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ABSTRACT 
 

Predicting adverse event reactions (ADR) is challenging as it depends on the patient’s condition, pre-existing 
conditions, and the different medications being administered. One source of data for ADR that we believe is 
under-utilized is the FDA Adverse Event Reporting System (FAERS) electronic submissions. FARES 
contains a large number of ADRs including drugs and their attributes (timestamp, dosage, route, duration, 
etc.), in addition to reactions and outcomes. In this paper, we utilize FARES data to model each ADR as a 
sequence of medications to train a model that learns the similarity between the drug sequence and the ADRs. 
As a by-product of this work, we also learn the drug sequence representations, which can be used for other 
down streaming tasks. Our model is based on a transformer to encode drug sequences and adverse events, 
the model then outputs the likelihood of the ADR given the drug sequence. Our best model achieved 0.87 F1 
score, showing efficient representations for the drug sequences. We also performed qualitative analysis to 
validate the drug sequence representations. To our knowledge, we are the first to utilize drug sequences from 
FARES data to learn drug embeddings. 
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1. INTRODUCTION  
 

As defined by the World Health 
Organization (WHO),” an adverse drug reaction 
(ADR) is typically referred to as an unanticipated 
and harmful response that is thought to have been 
brought on by a medicine taken as directed” [1]. It 
is widely known that the prevalence of ADRs poses 
a serious global public health risk. Over two 
million serious ADRs occur in hospitals each year 
in the United States, amounting to over 100,000 
fatalities [2]. Early detection of probable ADRs 
linked to drug candidates during the initial phases 
of drug development can enhance drug safety, 
diminish risks for patients, and generate cost 
savings for pharmaceutical corporations [3]. In 
summary, understanding the overall risk-benefit 
profile of new medicines, maintaining patient 
safety, and making informed regulatory decisions 
all depend on the research of adverse events in 
clinical trials. It supports the proper introduction of 
novel treatments into clinical practice and the 
moral conduct of clinical research. 

According to several reports, there have 
been instances of drug recalls after their approval 
by the Food and Drug Administrator (FDA) [4]. 
For example, in January 2022, concerns regarding 
the presence of N-nitrosodimethylamine (NDMA), 
a chemical that may be carcinogenic, led to recall 
and withdrawal of Ranitidine, known by the trade 
name Zantac. Based on lab testing, NDMA is 
categorized as a potential human carcinogen. 
Between 1953 and 2014, 43 medications were 
discontinued globally, and 462 medicines were 
withdrawn from the United States market [5]. 
According to the FDA website, a total of 113 drugs 
that had received approval between 2015 and 2017 
were taken off the market after 2017. For instance, 
Vioxx, which treats arthritis chronic pain gained 
FDA approval in 1999 but was withdrawn from the 
market five years later due to an increased risk of 
stroke and heart attack [6]. 

To alleviate this issue, researchers started 
looking into ways to predict ADRs ahead of time. 
Some of the techniques proposed include rule-
based, statistical, machine learning, and hybrid 
approaches. Some of the techniques can consume 
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a لاconsiderable amount of time, are not cost-
effective, and rely heavily on domain experts and 
feature engineering. Deep learning approaches [7, 
8, 9], on the other hand, have shown significant 
improvement in many areas including sequence 
modeling. In this paper, we utilize deep learning 
approaches to model drug sequence information in 
the context of adverse event reaction prediction. 

In this paper, we propose a framework for 
learning drug sequence representations and their 
corresponding adverse events. Our approach 
employs a transformer encoder to encode both the 
drug sequence and ADR in the FARES data. The 
goal of the model is to learn the likelihood of an 
ADR given a drug sequence and to learn drug 
sequence representations.  

The rest of this paper is organized as 
follows: Section 2 covers related work, Section 3 
introduces the FARES dataset, Section 4 describes 
the methodology, Section 5 presents the results, 
and we conclude in Section 6. 

2.  RELATED WORK 

 
Numerous works published on ADR 

prediction, but very few utilized the FARES data. 
The most relevant published work is the aer2vec 
[10], using Proportional Reporting Ratio (PRR) the 
extent to which a particular adverse event is 
reported for individuals taking a specific drug, 
compared to the frequency at which the same 
adverse event is reported for patients taking some 
other drug. They used the drug name and to 
improve the performance use included the drug 
susceptibility (primary or secondary suspect). The 
Area Under the Curve based on the OMOP is 0.646 
compared to FARES of Area Under the Curve 
(AUC) 0.744. 

The authors in [11] aim to provide a 
comprehensive review of the application of deep 
learning techniques in detecting ADRs caused by 
single drugs and drug-drug interactions (DDIs). 
The paper offers an in-depth analysis of various 
deep learning approaches employed in each case, 
and strives to enhance the understanding of deep 
learning concepts and their advancements in 
extracting ADRs. The authors emphasize the 
significance of incorporating diverse data sources 
and employing novel deep learning techniques to 
detect ADRs. Deep learning techniques have been 
applied to detect ADRs brought on by both single 
medications and DDI. 

    The authors in [12] obtained information 
about associations between drugs and ADRs from 
the SIDER [13] database. They created ten 
different types of chemical fingerprints using 
molecular structures. For each fingerprint, they 
created logistic regression models with L2 norm 
regularization to predict ADRs. Additionally, they 
combined the creation of neural fingerprints and 
the creation of models using a convolutional deep 
learning framework. All eleven models' 
performance were assessed, and the results showed 
that the neural fingerprints had the best overall 
performance. 

The authors in [14] focused on using 
network-based methods to predict drug-target 
interactions (DTI). Specifically, they developed a 
recommendation algorithm-based network-based 
inference (NBI) approach. They first discussed the 
approaches and assessments of network-based 
techniques before highlighting some of their many 
applications in various fields. Target prediction 
and the investigation of the molecular mechanisms 
underlying therapeutic effects or safety issues were 
included in these applications 

The authors in [15] developed a graph 
neural network design that achieves cutting-edge 
results in predicting probable side effects from 
combination drug use. Their work is entirely 
dependent on the molecular structure data of these 
drug pairs. They demonstrated the efficiency of 
combining comprehensive drug-drug insights 
while creating representations for individual drugs 
through the process of message propagation within 
each drug and concurrent attention to the structure 
of the other drug. 

In [16], the authors presented a prediction 
algorithm to identify instances of probable adverse 
event underreporting. The authors simulated the 
effect on model performance in cases of 
underreporting of adverse events. The model has 
an AUC of 0.62, 0.79, and 0.92 reflecting 25%, 
50%, and 75% underreporting of adverse events, 
respectively. 

In [17], the authors have formulated an 
adaptable graph convolutional method capable of 
incorporating molecular influences stemming from 
the varying count of medications commonly 
consumed by an average patient. Their model 
surpasses conventional machine learning 
techniques in prognosticating hospitalization and 
mortality within the UK Biobank dataset, 
showcasing an R square value of 0.37 and an AUC 
score of 0.90.  
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3. FAERS DATASET 
 

The FAERS is a database used for the 
voluntary reporting of adverse events of drugs and 
therapeutic biological products (including 
vaccines) [4]. FAERS includes data covering 
United States market products and reports from all 
over the world. It also includes patient 
demographics and segments (elderly, children, and 
pregnant women), which makes it the largest 
database in pharmacovigilance for researchers. 
However, FAERS data lacks standards and naming 
convention. That is because reports come from 
different regions in the world and the data is 
entered in free text format and does not use any 
standard terminologies such as RxNORM or 
SNOMED. This causes problems such as 
typographical mistakes when entering medication 
names.   Moreover, the FAERS database, as well 
as any other automatic adverse reporting system, 
have repeated reports as a concern. So, with the 
text- processing procedures that will be used with 
database entries, especially drug names entries, it’s 
necessary to conduct length and resource- 
intensive database analysis. This will improve the 
quality of the data and it will allow the use of 
common vocabulary [18]. The data used in this 
work covers the year 2021 and includes 1,860,388 
cases and 6,331,148 drugs (count of unnormalized 
drug names and typos inflate the count 
significantly). In addition, FARES data contains 
demographic data (persons age, gender, and 
location at the time of the adverse event), medical 
information (time of ADR, the nature of the 
incident, side effect or medication error, outcomes 
such as hospitalization or death), product details 
(name, dosage form, administration method, active 
components of the specific medication, biologic, 
or medical device that was linked to the adverse 
event), information about the person or 
organization that reported the adverse event to the 
FDA, which can include consumers, 
manufacturers, and healthcare providers and 
patient outcome (death, hospitalization, injury, 
etc.). There are over 15K reactions in our dataset, 
and similar to the drugs, this represents the count 
of unnormalized ADRs and typos can significantly 
inflate that number. There is an average of 20 
reactions per sequence, with a total set of 800K 
drug-reaction sequence pairs. Hence, modeling the 
problem as multiclass classification will be 
challenging, even if we used a sparse network 
between the last hidden layer and the output layer. 
Likely, since the reactions do not have an explicit 
ordinal relationship nor a mutual effect that can be 

drawn from their context (drug sequence), the 
problem cannot be modeled as a sequence-to-
sequence task. 

Example case from the FARES data is 
shown in Figure 1, which shows the sequence 
drugs taken over time. Other information we know 
about this case includes patient demographics 
(female, 61 years old and located in Canada), 
adverse event reactions (Arthralgia, Blood 
cholesterol increased, Bronchitis, Dizziness, 
Hypotension, Rheumatoid arthritis) and the 
outcome, which is hospitalization. 
 
3.1 Data Preprocessing 

The drug name information encoder uses 
a byte-pair-encoding (BPE) tokenizer. Hence, 
clean-up and normalization of the drug names were 
necessary to ensure efficient tokenization. First, 
special characters are removed from the names, 
except for the hyphens (-) and dots (.) which are 
replaced by a single whitespace. Then, we x the 
mis-concatenation of drugs which have multipart 
names. For example, Esmolol Hydrochloride is 
fixed to be esmolol hydrochloride. We propose an 
iterative algorithm1 to fix this miswording. The 
algorithm starts by building a set of drug names 
separated by spaces, then iteratively builds subset 
S whose elements do not have sub-tokens from 
other elements.  

 
Algorithm1 

 
 
The remaining drug names are added to 

set R. Finally, drug names in set R are split using 
the elements of S. Iterations stop when R is an 
empty set. The final set S is finally used to split the 
text into drug names. The final preprocessing step 
is to lowercase the text. 
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4.  METHODOLOGY 
 

We propose an end-to-end training 
framework for learning the drug sequence 
representations. We frame our approach as a 
sequence labeling problem; given a sequence of 
drugs, we predict whether the ADR is associated 
with the drug sequence or not. In this section, we 
will explain each component of our model. 

 
4.1 Notations Concept 

Before presenting our methodology, we 
will set the notation. The FARES data consists of 
a sequence of drugs that are time stamped, we 
refer to this sequence as 𝑆 , such that 𝑆 =
 (𝑠 , 𝑠 , . . . , 𝑠 ) and 𝑠 , refers to the 𝑗th drug in the 
sequence. For each 𝑆  there are corresponding list 
of ADRs, which we denote as 𝑅  such that 𝑅 =
 {𝑟 , 𝑟, . . . , 𝑟 } and 𝑟 , refers to the 𝑧th ADR. Both 
𝑆  and 𝐷  form a case in the FARES dataset, 𝑐 =
{𝑆 , 𝐷 }. In order to associate each ADR, 𝑟 , with 
the drug sequence 𝑆 , we unfold the ADRs and 
form new tuples of sequence-reaction, 𝑐 =

{𝑆 , 𝑟 } for each 0 ≤ 𝑗 ≤ 𝑚. The case 𝑐  
represents a positive example. We also generate 
negative examples, where 𝑘-negative samples are 
selected using hard negative mining and added to 
the data records, we refer to the negative example 
as 𝑐 . Hence, the model is treated as a sequence 
classification one. The objective is to maximize 
the likelihood 𝑃(𝑦 = 1 | 𝑆 ; 𝑟 ;  𝜃) , the 
probability of seeing the reaction 𝑟  for a given 
drug sequence 𝑆 , parameterized by model weights 

𝜃.  
 

4.2 Hard Negative Sampling 
The negative sampling technique is 

critical for the efficiency of learning representation 
vectors by discrimination [19]. Negative samples 
in our problem are reactions that do not appear 
with the associated drugs sequence, hence labeled 
as 0. Hard negative samples are negative points, 
here reactions, that are difficult for the model to 
differentiate from a true one. For each drugs 
sequence S, reactions sampled as hard negatives 
should have at least 0.65 average cosine similarity, 
using their respective representation vectors, to 
other reactions of the sequence S. Reactions 
satisfying this condition are then sorted 
ascendingly by the frequency by which they occur 
with each of the drugs in the sequence S.  Finally, 
a set of at most three hard negative reactions for 
each true reaction are selected to be among the 
total negative samples. 

 
4.3 Model Architecture  
 The model overall architecture is 
summarized in Figure 2. The model takes two 
types of inputs derived from the FAERS data. The 
drug sequence as depicted in Figure 1 and for this 
type of input we only use the drug names. The 
second input is the ADR, note that there can be 
multiple ADRs per drug sequence, and as 
mentioned in Section 4.1, we unfold the ADRs for 
each drug sequence to form the input, which is one 
ADR per drug sequence. Each type of input is fed 
through its encoder to generate representations. 
We experimented with different types of encoders 
for the drug sequence encoding as we will explain 
later. At this stage, we have one representation of 
the drug sequence and one for the ADR, which are 
then concatenated and used as input to the 
projection layers. The final step computes the 
softmax to determine if the drug sequence causes 
the ADR or not. 
 
4.4 Drug Sequence Encoder 
 The Drug sequence encoder takes the 
sequence of the drugs taken by the patient into 
consideration. As opposed to modeling a single 
drug and its ADR, we model the entire drug 
sequence since multiple drugs taken in a given 
sequence or together can trigger certain ADRs 
compared to when a single drug is considered. We 
treat the drug sequence as a text and each drug 
name as tokens, similar to what is done in natural 
language processing. Therefore, it is important to 
choose an encoder instead of model the sequence 
and take the context around a given drug name into 
consideration. There are two common encoders for 
this task, the Bidirectional Long Short-Term 
Memory (BiLSTM) and the Transformers. Two 
variations of the BiLSTM used, word-based and 
character-based BiLSTM. While the performance 
of both models was comparable as we will see in 
the results, we believe that the character-based one 
generalizes better on drugs whose names are 
absent or less frequent in the dataset, making the 
model more robust. The resulting sequence is then 
tokenized using learned vocabulary and then 
passed to a word/character embedding layer where 
representations for each token is learned. 
Embeddings then are passed to a single-layer 
BiLSTM [20] to encode the sequence. Finally, the 
representation of the last hidden layer of the 
BiLSTM encoder is used as the sequence 
representation. Outputs of each time step are 
viewed as the encodings of each drug in the 
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sequence. Figure 3 shows a schematic of the word-
based LSTM encoder inputs. 
  
 Transformer encoder models showed 
great performance in sequence modeling, 
especially on text-based sequences, due to their 
capability of producing contextual representations 
through self-attention [21]. We experimented with 
Transformer encoders to encode the drug 
sequences. We experimented with two famous 
architectures; small architecture using a 
transformer with 4 layers and 8 attention heads in 
each layer (L4H8), and large transformer 
architecture with 12 layers and 64 attention heads 
in each layer, denoted as (L12H64).  
 
4.5 Adverse Event Reaction Encode 
 ADRs are written in plain English, their 
form is non-standardized, and they are more 
descriptive (e.g., high blood pressure, patient 
suffers from high blood pressure). Therefore, pre-
trained language models are more suitable 
encoders for this type of input. Furthermore, 
modern language models, RoBERTa [22] 
included, use BPE in their tokenizers, which makes 
the model more robust towards variations in 
writing styles, grammatical errors, or misspellings. 
In this work, we utilize Huggingface’s pre-trained 
roberta-base model and we unfreeze the top two 
layers only to be fine-tuned on our target dataset 
distribution. 
 
4.6 Projection Layers 

The output of the last encoder state from 
the drug sequence encoder, the CLS representation 
case of Transformers and the concatenation of the 
last forward and backward representation of the 
BiLSTM (ℎ→||ℎ←) are concatenated with the CLS 
token representation of the ADR RoBERTa 
encoder. The concatenated vector is then passed 
through two fully-connected layers and then 
softmax to output the likelihood of the drug-
reaction pair. Training loss is then computed using 
binary cross entropy (BCE).  
 
5. EXPERIMENTS AND RESULTS 
 
5.1 Dataset 

We split the cases in the FARES dataset 
into training (70%), validation (10%) and test 
(20%) datasets. A detailed summary of the number 
of cases in each dataset is presented in Table 1 and 
overall statistics of the drug sequences and 
reactions are presented on Table 2. 
  

5.2 Model Setup 

 As mentioned earlier, for the drug 
sequence encoder, we experimented with biLSTM 
and Transformers, while for the ADR, we used the 
RoBERTa encoder. All models are randomly 
initialized using Xavier initialization. A higher 
dropout rate is used in the larger model to avoid 
overfitting. 
We experimented with two architectures for the 
drug sequence transformer encoder; small 
architecture using a transformer with 4 layers and 
8 attention heads in each layer (L4H8), and large 
transformer architecture with 12 layers and 64 
attention heads in each layer, denoted as (L12H64) 
[20]. 
 

 5.3 Results 

 As mentioned earlier, we experimented 
with multiple drug-sequence encoders: 1) word-
based BiLSTM, 2) character-based LSTM, 3) 
transformer (L4H8), and 4) transformer (L12H64). 
We notice, and without much surprise, that the 
performance of transformer encoders, L4H8 and 
L12H64, surpassed the performance of the BiLSTM 
model by 7% and 10%, respectively. Transformers 
are able to allocate varying degrees of significance 
to distinct segments of the input sequence due to 
their self-attention mechanism. Transformers are 
able to extract more intricate patterns and 
relationships from the data than LSTMs because of 
their versatility. We then performed quantitative 
and qualitative evaluation to verify the correctness 
of our approach. Transformers are able to allocate 
varying degrees of significance to distinct 
segments of the input sequence due to their self-
attention mechanism. Transformers are able to 
extract more intricate patterns and relationships 
from the data than LSTMs because of their 
versatility. We first looked at the model 
predictions on whether the drug sequence and 
reaction are associated with each other or not, this 
is a binary classification problem. For that we 
computed the accuracy and F1-score as shown in 
Table 3. We can see that character-based LSTM 
outperformed the word-based LSTM by about 3% 
in terms of F1-score. The best performing model is 
the larger transformer (L12H64), adding close to 
12.5% improvement in F1-score over the baseline 
(word-based BiLSTM). Those models were 
trained for 55k steps on a Nvidia T4 GPU. 
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Table 3. Performance Metrics 

Model Accuracy F1 

Word-based BiLSTM 
(baseline) 

0.8 0.74 

Character-based 
BiLSTM 

0.84 0.77 

Transformer L4H8 0.91 0.84 

Transformer L12H64 0.94 0.87 

 
 
            In addition to the quantitative analysis 
above, we performed qualitative analysis to verify 
the model is in fact learning good drug-sequence 
representations. To do that, we randomly sampled 
20k drug sequences covering four adverse events 
(breast cancer, dizziness, physical disability and 
hyperbilirubinemia), then we visualized their 
embeddings using t-SNE plot (Figure 4). As you 
can see in Figure 5, drug sequence embeddings for 
each reaction are grouped together, validating that 
sequences with similar reactions are closer in the 
embeddings space, while sequences with different 
reactions are distant from each other. 

 

            We looked further into four of the clusters 
(hyperbilirubinaemia, breast cancer, dizziness, and 
physical disability) shown in Figure 4. We selected 
three drug sequences from each of the three 
clusters and plotted the heatmap generated based 
on the cosine similarity as shown in Figure 4. We 
notice a pattern in the heatmap that again validates 
that the model is learning good drug sequence 
representation. In Figure 5, (𝑥 , 𝑥 ,  𝑥 )  are 
sampled from one cluster, (𝑡 , 𝑡 ,  𝑡 ) are sampled 
from a second cluster, (𝑠 , 𝑠 ,  𝑠 ) are sampled 
from a third cluster and (𝑐 , 𝑐 , 𝑐 ) are sampled 
from the fourth cluster. We notice clear groupings 
among the selected sequences. For instance, 
(𝑡 , 𝑡 ,  𝑡 ) are very close to each other with cosine 
similarity greater than 0.82, while they are distant 
from all other sequences with cosine similarity to 
sequences in other clusters dropping to a range 
between 0.22-0.77. 
For a reference, we include the drug sequences and their 
reactions presented in Figure 4 in Table 4. 

Table 4. Drug Sequences From Figure 3 And Their 
Corresponding ADR. Drug Sequences Can Appear 

Multiple Times In The Dataset With Different 
Reactions Sequences, Enlisted Here Is A 

Random Sample Per Each. 

 

 Drug Sequence ADRs 

𝑐  GANCICLOVIR/ESMOLOL 
HYDROCHLORIDE/HYDRALAZI
NE/HYDROCHLORIDE/VALGAN
CICLOVIR/COTRIMOXAZOLE 

Hyperbilirubina
emia, 
Hepatomegaly  

𝑐  Olanzapine /ANAFRANIL/Centrum 
maternal 

Hyperbilirubina
emia neonatal, 
Respiratory 
distress,Feeding 
disorder  

𝑐  CAPECITABINE./CAPECITABIN
E./QUINACRINE/QUINACRINE  

Hyperbilirubina
emia, Oedema 
peripheral, Rash 

𝑠  RANITIDINE 
HYDROCHLORIDE/RANITIDINE 
HYDROCHLORIDE/RANITIDINE
/ZANTAC 

Breast cancer 
stage (III/I) 

𝑠  /XYREM/LISINOPRIL/COENZY
ME 
Q10/LEVOTHYROXINE/ATENOL
OL/NUVIGIL/VITAMIN D3 

Breast cancer, 
carcinoma, 
Delayed sleep 
phase 

𝑠  REVLIMID/PREDNISONE Neutropenia, 
Influenza, Breast 
cancer 

𝑡  Infliximab/INDOCID/MORPHINE/
NAPROXEN./VOLTAREN 

Dizziness, 
Colitis 
ulcerative, 
Pyrexia 

𝑡  CARBOPLATIN/TECENTRIQ/AV
ASTIN/PACLITAXEL 

Malaise, 
Dizziness 

𝑡  ULTOMIRIS/ULTOMIRIS Infusion related 
reaction, 
Dizziness 

𝑥  RISPERDAL/TEMAZEPAM/CITA
LOPRAM/MIRTAZAPINE/SERTR
ALINE/CIPRALEX/TRAZODONE 

Physical 
disability, 
Sedation, 
Somnolence 

𝑥  ENTRESTO/LOSARTAN Fatigue, 
Physical 
disability, 
Malaise, 
Dyspnoea 

𝑥  XELJANZ XR/XELJANZ 
XR/XELJANZ XR 

Exercise 
tolerance 
decreased, 
Stress, 
Abdominal 
discomfort, 
Physical 
Disability 

 
6. CONCLUSION 
 

 Our model aims at providing contextual 
distributed representation for the drug sequence by 
leveraging the drug sequence-reaction data pairs. 
The representations are learned by predicting 
whether a target adverse reaction can be associated 
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with drug sequence or not. Our evaluations have 
demonstrated the correctness of the learnt 
embeddings with an F1-score reaching 0.87 when 
using Transformer encoder for the drug sequences. 
The qualitative analysis has also shown how drug 
sequences are close to each other when sharing 
similar ADRs and distant otherwise. 

 
7. LIMITATION AND FUTURE WORK 
 

In this work, we reviewed distributed 
representation of drugs based on the drug alone. 
We also processed the drug sequence by removing 
duplicate drug names that were repeated multiple 
times in the sequence, which is not the ideal 
solution. FARES data contains data that 
differentiates the repeated drugs in a sequence. 
This data includes medication dosage, strength, 
route, form, duration that can be incorporated into 
the model to improve its performance. 
Additionally, the FARES data includes 
unstructured data that explains the reported case in 
free text, which can also be used to help predict the 
reactions. However, the unstructured data is not 
easily accessible. 

 
In future work, we will reframe the 

problem as reaction prediction, rather than 
predicting the association between drug sequence 
and the reaction. This requires different model 
architecture that can also incorporate the additional 
data elements mentioned above.  

 
Finally, it is important to note that the 

accuracy of the drug sequence embeddings is 
limited by the quality of the FARES data. In future 
work, we will consider validating a small sample 
of the data to verify the validity and accuracy of 
the reported adverse events. 

 

REFERENCES: 

[1] Edwards, I. Ralph, and Jeffrey K. Aronson. 
"Adverse drug reactions: definitions, 
diagnosis, and management." The lancet 
356.9237 (2000): 1255-1259. 

[2] .Ernst, Frank R., and Amy J. Grizzle. "Drug-
related morbidity and mortality: updating the 
cost-of-illness model." Journal of the 
American Pharmaceutical Association 
(1996) 41.2 (2001): 192-199. 

[3] Assaf, Rasha, Rashid Jayousi, and Amjad 
Rattrout. "Current State of Machine Learning 
Based Methods for Adverse Events 
Prediction." 2021 International Conference 

on Promising Electronic Technologies 
(ICPET). IEEE, 2021. 

[4] https://www.fda.gov/ 
[5] Onakpoya, Igho J., Carl J. Heneghan, and 

Jeffrey K. Aronson. "Post-marketing 
withdrawal of 462 medicinal products 
because of adverse drug reactions: a 
systematic review of the world literature." 
BMC medicine 14.1 (2016): 1-11. 

[6] Embi, Peter Joseph, et al. "Responding 
rapidly to FDA drug withdrawals." Journal of 
Medical Internet Research 8.3 (2006). 

[7] LeCun, Yann, Yoshua Bengio, and Geoffrey 
Hinton. "Deep learning." nature 521.7553 
(2015): 436-444. 

[8] Urban, Gregor, et al. "Deep learning for drug 
discovery and cancer research: Automated 
analysis of vascularization images." 
IEEE/ACM transactions on computational 
biology and bioinformatics 16.3 (2018): 
1029-1035. 

[9] Vilar, Santiago, et al. "Drug—drug 
interaction through molecular structure 
similarity analysis." Journal of the American 
Medical Informatics Association 19.6 
(2012): 1066-1074. 

[10] Portanova, Jake, et al. "aer2vec: distributed 
representations of adverse event reporting 
system data as a means to identify drug/side-
effect associations." AMIA Annual 
Symposium Proceedings. Vol. 2019. 
American Medical Informatics Association, 
2019. 

[11] Lee, Chun Yen, and Yi-Ping Phoebe Chen. 
"Prediction of drug adverse events using 
deep learning in pharmaceutical discovery." 
Briefings in Bioinformatics 22.2 (2021): 
1884-1901. 

[12] Dey, Sanjoy, et al. "Predicting adverse drug 
reactions through interpretable deep learning 
framework." BMC bioinformatics 19.21 
(2018): 1-13. . 

[13] Kuhn, Michael, et al. "The SIDER database 
of drugs and side effects." Nucleic acids 
research 44.D1 (2016): D1075-D1079. 

[14] Wu, Zengrui, et al. "Network-based methods 
for prediction of drug-target interactions." 
Frontiers in pharmacology 9 (2018): 1134. 

[15] Deac, Andreea, et al. "Drug-drug adverse 
effect prediction with graph co-attention." 
arXiv preprint arXiv:1905.00534 (2019). 

[16] Ménard, Timothé, et al. "Enabling data-
driven clinical quality assurance: predicting 
adverse event reporting in clinical trials using 



Journal of Theoretical and Applied Information Technology 
29th February 2024. Vol.102. No 4 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1622 

 

machine learning." Drug safety 42 (2019): 
1045-1053. 

[17] Anastopoulos, Ioannis N., et al. "Multi-Drug 
Featurization and Deep Learning Improve 
Patient-Specific Predictions of Adverse 
Events." International Journal of 
Environmental Research and Public Health 
18.5 (2021): 2600. 

[18] Khaleel, Mohammad Ali, et al. "A 
standardized dataset of a spontaneous 
adverse event reporting system." Healthcare. 
Vol. 10. No. 3. MDPI, 2022. 

[19] Robinson, Joshua, et al. "Contrastive 
learning with hard negative samples." arXiv 
preprint arXiv:2010.04592 (2020). 

[20] Schuster, Mike, and Kuldip K. Paliwal. 
"Bidirectional recurrent neural networks." 
IEEE transactions on Signal Processing 
45.11 (1997): 2673-2681. 

[21] Shaw, Peter, Jakob Uszkoreit, and Ashish 
Vaswani. "Self-attention with relative 
position representations." arXiv preprint 
arXiv:1803.02155 (2018).. 

[22] Liu, Yinhan, et al. "Roberta: A robustly 
optimized bert pretraining approach." arXiv 
preprint arXiv:1907.11692 (2019).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

APPENDIXES:   
 



Journal of Theoretical and Applied Information Technology 
29th February 2024. Vol.102. No 4 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1623 

 

 

 

 

 

 

. 

Figure 1. Example Drug Sequence From FARES Data 

 
 
 

 
Figure 2. Model Architecture 
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Figure 3. Bilstm Drug Sequence Encoder 

 

 
Figure 4: T-SNE Visualization Of 4 Clusters Of Drug Sequences Sampled By Their Respective Reactions. 
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Figure 5: Cosine Similarity Matrix Between 3 Random Samples From Each Cluster In Figure 4
 
 
 
 
 

Table 1. Drug Sequence Length And Reactions For The Training And Validation Datasets 
 

 Training Set Validation Set 
Min. Avg. Max. Min. Avg. Max. 

Sequence 
length 

(folded) 

1 17 21 1 15 23 

Sequence 
length 

(unfolded) 

1 11 18 1 9 16 

Number of 
tokens per 
reactions 

1 7 20 1 15 17 
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Table 2. Training, Validation And Test Set Sizes Before And After Folding The Adrs.

 

 Before ADR folding After unfolding 
Training set size 600K 1.87M 

Validation set size 160K 490K 
Test set size 40K 135K 

 


