
Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1307

VULNERABILITY DETECTION IN SOFTWARE
APPLICATIONS USING STATIC CODE ANALYSIS

DEEPAK KUMAR A1, GNANAPRAKASAM C2 , PRABU SANKAR N3, SENTHAMILARASI N4,

CHENNI KUMARAN J5, VINSTON RAJA R6, SUSEENDRA R7
1Assistant Professor, Computer Science and Engineering, St. Joseph's Institute of Technology, Chennai,
2Assistant Professor, Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai,
3Assistant Professor, Department of Information Technology, Panimalar Engineering College, Chennai,

4Assistant Professor, Computer Science and Engineering, Sathyabama Institute of Science and Technology
5Professor, Department of Computer Science and Engineering,Saveetha School of Engineering, Saveetha

Institute of Medical and
Technical Sciences (SIMATS)

6Assistant Professor, Information Technology, Panimalar Engineering College, Chennai, India.
7Assistant Professor, Information Technology, Panimalar Engineering College, Chennai, India.

E-mail: deepakkumar@stjosephstechnology.ac.in, cgn.ds2021@gmail.com, n.prabusankar81@gmail.com,

senthamilarasi.n.cse@sathyabama.ac.in, drchennikumaran@gmail.com, rvinstonraja@gmail.com,
suseechandran17@gmail.com

ABSTRACT

In this modern era of technology where data and its integrity are vital for organizations, software security
has become a major area to focus on in the software life cycle. Organizations must preserve the program's
security to ensure the computer program's availability, authenticity, and data integrity delivered to the
clients. The major focus in software security processes is to find the vulnerabilities displayed in source code
prior to the production phase of the software product. Recognizing the bugs present in the code in the early
stages of the software lifecycle may help resolve the vulnerability findings in the computer program and
help the software developers settle those bugs. This detection process is effective at runtime, but can also be
performed in the production phase where the computer program is under development and partially
implemented. A static code analysis process is used to detect vulnerabilities. It can be done computerized or
evaluated physically by development and testing teams. The use of source code scanning tools that are
mostly automated for detecting vulnerabilities is utilized in this paper. These tools review the source code
for its quality based on several code metrics and identify bugs present in the program. Unlike dynamic
analysis methods, static code analysis helps find the security vulnerabilities in the initial stages of the
software life cycle, where the software product is in the production phase and static analysis does not
require code to be in the execution state.

Keywords: Static Analysis, Bug Detection, Vulnerabilities, Software Security

1. INTRODUCTION

Preserving the security of the software
products have been the foremost basic tasks also
deemed to be the critical ones for the organizations
now-a-days. In the recent years the number of
known computer vulnerabilities has grown its
numbers vastly. Computer security alludes to steps
taken to ensure that the program is guaranteed
from attacker's malicious intents that may influence
the proper functioning of the computer program.
Different analysts and cyber security
professionals have classified these security
vulnerabilities, explained that software security

vulnerability can be deemed as a flaw in the
source code written by developers which in turn
may provide unauthorized access to the attacker and
obstruct the behavior of program. Subsequently,
software developers need to find and settle these
bugs found within the code before it is moved
to production phase. The two main broadly
classified ideas of detecting vulnerabilities are the
Static code Analysis and Dynamic code Analysis.
Both these processes analyze the code to discover
security vulnerabilities. Several static analysis tools
have been distinguished with help of the level of
accuracy in predicting the bugs by them and they
have their own set of pros and cons [1]. Dynamic

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1308

analysis is performed when the product is in
production stage whereas the static code analysis
practice involves analyzing computer program that
is yet to be deployed. Many software developers
and analysts have claimed that the static code
analysis process is more advantageous and effective
than dynamic analysis for finding security flaws in
source code. It is less demanding for the software
developer since the method of settling these flaws
found can be done in early stages, additionally,
decreases the amount of time spent and the cost put
within the organization for settling these flaws.
Static code analysis enjoys the utilization of
computerized scanning tools or it can be done
physically if needed. [2] Proposed a tool capable of
detecting bugs in android app,

Although they failed to provide the
methodology for analyzing android vulnerabilities.
Analyzed the web apps and henceforth he
proposed vulnerabilities are found in all corners of
android systems. Notable works had done on
various open-source static analysis tools made
exclusive for Java files. Researchers have
developed their JAVA applications and
intentionally added vulnerabilities to detect them.

What is static code analysis?

Static code analysis, also known as source
code analysis or static code review, is the process of
detecting bad coding style, potential vulnerabilities,
and security flaws in a software's source code
without actually running it, a form of white-box
testing. Static code analysis will enable your teams
to detect code bugs or vulnerabilities that other
testing methods and tools, such as manual code
reviews and compilers, frequently miss. The fast
feedback loop is a key tenet of the DevOps
movement. Static code analysis helps you achieve a
quick automated feedback loop for detecting
defects that, if left unchecked, could lead to more
serious issues.

Static code analysis is not only useful for
checking code styles; it can also be used for
static application security testing (SAST).

At a high level, a static code analyzer
examines source code and checks for:
• Code issues and security

vulnerabilities
• Quality of

documentation
• Consistency in formatting with overall

software design
• Compliance with project requirements, coding

standards, and best programming practices
• Violations of rules and conventions that affect

program execution and non-functional quality
aspects of a

 software system such as complexity and
maintainability

2. RELATED WORK

There has been much inquire about the bug-
prediction field focused on diverse viewpoints
utilizing different granularity levels and different
strategies [3]. Previous studies can be classified
according to different aspects, such as work on
source code features [4] or the bug description.
Considering the source code granularity aspect, the
research works has been in file level [5]. In
predicting bug severity, most existing works
carryout bug reports using natural language
techniques or various classical and deep neural
network models. Further discussions on work
related to general bug prediction, fault severity
prediction, and static analysis tools

Detection

The most important part of detection is to
avoid getting used to failing dependency checks.
Ideally, the build should fail if there is a
vulnerable dependency detected. To be able to
enable that, the resolution needs to be as painless
and as fast as possible. No one wants to encounter a
broken pipeline due to a false positive. Since the
Open Worldwide Application Security Project
(OWASP) dependency check primarily uses the
National Vulnerability Database (NIST NVD)
database, it sometimes struggles with false
positives. However, as has been observed,
false positives are inevitable, as the analysis is only
occasionally straightforward.

Analysis

This is the hard part and actually, the one
when tooling can’t help us much. Consider the
SnakeYAML remote code execution vulnerability
as an example. For it to be exploitable, the
library would have to be used unsafely, such as
parsing data provided by an attacker. Regrettably,
no tool is likely to reliably detect whether an
application and all its libraries contain vulnerable
code. So, this part will always need some human
intervention.

Resolution

Upgrading the library to a fixed version is
relatively straightforward for direct
dependencies Tools like Dependabot and
Renovate can help in the process. However, the

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1309

tools fail if the vulnerable dependency is
introduced transitively or through dependency
management. Manually overriding the dependency
may be an acceptable solution for a single project.
In cases where multiple services are being
maintained, we should introduce centrally
managed dependency management to streamline
the process.

3. BUG PREDICTION

Bug prediction studies have employed
various code metrics, including LOC [6], McCabe,
Halstead and C&K metrics, at different levels of
granularity. These levels range from package/class
level to method [7] and line level. While
package/class level provides a higher granularity, it
can be impractical for developers [8] due to the
significant effort required to locate bugs. Analysis
made with line-level granularity often result in
providing too many false-positives since multiple
line might have repeated occurrence. Method level
granularity has become the primary focus of the
research community, especially in the development
of bug prediction models [9]. Studies that made
using this approach have given out positive results.
Overall, the method level provides a suitable
balance between granularity and practicality for
developers in predicting and locating bugs [10].

4. BUG SEVERITY PREDICTION

[11] Previously took advantage of bug
reports and their severity labels to suggest accurate
severity labels for reported bugs using nearest
neighbor classification used nearest neighbor
classification. The authors have significantly
improved the f-maximum measurement.[12]
proposed a method using deep learning modeling,
natural language techniques and sentiment analysis
using error reports to predict bug severity. They
mentioned that this method improved the f-
measurement of the peak approaches by an average
of 7.90%. [13] proposed bug classification and bug
severity prediction using topic modeling. Their
assessment of 30,000 bugs reported on popular IDE
forums like eclipse and netbeans projects
demonstrates the effectiveness of their approach in
predicting severity.

5. STATIC ANALYSIS TOOLS FOR
PREDICTION

Many researchers evaluated the real

effectiveness of static analysis tools of error
detection tasks. Some scholars have used these

tools as a prophecy for the techniques provided by
them. For example, Tomassi used SpotBugs
and ErrorPone to detect errors in the BugSwarm
dataset, and they found that these tools were
not very effective at finding bugs because their
results showed only one detection. error.[14]
leveraged FindBugs has to find bugs in Google's
internal codebase, and they found that integrating
the tool into Google's Mondrian code review
system would help developers see the viability of
the code. error in the code. [15] studied the tools
SpotBugs, Infer, and Google Error Prone to find out
their real detection of Java errors. They concluded
that these tools were complementary and missed
most of the errors. Dura et al. [6] introduced
JavaDL, a declarative, log-based specification
language for detecting error patterns in Java code
and comparing it with the SpotBugs and
ErrorPone tools. The authors found that JavaDL
has comparable performance to these engines.
Habib and Pradel proposed a method that treats
error detection as a classification problem using a
neural network and using the Google Error Prone as
a prophecy.

6. SOURCE CODE METRICS

Various source code metrics with module,
class and method level granularity were used to
measure software quality and predict errors in
previous studies [16]. Are these code metrics
different? Advantages (e.g., fast computation) and
disadvantages (e.g., requires a language-specific
parser). Some of these metrics are introduced to
overcome the weaknesses of the previous code
metrics. For example, McClure proposed to
improve McCabe [17] by considering the number
of control variables. In this research, we use most of
the popular method-level code indicators used in
the previous section research (mentioned in Related
Work) to see the predictability of error codes and
Gravitation. Although the list of selected stats is not
exhaustive (with many being explored in this
section domain and test size limits in one article),
but we guarantee most metrics has previously been
shown to be effective in predicting error at the
method level. These metrics include [18],

7. LINE OF CODE (LC)

Dimensions or lines of code (LC) eases the

analysis process for most of the tools and regarded
as the effective code metric compared to others.
Using LC as proxy, the retention index is so
prominent that there are dedicated studies that
focus exclusively on LC and correlated with

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1310

other quality measures. LC has been broadly
studied for error prediction, troubleshoot and find
vulnerabilities. In this study, we calculate the LC
as source code lines without comments and blank
lines, similar to prevent code formatting and
comments on impacts, which are beyond the scope
of this study[19].

8. MCCABE (MA)

McCabe, also known as cyclic
complexity, is another widespread measurement
which indicated as the count of possible
independent paths present, hence complexity of
a program components with high McCabe values
are more prone to errors. Extensive studies have
been conducted on McCabe to find errors and to
locate suspicious code [18], to understand its
correlation with code quality and to take advantage
of its value for test creation methods, such as
structured testing (path testing). McCabe can be
calculated like 1 + #predicates[20].

9. MCCLURE (ML)

McClure has been suggested as an
improvement over McCabe. In contrast to McCabe,
McClure considers the number of control variables
and the number of comparisons in a predicate,
which is not supported by McCabe. Intuitively, a
predicate that has many comparisons and many
control variables will be complex and thereby
increases the chances of errors than a predicate with
only one comparison or a single control variable
[21].

10. PROXY INDENTATION (PI)

McCabe-like complexity metrics require a
language- specific parser (to find predicates),
suggested the proxy indentation index as a proxy
for the likeness of McCabe complexity index. It has
been shown that, to measure complexity,
indentation can be performed analogous to more
complex metrics like McCabe, without requiring a
language- specific parser. The indentation
measurement is performed for each row, then the
aggregate value is calculated for the whole program
element (for example, a method). Hindle et al.
shows that the standard deviation as a composite
value exceeds the mean, median, or maximum [22].

10.1. Nested Block Depth (NBD)

According to indices above, there is no
difference between two pieces of code
containing two identical for loops if they are
serialized or in nested arrangement. NBD has been

studied with McCabe and McClure to reduce this
problem.

10.2. FanOut(FO)

FanOut Metric computes the total
number of methods called for a given method. This
provides an estimate of coupling, i.e., the
dependence of a particular method on other
methods. It is observed that tightly coupled code
components are less maintainable and error-prone.

10.3. Readability (R)

This metric combines different code
features to calculate a value to estimate code
readability. We used the readability metric
suggested to creates readability note for a certain
method. Readability scores range from 0 to 1 to
specify maximum code that can be read at least
readable code, respectively. The authors conclude
that this metric is significantly correlated with
errors, code rotation, and self- reported stability.

10.4. Halstead Measurement

It contains a total of seven metrics which
depends on total operators and operands present in
the component. Various studies for code
measurement and to calculate the complexity of
software maintenance tasks and to estimate the
readability of software, uses the Hallstead metrics.
they have high correlation with one another, we
study the following two indicators:

Difficulty (D) and Effort (E):

n1 indicates total distinct operators, n2
indicates total distinct operands and N2 is
counted as the total operands.

The Halstead Effort is calculated as:

10.5. Maintenance Index (MI)

The maintenance index was introduced by
Omran and Hagemeister [1] in which the authors
identified metrics that assists in measurement of
maintainability of a software system and
incorporated these indexes into a single value. This
metric has evolved and has been adopted by
popular tools like Visual Studio. MI can be
calculated as follows

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1311

Where Halstead volume and LC are
defined previously in this section.

Code metrics are classified into five classes
in basis of what they measure such as complexity,
coupling and cohesion, object inheritance, and size
of the code. A brief description of these categories
is provided in the Table 1. Size of code is found to
be the most effective measure of source code. In
measuring the size, the total lines of code are a
useful metric. Yet it suffers few disadvantages.
For example, assume that the same functionality is
written multiple times the complexity remains
the same but additional lines of code impacts the
prediction. Few other metrics can be of use in
addressing this issue. A source file complexity
measure is hypothesized to influence the
modifications that can be made and the
maintainability of software.

10.6. Halstead Program Length
Hallstead’s first hypothesis states that the

length of a well-structured program is only
dependent on the unique operators and operands.
The total number of operators and operands used in
the program can be expressed as N = N1 + N2.The
estimated program length is denoted by N^ and can
be calculated using the following formula: N^ =
n1log2n1 + n2log2n2, where n1 is the count of
unique operators, and n2 is the count of unique
operands.

There are several alternate expressions available
for estimating program length:

10.7. Programming Effort (E)
Programming effort (E) is measured in

elementary mental discriminations. The
programming effort can be expressed as the
ratio of program volume (V) to program level
(L), where L ranges between zero and one,
with L=1 representing a program written at the
highest possible level.

The program difficulty (D) is proportional to
the number of unique operators in the program.
Thus, the programming effort can be
calculated as the product of program volume and
program difficulty, that is, E=V/L=D*V.

10.8. Size of Vocabulary (n)

The size of the vocabulary of a program
refers to the number of unique tokens used to
create the program.

 This vocabulary can be broken down
into two categories: operators and
operands.

 The number of unique operators is denoted
by n1, while the number of unique
operands is denoted by n2.

The total size of the vocabulary, represented
by n, can be calculated by n1+n2. The Potential
Minimum Volume, denoted as V*, refers to the
smallest possible size a program could be in order
to solve a problem using a specific vocabulary.

The formula to
calculate V* is: V* =
(2 + n2*) * log2 (2 +
n2*)

where n2* is the count of unique input and output
parameters used in the program. By calculating
V*, we can determine the minimum size
required to solve a problem using the specified
vocabulary.

10.10. Language Level

The Language level is a metric that
demonstrates the level of implementation of the
algorithm in the program’s language. When the
same algorithm is written in a low-level
programming language, it may require additional
effort to implement. In comparison, it is easier to
write a program in high-level programming
languages such as Pascal than in low-level
languages like Assembler.

The language level metric can be calculated
as follows:

L‟ = V / D / D

Another metric, lambda (λ), can be used to
estimate the programming effort of the
implementation. It is calculated by multiplying the
estimated program level (L) and the potential
minimum volume (V*) of the program. In addition,
a lambda can be expressed as the product of the
square of L and V, i.e., λ = L^2 * V.

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1312

10.9. Potential Minimum Volume

TABLE 1: LIST OF STUDIED METRICS AND THEIR BRIEF

DESCRIPTION

METRIC DESCRIPTION

LC
Number of source code lines
without comments and blank lines

MA
Number of independent paths
(logical complexity)

ML
Total variables and total
comparisons in a predicate

NBD
Counting the depth of the most
nested block

PI
Counting indentation of source
code lines

FO
Counting the total number of
methods called a given method

R
Measuring the readability of the
code in the range of 0-1 (least to

D
Difficulty in writing or
understanding the code

E Effort in developing the code

11. METHODOLOGY

Figure 1. Architecture Diagram

Once development is complete prior to the

deployment phase it has to be tested. Using static
analysis tools in development stage eases the
maintainability of software and settling the bugs in
it. An integral part of adopting a static analysis
strategy during the development of a software
product is a static analysis contained within an
integrated development environment (IDE) that is
developed either programmatically or externally
initiated at specific interval periods. Development
environments often require creating its own static
analysis with help of plugins report. [23]
Developers can review the detected errors and fix
them proactively to move into the next stage. Most
static analysis tools are capable of working
alongside in an integrated development
environment [24]. Anyhow, these tools are often
used post development process and strategies need
to be applied for analyzing performance beyond
what is a completed software product. Reviewers

analyses your code to find bugs and policy
violations. Querying or emphasizing through the
model is done looking for specific properties or
patterns that indicate a bug. Sophisticated symbolic
execution techniques examine paths through control
flow graphs. A data structure that represents a path
that can be traversed during program execution.
When Path Scouting detects an anomaly, an alert is
generated. To model and explore an astronomical
number of situational combinations, these
automated analysis tools use a variety of strategies
to ensure scalability. For example, step summaries
are refined and compressed during analysis, and
paths are examined in an order that minimizes
paging.

Initially the code undergoes a serious of complex
transformation in such a way that the computer
understands it prior to the code execution. It is
shown that in Figure 1 the analyzer feeds the
output of these stages[25].

11.1. Scanning

Compiler on execution it breaks down the code
into smaller pieces called tokens. Through tokens
which are similar to words in this context it
understands the code. A token may contain a

single character or a reserved keyword for that
language (like class in Java). Trailing space and
program semantics such as comments are often
discarded by scanners.

Figure 2. An illustration of scanning and parsing of
source code

Procedure: Scanner(file)
InputFile ← read(file)
for each line in InputFile tokens = list[]

for each char in line
if (char = whitespace)

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1313

tokens.append(word)
endif endfor

return tokens endfor
end

11.2. Parsing

In this stage, Figure 2 tokens are merely
like simple words in a language they have to be
constructed to get the grammar of a language.
Parser identifies these tokens and validates them
so that in a sequence they provide the grammar
and organized in a tree like fashioned structure
called Abstract Syntax Tree[26]. The tree itself
focuses only on the logical structure of the
program and the least insignificant details like
indentation and parenthesis are abstracted.

Procedure:
parser(toke
ns)
Load JavaParser from JavaPrser
Library
Javaparser(tokens)

for each token in tokens
if (token is in keywords)

construct
AbstractSyntaxTree else

pass endif
return AbstractSyntaxTree

endfor
end

11.3. Analyzing
Based on the logical complexity and size of

a code the syntax tree gets vast and complex in
nature thereby it is difficult in writing code to
analyses it. There are tools that ease this process
which resembles the same properties and tasks that
compilers perform [27]. The syntax tree is parsed
and the static analysis tools look for a specific
pattern in the code that results in vulnerabilities.
Various taint paths that lead to flaws are captured
and using a bug severity model and bug filter they
can be filtered based on the bug severity.

Procedure: analyse(AST)
Load BugPatterns from Library
read(AST)
if (AST in BugPatterns)

get.BugPattern(BugDescription)
print(BugDescription)

endif
end

11.4. Bug Filters and Severity Ranking
Bug filter is capable of matching instances in

context to certain criteria. A filter can select a set of
bug instances for including or excluding them in a
report. Usually, they are used to exclude instances of
a bug. The filters can also be conditioned to combine
two or more filter types by following clauses Or, And
Not. Certain match clauses are used to filter as
follows,

<Bug> It specifies a particular pattern or patterns
to match a bug instance.

For example, BAD_PRACTICE.

<Rank> The Rank element matches bug with
having at a specified bug rank. The values range
in between 1 and 20 where 1 to 4 are critical, 5 to
9 is high, 10 to 14 is medium and rest is deemed
to be low risk factored bugs. <Class> This enables
filtering bugs associated within a specified class. It
takes the class name as an attribute to filter. The
inputs are broken into tokens using various
patterns by scanners.

11.4.1. Application Misconfiguration: Extreme
Authorizations

An application may use custom
permissions that can then allow a separate
application to access hardware level functionality
through its API. These separate applications can
bypass the normal prompting procedures for use
of sensitive functionality by using the API.
Applications should only request the minimum
permissions needed for stated application
functionality. Do not request any unnecessary
permission. Any unused permissions should not
be requested. Future application updates should
prompt the user to revoke unneeded permissions.

11.4.2. Application Misconfiguration: Global Error
Handling Disabled

Disabling a global error handling
mechanism increases the risk that verbose
implementation details will be revealed to
attackers through a stack trace. To minimize the
risk of disclosing sensitive implementation details
through error messages, ensure the application
deployment descriptor declares an error-page
declaration that catches all uncaught exceptions
thrown by the application.

The web.xml should define error handling
elements such as:

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1314

<error-page>
<error-code>500</error-code>
<location>/path/to/default_500.jsp</location>
</error-page>
<error-page>
<exception-type>java.io.IOException</exception-
type>
<location>/path/to/default_exception_handler.jsp<
/location>
</error-page>

11.4.3. Cross-Site Scripting ("XSS")

Cross-site scripting (sometimes referred
to as "XSS") vulnerabilities occur when an
attacker embeds malicious client-side script or
HTML in a form or query variables submitted to
a site via a web interface, sending the malicious
content to an end-user. If this content is
submitted by one user (the attacker), stored in the
database, and subsequently rendered to a
different user (the victim), a Persisted Cross Site
Scripting Attack occurs.

The most reliable means of thwarting most types
of XSS attacks is to HTML-encode or URL-
encode all output data, regardless of the data
source. It is important to note that there are
different output contexts which encoding
functionality must handle, including HTML,
HTML attributes, URLs, CSS, and JavaScript. A
single encoding approach will not necessarily
mitigate XSS in every context.

If output encoding isn’t practicable, the
next most effective approach is to carefully filter
all input data against a white- list of allowed
characters. This approach does have the advantage
that it can be performed externally without
modifying application source code. Data retrieved
from third- parties or shared with other
applications should be filtered along with user
input data. The white-list should only include
characters which may be a legitimate part of user
input. The following characters are especially
useful for conducting XSS attacks and should be
considered in any encoding or filtering scheme: <
> “ „ ; & ? One or more of these
characters, such as the single quote, may be
required by the application.

XSS Using Script in Attributes
XSS attacks may be conducted without
using <script>...</script> tags. Other tags will do
exactly the same thing, <body

onload=alert('test1')> or other attributes
like: onmouseover, onerror.
onmouseover
<b onmouseover=alert('Wufff!')>click me!
onerror
<img src="http://url.to.file.which/not.exist"
onerror=alert(document.cookie);>

XSS Using Script Via Encoded URI Schemes
If we need to hide against web application filters
we may try to encode string characters,
e.g.: a=&\#X41 (UTF-8) and use it in IMG tags:

There are many different UTF-8 encoding notations
that give us even more possibilities.

XSS Using Code Encoding
We may encode our script in base64 and place it
in META tag. This way we get rid of alert() totally.
More information about this method can be found
in RFC 2397
<META HTTP-EQUIV="refresh"
CONTENT="0;url=data:text/html;base64,PHNjcml
wdD5hbGVydCgndGVzdDMnKTwvc2NyaXB0Pg
">

11.4.4. Cryptography: Improper Pseudo-
Random Number Generator Usage

If the application provides a switch to enable
debug mode in production, attackers could guess
or learn of this parameter and take advantage of
any additional information the application may
provide. Custom debug mode implementations
have even been observed to bypass authentication
or assign administrator-level permissions for
testing purposes.

Production code should normally not be capable
of entering debug mode or producing debug
messages. However, if this capability is necessary,
debug mode should be triggered by editing a file
or configuration option on the server. In
particular, debug should not be enabled by an
option in the application itself. For example, it
should not be possible to pass in a URL parameter
to trigger debug mode, Regardless how obscure
the parameter may be, it is never a secure option.
Insufficient randomness results when software
generates predictable values when unpredictability
is required. When a security mechanism relies on
random, unpredictable values to restrict access to
a sensitive resource, such as an initialization
vector (IV), a seed for generating a cryptographic
key, or a session ID, then use of insufficiently
random numbers may allow an attacker to access
the resource by guessing the value. The potential

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1315

consequences of using insufficiently random
numbers are data theft or modification, account or
system compromise, and loss of
accountability – i.e., non- reputation.

When using random numbers in a security
context, use cryptographically secure pseudo-
random number generators (CSPRNG).

byte[] randomBytes = new byte[8];
SecureRandom random = new
SecureRandom();
random.nextBytes(randomBytes);

11.4.5. Application Misconfiguration:
Debug

Application errors commonly occur during
normal operation, particularly when the
application is misused, even unintentionally. If
debugging is enabled, then, when occurs occur,
the application may provide inside information to
end- users who should not have access to it and
who may use it to attack the application. Error
messages displayed to an end user could include
server information, a detailed exception message,
a stack trace, or even the actual source code of the
page where the error occurred. This information
could be used to help formulate an
attack.Frameworks and components used by the
application may have their own debug options as
well. It is important that debug options are
disabled throughout the application before the
application is deployed.

There are many instances were a Debug

mode may exist within a Java application, and this
varies depending on the container. Here is one
example of debug mode disabled for the jsp
servlet:

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-
class>oracle.jsp.runtimev2.JspServlet</servlet-
class>
<init-param>
<param-name>debug_mode</param-name>
<param-value>false</param-value>
</init-param>

Since developers may have implemented their
own custom debug mode, be sure to inspect
configuration files and search the code base for
things like:
Debug Mode
debug = true debug = 1

debug

11.4.6. Disclosure: Clear Text
Password

If an application contains one or more
hardcoded passwords within the source code, an
attacker with access to the source code or compiled
binaries can extract the credentials in an attempt to
access the corresponding services. Obscuring
passwords using encoding, such as Base-64, is not
sufficient. Storing passwords in clear text (e.g. in
an application's properties or configuration file)
can result in account or system compromise. This
exposes the password to any personnel with access
to the application’s configuration files developers,
architects, testers, auditors, and development
managers. Because it is possible that others may
have access to a user's password, the owner of an
account can no longer be presumed to be the
only person able to login to the account.

Solution

System passwords should be encrypted, or
the configuration file they are contained within
should be encrypted, whenever possible.

Credentials should be encrypted with a key
and stored on disk in a non-web-accessible
directory, read-only accessible to the user running
the web application (webserver). The key should
be stored in a separate non-web-accessible location
that is also read-only to the user running the web
application. The application can then read the key
(from a known static location), read the encrypted
credentials, decode, and use them. The encryption
key should be rotated on a 30- to 90- day basis.

User passwords should be stored using a
strong one-way hashing algorithm, such as SHA-
256. A cryptographic salt should be added to each
password before it is hashed. The salt should be at
least 64-bits in length and should be random or
unique to each user.

There are many approaches and libraries
available for encrypting/decrypting data in Java.
Many common approaches are less than secure.
Java developers often encode system passwords in
Base-64 or encrypt them with DES - neither
approach is secure, especially encoding.

The following code can be used to
encrypt/decrypt using a secure algorithm, AES:

public static String encrypt(String value,
File keyFile)

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1316

throws GeneralSecurityException, IOException
{

if (!keyFile.exists())
{

The application makes use of untrusted
data in conjunction with the creation and or use of
an interpreter. Untrusted data is retrieved from the
attacker and utilized as an argument to a dangerous
interpreter access method. Failure to properly
validate or encode data utilized by an interpreter
increases the risk of injection attacks. Such
injection typically results in the attacker's ability to
execute arbitrary code in the context of the
program consuming the interpreter results.

Define and enforce a strict set of criteria

defining what the application will accept as
valid input, and contextually encode all untrusted
data passed to the interpreter prior to execution.

11.4.8. Denial of Service (DoS): Readline

The java.io.BufferedReader readLine()
method can be used to read data from a socket or
file; however, readLine() reads data until it
encounters a newline or carriage return character
in the data. If neither of these
characters are found, readLine() will continue
reading data indefinitely. If an attacker has any
control over the source being read, he or she can
inject data that does not have these characters and
cause a denial of service on the system. Even if the
number of lines to be read is limited, an attacker
can supply a large file with no newline
characters and cause an OutOfMemoryError
exception.

OWASP's Enterprise Security API
provides a safer alternative to readLine() called
SafeReadLine(). This method reads from an input
stream until end-of-line or the maximum number
of characters is reached, effectively mitigating this
risk.

Another solution is to override both
BufferedReader and the readLine() method and
implement a limit for the maximum number of
characters that can be read. In the absence of a
more secure method, avoid taking input from the
client whenever possible and ensure data being
read is trusted.

KeyGenerator keyGen =
KeyGenerator.getInstance(Crypto
Utils.AES);

keyGen.init(128);
SecretKey sk = keyGen.generateKey();

FileWriter fw = new FileWriter(keyFile);
fw.write(byteArrayToHexString(sk.getE
ncoded())); fw.flush();
fw.close();

}
SecretKeySpec sks =
getSecretKeySpec(keyFile); Cipher
cipher =

Cipher.getInstance(CryptoUtils.AES);
cipher.init(Cipher.ENCRYPT_MO
DE, sks, cipher.getParameters());

byte[] encrypted =
cipher.doFinal(value.getBytes());

return
byteArrayToHexString(encrypted);

}

11.4.7. Injection: Unknown Interpreter

OWASP ESAPI's safeReadLine() can be used to
safely read untrusted data as follows.

ByteArrayInputStream s = new
ByteArrayInputStream("testinput".g
etBytes()); Validator instance =
ESAPI.validator();
try
{

String u = instance.safeReadLine(s, 20);
}
catch (ValidationException e)
{

// Handle exception
}

11.4.9. URL Redirector Abuse

Applications frequently redirect users to
other pages using stored URLs. Sometimes the
target page is specified in an untrusted parameter,
allowing attackers to choose the destination page
or location. Such redirects may improperly
leverage the trust the user has in the vulnerable
website.

If untrusted data becomes part of a redirect
URL, ensure that the supplied value has been
properly validated and was part of a legal and
authorized request from the user. It is
recommended that legal redirect destinations be
driven by a “destination id” that is mapped to the
actual redirect destination server-side, rather than
the actual URL or portion of the URL originating
from the user request. Lookup-maps or access
controls tables are best for this purpose.

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1317

11.4.10. Insufficient Session Expiration

PCI Data Security Standards Version 3,
Section 8.1.8 specifies a maximum session
timeout of 15 minutes for critical components of
an application: "If a session has been idle for more
than 15 minutes, require the user to re-
authenticate to re-activate the terminal or session."

User sessions with long or no inactivity
timeouts may help attackers replay attacks or
hijack sessions. Social engineering attacks are also
more likely to succeed with a longer time- out. An
attacker has a greater opportunity to gain physical
access to a user’s machine if a user does not close
the application.

If the session timeout is not specified in a
web application's configuration, the default value
will be used, which is often 24, 30, or 60 minutes,
depending on the web server, version, and its
configuration.

In general, idle user sessions should
timeout within 15-20 minutes, or less for sensitive
applications. Consider disabling "sliding
expiration" if the configuration option exists. If it
is necessary to enable this option, consider
implementing a hard session timeout in addition to
the sliding timeout. When sessions timeout, the
application should invalidate the session,
removing session data as well as any cookies and
authentication tokens.

The session timeout can be configured at
the server-level in the default web.xml or for each
web application individually. The following code
should be included in the application’s web.xml
file:

<session-config>
<session-timeout>15</session-timeout>
</session-config>

If WebLogic is being used, the session timeout
should also be specified in the weblogic.xml file.
The following code sets the timeout to 15 minutes:

<?xml version="1.0" encoding="ISO-8859-1"?>
<weblogic-web-app
xmlns="http://www.bea.com/ns/weblogic/90">
<session-descriptor>
<timeout-secs>900</timeout-secs>
</session-descriptor>

</weblogic-web-app>

11.4.11. Missing Access Strategy

This application is not utilizing an access

control strategy for one or more components.
Failure to utilize access control can lead to
exposure of sensitive functionality to
unintended users. Malicious users seek out this
type of functionality to cause harm to users of the
application, or the application itself.

In Websphere, if you enable servlets by
class name, then this is performing the same act as
Android in that it allows you to invoke by the
class. If the following snippet exists or the variable
is not declared, this allows you to invoke servlets
without any permissions: enable-serving-servlets-
by-class-name value="true"

Utilize an access control strategy for all

components of the application where sensitive
functionality may reside. Prevent servlets from
serving by class name by adding the following
line:

enable-serving-servlets-by-class-name
value="false"

12. RESULT AND DISCUSSION

As future work we are going to work on
the elaboration of a representative benchmark for
web applications including a wide set of security
vulnerabilities that permits an AST tools
comparison. Figure3 The main objective is that
the evaluation of each combination of different
tools can be the most effective possible using the
methodology proposed in this work, allowing one
to distinguish the best combinations of tools
considering several levels of criticality in the web
applications of an organization

Figure3: Security vulnerabilities that permits an AST

tools comparison

One of the important constructing
blocks of software is code quality. To Enhanced
software quality is directly linked to high-quality
code. The quality of this code correlates with your
application is secure, stable, and reliable. To
endure quality, many improvement teams embrace
techniques like code review, automated testing,

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1318

and manual testing.
During the code review and

computerized tests are important for producing the
best quality code; because code referees and
automated test authors are humans, bugs and
security vulnerabilities often find their way into
the development environment. Figure4. According
to the State of Cloud Native Application Security
Report, misconfiguration, and known unpatched
vulnerabilities were responsible for the greatest
number of security incidents in cloud native
environments.

Figure4. Cloud Native Application Security Report

Source code analysis could prevent half

of the problems that often slip through the cracks
in production. Rather than putting out fires caused
by bad code, a better approach would be to
incorporate quality assurance and enforce coding
standards early in the software development life
cycle using static code analysis.

13. CONCLUSION
Bug detection and correction

remains the main maintenance activity in
software product development life cycle. However,
among many bugs that are likely to exist in high-
severity codes are of great interest to developers
because their consequences are the most important.
Unfortunately, most of the existing vulnerability
detection studies treat all bugs equally and ignore
their severity. In this article, [28] we have studied
10 source code metrics and automated static
analysis tools, as popular methods to predict
buggy codes, to find the possibility of estimating
bug severity respectively in most cases. At last, the
code metrics and static analysis tools exploit
different characteristics of code,[29] so they can
complement each other in predicting bug severity.
We found that there was no relationship between
code complexity and error severity, and static
analysis tools miss many errors due to lack of

complex deterministic model. Manual inspection
of critical errors reveals Security and
Edge/Boundary failure types with high and low
severity [30] and [31] Potential future prediction
directions of this study investigate the power of
dynamic analysis and testing in estimating defect
severity. Furthermore, one can use the conclusions
made through this study to relate the static
analysis[32][33][34][35]and [36] tools along with
their limitations and try enriching their rule set to
better identify critical bugs[37].

REFERENCES
[1]. Servant, F., Jones, J.A.: Fuzzy fine-grained

code-history analysis. In: Proceedings of the
International Conference on Software
Engineering (ICSE), pp. 746–757 (2017)

[2]. Wahono, R.S.: A systematic literature review of
software defect prediction. Journal of software
engineering 1(1),1–16 (2015)

[3]. Habib, A., Pradel, M.: Neural bug finding: A
study of opportunities and challenges. arXiv
preprint arXiv:1906.00307 (2019)

[4]. Matter, D., Kuhn, A., Nierstrasz, O.:
Assigning bug reports using a vocabulary-
based expertise model of developers. In: 2009
6th IEEE International Working Conference on
Mining Software Repositories, pp. 131–140
(2009)

[5]. Ayewah, N., Pugh, W., Morgenthaler, J.D.,
Penix, J., Zhou, Y.: Using findbugs on
production software. In: Companion to the 22nd
ACM SIGPLAN conference on Objectoriented
programming systems and applications
companion, pp. 805–806 (2007)

[6]. Dura, A., Reichenbach, C., S¨oderberg, E.:
Javadl: automatically incrementalizing java bug
pattern detection. Proceedings of the ACM on
Programming Languages 5(OOPSLA), 1–31
(2021)

[7]. Tian, Y., Lo, D., Sun, C.: Information retrieval
based nearest neighbor classification for fine-
grained bug severity prediction. In: 2012 19th
Working Conference on Reverse Engineering,
pp. 215–224. IEEE (2012)

[8]. Ramay, W.Y., Umer, Q., Yin, X.C., Zhu, C.,
Illahi, I.: Deep neural network-based severity
prediction of bug reports. IEEE Access 7,
46846–46857 (2019)

[9]. Mo, R., Wei, S., Feng, Q., Li, Z.: An
exploratory study of bug prediction at the
method level. Information and software
technology 144, 106794 (2022)

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1319

[10]. Jureczko, M., Spinellis, D.: Using object-
oriented design metrics to predict software
defects. Models and Methods of System
Dependability. Oficyna Wydawnicza
Politechniki Wroc lawskiej pp. 69–81 (2010)

[11]. On analyzing static analysis tools”, National
security Agency Centre for Assured Software,
July 26, 2011, pp. 1-13

[12]. A. Amin, A. Eldessouki, M. T. Magdy, N.
Abdeen, H. Hindy, and I. Hegazy,
„„Androshield: Automated Android
applications vulnerability detection, a hybrid
static and dynamic analysis approach,‟‟
Information, vol. 10, no. 10, p.326, 2019.

[13]. Zimmermann, T., Premraj, R., Zeller, A.:
Predicting defects for eclipse. In: Third
International Workshop on Predictor Models in
Software Engineering (PROMISE‟07: ICSE
Workshops 2007), pp. 9–9. IEEE (2007)

[14]. Pascarella, L., Palomba, F., Bacchelli, A.: On
the performance of method-level bug
prediction: A negative result. Journal of
Systems and Software 161, 110493 (2020)

[15]. Khatiwada, S., Tushev, M., Mahmoud, A.: Just
enough semantics: An information theoretic
approach for ir-based software bug localization.
Information and Software Technology 93, 45–
57 (2018)

[16]. E. Chin and D. Wagner, „„Bifocals: Analyzing
Web view vulnerabilities in Android
applications,‟‟ in InformationSecurity
Applications, Y. Kim, H. Lee, and A. Perrig,
Eds. Cham, Switzerland: Springer, 2014, pp.
138–159.

[17]. Zhang, T., Chen, J., Yang, G., Lee, B., Luo, X.:
Towards more accurate severity prediction and
fixer recommendation of software bugs. Journal
of Systems and Software 117, 166–184 (2016)

[18]. P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel,
and G. Vigna, „„A largescale study of mobile
Web app security,‟‟in Proc. Mobile Secur.
Technol. Workshop (MoST), 2015, pp. 1–8.

[19]. Tomassi, D.A.: Bugs in the wild: examining the
effectiveness of static analyzers at finding real-
world bugs. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 980–
982 (2018)

[20]. McClure, C.L.: A model for program
complexity analysis. In: Proceedings of the 3rd
international conference on Software
engineering, pp. 149–157 (1978)

[21]. Habib, A., Pradel, M.: How many of all bugs do
we find? a study of static bug detectors. In:
2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp.
317–328. IEEE (2018)

[22]. Antinyan, V., Staron, M., Sandberg, A.:
Evaluating code complexity triggers, use of
complexity measures and the influence of code
complexity on maintenance time. Empirical
Software Engineering 22(6), 3057–3087 (2017)

[23]. Yuan, H., Zheng, L., Dong, L., Peng, X.,
Zhuang, Y., Deng, G. (2020). Research and
Implementation of Security Vulnerability
Detection in Application System of WEB Static
Source Code Analysis Based on JAVA. In: Xu,
Z., Choo, KK., Dehghantanha, A., Parizi, R.,
Hammoudeh, M. (eds) Cyber Security
Intelligence and Analytics. CSIA 2019.
Advances in Intelligent Systems and Computing,
vol 928. Springer, Cham.
https://doi.org/10.1007/978-3-030-15235-2_66

[24]. Arvinder Kaur, Ruchikaa Nayyar, A
Comparative Study of Static Code Analysis
tools for Vulnerability Detection in C/C++ and
JAVA Source Code, Procedia Computer
Science, Volume 171, 2020, Pages 2023-2029,
ISSN1877-0509,
https://doi.org/10.1016/j.procs.2020.04.217.

[25]. Mateo Tudela, F.; Bermejo Higuera, J.-R.;
Bermejo Higuera, J.; Sicilia Montalvo, J.-A.;
Argyros, M.I. On Combining Static, Dynamic
and Interactive Analysis Security Testing Tools
to Improve OWASP Top Ten Security
Vulnerability Detection in Web Applications.
Appl. Sci. 2020, 10, 9119.
https://doi.org/10.3390/app10249119

[26]. Vishruti V. Desai, & Vivaksha J. Jariwala.
(2022). Comprehensive Empirical Study of
Static Code Analysis Tools for C Language.
International Journal of Intelligent Systems and
Applications in Engineering, 10(4), 695–700.
https://ijisae.org/index.php/IJISAE/article/view/
2342

[27]. N. Saccente, J. Dehlinger, L. Deng, S.
Chakraborty and Y. Xiong, "Project Achilles: A
Prototype Tool for Static Method-Level
Vulnerability Detection of Java Source Code
Using a Recurrent Neural Network," 2019
34th IEEE/ACM International Conference on
Automated Software Engineering Workshop
(ASEW), San Diego, CA, USA, 2019, pp. 114-
121, doi: 10.1109/ASEW.2019.00040.

[28]. Authors: Midya Alqaradaghi
Alqaradaghi.Gregory Morse, and Tamás Kozsik

Journal of Theoretical and Applied Information Technology
29th February 2024. Vol.102. No 4

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1320

Detecting security vulnerabilities with static
analysis – A case study Pages: 1–7 Online
Publication Date: 03 Dec 2021 Publication
Date: 07 Jun 2022, DOI:
https://doi.org/10.1556/606.2021.00454

[29]. Richard Amankwah, Jinfu Chen, Heping Song,
Patrick Kwaku Kudjo Bug detection in Java
code: An extensive evaluation of static analysis
tools using Juliet Test Suites published:29-12-
2022 https://doi.org/10.1002/ spe.3181

[30]. Filus K, Boryszko P, Domańska J, Siavvas M,
Gelenbe E. Efficient Feature Selection for Static
Analysis Vulnerability Prediction. Sensors
(Basel). 2021 Feb 6;21(4):1133. doi:
10.3390/s21041133. PMID: 33561957;
PMCID: PMC7915846.

[31]. Vinston Raja R., Ashok Kumar K.Financial
derivative features based integrated potential
fishing zone (IPFZ) Future forecast (2023)
Journal of Intelligent and Fuzzy Systems, 45 (3),
pp. 3637 - 3649, DOI: 10.3233/JIFS-231447

[32]. Vinston Raja R, Deepak Kumar A, Prabu
Sankar N, Senthamilarasi N, Dr. Chenni
Kumaran J., Prediction and Distribution of
Disease Using Hybrid Clustering Algorithm in
Big Data, International Journal on Recent and
Innovation Trends in Computing and
Communication, ISSN: 2321-8169 Volume: 11
Issue: 10,DOI:
https://doi.org/10.17762/ijritcc.v11i10.8469

[33]. Vinston Raja R, Deepak Kumar A, Prabu
Sankar N, Chidambarathanu K, Thamarai I,
Krishnaraj M, Irin Sherly S., Comparative
Evaluation Of Cardiovascular Disease Using
Mlr And Rf Algorithm With Semantic
Equivalence., Journal of Theoretical and
Applied Information Technology., 30th
September 2023 -- Vol. 101. No. 18-- 2023

[34]. Prabu Sankar, N. Jayaram, R. Irin Sherly, S.
Gnanaprakasam, C. Vinston Raja, R. Study of
ECG Analysis based Cardiac Disease Prediction
using Deep Learning Techniques, International
Journal of Intelligent Systems and Applications
in Engineering, 2023, 11(4), pp. 431–438

[35]. Vinston, R.R., Adithya, V., Hollioake, F.A.,
Kirran, P.L. Dhanalakshmi, G., Identification of
Underwater Species Using Condition-Based
Ensemble Supervised Learning Classification,
International Journal of Intelligent Systems and
Applications in Engineering, 2023, 11(3), pp.
1–12

[36]. R. Vinston Raja and K. Ashok Kumar, Fisher
Scoring with Condition Based Ensemble
Supervised Learning Classification Technique

for Prediction in PFZ Journal of Uncertain
Systems 2022 15:03

[37]. Vinston Raja, R., Ashok Kumar, K. ., & Gokula
Krishnan, V. (2023). Condition based Ensemble
Deep Learning and Machine Learning
Classification Technique for Integrated
Potential Fishing Zone Future Forecasting.
International Journal on Recent and Innovation
Trends in Computing and Communication,
11(2), 75–85.
https://doi.org/10.17762/ijritcc.v11i2.6131

