fitness indexes, the study input TBF 
and TTR data into the software. The findings of this 
examination suggest that optimizing the 
maintenance schedule based on reliability analysis, 
particularly for subsystems experiencing higher 
failure rates, proves advantageous for both 
performance optimization and the preservation of 
dairy product quality. These two studies are prove 
that KPIs can be bring insightful information and 
improve maintenance planning. 

Building upon these insights, [18] employs ML 
techniques to predict machine performance using 
KPIs, demonstrating the advantages of this 
approach in reducing manual efforts, analyzing 
machine wise KPIs (such as OEE, MTBF, and 
MTTR), and identifying critical machines for 
proactive interventions. Additionally, [2] proposes 
an innovative framework for real-time monitoring 
and prediction of OEE and related metrics using 
deep learning, exhibiting high predictive accuracy 
in an advanced automotive industry context. The 
study [20] utilizes AHC-CA clusters obtained 
through correspondence analysis, subjected to ML 
regression algorithms. Maintenance performance 
indicators, including MTBF, MTTR, and Wasted 
Oil per Machine-Month (WOMM), serve as 
independent variables for algorithm selection. The 
study employs non-parametric ML algorithms such 
as: Support Vector Regression (SVR), k-Nearest 
Neighbour (kNN), Decision Tree (DT), Random 
Forest (RF) and others. 

1.1 Research Questions 
This paper addresses complexities in Enterprise 

Asset Management (EAM), emphasizing historical 
data on maintenance failures with a focus on MTBF 
and MTTR. The research seeks answers to crucial 
questions:  

1. Is the exclusive use of MTBF and MTTR 
sufficient for effective predictive analysis?  

2. What insights can be derived from historical 
maintenance intervention data?  

3. How can these insights inform predictive 
maintenance strategies without comprehensive 
labeled data? 

The paper is organized into distinct sections: a 
historical perspective, the paper traces the evolution 
of production systems and the concurrent 
development of maintenance strategies. This 
historical exploration lays the groundwork for the 
subsequent discussion on the integration of 
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advanced technologies into contemporary 
manufacturing and understands what are the basic 
KPIs, such as MTBF and MTTR. The subsequent 
section pivot towards the application of ML 
techniques, with a dedicated focus on regression 
and classification algorithms. In-depth elucidations 
of the deployed algorithms and pertinent evaluation 
metrics are presented to foster a nuanced 
comprehension. The crux of the proposed 
methodology encompasses two predictive 
maintenance approaches: Precision-Based 
Maintenance Prediction (PBMP), targeting Time To 
Repair (TTR), and Occurrence-Driven Maintenance 
Prediction (ODMP), designed for forecasting the 
number of failures. Rigorous testing and evaluation 
procedures are applied to various algorithms within 
each category. The ensuing section articulates the 
outcomes of these evaluations, underscoring the 
superior performance of the ODMP approach in 
predicting the frequency of failure occurrences. 

1.2 Contributions 
Inspired by these endeavors, our study introduces 

two distinct approaches—Precision-Based 
Maintenance Prediction and Occurrence-Driven 
Maintenance Prediction. These methodologies seek 
to comprehend limitations and extract pivotal 
factors from fundamental KPIs. Leveraging an 
extensive dataset from diverse Schleuniger Cutting 
machines, our investigation assesses the efficacy of 
two predictive maintenance approaches, aiming to 
identify patterns and underscore the significance of 
PHM in augmenting machine reliability. 
Specifically, we will conduct a regression analysis 
to predict the point at which the machine is likely to 
fail, and a classification study to anticipate the 
number of potential failures. By seeking to identify 

meaningful patterns, our study highlights the 
significance of PHM in enhancing machine 
reliability. 

Aligned with principles of data-driven decision-
making, our proactive approach aspires to enhance 
production efficiency and curtail maintenance costs, 
providing invaluable insights for optimizing 
Enterprise Asset Management (EAM). 

Structured into five sections, the paper first 
details the machines analyzed, encompassing 
datasets and foundational components. In Section 3, 
we propose two distinct approaches for predicting 
machine failures using historical data. The 
subsequent section discusses the results obtained 
from these proposed algorithms, and Section 5 
encapsulates the primary research findings and 
limitations. Additionally, it provides a glimpse into 
potential future directions and applications within 
the field of Production Engineering. 

 

2. MAINTENANCE STRATEGIES IN THE 
EVOLUTION OF INDUSTRY: FROM 
RUN-TO-FAILURE TO PREDICTIVE 
MAINTENANCE 

The industrial landscape has undergone 
significant transformations throughout history, 
driven by a series of revolutionary phases known as 
industrial revolutions. Each revolution has 
introduced groundbreaking advancements, reshaped 
the manufacturing sector and altering the way 
society produces goods [33] (Figure 1). 

 

 

 

Figure 1: Production vs Maintenance evolution over time 

 

Industry 1.0: started around 1784, ushered in a new 
era with the introduction of mechanical 
manufacturing systems powered by water and 
steam. This shift from manual labor to mechanized 
processes laid the foundation for industrialization. 

Industry 2.0: emerged in the late 19th century, 
characterized by the widespread adoption of 
electrical energy. This innovation enabled mass 
production on a scale previously unimaginable, 
transforming industries and driving economic 
growth. 
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Industry 3.0: marked the onset of the modern era in 
the middle of the 20th century. The use of 
computers and technology in industries brought 
automation, boosting efficiency and productivity. 
Information and Communication Technologies 
(ICT) saw remarkable growth during this period, 
further propelling advancements. 

Industry 4.0: triggered, at the beginning of the 21st 
century, a paradigm shifts with the integration of 
cyber-physical systems (CPS), the Internet of 
Things (IoT), and cloud computing. This revolution 
opened doors to smart manufacturing, where 
interconnected systems communicate and learn 
from data, leading to highly flexible and optimized 
production processes. 

During the first and second industrial 
revolutions, machines were designed simply, 
making them easy to repair. Maintenance actions 
were performed after breakdowns occurred, a 
reactive approach known as “Maintenance 1.0”, 
“run-to-failure”, or “corrective maintenance”. 
However, this approach resulted in significant 
financial losses due to the lack of anticipation, 
including production loss and repair costs. 

As machines became more complex and 
breakdowns more frequent, the concept of 
preventive maintenance emerged. Initially, 
systematic preventive maintenance (Maintenance 
2.0) was applied, based on MTBF and MTTF. 
MTBF, in one hand, refers to the average time 
between the occurrence of one failure and the next 
failure in a system or piece of equipment. 
Mathematically, MTBF can be calculated by 
dividing the total operational time of a system by 
the number of failures that occur during that time 
period (eq. 1). A high MTBF indicates that the 
system is less prone to failures and can operate for 
extended periods without encountering issues. 

 

𝑀𝑇𝐵𝐹 =  
்௢௧௔௟ ை௣௘௥௔௧௜௢௡௔௟ ்௜௠௘

ே௨௠௕௘௥ ௢௙ ி௔௜௟௨௥௘௦
 (1) 

MTTR, in the other hand, represents the average 
time it takes to repair or restore a failed system or 
equipment to its normal operating condition after a 
failure has occurred. MTTR is a measure of 
maintainability, and a lower MTTR is generally 
desirable, as it indicates that the system can be 
quickly repaired and returned to service. MTTR is 
calculated by dividing the total downtime due to 
failures by the number of failures (eq. 2). 
 

         𝑀𝑇𝑇𝑅 =  
்௢௧௔௟ ஽௢௪௡௧௜௠௘ ௗ௨௘ ௧௢ ி௔௜௟௨௥௘௦

ே௨௠௕௘௥ ௢௙ ி௔௜௟௨௥௘௦
   (2) 

Both MTBF and MTTR play crucial roles in 
assessing the overall reliability and maintainability 
of systems, and they are used in various industries 
to support maintenance strategies and optimize 
operational efficiency. However, this fixed and 
predetermined approach does not consider the 
actual usage and maintenance practices during the 
equipment’s life cycle. To improve this strategy, a 
new approach called Condition-Based Maintenance 
(CBM) or Maintenance 3.0 was proposed. CBM 
involved continuously monitoring the system’s 
health and making maintenance decisions based on 
real-time condition data. This approach gained 
popularity in military and industrial sectors due to 
reduced maintenance and logistics costs, increased 
equipment availability, and protection against 
failures of critical equipment. 

More sophisticated maintenance strategies have 
since been proposed, incorporating advanced 
methods and tools. PHM have garnered significant 
attention, leading to the emergence of predictive 
maintenance (Maintenance 4.0). PdM uses 
historical operating data and current condition 
information to predict future equipment states and 
anticipate breakdowns. PdM become productive 
using IoT-data with zero-downtime for 
maintenance in industries by estimating the RUL 
[3]. By planning only necessary maintenance tasks, 
this approach minimizes unexpected breakdowns 
and reduces the risk of accidents in workshops. The 
success of these advanced maintenance strategies 
relies on data availability, as data-driven decision-
making is crucial in generating valuable insights for 
efficient maintenance planning and execution. 

3. MACHINE LEARNING ALGORITHMS 
AND EVALUATION METRICS 

Machine learning techniques are broadly 
classified into two main categories: supervised 
learning and unsupervised learning. The primary 
distinction between these categories lies in the 
nature of the training data. In supervised learning, 
models are trained using labeled data, where each 
observation is paired with its corresponding 
expected output. This approach is particularly 
relevant to our study, as we seek to predict an 
output value. In contrast, unsupervised learning 
involves training models with unlabeled data, 
aiming to discover inherent patterns or structures 
within the data itself, which is not pertinent to our 
research focus. 

In the context of supervised learning, models 
undergo training with labeled data, denoted as 
“experiences” where each input x is associated with 
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its corresponding expected output information y. 
These experiences are represented as (xi, yj),            
i = 1, …, n, where xi ∈ Rp are feature vectors with p 
input parameter, n number of experiences and        
yi ∈ E. These models act as opaque entities, 
adjusting their parameters based on these 
experiences. The primary objective is to discover a 
function f that establishes the relationship between 
the input x and the output y, represented as f(x) = y. 
By utilizing this function (f), we can generate 
predictions for new observations (x′) where the 
output is unknown. 

Supervised learning technique can be 
categorized into two main groups: regression 
(continuous modeling) and classification (discrete 
modeling). Both approaches are used for predictive 
modeling but differ in terms of the target variables 
(nature of the set E). In regression, the target 
variables are continuous, while in classification, the 
target variable vary in a countable range that can be 
Boolean set, N or a set of finite elements             
{e1, e2, ..., ek}.  

In the realm of predictive maintenance, various 
ML algorithms are deployed for forecasting 
maintenance needs. In the next subsections we 
present an overview of existing classification and 
regression algorithms and the associated evaluation 
metrics. 

3.1 Classification algorithms 
This section presents an overview of prominent 

classification algorithms utilized for maintenance 
prediction: 

Decision Trees (DT) is a hierarchical structure that 
is employed for the representation of discrete 
functions. The process involves partitioning the 
dataset into smaller subsets based on features [21]. 
The structure can be visualized as a tree or matrix, 
where higher levels define sets of conditions, and 
lower levels specify sets of actions to be executed 
when certain conditions are met. 

Random Forest (RF: is a two-step process. The 
first step consists of building individual trees using 
a bootstrap sample taken from the training dataset, 
involving random selection with replacement [23]. 
Second step consists of randomly picking the best 
split when constructing the tree, considering either 
all input features or a subset of them [14]. 

K-Nearest Neighbors (KNN): predicts the class or 
value of a data point based on the classes or values 
of its nearest neighbors. The “k” in KNN refers to 
the number of neighbors considered for the 
prediction [31]. 

Light Gradient Boosting Machine (LGBM) is 
rooted in decision-tree techniques. It adopts a 
histogram-based algorithm and grows trees leaf-
wise, resulting in quicker training and reduced 
memory [11]. 

Multi-layer Perceptrons (MLPs): consist of 
interconnected nodes organized into layers: an input 
layer, one or more hidden layers, and an output 
layer. Each connection between nodes carries a 
weighted value, and neurons in the hidden layers 
apply transformations to the data [24]. Nonlinear 
activation functions, such as the sigmoid, 
hyperbolic tangent (tanh), or rectified linear unit 
(ReLU), are typically used in the hidden layers. 
These functions introduce non-linearity, enabling 
the network to learn complex relationships within 
the data. MLPs learn through a process called 
backpropagation, where the algorithm adjusts the 
weights of connections iteratively based on the 
difference between predicted and actual outputs. 
This process aims to minimize a chosen loss or cost 
function. 

In evaluating classification models, various 
metrics are employed; each providing insights into 
different aspects of model performance. True 
Positives (TP) occur when the model correctly 
anticipates the positive class, True Negatives (TN) 
when it accurately recognizes the absence of the 
condition, False Positives (FP) when it erroneously 
suggests its presence, and False Negatives (FN) 
when it inaccurately indicates its absence. Precision 
(P), Recall (R), and F1 score are common metrics 
for assessing classification algorithms, with their 
formulations presented in Table 1. 

Table 1: Evaluation Metrics for classification Algorithms 

 

3.2 Regression algorithms 
This section provides an overview of prominent 

regression algorithms employed for maintenance 
prediction. 
 

Linear regression is a statistical method employed 
to establish the relationship between independent 
and dependent variables. It graphically represents 
this relationship through a linear function, known as 
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the regression function [25]. This process involves 
finding a linear function f that captures the 
relationship between an input xi and an output yi 
expressed as yi = f (xi) = β0 + j xi,j βj, where i 
corresponds to an experience and j the index of 
parameters. To define this function f, it is necessary 
to estimate the regression parameters β0 and β that 
minimize the selected evaluation metrics. 

Support Vector Model (SVM) is an extension of 
the Support Vector Model (SVM) for regression 
problem solving; SVM efficiently handles tasks 
with high-dimensional features through nonlinear 
mapping and optimal decision function modeling 
[9]. The process involves transforming input 
vectors into higher-dimensional spaces via 
predetermined nonlinear mapping and using limited 
sample data to train an optimal decision function 
model. 
 
Gradient Boosting Regression (GBR) is an 
iterative technique solving both classification and 
regression problems by creating and refining weak 
learners, such as decision trees, at each stage [32]. 
 
Lasso Regression (LR) stands as a robust method 
for examining high-dimensional data by enhancing 
predictive accuracy, facilitating feature selection 
and ensuring interpretability within a 
computationally efficient framework [8]. 
 
General Regression Neural Network (GRNN) 
approach leverages neural networks to establish 
intricate relationships between input features and 
output variables. The neural network structure 
comprises interconnected nodes, resembling the 
neurons in the human brain, organized into layers—
input, hidden, and output layers [28]. 
 
Random Forest Regression (RFR) constructs a 
set of decision trees during the training phase. Each 
decision tree independently learns patterns and 
relationships within the data. It introduces 
randomness in the model-building process by 
considering only a subset of features and data 
samples for each tree. The predictions from trees 
are aggregated to produce the final prediction of the 
Random Forest. This ensemble approach mitigates 
the risk of overfitting by reducing sensitivity to 
noise and outliers present in the dataset [27]. 
 
Ridge Regression, also known as Tikhonov 
regularization or L2 regularization, is a linear 
regression technique used for predictive modeling 
in situations where the presence of multi 
collinearity among predictor variables which can 

lead to instability in traditional linear regression 
models [15]. This method have has outperformed 
existing methods in prediction accuracy and 
embedding quality through experiments published 
in the paper [30]. 
 
To assess the performance of regression algorithms 
in predictive maintenance, key evaluation met rics 
include Mean Square Error (MSE), Root Mean 
Square Error (RMSE), and the Coefficient of 
Determination (R2), as summarized in Table 2. 
 

Table 2: Evaluation Metrics for Regression Algorithms 

 
 
Where n is the sample size, yi are the actual values 
to be predicted, ȳ the mean value of yi and ŷ are the 
estimated values. 
 
4. METHODOLOGY AND APPLICATION 

In this section, we elucidate the systematic 
methodology employed in our study to glean 
insights into predictive maintenance for 
Schleuniger Cutting machines. This methodology 
encompasses data collection, feature selection, and 
the application of distinct predictive maintenance 
approaches for both precision-based and 
occurrence-driven. 
 
4.1 System description 

The studied system is a cutting machine: Crimp 
Center 64 SP from Schleuniger group (figure 2). 
These wire cutting machines exhibit a high level of 
proficiency in performing precision cutting, 
crimping, and sealing tasks, ensuring the consistent 
delivery of top-quality results [12]. 

 
Figure 2: Cutting machine Crimp Center 64 SP 
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All experiments of this paper are conducted using Python 
version 3.11.4 on a computer featuring a 12th Gen Intel 
Core i5 processor and 24 GB RAM. 

 
4.2 Prediction process 
Both methods share a common ML process, comprising 
four stages: (1) data preparation, (2) construction of the 
ML model, (3) validation of its performance, and (4) 
deployment of the model [1]. 

 

4.3 Data preparation 

Preparing data stands as a crucial step in 
constructing reliable and high-performing ML 
pipelines, given that the quality of the data 
significantly influences outcomes. This step 
involves the transformation of raw data into a 
refined dataset before employing ML algorithms 
[1]. As per the illustration in Figure 3, data 
preparation encompasses five distinct stages. 

 
Figure 3: Data preparation process [1] 

 
 

Data extraction: The original dataset was extracted 
from the Enterprise Asset Management (EAM) 
database, focusing on maintenance activities related 
to wire cutting machines. This dataset contains 
historical data of executed maintenance actions, 
including scheduling starting dates, descriptions of 
failure types, and the duration required to resolve 
malfunctions (Time to Repair- TTR). 
 
Machines selection: The number of maintenance 
actions varies, with some machines having over 
700 recorded interventions, while others have fewer 
than 200. Such unbalanced datasets that contain a 
larger proportion of samples in one class, leading to 
classifiers showing high accuracy with the majority 
class but poor performance in predicting minority 
classes [34]. Most classification algorithms 
prioritize reducing error ratios, resulting in various 
techniques, notably sampling methods, to tackle 
imbalanced datasets [34]. Therefore, we have 
selected three Schleuniger CC64 SP machines 
produced in 2006, 2015 and 2021, as illustrated in 
Table 3. These machines have been chosen for their 
relevance and representation within our 
maintenance scope and balances datasets. 
 

Table 3: Manufacturing data of machines sample 

 
 
After consolidating all the data collected from 
various machines, we have created a central 
database containing 9,229 rows and 15 columns. 
The earliest recorded maintenance event dates back 
to June 13, 2021, while the most recent event was 
logged on June 1, 2023. 

 
Data cleaning: The data cleaning phase constituted 
a crucial step aimed at enhancing the integrity of 
our dataset, ensuring its validity, and paving the 
way for precise results in subsequent analyses. The 
process unfolded systematically, initiating with the 
filtration of data rows to retain only those pertinent 
to our investigation. Consequently, entries 
associated with machines not manufactured by 
Schleuniger or machines designed for purposes 
other than cutting were systematically excluded. 
Subsequently, non-relevant columns were excised, 
particularly those featuring a static value (e.g., 
“manufacturer” = Schleuniger), predominantly null 
values (e.g., “comment”), or deemed extraneous 
(e.g., “assigned by,” “assigned to,” etc.). Following 
this, the Z-score method was applied to identify and 
eliminate outliers within the TTR and TBF 
columns. This meticulous step aimed to ensure the 
accuracy of MTBF and MTTR calculations for each 
machine. To address the remaining null values, a 
judicious approach was adopted. Missing values in 
crucial columns, such as TTR, were imputed with 
the mean values specific to each machine. 
Subsequently, the residual rows containing any 
remaining nulls were removed. The culmination of 
this comprehensive data cleaning process yielded a 
refined dataset, setting the stage for robust and 
dependable analyses. 
 
Data transformation: The “Precision-Based 
Maintenance Prediction Approach” (PBMP) 
introduced four key columns. First, “TBF” (Time 
Before Failure) meticulously documents the 
duration between maintenance interventions for 
each machine. Secondly, “TTR” (Time to Repair) 
represents the duration taken to restore a 
malfunctioning system to full functionality after an 
incident [29]. Additionally, the “MTBF” column 
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calculates the average time before failure for 
individual machines (Eq. 1). Complementing these, 
the fourth column, “MTTR”, signifies the average 
duration to restore a system, equipment, or 
machinery to full operational capability after a 
breakdown (Eq. 2). 
The “Occurrence-Driven Maintenance Prediction 
Approach” (ODMP), using the same dataset as the 
previous PBMP method, expands the dataset by 
incorporating “count” and Mean Estimated Hours 

“MEH”. These additions indicate the frequency of 
failures on specific dates for each machine and the 
average recovery time, respectively. 
 
Feature engineering: The 10 columns delineate 
crucial aspects of machine operations and 
maintenance. 

 

 
Table 4: Manufacturing data of machines sample 

 
 
 

Target variable of both models:  

PBMP TBF (continues value).  

ODMP NF (assumes discrete integer values 
ranging from 0 to 3). 

 
4.4 Modeling and training 
For both analyses, we implemented and tested 
various algorithms as outlined in Section 3. Each 
algorithm generates a predictive model, which 
undergoes an iterative refinement process through 
continuous training (utilizing 80% of the dataset) 
and subsequent testing (using the remaining 20% of 
the dataset) until achieving a high level of accuracy 
and performance. The testing dataset consists of the 
final quarter of records for each machine in our 
dataset, treated individually. 

Throughout the training process, the algorithms 
identify patterns, and subsequently, the model is 
tested with the remaining 20% of the data to predict 
unknown attributes, as detailed by [1]. For each 
approach, the performance of the diverse 
algorithms is assessed using the appropriate 
evaluation metrics. The ensuing results are 
presented and discussed in the following 
subsections. 

 
4.5 Evaluation and validation 
To evaluate the behavior and performance of each 
model, we employed the evaluation metrics 
presented in section 3 specific for each category. 
 
4.5.1 Evaluation and validation of PBMP 
approach 
In the context of the PBMP approach, we employed 
metrics such as MSE, MAE, and R2. The outcomes 
of these metrics are presented in Table 5. 

These results reveal a relatively modest accuracy, 
wherein mean estimated hour values fall within the 
0 to 1.5 range for the three machines, as illustrated 
in Figures 4, 5, and 6. 

Table 5: Evaluation of the different regression algorithms 
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Figure 4: Actual vs Forecast estimated hours of machine ID: 1 
 

 
Figure 5: Actual vs Forecast estimated hours of machine ID: 2 

 

 
Figure 6: Actual vs Forecast estimated hours of machine ID: 3 

 
 

4.5.2 ODMP Approach: Classification analysis 
For classification analyses the F1 score evaluation 
metric is chosen as it encompasses both precision 
and recall values. The outcomes of these analyses 
for various classification models are detailed in 
Table 6. 
 
The accuracy of each model, as delineated in Table 
6, indicates that, on average, the most effective 
classification algorithms for predicting machine 

failure count are Random Forest, followed by 
LGBM and Decision Tree. These algorithms 
attained average cross-validation accuracy scores of 
71.5%, 67.1%, and 66.4%, respectively, along with 
average cross-validation F1 scores of 0.398, 0.374, 
and 0.374. Conversely, the remaining algorithms 
demonstrated lower accuracy levels. 
 
Confusion matrices are also employed to visually 
depict the outcomes of the classification models 



Journal of Theoretical and Applied Information Technology 
29th February 2024. Vol.102. No 4 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1660 

 

and assess the alignment between predicted number 
of failures and the actual number of failures within 
the testing dataset (refer to Figures 7, 8, and 9). 
 

 
 
 
 
 

Table 6: F1 score and Accuracy of the different 
classification algorithms 

 
 

 

 
Figure 7: Confusion matrices for machines 1, 2 & 3 generated using Random Forest Algorithm. 

 
 
 

 
Figure 8: Confusion matrices for machines 1, 2 & 3 generated using LGBM Algorithm. 
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Figure 9: Confusion matrices for machines 1, 2 & 3 generated using Decision Tree Algorithm. 

 
 
Subsequently, on a one-to-one classification basis, 
each machine appears to exhibit superior accuracy 
when utilizing the random forest classifier. 
Conversely, the results obtained using the LGBM 
and Decision Tree classifiers seem relatively 
comparable for every machine. 
 
4.6 Deployment 
Leveraging the accomplishments of our training 
dataset, we opted to implement the random forest 
model, given its noteworthy performance in prior 
phases. Figure 10 illustrates the outcomes of our 
predictive endeavors for the months spanning June 
to December 2023 for machine ID 1. 
 

 
Figure 10: Monthly evaluation: Actual vs Forecast 

number of failures 

 
Upon examining the graphical representation of the 
monthly evolution of actual versus predicted 
numbers of failures (Figure 11), it becomes evident 
that our model exhibits a high degree of predictive 
accuracy. 
 
Our emphasis on real-time decision-making and 
long-term performance evaluation aligns our  
approach with industry best practices, fostering 
continuous improvement and precision in predictive 
maintenance. In fact, the ability to accurately 
predict the number of failures allows us to 
proactively anticipate the required number of 
maintainers, thereby reducing total downtime. This 
capability not only improves operational efficiency 
but also contributes to significant cost savings by 
minimizing disruptions and the need for reactive 
maintenance. Additionally, the methodology aids in 
production planning, reduces costs associated with 
inventory, and exerts a positive impact on the 
environment by minimizing waste and energy 
consumption linked to emergency repairs. 
 
 
 

 

 
Figure 11: December: Actual vs Forecast number of failures 
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5. CONCLUSION 

The evaluation of the two proposed predictive 
maintenance approaches, utilizing a comprehensive 
dataset from Schleuniger cutting machines, 
elucidates the potential of extracting valuable 
insights from historical maintenance data for 
proactive decision-making. The results consistently 
underscore the superiority of the approach focused 
on predicting the frequency of failure occurrences. 
While the results also underscore that the 
considered KPIs may not be sufficient to predict the 
remaining useful life of the machine. In this 
context, the incorporation of additional features 
becomes imperative for more precise predictions. 
 
The deployment of our methodology offers several 
advantages. Firstly, leveraging insights from 
previous modeling endeavors enhances the 
accuracy of predictions. The data-driven approach, 
coupled with a proactive maintenance strategy, 
ensures timely responses to potential issues, thereby 
bolstering machine availability. The deployment of 
the random forest model, renowned for its higher 
performance, further solidifies the reliability of our 
predictions. 
 
This study has opened new perspectives for future 
research. With access to larger datasets, the 
refinement of failure predictions to accurately 
forecast precise failure times, down to the hour or 
minute, becomes a viable objective. Additionally, 
expanding predictive capabilities to encompass 
specific types of failures provides a more 
comprehensive understanding of issues, potentially 
expediting recovery times. The utilization of deep 
learning algorithms on larger datasets and the 
integration of the categorical boosting method with 
meta-heuristic algorithms are identified as potential 
strategies to further enhance predictive capabilities. 
This forward-looking perspective aims to advance 
the field of predictive maintenance, providing more 
nuanced and accurate insights for optimal 
operational planning and resource allocation in 
manufacturing systems. 
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