
Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

832

DEVELOPMENT OF PATHFINDING USING A-STAR AND
D-STAR LITE ALGORITHMS IN VIDEO GAME

RISKA NURTANTYO SARBINI1 , IRDAM AHMAD2 , ROMIE OKTOVIANUS BURA3 ,

 LUHUT SIMBOLON4
1Student at Doctoral Program of Defense Science, Indonesia Defense University, Bogor, Indonesia.

2,3,4Lecturer at Doctoral Program of Defense Science, Indonesia Defense University, Bogor, Indonesia.

E-mail: 1riskanurtantyosarbini@gmail.com, 2irdam.ahmad@idu.ac.id, 3romiebura@idu.ac.id,

4lsimbolon427@gmail.com

ABSTRACT

Currently Artificial Intelligence (AI) is a very important component and is commonly used in video games.
AI is used in games to make the player's experience more interesting and interactive. Artificial intelligence
(AI) is utilized in a number of video games to enhance the player's experience and make it more interactive,
particularly in role-playing games (RPG). Find a path (pathfinding) is essential to many computer games,
especially role-playing games, and is required of the AI in the majority of games. Using the A* algorithm is
one of the pathfinding methods used in video games to find the shortest path on the track to avoid static or
dynamic obstacles, and The D* Lite algorithm is highly successful and capable of eliminating several
difficulties and producing more ideal outcomes. The purpose of our research is to build and evaluate the
performance of an artificial intelligence pathfinding system in searching for the fastest route using the A-
star and D-star Lite algorithms. This work was carried out to collect data on how NPC movement works
using path finding and study the results of this research. The path finding methods that will be studied are
the A* algorithm and the D* Lite algorithm. The contribution of this research provides benefits to path
finding problems which are commonly used by NPCs for technological games in the future, especially
when using the A* algorithm and D* Lite algorithm in game technology. However, the pathfinding method
is not only for games, but can also be implemented in other fields. The results of the experiment at five
points under Pathfinding mechanism using the D-star Lite algorithm were faster in finding the closest route
with a record time of 00:01.847 while using the A-star algorithm obtained 00:05.231.

 Keywords: Video Game, Artificial Intelligence, Pathfinding, A-Star Algorithm, D-Star Lite Algorithm

1. INTRODUCTION

Currently Artificial Intelligence (AI) is a very
important component and is commonly used in
video games. AI is used in games to make the
player's experience more interesting and interactive
[1]. AI developed on a system application allowing
players to compete against game objects that mimic
other players [2]. AI, which is also commonly
referred to as machine intelligence, is a form of
simulation of human intelligence that is
implemented and can be achieved through computer
programming. AI can be activated by
invoking/triggering human commands or
independently based on AI experience. Therefore,
AI is able to improve itself because it is
programmed to learn from experience according to
the program that has been included. AI can act like
humans, think like humans, act rationally and think
logically are the characteristics of an AI system [3].

Numerous strategies and algorithms including
pathfinding method have been created to imitate the
interaction between a computer system and human
user. AI is predominantly employed to provide
intelligent, adaptive, or responsive behavior in non-
player characters (NPCs) in video games [4]. Due
to the fact that AI in video games is typically
customized for each game, AI tools in video games
nowadays are designed to enable video game
developers to generate particular AI efficiently and
fast. One drawback with this technique is that it
does not properly leverage the commonalities
between video games media of the same genre, but
also between video games of different genres,
making it impossible to independently manage
many parts of a complex ecosystem for each video
game [5].

Diverse AI techniques has been used in video
games, including decision making, pathfinding,
intelligent narrative technology and character

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

833

intelligence [1]. Find a path (pathfinding) is
essential to many computer games, especially role-
playing games, and is required of the AI in the
majority of games. Pathfinding system has been a
significant area of research in video games platform
for decades [6] and is generally utilized as the core
of any AI movement system in video games. The
role of intelligent pathfinding systems is always the
focus of investigation. Intelligent pathfinding
systems rely heavily on intelligent pathfinding
algorithms [7]. Quite a few common pathfinding
algorithms are implemented in a game [8], and the
A* Algorithm and D* Lite Algorithm serve as basis
for performance analysis in this paper.

The A* algorithm is one of the pathfinding
methods used in video games to find the shortest
path on the track to avoid static or dynamic
obstacles [9]. It is a path-finding algorithm that has
been utilized by the road-finding research
community for a very long time. In comparison to
other algorithms, its effectiveness, simplicity, and
modularity are frequently cited as advantages. A*
has become a popular choice for researchers trying
to solve pathfinding problems [10] as a result of its
widespread and pervasive use. The performance of
the A* algorithm is mainly determined by the speed
in planning the path search and the accuracy in
determining the planned path. Pathfinding planning
speed and path determination suitability are also
being studied because they are related to the
conventional algorithm effectiveness and speed
function of the A* algorithm, determining
expansion distances, and path equalization in the
process [11].

The A* algorithm is the most commonly used
algorithm for heuristic search; it finds the optimal
path on a track and provides the optimum estimated
calculation on the route that traverses target node.
The node used as the starting point for this heuristic
estimation sequence [12]. Utilizing the heuristic
function as a calculation optimization by assigning
a cost value to each node, is an advantage of A*
which can provide the required solution. The basic
terms commonly used in the A* algorithm are
starting point, node, open list, closed list, cost
(price), and bottleneck [13]. The A* search
algorithm is the algorithm most frequently used in
grid-based path searching [14].

Similar to A*, the D* Lite pathfinding algorithm
is utilized in this game to locate the shortest path on
the track by performing a heuristic search [15]. The
D* Lite algorithm is three to seven times quicker
than Generalized Adaptive A*, the fastest
incremental search algorithm for resolving target
search issues [16]. Under the D* Lite algorithm,

any node can be transitioned into any position on
the neighboring edge of the grid cell, and not
simply the terminus of the edge node. In addition,
the A* algorithm eliminates the heading limits
provided on the route, enabling sustainable cut-off
ranges and providing a less costly direct solution.

The D* Lite algorithm is highly successful and
capable of eliminating several difficulties and
producing more ideal outcomes [17] with a few
small tweaks. It is an incremental heuristic
pathfinding technique that could be used in
circumstances when the environment is unknown in
whole or in part to identify the shortest path.
Historically, the bulk of pathfinding algorithms
were constructed under the assumption that the
environment model was complete and accurate
[16]. This study proposes an Artificial Intelligence
(AI) development strategy for performing
pathfinding using the A* and D* Lite algorithms.
The purpose of this study was to development and
evaluate the time-related effectivity of an artificial
intelligence system for pathfinding in an RPG
Maker MV-based video game. This work was
carried out to collect data on how NPC movement
works using path finding and study the results of
this research. The path finding methods that will be
studied are the A* algorithm and the D* Lite
algorithm. The scope of the work we do is to
provide pathfinding type artificial intelligence
capabilities to NPCs to search for the same target
point using different algorithms, namely the A* and
D* Lite algorithms. Researchers provide an
overview of how NPCs can move in a situation by
showing several examples of path finding
algorithms for NPCs moving from one position to
another.

2. RESEARCH METHODOLOGY
2.1. Pathfinding on Video Game

Many researches have studied the use of
pathfinding, one of which is P. C. Iloh's study using
Depth First Search, Breadth First Search, and A star
Algorithm (A*) [18] is one of the numerous studies
on the use of pathfinding. This study compares
three different obstacle layouts for each search
algorithm based on their path length and execution
time. In their conclusion, in maze game can use
Depth First Search, Breadth First Search, and A*
algorithms to find the shortest path to the
destination. In Maze games and grids, the A*
algorithm is the best pathfinding method. This is
supported by the fact that the execution procedure
takes only a few milliseconds and the destination
search takes a relatively short time. Other studies
have proposed various types of video game

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

834

pathfinding. U. A. S. Iskandar et al. carried out one
of these studies. According to the findings in their
paper, the A* algorithm along with the Djikstra
algorithm, are the most popular algorithms in video
games. In addition, it is observed that the execution
time, nodes, travelled distance, and the number of
nodes calculated by the algorithm are the most
crucial factors in determining an algorithm's
effectiveness. Important is that all experiments are
conducted in a 2D environment view, involve only
horizontal movement, and do not account for the
limited vertical movement typical of 2D platform
games. The results of the algorithm experiments
show that the A* algorithm will work more
efficiently once the obstacles that the NPC has to
pass pass a certain height value, because it will try
to use the highest possible jump arc available to the
NPC to reach the goal faster while requiring fewer
nodes to be calculated. The results of the efficiency
of the two algorithms show that A* is more suitable
for long-distance movements in large areas. [6].

In a separate study, Hailong Huang investigates
the traditional A* algorithm's use of particulars and
proposes several optimization strategies to enhance
it. Initially, heuristic coefficients are added to the
heuristic function of the A* algorithm in order to
optimize redundant pathfinding during the
pathfinding procedure. Using a binary stack, the A*
algorithm manages the open list. Next, the map's
path weights are optimized. The produced path is
smoothed using the median insertion technique, and
the A* algorithm is further refined using the zone
search technique, allowing it to be applied to a
wider variety of game maps. By testing the
Unity3D engine-generated simulation experiment
software, the aforementioned approach was
validated. The outcomes of this study indicate that
by raising the standard of the intelligent pathfinding
algorithm, the pathfinding efficiency is improved,
the range of applications is expanded, the player
experience is enhanced, and the approach is
applicable to video games [7].

Additionally, Ade Chandra et al. created a 2D
tile-based game with a grid map on the android
platform as part of their research. This game
contains a variety of elements, such as adversaries,
barricades, trees, and the ground. A star method is
used to identify the enemy's closest probable path to
the tree. The player must then guard the tree from
enemies by touching them or creating barriers in
order for the tree to survive. The game will
terminate when the enemy successfully fells a tree.
This investigation will reveal the enemy's path to
the tree, as well as the time required to traverse it
[13].

Mochamad Kholil conducted the other study,
which proposed a simulation involving troop agents
pursuing a moving enemy. The placement of the
food is determined by chance. When an agent
moves closer to a target or opponent, the agent's
food source is considered its new position. The
modified D* Lite method is intended to replicate
the movement of an adversary's attacks. The agent
will move through a three-dimensional space
containing both static and dynamic obstacles that
must be avoided. The avoidance movement consists
of circling the obstacle and passing by its left and
right sides. The agent will pursue and follow the
target position. Depending on the optimal approach
to the target for each agent [19], the optimal path to
the objective for each agent can differ.
Consequently, it is required to assess the
performance of the A* and D* Lite pathfinding
algorithms in the games developed for this study.
So we proposed a research using of AI by the A*
algorithm and the D* Lite algorithm requires us to
test them on video games that we have created to
determine which algorithm is more effective. This
research also offers a number of contributions, as
shown in figure 1 below.

Figure 1. Proposed System

In this study, we build a video game in a Role
Playing Game (RPG) design inside the game
makers named “Anak Negeri” [25], with one area
being a finding position by determining the target
point to be the goal of finding the path. The
procedure from the beginning of the process used is
to determine the target point, then the process of
finding the path to the specified point is carried out
using one of the algorithms, the speed of time
needed to reach the target point is an indicator that
is used as a reference in performance. Furthermore,
from the time data obtained, data collections will be
carried out in the final results to be compared
between the time required and the utilize of two
algorithms. To get the desired recommendations we
use JS Profiler application to generate execution
time analysis.

2.2. Research Method

In this study, we proposed a system into two
main parts. The first is the creation of a video game
application and the next is a path-finding

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

835

experiment. This type of research is software
engineering by SDLC Stages with a waterfall
model. Software development is the most essential
aspect of software project management, whereas
software process models are a crucial means of
obtaining standards, particularly for the production
of software in the form of digital games. The period
during which processes such as defining,
developing, testing, deploying, operating, and
maintaining application software or systems occur
is known as the Software Development Life Cycle
(SDLC) [20]. The productivity and quality of the
development team depend on determining and
assessing software process metrics throughout the
SDLC can be seen on next figure 2.

Figure 2. The development steps of Waterfall Model

The software engineering model employed is the
SDLC method with the waterfall model [21], which
is a sequential design frequently used in the best
programming because each phase of analysis,
design, implementation, construction, testing, and
maintenance is executed sequentially and flows
down like a waterfall. The waterfall display
represents slow and progressive improvement.
Database design begins with creating the necessary
tables, determining the keys in each table, relations
between tables, and so on using the database
application program contained in the RPG Maker
MV program. The system of producing this game
used the RPG Maker MV application, further
testing is aimed at determining the performance of
the pathfinding mechanism in which there are
functions of the Djikstra and A* algorithms to see
the results obtained. The target of this research is to
build a stable application on a smartphone and
continue with the trial of finding the search location
point using pathfinding mechanism with the A* and
D* Lite algorithms. The research procedure carried
out is to start with making an application and then
analyzing the data for finding the closest route
related to the time needed to search for the nearest
route.

2.3. Research Procedure
 In this study, the procedure carried out by the

writer is to run a scenario with a single event,
namely a map with a maze. The input of the same
map run by two different algorithm mechanism in
search model using the A* and D* Lite algorithm
methods. Total time data will be obtained based on
5 points using the A* algorithm and 5 points using
the D* Lite algorithm. Furthermore, it will be
illustrated that the red dot target is the target point
and the blue writing is the 5 points that will be
tested against the required time. It can be seen in
the next Figure 3, and the illustration, the artificial
intelligence capability of pathfinding method will
be placed on which NPC at node 1, coordinate (31,
14) which will search the path to the end point at
coordinates (31, 18). Illustration can be seen from
the next Figure 4.

Figure 3. Map Scenario With 5 Nodes Target

Figure 4. Node 1 to Finish Node

2.4. A* Algorithm Mechanism
In the mechanism of A* Algorithm usage, the

next step is to calculate the overall scoring stages,
which is written in at each point from start to
finish [22]. Eqs. (1) is the equation for calculating

the step cost of each point. is the movement
cost, is the estimated cost. We assume the value

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

836

of =1 in each step towards the adjacent point, and
the cost of passing the impassable point is 10 and

 which is the estimated cost of moving each point,
in this case the start is the coordinates (31, 14) to
the point (31, 18) without regard to actual costs.
The following is the basic formula for the work
performance of the A* algorithm points set to
proceeds at Eqs (1), a variety of heuristic functions
are also commonly used to increase the accuracy
and speed of A* [27] and can work well when
combined with manhattan distance [23] for the
heuristic function at Eqs. (2) can be written as
follows :

 (1)

 (2)

In this study, we use the Manhattan Distance (D)

because of limitation in direction of movement
application in vertical and horizontal movement
(Straight), to move from one point to another [23].
Manhattan distance is also known as "city block
distance" which is the number of blocks of points
from a place all attributes. This can be proven as
follows For two data points x and y in d-space
dimensions [26]. Eqs. (2) is the equation for
calculation in computes the absolute difference of
two objects between coordinates. From Figure 5, it
can be seen that the direction of the road traversed
by the NPC which is at point 1 of the coordinates
(31, 14) to the search point is the coordinates (31,
18) where the calculation basis is obtained from the
sample values obtained as shown in the next table 1.

Figure 5. Result node 1 to finish node on method 1

Table 1. Method 1 Scoring of Adjacent Points

Scoring Between Nodes
28, 13
G=13
H=8
F=21

29, 13
G=12
H=7
F=19

30, 13
G=11
H=8
F=19

31, 13
G=1
H=9
F=10

32, 13
G=11
H=10
F=21

28, 14
G=3
H=7
F=10

29, 14
G=2
H=6
F=8

30, 14
G=1
H=7
F=8

31, 14
(Node 1,

Start
Position)

32, 14
G=10
H=9
F=19

28, 15
G=4
H=6
F=10

29, 15
G=3
H=5
F=8

30, 15
G=11
H=4
F=15

31, 15
G=10
H=3
F=13

32, 15
G=20
H=4
F=24

28, 16
G=14
H=5
F=18

29, 16
G=4
H=4
F=8

30, 16
G=5
H=3
F=8

31, 16
G=6
H=2
F=8

32, 16
G=7
H=3
F=10

28, 17
G=15
H=4
F=19

29, 17
G=5
H=3
F=8

30, 17
G=6
H=2
F=8

31, 17
G=7
H=1
F=8

32, 17
G=8
H=2
F=10

28, 18
G=7
H=3
F=10

29, 18
G=6
H=2
F=8

30, 18
G=7
H=1
F=8

31, 18
G=8
H=0
F=8

32, 18
G=9
H=1
F=10

28, 19
G=8
H=4
F=12

29, 19
G=7
H=3
F=10

30, 19
G=8
H=2
F=10

31, 19
G=9
H=1
F=10

32, 19
G=10
H=2
F=12

2.5. D* Lite Algorithm Mechamism

 In On the mechanism of the D* light method,
g(s) and rhs(s) is the estimated minimum distance
cost requirement from the initial node. The search
orientation of the D*lite algorithm is opposite to the
A* algorithm, the process of calculating the value
of g(s) is recalculated continuously while expanding
the eight adjacent edges around the node. Update
the value of g(s) and select g(s) with the lowest
value [24]. To calculate rhs(s) from the starting
point g, use the following formula:

 (3)

Eqs. (3) Where c(s', s) is the edge of nodes s ’ to

s, It is normally represented by 1. S’∈pred(s)
represents the set of predecessors of vertex s ∈ S.
When g(s)=rhs(s), consistent nodes; alternatively,
the graph is not uniform. Among them, g(s)>rhs(s)
is called local over-consistency, and g(s)<rhs(s) is
called local under-conformity. When evaluating the
estimated value of grid points, D* Lite introduces
the key(s) value for comparison when estimating
the value of grid points, where key(s) comprises
two values key(s)=[PrimaryKey(s) ;
SecondaryKey(s)], which satisfy the following
formulas:

 (4)

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

837

 (5)

Eqs. (4), (5) PrimaryKey and SecondaryKey is a

parameter for the priority order structure. The key-
value size is used as the expansion priority, which
determines the order in which sequence nodes
expand. Initially, compare the size of the
PrimaryKey value, then choose the grid with the
smallest SecondaryKey value, and if the
PrimaryKey values are equal, compare the size of
the SecondaryKey value. The h(s) heuristic function
is the same as the heuristic function in the
Algorithm A*, which reflects the estimated value
between the current node and the starting point and
continues to advance the object towards the
destination point. Without calculating actual costs,
the initial and final locations in this situation are
(31, 14) and (31, 18). Due to the limited application
of the direction of movement in vertical and
horizontal (Straight) motion, we continue to use
Manhattan Distance (D) to travel from one point to
another in this approach. At the same point from
figure 6, it can be seen that the direction of the road
traversed by the NPC which is at point 1 of the
coordinates (31, 14) to the search point is the
coordinates (31, 18) where the calculation basis is
obtained from the sample values obtained as shown
in the next table 2.

 Figure 6. Result node 1 to finish node on method 2

Table 2. Method 2 Scoring of Adjacent Points

Scoring Between Nodes
28, 13
g=∞

rhs=∞

29, 13
g=∞

rhs=∞

30, 13
g=∞

rhs=∞

31, 13
g=9

rhs=9

32, 13
g=∞

rhs=∞

28, 14
g=7

rhs=7

29, 14
g=6

rhs=6

30, 14
g=7

rhs=7

31, 14
(Start)

g=8, rhs=8

32, 14
g=∞

rhs=∞

28, 15
g=6

rhs=6

29, 15
g=5

rhs=5

30, 15
g=∞

rhs=∞

31, 15
g=∞

rhs=∞

32, 15
g=∞

rhs=∞

28, 16
g=∞

rhs=∞

29, 16
g=4

rhs=4

30, 16
g=3

rhs=3

31, 16
g=2

rhs=2

32, 16
g=3

rhs=3

28, 17
g=∞

rhs=∞

29, 17
g=3

rhs=3

30, 17
g=2

rhs=2

31, 17
g=1

rhs=1

32, 17
g=2

rhs=2

28, 18
g=3

rhs=3

29, 18
g=2

rhs=2

30, 18
g=1

rhs=1

31, 18
(Finish)

g=0, rhs=0

32, 18
g=1

rhs=1

28, 19
g=4

rhs=4

29, 19
g=5

rhs=5

30, 19
g=6

rhs=6

31, 19
g=1

rhs=1

32, 19
g=2

rhs=2

3. RESULT AND DISCUSSION
The results of the pathfinding experiment in the

test aimed to determine the efficiency of the time
required to perform the search process. The
comparison was based on the A* algorithm
(Method 1) and the D* Lite algorithm (Method 2).
Technically, the writer built 5 points and tested all
parts of the map on an NPC with pathfinding
capabilities based on methods one and two as a
comparison. The data to be processed was a time in
the form of mm: ss,000 (minute: second,
millisecond) obtained from the search results for the
route of the point to be searched. These values were
compared to determine the efficiency of the time
required to perform the search process.

3.1. Profiler Analysis Result

Using data analysis techniques, specifically the
results of the time required to reach the target point.
The artificial intelligence capability of the
pathfinding method will be embedded within the
NPC, which will conduct a path search to the
endpoint located at the coordinates (31, 18). Using a
comparison of the A* and D* Lite algorithms, the
experiment results of the study to determine the
required level of time-efficiency in the mechanism's
process are observed. JS-Profiler, a tool used to
perform execution analysis of the game's script, was
employed to retrieve the data. Figure 7 and Figure 8

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

838

represent, respectively, the outcomes of the analysis
at node 1 using the two methods where “Map's get()

method” description is , and “access object

properly” is and is + . The A*
algorithm revealed in Figure 7 that the execution
time of the method on the map was 202
milliseconds (ms), the time to reach the target was
2.528 ms, and the time to move the NPC to the
target node was 2.528 ms, for a total of 2.730 ms at
node 1. Using D* Lite Algorithm, Figure 8
demonstrates that the execution method required 53
milliseconds and the time to reach the target was
2.528 milliseconds.

Figure 7. The A* algorithm's execution time at node 1

Figure 8. The D* algorithm's execution time at node 1

3.2. Data Comparative Results
The results of the pathfinding experiment in the

test aimed to determine the efficiency of the time
required to perform the search procedure. In this
instance, the findings acquired from the five points
and positions of the NPCs are displayed in Figure 3
before obtaining the comparison results using the
A* algorithm method in table 3 there are 5 search
points (n) with coordinates (x ; y), a summary of the
results using the A* algorithm where the value of

 = is the execution time of searching for the target
point, then the value of = is the travel time from
the starting point to the target point, and

 value = is the total time + . Next the D*
Lite algorithm in table 4 in the table there are 5
search points (n) with coordinates (x ; y), a
summary of the results using the D* Lite algorithm
where the value of = is the execution time of
searching for the target point, then the value of =
is the travel time from the starting point to the target

point, and value = is the total time + .

Table 3. A* time results were obtained from 5 nodes

Node
(n)

Coord.
(x ; y)

A* (ss.ms)

1. 31 ; 14 00.202 02.528 02.730
2. 21 ; 05 00.737 08.245 08.982
3. 11 ; 05 01.381 20.682 22.063
4. 00 ; 00 02.202 26.722 28.924
5. 21 ; 16 00.709 08.213 08.922

Total 05.231 66.390 71.621

Table 4. D* Lite time result obtained from 5 nodes

Node
(n)

Coord.
(x ; y)

D* Lite (ss.ms)

1. 31 ; 14 00.053 02.528 02.581
2. 21 ; 05 00.198 08.245 08.443
3. 11 ; 05 00.443 20.682 21.125
4. 00 ; 00 00.961 26.722 27.683
5. 21 ; 16 00.192 08.213 08.405

Total 01.847 66.390 68.237

Node 1 was the NPC closest to the target point,

whose barrier level consisted solely of other NPC
vehicles, with several points being terrains. Point 4
was the most distant, and the process took a long
time due to the long distance and the relatively

large amount of terrain. The value was
determined by the following calculations:

 (6)

Eqs. (6) is the calculation from the starting point

to the target point. is the time required to
calculate road costs to the target point, and ts is the
time required after calculating from the starting
point to the target point. The value obtained using
two method is demonstrated in figure 7 and 8, the
time obtained from the time required to perform
calculations as a projection and performance
evaluation methods compared and illustrated on the
next figure 9. while the value of a is the same
where the travel time from the starting point to the

target point value had the same cost. The
value obtained using two method is demonstrated in
figure 7 and 8, the time obtained from the time
required to perform calculations as a projection and
performance evaluation methods compared and
illustrated on the next figure 10 as follows:

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

839

Figure 9. Graph of comparison of the search function
execution time () in the map of the two methods

00:02,730

00:08,982

00:22,063

00:28,924

00:08,922

00:02,281

00:08,443

00:21,125

00:27,683

00:08,405

00:00,000 00:08,640 00:17,280 00:25,920 00:34,560

Node
1

Node
2

Node
3

Node
4

Node
5

Total Time (mm:ss.ms)D* Lite A*

Figure 10. Comparison graph of the total completion

time () for each point from the two methods

According to the statistical data obtained from

the 5 points in the table 3 and table 4 using the A*
alghorithm and D* Lite algorithm methods, the

 value is 71.621 seconds which is part of the
value 05.231 seconds + value of 66.390 seconds
in the first method and 68.237 seconds with details
of the value of 01.847 seconds + the value of
66.390 seconds in the second method. The same
result is obtained at value is 66.390 seconds, this
is the step cost time by default from the game.
while the value has a significant comparison with
a difference in comparison of 05.231 seconds and
01.847 seconds for all tested nodes.

4. CONCLUSION
The main focus of this research is time needed to

find the target point. According to the total time
acquired, the experiment at 5 points with the
Pathfinding mechanism using the D* Lite algorithm
finds the nearest route faster with a total processing
time of 00:01.847 than the A* method with a total
processing time of 00:05.231 that value was very

significant result. based on the source code
experience, might produce different result if testing
to the other study. different of features, method,
environtment, map, size, distributing obstacles
possible ways and then generate the data using
random start and goal positions. At the same time,
this paper critically analyzes these algorithms in
dimensions that include computational time and
space efficiency as well as advantages and
disadvantages in implementation using the RPG
Maker MV application. Path search method at node
points in the game. The contribution of this research
provides benefits to path finding problems which
are commonly used by NPCs for technological
games in the future, especially when using the A*
algorithm and D* Lite algorithm in game
technology. However, the pathfinding method is not
only for games, but can also be implemented in
other fields.

REFERENCES:

[1]. Hammedi S., Essalmi F., Jemni M., & Qaffas

A. A. An investigation of AI in games:
educational intelligent games vs non-
educational games. Proc. 2020 International
Organization of Knowledge and Advanced
Technologies (OCTA). 2020; pp. 1-4. doi:
10.1109/OCTA49274.2020.9151738.

[2]. Yakan S. A. Analysis Of Development Of
Artificial Intelligence Game Industry.
International Journal of Cyber and IT Service
Management (IJCITSM). 2022; Vol. 2; No. 2;
pp. 111-116. doi:10.34306/ijcitsm.v2i2.100

[3]. Kühl N., Goutier M., Hirt R., & Satzger G.
Machine Learning in Artificial Intelligence:
Towards a Common Understanding. Proc. of
the 52nd Hawaii International Conference on
System Sciences. 2019; pp. 5236 – 5245.

[4]. Ranjitha M., Nathan K. & Joseph L. Artificial
Intelligence Algorithms and Techniques in the
computation of Player-Adaptive Games. Proc.
Third National Conference on Computational
Intelligence (NCCI 2019) J. Phys.: Conf. Ser.
2019; Vol. 1427; Article id. 012006. doi:
10.1088/1742-6596/1427/1/012006

[5]. Safadi F., Fonteneau R., & Ernst D. Artificial
Intelligence in Video Games: Towards a
Unified Framework. International Journal of
Computer Games Technology. 2015; Vol.
2015; Article ID 271296. doi:
10.1155/2015/271296

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

840

[6]. Iskandar U. A. S., Diah N. M., & Ismail M.
Identifying Artificial Intelligence Pathfinding
Algorithms for Platformer Games. Proc. 2020
IEEE International Conference on Automatic
Control and Intelligent Systems (I2CACIS).
2020; pp.74-80. doi:
10.1109/I2CACIS49202.2020.9140177.

[7]. Huang H. Intelligent Pathfinding Algorithm in
Web Games. Proc. CSIA 2020: Cyber Security
Intelligence and Analytics. 2020; pp 250–257.
doi: 10.1007/978-3-030-43306-2_36

[8]. Pardede S. L., Athallah F. R., Huda Y. N., &
Zain F. D. A Review of Pathfinding in Game
Development. Journal of Computer
Engineering. Progress, Application and
Technology. 2022; Vol. 1; No. 1; pp. 47-56.
doi: https://doi.org/10.25124/cepat.v1i01.4863

[9]. Sazaki Y., Primanita A., & Syahroyni M.
Pathfinding car racing game using dynamic
pathfinding algorithm and algorithm A*.
Proc. 2017 3rd International Conference on
Wireless and Telematics (ICWT). 2017; pp.
164-169. doi: 10.1109/ICWT.2017.8284160.

[10]. Foead D., Ghifari A., Kusuma M. B., Hanafiah
N., & Gunawan E. A Systematic Literature
Review of A* Pathfinding. Procedia Computer
Science. 2021; Vol. 179; pp. 507-514. doi:
10.1016/j.procs.2021.01.034

[11]. Wang H., Lou S., Jing J., Wang Y., Liu W., &
Liu T. The EBS-A* algorithm: An improved
A* algorithm for path planning. PLoS ONE
Journal. 2022; Vol.17; No. 2; pp. e0263841.
doi: 10.1371/journal.pone.0263841

[12]. Rachmawati D., & Gustin L. Analysis of
Dijkstra’s Algorithm and A* Algorithm in
Shortest Path Problem. Journal Physics:
Conference Series. 2020; Vol. 15; No. 6; pp.
12-18. doi: 10.1088/1742-6596/1566/1/01206

[13]. Candra A., Budiman M. A., & Pohan R. I.
Application of A-Star Algorithm on
Pathfinding Game. Proc. 5 th International
Conference on Computing and Applied
Informatics (ICCAI 2020). 2020; pp. 1-6. doi:
10.1088/1742-6596/1898/1/012047

[14]. Suryadibrata A., Young J. C., & Luhulima R.
Review of Various A* Pathfinding
Implementations in Game Autonomous Agent.
International Journal of New Media
Technology. 2019; Vol. 6; No. 1; pp.43-49.
doi: 10.31937/ijnmt.v6i1.1075

[15]. Raheem F. A., & Ibrahim U. Heuristic D*
Algorithm Based on Particle Swarm
Optimization for Path Planning of Two-Link
Robot Arm in Dynamic Environment. Al-

Khwarizmi Engineering Journal. 2019; Vol.
15; No. 2; pp. 108-123. doi:
10.22153/kej.2019.01.004.

[16]. Lawande S. R., Jasmine G., Anbarasi J., and
Izhar L. I. A. Systematic Review and Analysis
of Intelligence-Based Pathfinding Algorithms
in the Field of Video Games. A Journal ppl.
Sci. 2022; Vol. 12; No. 11; Article Number.
5499. doi: 10.3390/app12115499

[17]. Kadry S., Alferov G., Fedorov V., &
Khokhriakova A. Path optimization for D-star
algorithm modification. Proc. AIP Conference
Proceedings. 2022; pp. 2425. doi:
10.1063/5.0085608

[18]. Iloh P. C. A Comprehensive And Comparative
Study Of DFS, BFS, And A* Search
Algorithms In A Solving The Maze
Transversal Problem. International Journal of
Social Sciences and Scientific Studies. 2022;
Vol. 2; No. 2; pp. 482-490.

[19]. Kholil M. Troop Movement to Pursue Moving
Enemies Using D* Lite Based on Pathfinding
Algorithm. Journal of Animation & Games
Studies. 2017; Vol.2; No.1; pp. 45 - 68. doi:
10.24821/jags.v2i1.1413

[20]. Ergasheva S., & Kruglov A. Software
Development Life Cycle early phases and
quality metrics: A Systematic Literature
Review. Journal of Physics: Conference
Series. 2020; Vol. 1694; Article id. 012007.
doi: 10.1088/1742-6596/1694/1/012007

[21]. Malleswari D. N., Kumar M. P., sathvika D., &
Kumar B. S. A Study on SDLC For Water Fall
and Agile. International Journal of Engineering
& Technology. 2018; Vol. 7; no. 2; pp. 10-13.
doi: 10.14419/ijet.v7i2.32.13516

[22]. Rafiq A., Kadir T. A. S., & Ihsan S. N.,
Pathfinding Algorithms in Game Development.
Proc. The 6th International Conference on
Software Engineering & Computer Systems -
IOP Conf. Series: Materials Science and
Engineering. 2020; Vol. 769; Article id.
012021. doi:10.1088/1757-899X/769/1/012021

[23]. Sharma S. K, & Kumar S. Comparative
Analysis Of Manhattan And Euclidean
Distance Metrics Using A* Algorithm. Journal
of Research in Engineering and Applied
Sciences. 2016; Vol. 01; No. 04; pp.196-198.
doi: 10.46565/jreas.2016.v01i04.007

[24]. Xie K., Qiang J., & Yang H. Research and
Optimization of D-Start Lite Algorithm in
Track Planning. IEEE Access. 2020; vol. 8; pp.
161920-161928. doi:
10.1109/ACCESS.2020.3021073.

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

841

[25]. Sarbini R. N., Ahmad I., Bura R. O., &
Simbolon L., Design Of Game-Based Learning
Defend The Country Using Role Playing
Games Mechanism. Journal of Theoretical and
Applied Information Technology.
2023; 101(13).

[26]. Suwanda R., Syahputra Z., & Zamzami E. M.
Analysis of Euclidean Distance and Manhattan
Distance in the K-Means Algorithm for
Variations Number of Centroid K. J. Phys.:
Conf. Ser. 1566 012058, 2020. DOI
10.1088/1742-6596/1566/1/012058.

[27]. Liu D. Research of the Path Finding Algorithm
A* in Video Games. Highlights in Science,
Engineering and Technology. 2023; vol. 39;
pp. 763–768. doi:
doi.org/10.54097/hset.v39i.6642

