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ABSTRACT 
 

In this modern era of technology where data and its integrity are vital for organizations, software security 
has become a major area to focus on in the software life cycle. Organizations must preserve the program's 
security to ensure the computer program's availability, authenticity, and data integrity delivered to the 
clients. The major focus in software security processes is to find the vulnerabilities displayed in source code 
prior to the production phase of the software product. Recognizing the bugs present in the code in the early 
stages of the software lifecycle may help resolve the vulnerability findings in the computer program and 
help the software developers settle those bugs. This detection process is effective at runtime, but can also be 
performed in the production phase where the computer program is under development and partially 
implemented. A static code analysis process is used to detect vulnerabilities. It can be done computerized or 
evaluated physically by development and testing teams. The use of source code scanning tools that are 
mostly automated for detecting vulnerabilities is utilized in this paper. These tools review the source code 
for its quality based on several code metrics and identify bugs present in the program. Unlike dynamic 
analysis methods, static code analysis helps find the security vulnerabilities in the initial stages of the 
software life cycle, where the software product is in the production phase and static analysis does not 
require code to be in the execution state. 

Keywords: Static Analysis, Bug Detection, Vulnerabilities, Software Security 
 
1. INTRODUCTION  
 

Preserving the security of the software 
products have been the foremost basic tasks also 
deemed to be the critical ones for the organizations 
now-a-days. In the recent years the number of 
known computer vulnerabilities has grown its 
numbers vastly. Computer security alludes to steps 
taken to ensure  that  the  program  is  guaranteed  
from  attacker's malicious intents that may influence 
the proper functioning of  the  computer  program.  
Different  analysts  and  cyber security    
professionals    have    classified    these    security 
vulnerabilities, explained that software security 

vulnerability can  be  deemed  as  a  flaw  in  the  
source  code  written  by developers which in turn 
may provide unauthorized access to the attacker and 
obstruct the behavior of program. Subsequently, 
software developers need to find and settle these  
bugs  found  within  the  code  before  it  is  moved  
to production phase. The two main broadly 
classified ideas of detecting vulnerabilities are the 
Static code Analysis and Dynamic code Analysis. 
Both these processes analyze the code to discover 
security vulnerabilities.  Several static analysis tools 
have been distinguished with help of the level of 
accuracy in predicting the bugs by them and they 
have their own set of pros and cons [1].  Dynamic 
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analysis is performed when the product is in 
production stage whereas the static code analysis 
practice involves analyzing computer program   that   
is   yet to be deployed. Many software developers 
and analysts have claimed that the static code 
analysis process is more advantageous and effective 
than dynamic analysis for finding security flaws in 
source code. It is less demanding for the software 
developer since  the method of settling these flaws 
found can be done in early stages, additionally, 
decreases the amount of time spent and the cost put 
within the organization for settling these flaws. 
Static code analysis enjoys the utilization of 
computerized scanning tools or it can be done 
physically if needed. [2] Proposed a tool capable of 
detecting bugs in android app, 

Although they failed to provide the 
methodology for analyzing android vulnerabilities. 
Analyzed   the   web   apps   and henceforth he 
proposed vulnerabilities are found in all corners of 
android systems. Notable works had done on 
various open-source static analysis tools made 
exclusive for Java files. Researchers have 
developed their JAVA applications and 
intentionally added vulnerabilities to detect them. 

 
What is static code analysis? 

Static code analysis, also known as source 
code analysis or static code review, is the process of 
detecting bad coding style, potential vulnerabilities, 
and security flaws in a software's source code 
without actually running it, a form of white-box 
testing. Static code analysis will enable your teams 
to detect code bugs or vulnerabilities that other 
testing methods and tools, such as manual code 
reviews and compilers, frequently miss. The fast 
feedback loop is a key tenet of the DevOps 
movement. Static code analysis helps you achieve a 
quick automated feedback loop for detecting 
defects that, if left unchecked, could lead to more 
serious issues. 

 
Static code analysis is  not only useful for 
checking code styles;   it can also be used for 
static application security testing (SAST). 
 

At a high level, a static code analyzer 
examines source code and checks for: 
•    Code issues and security 

vulnerabilities 
•    Quality of 

documentation 
•    Consistency in formatting with overall 

software design 
•  Compliance with project requirements, coding 

standards, and best programming practices 
•  Violations of rules and conventions that affect 

program execution and non-functional quality 
aspects of a  

    software system such as complexity and 
maintainability 

 

2.   RELATED WORK 
 

There has been much inquire about the bug-
prediction field focused on diverse viewpoints 
utilizing different granularity levels and different 
strategies [3]. Previous studies can be classified 
according to different aspects, such as work on 
source code features [4] or the bug description. 
Considering the source code granularity aspect, the 
research works has been  in  file  level  [5].  In 
predicting bug severity, most existing works 
carryout bug reports using natural language 
techniques or various classical and deep neural 
network models. Further discussions on work 
related to general bug prediction, fault severity 
prediction, and static analysis tools 

 
Detection 

The most important part of detection is to 
avoid getting used to failing dependency checks. 
Ideally, the build should fail if there is  a  
vulnerable dependency detected. To be able to 
enable that, the resolution needs to be as painless 
and as fast as possible. No one wants to encounter a 
broken pipeline due to a false positive. Since the 
Open Worldwide Application Security Project 
(OWASP) dependency check primarily uses the 
National Vulnerability Database (NIST NVD) 
database, it sometimes struggles   with   false   
positives.   However,   as   has   been observed, 
false positives are inevitable, as the analysis is only 
occasionally straightforward. 

 
Analysis 

This is the hard part and actually, the one 
when tooling can’t help us much. Consider the 
SnakeYAML remote code execution   vulnerability   
as   an   example.   For   it   to   be exploitable, the 
library would have to be used unsafely, such as 
parsing data provided by an attacker. Regrettably, 
no tool is likely to reliably detect whether an 
application and all its libraries contain vulnerable 
code. So, this part will always need some human 
intervention. 

 
Resolution 

Upgrading the  library to  a  fixed version is  
relatively straightforward    for    direct    
dependencies Tools    like Dependabot and 
Renovate can help in the process. However, the 
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tools fail  if  the  vulnerable  dependency is 
introduced transitively or through dependency 
management. Manually overriding the dependency 
may be an acceptable solution for a single project. 
In cases where multiple services are being 
maintained, we should introduce    centrally    
managed dependency management to streamline 
the process. 

 
3.   BUG PREDICTION 
 

Bug prediction studies have employed 
various code metrics, including LOC [6], McCabe, 
Halstead and C&K metrics, at different levels of 
granularity. These levels range from package/class 
level to method [7] and line level. While 
package/class level provides a higher granularity, it 
can be impractical for developers [8] due to the 
significant effort required to locate bugs. Analysis 
made with line-level granularity often result in 
providing too many false-positives since multiple 
line might have repeated occurrence. Method level 
granularity has become  the  primary focus  of  the 
research community, especially in the development 
of bug prediction models [9]. Studies that made 
using this approach have given out positive results. 
Overall, the method level provides a suitable 
balance between granularity and practicality for 
developers in predicting and locating bugs [10]. 

 
4.   BUG SEVERITY PREDICTION 
 

[11]  Previously  took  advantage  of  bug  
reports  and  their severity labels to suggest accurate 
severity labels for reported bugs using nearest 
neighbor classification used nearest neighbor 
classification. The authors have significantly 
improved the f-maximum measurement.[12] 
proposed a method using deep learning modeling, 
natural language techniques and sentiment analysis 
using error reports to predict bug severity. They 
mentioned that this method improved the f-
measurement of the peak approaches by an average 
of 7.90%. [13] proposed bug classification and bug 
severity prediction using topic modeling. Their 
assessment of 30,000 bugs reported on popular IDE 
forums like eclipse and netbeans projects 
demonstrates the effectiveness of their approach in 
predicting severity. 

 

5. STATIC ANALYSIS TOOLS FOR 
PREDICTION 

 
Many researchers evaluated the real 

effectiveness of static analysis tools of error 
detection tasks. Some scholars have used these 

tools as a prophecy for the techniques provided   by   
them.   For   example,   Tomassi   used SpotBugs 
and ErrorPone to detect errors in the BugSwarm 
dataset,  and  they  found  that  these  tools  were  
not  very effective at finding bugs because their 
results showed only one detection. error.[14] 
leveraged FindBugs has to find bugs in Google's 
internal codebase, and they found that integrating 
the tool into Google's Mondrian code review 
system would help developers see the viability of 
the code. error in the code. [15]  studied the  tools  
SpotBugs, Infer, and Google Error Prone to find out 
their real detection of Java errors. They concluded 
that these tools were complementary and missed 
most of the errors. Dura et al. [6] introduced 
JavaDL, a declarative, log-based specification 
language for detecting error patterns in Java code 
and comparing it with the SpotBugs  and  
ErrorPone  tools.  The  authors  found  that JavaDL 
has comparable performance to these engines. 
Habib and Pradel proposed a method that treats 
error detection as a classification problem using a 
neural network and using the Google Error Prone as 
a prophecy. 

 
6.   SOURCE CODE METRICS 
 

Various source code metrics with module, 
class and method level granularity were used to 
measure software quality and predict errors in 
previous studies [16]. Are these code metrics 
different? Advantages (e.g., fast computation) and 
disadvantages (e.g., requires a language-specific 
parser). Some of these metrics are introduced to 
overcome the weaknesses of the previous code 
metrics. For example, McClure proposed to 
improve McCabe [17] by considering the number 
of control variables. In this research, we use most of 
the popular method-level code indicators used in 
the previous section research (mentioned in Related 
Work) to see the predictability of error codes and 
Gravitation. Although the list of selected stats is not 
exhaustive (with many being explored in this 
section domain and test size limits in one article), 
but we guarantee most metrics has previously been 
shown to be effective in predicting error at the 
method level. These metrics include [18], 

 

7.   LINE OF CODE (LC) 
 
Dimensions or lines of code (LC) eases the 

analysis process for most of the tools and regarded 
as the effective code metric compared to others. 
Using LC as  proxy, the retention  index  is  so  
prominent  that  there  are  dedicated studies that  
focus  exclusively on  LC  and  correlated  with 
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other quality measures. LC has been broadly 
studied for error prediction,  troubleshoot  and  find  
vulnerabilities.  In  this study, we calculate the LC 
as source code lines without comments and blank 
lines, similar to prevent code formatting and 
comments on impacts, which are beyond the scope 
of this study[19]. 

 
8.   MCCABE (MA) 
 

McCabe,  also  known  as  cyclic  
complexity,  is another  widespread  measurement  
which  indicated  as  the count   of   possible   
independent   paths   present,   hence complexity of  
a  program components  with  high  McCabe values 
are more prone to errors. Extensive studies have 
been conducted on McCabe to find errors and to 
locate suspicious code [18], to understand its 
correlation with code quality and to take advantage 
of its value for test creation methods, such as 
structured testing (path testing). McCabe can be 
calculated like 1 + #predicates[20]. 

 
9.   MCCLURE (ML) 
 

McClure  has  been  suggested  as  an  
improvement over McCabe. In contrast to McCabe, 
McClure considers the number of control variables 
and the number of comparisons in a predicate, 
which is not supported by McCabe. Intuitively, a 
predicate that has many comparisons and many 
control variables will be complex and thereby 
increases the chances of errors than a predicate with 
only one comparison or a single control variable 
[21]. 

 
10. PROXY INDENTATION (PI) 
 

McCabe-like complexity metrics require a 
language- specific parser (to find predicates), 
suggested the proxy indentation index as  a  proxy 
for the likeness of McCabe complexity index. It has 
been shown that, to measure complexity, 
indentation can be performed analogous to more 
complex metrics like McCabe, without requiring a 
language- specific parser. The indentation 
measurement is performed for each row, then the 
aggregate value is calculated for the whole program 
element (for example, a method). Hindle et al. 
shows that the standard deviation as a composite 
value exceeds the mean, median, or maximum [22]. 

 
10.1. Nested Block Depth (NBD) 

According to indices above, there is no 
difference between  two  pieces  of  code  
containing  two  identical  for loops if they are 
serialized or in nested arrangement. NBD has been 

studied with McCabe and McClure to reduce this 
problem. 

 
10.2. FanOut(FO) 

FanOut  Metric  computes  the  total  
number  of methods called for a given method. This 
provides an estimate of coupling, i.e., the 
dependence of a particular method on other 
methods. It is observed that tightly coupled code 
components are less maintainable and error-prone. 

 
10.3. Readability (R) 

This metric combines different code 
features to calculate a value to estimate code 
readability. We used the readability metric 
suggested to creates readability note for a certain 
method. Readability scores  range  from  0  to  1  to  
specify maximum code that can be read at least 
readable code, respectively. The authors conclude 
that this metric is significantly correlated with 
errors, code rotation, and self- reported stability. 

 
10.4. Halstead Measurement 

It contains a total of seven metrics which 
depends on total operators and operands present in 
the component. Various studies for code 
measurement and to calculate the complexity of 
software maintenance tasks and to estimate the 
readability of software, uses the Hallstead metrics.  
they have high correlation with one another, we 
study the following two indicators: 

 
Difficulty (D) and Effort (E): 

 
n1 indicates total distinct operators, n2 
indicates total distinct operands and N2 is 
counted as the total operands. 
 
The Halstead Effort is calculated as: 

         

 
 

 
 

 
10.5. Maintenance Index (MI) 

The maintenance index was introduced by 
Omran and Hagemeister [1] in which the authors 
identified metrics that assists in measurement of 
maintainability of a software system and 
incorporated these indexes into a single value. This 
metric has evolved and has been adopted by 
popular tools like Visual Studio. MI can be 
calculated as follows 
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Where Halstead volume and LC are 
defined previously in this section. 
 

Code metrics are classified into five classes 
in basis of what they measure such as complexity, 
coupling and cohesion, object inheritance, and size 
of the code. A brief description of these categories 
is provided in the Table 1. Size of code is found to 
be the most effective measure of source code. In 
measuring the size, the total lines of code are a  
useful  metric.  Yet  it  suffers  few  disadvantages.  
For example, assume that the same functionality is 
written multiple   times   the   complexity   remains   
the   same   but additional lines of code impacts the 
prediction. Few other metrics can be of use in 
addressing this issue. A source file complexity 
measure is hypothesized to influence the 
modifications that can be made and the 
maintainability of software. 

 

10.6. Halstead Program Length 
Hallstead’s first hypothesis states that the 

length of a well-structured program is  only  
dependent  on  the  unique operators and operands. 
The total number of operators and operands used in 
the program can be expressed as N = N1 + N2.The 
estimated program length is denoted by N^ and can 
be calculated using the following formula: N^ = 
n1log2n1 + n2log2n2, where n1 is the count of 
unique operators, and n2 is the count of unique 
operands. 

 
There are several alternate expressions available 
for estimating program length: 
 
 
     
 
 

 
 

 
 

10.7. Programming Effort (E) 
Programming effort (E) is measured in 

elementary mental discriminations.  The  
programming effort  can  be expressed as the 
ratio of program volume (V) to program level 
(L), where L ranges between zero and one,  
with L=1 representing a program written at the 
highest possible level.  

 
 

The program difficulty (D) is proportional to 
the number of unique operators in the program. 
Thus,  the  programming  effort  can  be  
calculated  as  the product of program volume and 
program difficulty, that is, E=V/L=D*V. 

 
10.8. Size of Vocabulary (n) 

The size of the vocabulary of a program 
refers to the number of unique tokens used to 
create the program. 

 This vocabulary  can  be  broken  down  
into  two categories: operators and 
operands. 

 The number of unique operators is denoted 
by n1, while the number of unique 
operands is denoted by n2. 

The total size of the vocabulary, represented 
by n, can be calculated by n1+n2. The Potential 
Minimum Volume, denoted as V*, refers to the 
smallest possible size a program could be in order 
to solve a problem using a specific vocabulary. 

 
The formula to 
calculate V* is: V* = 
(2 + n2*) * log2 (2 + 
n2*) 
 
where n2* is the count of unique input and output 
parameters used in the program. By calculating 
V*, we can determine the  minimum size  
required  to  solve  a  problem using the specified 
vocabulary. 
 
10.10. Language Level 

The Language level is a metric that 
demonstrates the level of implementation of the 
algorithm in the program’s language. When the 
same algorithm is written in a low-level 
programming language, it may require additional 
effort to implement. In comparison, it is easier to 
write a program in high-level programming 
languages such as Pascal than in low-level 
languages like Assembler. 

 
The language level metric can be calculated 
as follows: 
 

L‟ = V / D / D 
 

Another metric, lambda (λ), can be used to 
estimate the programming effort of the 
implementation. It is calculated by multiplying the 
estimated program level (L) and the potential 
minimum volume (V*) of the program. In addition, 
a lambda can be expressed as the product of the 
square of L and V, i.e., λ = L^2 * V. 
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10.9.      Potential Minimum Volume 
 

TABLE 1: LIST OF STUDIED METRICS AND THEIR BRIEF 

DESCRIPTION 
 

METRIC DESCRIPTION 

LC 
Number of source code lines 
without comments and blank lines 

MA 
Number of independent paths 
(logical complexity) 

ML 
Total variables and total 
comparisons in a predicate 

NBD 
Counting the depth of the most 
nested block 

PI 
Counting indentation of source 
code lines 

FO 
Counting the total number of 
methods called a given method 

R 
Measuring the readability of the 
code in the range of 0-1 (least to 

D 
Difficulty in writing or 
understanding the code 

E Effort in developing the code 

 
11. METHODOLOGY 

Figure 1. Architecture Diagram 
 
Once development is complete prior to the 

deployment phase it has  to  be  tested.  Using static 
analysis tools in development stage eases the 
maintainability of software and settling the bugs in 
it. An integral part of adopting a static analysis 
strategy during the development of a software 
product is a static analysis contained within an 
integrated development environment (IDE) that is 
developed either programmatically or externally 
initiated at specific interval periods. Development 
environments often require creating its own static 
analysis with help of plugins report. [23] 
Developers can review the detected errors and fix 
them proactively to move into the next stage.  Most 
static analysis tools are capable of working 
alongside in an integrated development 
environment [24]. Anyhow, these tools are often 
used post development process and strategies need 
to be applied for analyzing performance beyond 
what is a completed software product. Reviewers 

analyses your code to find bugs  and  policy 
violations. Querying or emphasizing through the 
model is done looking for specific properties or 
patterns that indicate a bug. Sophisticated symbolic 
execution techniques examine paths through control 
flow graphs. A data structure that represents a path 
that can be traversed during program execution. 
When Path Scouting detects an anomaly, an alert is 
generated. To model and explore an astronomical 
number of situational combinations, these 
automated analysis tools use a variety of strategies 
to ensure scalability. For example, step summaries 
are refined and compressed during analysis, and 
paths are examined in an order that minimizes 
paging. 

 
Initially the code undergoes a serious of complex 
transformation in such a way that the computer 
understands it prior to the code execution. It is 
shown that in Figure 1 the analyzer feeds the 
output of these stages[25]. 

 
11.1.  Scanning 

Compiler on execution it breaks down the code 
into smaller pieces called tokens. Through tokens 
which are similar to words in this context it 
understands the code. A  token  may  contain  a  

single  character  or  a  reserved keyword for that 
language (like class in Java). Trailing space and 
program semantics such as comments are often 
discarded by scanners. 

Figure 2. An illustration of scanning and parsing of 
source code 

 
Procedure: Scanner(file) 
InputFile ← read(file) 
for each line in InputFile tokens = list[] 

for each char in line 
if (char = whitespace) 
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tokens.append(word) 
endif endfor 

return tokens endfor 
end 
 
11.2.  Parsing 

In this stage, Figure 2 tokens are merely 
like simple words in a language they have to be 
constructed to get the grammar of a language. 
Parser identifies these tokens and validates them 
so that in a sequence they provide the grammar 
and organized in a tree like fashioned structure 
called Abstract Syntax Tree[26]. The tree itself 
focuses only on the logical structure of the 
program and the least insignificant details like 
indentation and parenthesis are abstracted. 

 
Procedure: 
parser(toke
ns) 
Load JavaParser from JavaPrser 
Library 
Javaparser(tokens) 

for each token in tokens 
if (token is in keywords) 

construct 
AbstractSyntaxTree else 

pass endif 
return AbstractSyntaxTree 

endfor 
end 
 

11.3.      Analyzing 
Based on the logical complexity and size of 

a code the syntax tree gets vast and complex in 
nature thereby it is difficult in writing code to 
analyses it. There are tools that ease this process 
which resembles the same properties and tasks that 
compilers perform [27]. The syntax tree is parsed 
and the static analysis tools look for a specific 
pattern in the code that results in vulnerabilities. 
Various taint paths that lead to flaws are captured 
and using a bug severity model and bug filter they 
can be filtered based on the bug severity. 

 
Procedure: analyse(AST) 
Load BugPatterns from Library 
read(AST) 
if (AST in BugPatterns) 

get.BugPattern(BugDescription) 
print(BugDescription) 

endif 
end 
 
 

 

11.4. Bug Filters and Severity Ranking 
Bug filter is capable of matching instances in 

context to certain criteria. A filter can select a set of 
bug instances for including or excluding them in a 
report. Usually, they are used to exclude instances of 
a bug. The filters can also be conditioned to combine 
two or more filter types by following clauses Or, And 
Not. Certain match clauses are used to filter as 
follows, 

 
<Bug> It specifies a particular pattern or patterns 
to match a bug instance. 

 
For example, BAD_PRACTICE. 

 
<Rank> The Rank element matches bug with 
having at a specified bug rank. The values range 
in between 1 and 20 where 1 to 4 are critical, 5 to 
9 is high, 10 to 14 is medium and rest is deemed 
to be low risk factored bugs. <Class> This enables 
filtering bugs associated within a specified class. It 
takes the class name as an attribute to filter. The 
inputs are broken into tokens using various 
patterns by scanners. 

 
 

11.4.1.  Application Misconfiguration: Extreme 
Authorizations 

An application may use custom 
permissions that can then allow a separate 
application to access hardware level functionality 
through its API. These separate applications can 
bypass the normal prompting procedures for use 
of sensitive functionality by using the API. 
Applications should only request the minimum 
permissions needed for stated application 
functionality. Do not request any   unnecessary 
permission. Any   unused   permissions should not 
be requested. Future application updates should 
prompt the user to revoke unneeded permissions. 

 
 
11.4.2.  Application Misconfiguration: Global Error 
Handling Disabled 

Disabling a global error handling 
mechanism increases the risk that verbose 
implementation details will be revealed to 
attackers through a stack trace. To minimize the 
risk of disclosing sensitive implementation details 
through error messages, ensure the application 
deployment descriptor declares an error-page 
declaration that catches all uncaught exceptions 
thrown by the application. 
 
The web.xml should define error handling 
elements such as: 
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<error-page> 
<error-code>500</error-code> 
<location>/path/to/default_500.jsp</location> 
</error-page> 
<error-page> 
<exception-type>java.io.IOException</exception-
type> 
<location>/path/to/default_exception_handler.jsp<
/location> 
</error-page> 
 
 
11.4.3.    Cross-Site Scripting ("XSS") 

Cross-site scripting (sometimes referred 
to as "XSS") vulnerabilities occur when an 
attacker embeds malicious client-side script or 
HTML in a form or query variables submitted to 
a site via a web interface, sending the malicious 
content to an end-user. If this content is 
submitted by one user (the attacker), stored in the 
database, and subsequently rendered to a 
different user (the victim), a Persisted Cross Site 
Scripting Attack occurs.  
 

The most reliable means of thwarting most types 
of XSS attacks is to HTML-encode or URL-
encode all output data, regardless of the data 
source. It is important to note that there   are    
different   output    contexts   which   encoding 
functionality must handle, including HTML, 
HTML attributes, URLs, CSS, and JavaScript. A 
single encoding approach will not necessarily 
mitigate XSS in every context. 
 

If output encoding isn’t practicable, the 
next most effective approach is to carefully filter 
all input data against a white- list of allowed 
characters. This approach does have the advantage 
that it can be performed externally without 
modifying application source code. Data retrieved 
from third- parties or shared with other 
applications should be filtered along with user 
input data. The white-list should only include 
characters which may be a legitimate part of user 
input. The following  characters  are  especially  
useful  for  conducting XSS attacks and should be 
considered in any encoding or filtering  scheme: <  
>  “  „   ;  &  ? One  or  more  of  these 
characters, such as the single quote, may be 
required by the application.  

 
XSS Using Script in Attributes 
XSS attacks may be conducted without 
using <script>...</script> tags. Other tags will do 
exactly the same thing, <body 

onload=alert('test1')> or other attributes 
like: onmouseover, onerror.  
onmouseover 
<b onmouseover=alert('Wufff!')>click me!</b> 
onerror 
<img src="http://url.to.file.which/not.exist" 
onerror=alert(document.cookie);> 
 
XSS Using Script Via Encoded URI Schemes 
If we need to hide against web application filters 
we may try to encode string characters, 
e.g.: a=&\#X41 (UTF-8) and use it in IMG tags: 
<IMG SRC=j&#X41vascript:alert('test2')> 
There are many different UTF-8 encoding notations 
that give us even more possibilities. 
 
XSS Using Code Encoding 
We may encode our script in base64 and place it 
in META tag. This way we get rid of alert() totally. 
More information about this method can be found 
in RFC 2397 
<META HTTP-EQUIV="refresh" 
CONTENT="0;url=data:text/html;base64,PHNjcml
wdD5hbGVydCgndGVzdDMnKTwvc2NyaXB0Pg
"> 

 
11.4.4.    Cryptography:   Improper   Pseudo-
Random   Number Generator Usage 

If the application provides a switch to enable 
debug mode in production, attackers could guess 
or learn of this parameter and take advantage of 
any additional information the application may 
provide. Custom debug mode implementations 
have even been observed to bypass authentication 
or assign administrator-level permissions for 
testing purposes. 

 
Production code should normally not be capable 
of entering debug mode or producing debug 
messages. However, if this capability is necessary, 
debug mode should be triggered by editing a file 
or configuration option on the server. In 
particular, debug should not be enabled by an 
option in the application itself. For example, it 
should not be possible to pass in a URL parameter 
to trigger debug mode, Regardless how obscure 
the parameter may be, it is never a secure option. 
Insufficient randomness results when software 
generates predictable values when unpredictability 
is required. When a security mechanism relies on 
random, unpredictable values to restrict access to 
a sensitive resource, such as an initialization 
vector (IV), a seed for generating a cryptographic 
key, or a session ID, then use of insufficiently 
random numbers may allow an  attacker to  access  
the  resource by  guessing the value. The potential 
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consequences of using insufficiently random 
numbers are data theft or modification, account or 
system compromise,   and   loss   of   
accountability   –   i.e.,   non- reputation. 

When using random numbers in a security 
context, use cryptographically secure pseudo-
random number generators (CSPRNG). 

 
byte[] randomBytes = new byte[8]; 
SecureRandom random = new 
SecureRandom(); 
random.nextBytes(randomBytes); 

 
 
11.4.5. Application Misconfiguration: 
Debug 

Application errors commonly occur during 
normal operation, particularly when the 
application is misused, even unintentionally. If 
debugging is enabled, then, when occurs occur, 
the application may provide inside information to 
end- users who should not have access to it and 
who may use it to attack the application. Error 
messages displayed to an end user could include 
server information, a detailed exception message, 
a stack trace, or even the actual source code of the 
page where the error occurred. This information 
could be used to help formulate an 
attack.Frameworks and components used by the 
application may have their own debug options as 
well. It is important that debug options are 
disabled throughout the application before the 
application is deployed. 

 
There are many instances were a Debug 

mode may exist within a Java application, and this 
varies depending on the container. Here is one 
example of debug mode disabled for the jsp 
servlet: 

 
<servlet> 
<servlet-name>jsp</servlet-name> 
<servlet-
class>oracle.jsp.runtimev2.JspServlet</servlet- 
class> 
<init-param> 
<param-name>debug_mode</param-name> 
<param-value>false</param-value> 
</init-param> 

Since developers may have implemented their 
own custom debug mode, be sure to inspect 
configuration files and search the code base for 
things like: 
Debug Mode  
debug = true debug = 1 

debug 
 
 
11.4.6. Disclosure: Clear Text 
Password 

If an application contains one or more 
hardcoded passwords within the source code, an 
attacker with access to the source code or compiled 
binaries can extract the credentials in an attempt to 
access the corresponding services. Obscuring 
passwords using encoding, such as Base-64, is not 
sufficient. Storing passwords in clear text (e.g. in 
an application's properties or configuration file) 
can result in account or system compromise. This 
exposes the password to any personnel with access 
to the application’s configuration files developers, 
architects, testers, auditors, and development 
managers. Because it is possible that others may 
have access to a user's password, the owner of an 
account can no longer be  presumed  to  be  the  
only  person  able  to  login  to  the account. 

 
 
Solution 

System passwords should be encrypted, or 
the configuration file they are contained within 
should be encrypted, whenever possible. 

Credentials should be encrypted with a key 
and stored on disk in a non-web-accessible 
directory, read-only accessible to the user running 
the web application (webserver). The key should 
be stored in a separate non-web-accessible location 
that is also read-only to the user running the web 
application. The application can then read the key 
(from a known static location), read  the  encrypted 
credentials, decode, and  use them. The encryption 
key should be rotated on a 30- to 90- day basis. 

User  passwords should be  stored using a  
strong one-way hashing algorithm, such as SHA-
256. A cryptographic salt should be added to each 
password before it is hashed. The salt should be at 
least 64-bits in length and should be random or 
unique to each user. 

There are many approaches and libraries 
available for encrypting/decrypting data in Java. 
Many common approaches are less than secure. 
Java developers often encode system passwords in 
Base-64 or encrypt them with DES - neither 
approach is secure, especially encoding. 

 
The following code can be used to 
encrypt/decrypt using a secure algorithm, AES: 

 
public static String encrypt(String value, 
File keyFile) 
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throws GeneralSecurityException, IOException 
{ 

if (!keyFile.exists()) 
{ 

The application makes use of untrusted 
data in conjunction with the creation and or use of 
an interpreter. Untrusted data is retrieved from the 
attacker and utilized as an argument to a dangerous 
interpreter access method. Failure to properly 
validate or encode data utilized by an interpreter 
increases the risk of injection attacks. Such 
injection typically results in the attacker's ability to 
execute arbitrary code in the context of the 
program consuming the interpreter results. 

 
Define and enforce a strict set of criteria 

defining what the application  will  accept  as  
valid  input,  and  contextually encode all untrusted 
data passed to the interpreter prior to execution. 

 
11.4.8.    Denial of Service (DoS): Readline 

The java.io.BufferedReader readLine() 
method can be used to read data from a socket or 
file; however, readLine() reads data until it 
encounters a newline or carriage return character 
in    the    data.    If    neither    of    these    
characters    are found, readLine() will continue 
reading data indefinitely. If an attacker has any 
control over the source being read, he or she can 
inject data that does not have these characters and 
cause a denial of service on the system. Even if the 
number of lines to be read is limited, an attacker 
can supply a large file      with      no      newline      
characters      and      cause an OutOfMemoryError 
exception. 

OWASP's   Enterprise   Security   API   
provides   a   safer alternative to readLine() called 
SafeReadLine(). This method reads from an input 
stream until end-of-line or the maximum number 
of characters is reached, effectively mitigating this 
risk. 

Another solution is to override both 
BufferedReader and the readLine() method and 
implement a limit for the maximum number of 
characters that can be read. In the absence of a 
more secure method, avoid taking input from the 
client whenever possible and ensure data being 
read is trusted. 

 
KeyGenerator keyGen = 
KeyGenerator.getInstance(Crypto
Utils.AES); 

keyGen.init(128); 
SecretKey sk = keyGen.generateKey(); 

FileWriter fw = new FileWriter(keyFile); 
fw.write(byteArrayToHexString(sk.getE
ncoded())); fw.flush(); 
fw.close(); 

} 
SecretKeySpec sks = 
getSecretKeySpec(keyFile); Cipher 
cipher = 

Cipher.getInstance(CryptoUtils.AES); 
cipher.init(Cipher.ENCRYPT_MO
DE, sks, cipher.getParameters()); 

byte[] encrypted = 
cipher.doFinal(value.getBytes()); 

return 
byteArrayToHexString(encrypted); 

} 
 
 
11.4.7.     Injection: Unknown Interpreter 
 
OWASP ESAPI's safeReadLine() can be used to 
safely read untrusted data as follows. 
 
ByteArrayInputStream s = new 
ByteArrayInputStream("testinput".g
etBytes()); Validator instance = 
ESAPI.validator(); 
try 
{ 

String u = instance.safeReadLine(s, 20); 
} 
catch (ValidationException e) 
{ 

// Handle exception 
} 
 
11.4.9.    URL Redirector Abuse 

Applications frequently redirect users to 
other pages using stored URLs. Sometimes the 
target page is specified in an untrusted parameter, 
allowing attackers to choose the destination page 
or location. Such redirects may improperly 
leverage the trust the user has in the vulnerable 
website. 

If untrusted data becomes part of a redirect 
URL, ensure that the supplied value has been 
properly validated and was part of a legal and 
authorized request from the user. It is 
recommended that legal redirect destinations be 
driven by a “destination id” that is mapped to the 
actual redirect destination server-side, rather than 
the actual URL or portion of the URL originating 
from the user request. Lookup-maps or access 
controls tables are best for this purpose. 
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11.4.10. Insufficient Session Expiration 

PCI  Data  Security  Standards  Version  3,  
Section  8.1.8 specifies  a  maximum  session  
timeout  of  15  minutes  for critical components of 
an application: "If a session has been idle for more 
than 15 minutes, require the user to re- 
authenticate to re-activate the terminal or session." 

User sessions with long or no inactivity 
timeouts may help attackers replay attacks or 
hijack sessions. Social engineering attacks are also 
more likely to succeed with a longer time- out. An 
attacker has a greater opportunity to gain physical 
access to a user’s machine if a user does not close 
the application. 

If the session timeout is not specified in a 
web application's configuration, the default value 
will be used, which is often 24, 30, or 60 minutes, 
depending on the web server, version, and its 
configuration. 

In general, idle user sessions should 
timeout within 15-20 minutes, or less for sensitive 
applications. Consider disabling "sliding 
expiration" if the configuration option exists. If it 
is necessary to enable this option, consider 
implementing a hard session timeout in addition to 
the sliding timeout. When sessions timeout, the 
application  should   invalidate  the session, 
removing session data as well as any cookies and 
authentication tokens. 

The session timeout can be configured at 
the server-level in the default web.xml or for each 
web application individually. The following code 
should be included in the application’s web.xml 
file: 
 
<session-config> 
<session-timeout>15</session-timeout> 
</session-config> 

 
If WebLogic is being used, the session timeout 
should also be specified in the weblogic.xml file. 
The following code sets the timeout to 15 minutes: 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<weblogic-web-app 
xmlns="http://www.bea.com/ns/weblogic/90"> 
<session-descriptor> 
<timeout-secs>900</timeout-secs> 
</session-descriptor> 

</weblogic-web-app> 
 
 
11.4.11.  Missing Access Strategy 

This application is not utilizing an access 

control strategy for one or more components. 
Failure to utilize access control can lead  to  
exposure  of  sensitive  functionality  to  
unintended users. Malicious users seek out this 
type of functionality to cause harm to users of the 
application, or the application itself. 

In Websphere, if you enable servlets by 
class name, then this is performing the same act as 
Android in that it allows you to invoke by the 
class. If the following snippet exists or the variable 
is not declared, this allows you to invoke servlets 
without any permissions: enable-serving-servlets-
by-class-name value="true" 

 
Utilize an access control strategy for all 

components of the application where sensitive 
functionality may reside. Prevent servlets from 
serving by class name by adding the following 
line: 

enable-serving-servlets-by-class-name 
value="false" 

 
12. RESULT AND DISCUSSION 

As future work we are going to work on 
the elaboration of a representative benchmark for 
web applications including a wide set of security 
vulnerabilities that permits an AST tools 
comparison. Figure3 The  main objective is  that 
the evaluation of each combination of different 
tools can be the most effective possible using the 
methodology proposed in this work, allowing one 
to distinguish the best combinations of tools 
considering several levels of criticality in the web 
applications of an organization 

 
Figure3: Security vulnerabilities that permits an AST 

tools comparison 
 

One   of   the   important   constructing   
blocks   of software is code quality. To Enhanced 
software quality is directly linked to high-quality 
code. The quality of this code correlates with your 
application is secure, stable, and reliable. To 
endure quality, many improvement teams embrace 
techniques like code review, automated testing, 
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and manual testing. 
During the code review and 

computerized tests are important for producing the 
best quality code; because code referees and 
automated test authors are humans, bugs and 
security vulnerabilities often find their way into 
the development environment. Figure4. According 
to the State of Cloud Native Application Security 
Report, misconfiguration, and known unpatched 
vulnerabilities were responsible for the greatest 
number of security incidents in cloud native 
environments. 

Figure4. Cloud Native Application Security Report 

 
Source code analysis could prevent half 

of the problems that often slip through the cracks 
in production. Rather than putting out fires caused 
by bad code, a better approach would be to 
incorporate quality assurance and enforce coding 
standards early in the software development life 
cycle using static code analysis. 
 

13. CONCLUSION 
Bug   detection   and   correction   

remains   the   main maintenance activity in 
software product development life cycle. However, 
among many bugs that are likely to exist in high-
severity codes are of great interest to developers 
because their consequences are the most important. 
Unfortunately, most of the existing vulnerability 
detection studies treat all bugs equally and ignore 
their severity. In this article, [28] we  have  studied  
10  source  code  metrics and automated static 
analysis  tools,  as  popular  methods to predict 
buggy codes, to find the possibility of estimating 
bug severity respectively in most cases. At last, the 
code metrics and static analysis tools exploit 
different characteristics of code,[29] so  they can 
complement each other in predicting bug severity. 
We found that there was no relationship between 
code complexity and error severity, and static 
analysis tools miss many errors due to lack of 

complex deterministic model. Manual inspection 
of critical errors reveals Security and 
Edge/Boundary failure types with high and low 
severity [30] and [31] Potential future prediction 
directions of this study investigate the power of 
dynamic analysis and testing in estimating defect 
severity. Furthermore, one can use the conclusions 
made through this study to relate the static 
analysis[32][33][34][35]and [36] tools along with 
their limitations and try enriching their rule set to 
better identify critical bugs[37]. 
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