<u>15th February 2024. Vol.102. No 3</u> © Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

DEVELOPMENT AND SIMULATION OF MICROSTRIP PATCH ANTENNAS FOR 5G WIRELESS CONNECTIVITY

NEERU MALIK¹, SHRUTI VASHIST², AJAY N. PAITHANE³, MUKIL. ALGIRISAMY⁴

¹Asso. Professor, Department of Electronics & Telecommunication, Pimpri Chinchwad University, Pune, India & Research fellow at Manav Rachna University, India

²Professor, Department of Electronics & Communication, ManavRachna University, Faridabad, India ³Asso. Professor, Department of Electronics & Telecommunication, D. Y. Patil Institute of Engineering,

Management & Research, Pune, India

⁴Asso.Professor, Lincoln University College Wisma Lincoln, No. 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor DarulEhsan, Malaysia

E Mail:¹neeru1508@gmail.com, ²deanacademics@mru.edu.in, ³ajay.paithane@dypiemr.ac.in, ⁴ mukil.a@lincoln.edu.my

ABSTRACT

This study introduces a microstrip patch antenna designed to support 5G communication technology. It operates effectively at central frequencies of 38GHz and 54GHz, offering respective bandwidths of 1.94GHz and 2GHz. The antenna design prioritizes compactness, affordability, and suitability for miniature devices. It consists of an FR4 epoxy substrate, patch, and ground. The substrate boasts a dielectric constant of 3.8, a minimal loss tangent of 0.02, and adheres to a standard thickness of 1.57mm. The substrate measures 6mm x 6.25mm, and the patch's dimensions are 2mm x 2mm, employing the microstrip-line feeding technique.For mobile applications within the millimeter-wave spectrum, including frequencies of 38.6GHz, 47.7GHz, and 54.3GHz, accompanied by bandwidths of 3.5GHz, 2.5GHz, and 1.3GHz, this research also proposes an antenna array comprising four components, spaced at 4mm intervals. The overall antenna size is 6mm x 6.25mm x 0.578mm. The proposed antenna design undergoes rigorous simulation using HFSS software for performance validation.

Keywords: 5G, Microstripline, Antenna Array, Taperedline Feeding, HFSS Software.

I. INTRODUCTION

The surge in wireless and radio communication network advancements has heightened the demand for antenna designs featuring enhanced attributes. These include antenna size, bandwidth, gain, power efficiency, traffic capacity, and data rate. In response to this demand, numerous antenna designs have emerged, aiming to strike a balance between factors such as design efficiency, high gain, minimal power loss, compact size, extensive bandwidth, radiation efficiency exceeding 70%, millimeter wave technology effectively utilizes the spectrum, particularly within the 20-90GHz band, specifically earmarked for 5G applications [2]. The selection of frequencies at 28GHz, 38GHz, and 72GHz, each accompanied by respective affordability, and achieving high data rates [1-9]. This demand is driven by the distinctive characteristics of 5G technology, characterized by its high data rates, wide bandwidth, and remarkable capacity.

The foundation of the fifth generation (5G) technology is rooted in millimeter wave radio frequencies, which harness the previously untapped spectrum ranging from 3GHz to 300GHz. In fulfilling the requirements of 5G,

bandwidths of 500 MHz, 1 GHz, and 2 GHz, serves the purpose of 5G antenna design, primarily owing to their suitability for low-latency and high-datarate systems [3]. These frequencies, characterized by their narrow beam width and exceptional <u>15th February 2024. Vol.102. No 3</u> © Little Lion Scientific

obstacle sensitivity, prove to be well-suited for applications in the realm of cell phones [4].

Numerous substrate materials are available, with FR4 epoxy emerging as the preferred choice for millimeter-wave applications. Its optimal characteristics, characterized by minimal dispersion and low dielectric loss, render it exceptionally well-suited for ultra high frequencies (UHF) [10,11]. FR4 epoxy substrate exhibits advantageous traits such as minimal water absorption, low electric loss, and minimal moisture absorption, making it an ideal selection for a variety of applications [10,11].

In this research, we utilize a substrate featuring a ground layer on one side and a radiator patch on the opposite side, employing metal for both components. The choice of employing the M-line feeding technique is driven by the imperative in mobile communication to achieve a 12dB gain, which can be effectively attained through antenna arrays. Notably, the central frequency for this study is set at 38GHz, falling within the Ka-band spectrum, which spans from 27GHz to 40GHz [11].

Microstrip patch antennas are a favorable choice for various surfaces, thanks to their compact and lightweight design, cost-effectiveness, ease of construction, and small footprint. Employing antenna arrays enhances both gain and efficiency [12], and the proposed antenna design incorporates an array structure to harness these advantages.

In a prior study cited in reference [3], the researchers utilized a PIFA antenna known for its wider bandwidth to cover the frequencies of 28GHz and 38GHz. In another referenced paper [5], transformer coupling was applied to enable operation at 28GHz and 38GHz. The reported antennas in these studies achieved an efficiency of 83.03% and a gain of 9.05dB.

In the research described in paper [13],investigations were conducted at 60GHz frequency using H-slot and E-slot configurations. The results revealed a gain of 5.48 dB and a return loss of -40.99 dB.

The suggested antenna demonstrates impressive characteristics, including a broad bandwidth, efficient radiation, and substantial gain while functioning effectively at both 38GHz and 54GHz frequencies. Additionally, the antenna configuration consists of an array of four elements operating at central frequencies of 38.6 GHz, 47.7 GHz, and 54.8 GHz, with a gain of -12dB.

Table 1 below presents a comparison between the proposed antenna and the relevant prior research.

Reference paper	Patch size(mm)	Bandwidth(GHz)	Resonance Frequency(GHz)	Return loss(dB)	Gain(dB)
[3]	1.3×1.2	3.34, 1.39	28, 38	-43, -18	3.75, 5.06
[15]	1.3×1.83	0.7,0.38	28, 38	-45, -20	0.7, 0.38
This work	1×1	1.94, 2.05	38,54	-15.5, -12	1.94, 2.05

Table 1: Contrast With Analogous Research.

A. ANTENNA DESIGN AND PRINCIPLES

(a) DESIGNING 5G ANTENNAS

has a height of 0.78mm. The substrate dimensions measure 6mm×6.25mm. The proposed microstrip patch antenna utilizes M-line feeding, with the feed

The selected dimensions for the radiating patch $(Lp \times Wp)$ are $2mm \times 2mm$. The dimensions for the proposed antenna are

Figure 1 illustrates the substrate dimensions $(Ls \times Ws)$ of the microstrip patch antenna. The substrate, composed of FR4 epoxy material with a dielectric constant of 3.8 and a loss tangent of 0.02,

having a width (Wf) of 0.2mm and a length (Lf) of 2.15mm.

computed using established microstrip patch antenna formulas, as illustrated below.

ISSN: 1992-8645	www.iatit.org
135IN. 1772-0045	www.jatit.org

E-ISSN: 1817-3195

Here are some key equations [16] and parameters used in the design of microstrip patch antennas:

1. Resonant Frequency (f0): The resonant frequency of a microstrip patch antenna can be calculated using the following equation: $f_0=c/2\sqrt{\epsilon_r}\sqrt{L/(L+2W)}$ Where:

Where:

- f_0 is the resonant frequency (in Hertz).
- *c* is the speed of light in free space (approximately 3 x 10⁸ m/s).
- ε_r is the relative permittivity of the substrate material.
- *L* is the length of the patch (in meters).
- *W* is the width of the patch (in meters).
- 2. Effective Dielectric Constant (ε_{eff}): $\varepsilon_{eff} = (\varepsilon_r + 1)/2 + (\varepsilon_r - 1)/2 (1 + 12h/W)^{-1/2}$ Where:
- *ceff* is the effective dielectric constant.
- *ɛr* is the relative permittivity of the substrate material.
- *h* is the height of the substrate (in meters).
- *W* is the width of the patch (in meters).
- 3. Patch Length (L) for Resonant Frequency: To achieve the desired resonant frequency, you can rearrange the resonant frequency equation to solve for *L*: $L=c/2\sqrt{\epsilon_r f_0}\sqrt{L/(L+2W)}$
- Patch Width (W) for Resonant Frequency: Similarly, we can solve for W to achieve the desired resonant frequency: W=c/2√ ε_rf₀√L/(L+2W) - L
- 5. Radiation Pattern and Directivity: The radiation pattern and directivity of the

Figure 1: Geometry Of The Antenna For The Envisioned Microstrip Feed

microstrip patch antenna can be determined using the following equations[17]:

- Directivity (D) = $4\pi/\Omega$
- Radiation Pattern = cosⁿ(θ), where n depends on the type of patch antenna (e.g., n=1 for a simple patch).
- 6. Input Impedance (Zin): The input impedance of the microstrip patch antenna can be calculated using the following formula:

Zin=Rr+jXr Where:

- *Rr* is the real part of the input impedance.
- *Xr* is the imaginary part of the input impedance.
- 7. Microstrip Line Width (Wm): To feed the microstrip patch antenna with a transmission line, we need to calculate the width of the microstrip line, which can be found using various methods like the transmission line theory.
- Patch width

 $w = c/f_0 \sqrt{2/s_r} + 1$ (1)

Patch length $L=L_{eff}-2\Delta L(2)$ Where L_{eff} can be calculated by formula as stated below $L_{eff}=c/2f_0\sqrt{S_{reff}(3)}$ ϵ_r =Dielectric constant of the substrate

 $S_{reff} = S_r + 1/2 + S_r - 1/2 \times \sqrt{1 + (12h/w)}$ (4)

• $\Delta L= 0.412 \times h \times [(S_{reff}+0.3) (w/h+0.26)] / [(S_{reff}+0.253) (w/h+0.8)] (5)$

Figure 2: Three-Dimensional Representation Of The Envisioned Microstrip Feed Antenna.

Journal of Theoretical and Applied Information Technology

<u>15th February 2024. Vol.102. No 3</u> © Little Lion Scientific

Figure 3: Rear View (Ground Plane) Of The Envisioned Microstrip Feed Antenna.

Wg

 Table 2: Values Of Parameters For The Proposed 5G

 Antenna

Antenna Characteristics	Attributes	Measurement in Millimeters
L _s	Substrate length	6
Ws	Substrate width	6.25
Н	Substrate height	0.78
L _p	Patch length	2
W _p	Patch width	2
M _t	Patch height	0.035
W _f	Feed line width	0.2
L _f	Feed line length	2.15
Wg	Ground width	6.25
Lg	Ground length	6

(a) DESIGNING A 5G ANTENNA ARRAY

In this research, it is proposed to utilize a 1×4 element array configuration to achieve a significant 12dB gain suitable for mobile applications. The elements within the array are separated by a distance denoted as "d," measuring 4mm. The array is fed through a tapered line feeding mechanism, and the structure of the 4element array is visualized in Figure 4. Figure 4: Array Configuration Comprising 1×4 Elements

Tapered feed lines

 Table 3 :Values Of Parameters For The Proposed
 Antenna Array

Characteristics	Attributes		Measurement in Millimeters
D	The	gap	4
	between	two	
	adjacent		
	elements.		
Wf1	100	Ω	0.5
	impedance	line	
	width		
Wf2	100	Ω	1
	impedance	line	
	width		

2. FINDINGS AND DISCOURSE

(a)Plot of Return Loss:

The S-Parameter chart depicts the relationship between input and output ports. Return loss is specifically represented by S(1,1). In the case where S(1,1) is at 0dB, it indicates that all power is reflected. For proper antenna operation, S(1,1)should be less than -10dB, as anything lower than this value would result in the transfer of 3dB of total power to the antenna while losing 7dB as reflected power.

In the context of the proposed antenna, at 38GHz and 54GHz, the return loss is observed to be - 15.5dB and -12dB, respectively, as illustrated in Figure 5(a) for the 5G antenna. Similarly, for the relevant frequencies of 38.6GHz, 47.7GHz, and 54GHz, the return loss is -13.6dB, -22.5dB, and - 18dB, as shown in Figure 5

Figure 5: Return Loss (A) For The 5G Antenna And (B) For The 5G Antenna Array.

Table 4: Return Loss Of Proposed Model

Antenna	5G Antenna		5G Antenna array		
Frequency of	38	54	38	47.7 5	54
Resonance					
(GHz)					
Return Loss	-15.5	12	-13.5	-22.5	-18
S(1,1) in					
Decibels					
(dB)					
(h) UCUVD.					

(b) VSWR:

VSWR, or Voltage Standing Wave Ratio, offers detailed insights into an antenna's power reflection characteristics. It's essential for VSWR values to be real and positive numbers. Enhanced antenna performance is achieved with lower VSWR values.

For the proposed antenna, the VSWR values at 38GHz and 54GHz are 1.3dB and 1.64dB, respectively, as depicted in Figure 6(a) for the 5G Antenna. In the case of the 5G Antenna array, the VSWR values are 1.55dB, 1.16dB, and 1.2dB for 38.6GHz, 47.7GHz, and 54GHz, respectively, as shown in Figure 6(b).

(b) Figure 6: VSWR (A) For The 5G Antenna And (B) For The 5G Antenna Array.

55

55

60

60

Table5 : VSWR Of Proposed Model

Antenna		5G Antenna		5G Antenna array		
Frequency	of	38	54	38.6	47.7	54
Resonance						
(GHz)						
VSWR		1.3	1.64	1.55	1.16	1.2

Table 6 presents the key parameters of the antenna, encompassing operating proposed frequencies, return directivity, gain, loss, bandwidth, and efficiency.

Table6 : Parameters Characterizing The Proposed
Model

			Model			
Ante	Frequ	Retu	Direct	Gain	Frequ	Effici
nna	ency	rn	ivity	in	ency	ency
	of	Loss	in	Deci	Band	Perce
	Reson	in	decibe	bels	width	ntage
	ance	Deci	ls	(dB)	(GHz)	(%)
	(GHz)	bels	isotro			
		(dB)	pic			
			(dBi)			
5G Ante	38	-15.5	7.2	6.9	1.94	93.5
nna	54	-12	8.2	7.4	2	82.7
5G Ante	38.6	-13.6	12.12	12.1 2	3.5	99.5
nna Arra	47.7	-22.5	11.6	11.6	2.5	99.3
у	54	-18	12.4	12.1	1.3	93

© Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

3. PLOTS OF GAIN:

5G ANTENNA

Figure 7 displays the Gain Plots for the microstrip patch antenna.

(a)

Figure 7(A): Gain At A Frequency Of 38 Ghz

(b)

A. 5G ANTENNA ARRAY

Figure 7(C): Gain At A Frequency Of 38.8 Ghz

Figure 7(D): Gain At A Frequency Of 47.7 Ghz.

Figure 7(E): Gain At A Frequency Of 54 Ghz.

DISTRIBUTION OF SURFACE CURRENT:

5G ANTENNA

Figure 8(a) and Figure 8(b) illustrate the surface current distribution for the microstrip patch antenna employed in 5G applications.

Figure 8(A): Current Distribution At A Frequency Of 38 Ghz.

Figure 8(B): Current Distribution At A Frequency Of 54 Ghz.

www.jatit.org

E-ISSN: 1817-3195

5G ANTENNA ARRAY

ISSN: 1992-8645

Figure 8(C): Current Distribution At A Frequency Of 38.6 Ghz.

Figure 8(D): Current Distribution At A Frequency Of 47.7 Ghz.

Figure 8(E): Current Distribution At A Frequency Of 54 Ghz.

Three-Dimensional Plots:

A. 5G ANTENNA

Figure 9(A): Three-Dimensional Pattern At A Frequency Of 38 Ghz.

Figure 9(B): Three-Dimensional Pattern At A Frequency Of 54 Ghz.

B. 5G ANTENNA ARRAY

Figure 9(C): Three-Dimensional Pattern At A Frequency Of 38.6 Ghz.

Figure 9(D): Three-Dimensional Pattern At A Frequency Of 47.7 Ghz.

Figure 9(E): Three-Dimensional Pattern At A Frequency Of 54 Ghz.

4. CONCLUSION

In this study, both a basic microstrip patch antenna and a 4-element array configuration have been employed in the context of 5G wireless

Journal of Theoretical and Applied Information Technology

15th February 2024. Vol.102. No 3© Little Lion Scientific

ISSN:	1992-8645	

www.jatit.org

1295

E-ISSN: 1817-3195

communication. The microstrip patch antenna provides dual-band reception, while the array extends this capability to three frequency bands, all vital for 5G communication. The microstrip patch antenna covers frequencies at 38GHz and 54GHz, whereas the array spans 38.6GHz, 47.7GHz, and 54GHz. Comparatively, the microstrip patch antenna yields a gain of 6.9dB at 38GHz and 7.4dB at 54GHz. The 4-element linear array, on the other hand, exhibits a gain of 12.2dB at 38.6GHz, 11.6dB at 47.7GHz, and 12.1dB at 54GHz, demonstrating the array's capacity to achieve notably higher gain. As depicted in Table 6, this antenna configuration excels in terms of gain, bandwidth, radiation efficiency, and directivity, positioning it as an excellent choice for 5G communication applications.

REFRENCES:

- "Microstrip Antenna for 5G Broadband Communication: Overview of Design Issues," in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 2443– 2444. David Alvarez Outerelo, Ana VazwuezAlejos, Manuel Garcia Sanchez, and Maria Vera Isasa.
- [2] "Design considerations of ultra dense 5G network in millimeter wave band," in Ninth international Conference on Ubiquitous and Future Networks (ICUFN), 2017, pp. 141– 146. Naser Al-Falajy and Omar Y.K. Alani.
- [3] "Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications," by Waleed Ahmad and WasifTanveer Khan. International Conference on Microdevices for Intelligent Mobility (ICMIM), 2017 IEEE MTT-S, pp. 21–24.
- [4] Tin-Yu Wu and Tse Chang, "Interference Reduction by Millimeter Wave Technology for 5G Based Green Communications," IEEE Journals & Magazines, 2016, number 4, pages 10228–10234.
- [5] "Multiband millimeter wave antenna array for 5G communication," 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), pp. 102-105.
- [6] X.-P. Chen, K. Wu, L. Han, and F. He, "Lowcost high planar antenna array for60-GHz band applications", IEEE Trans. Antennas

Propag., vol. 58, no. 6, pp. 2126-2129, June 2010.

- [7] "Optimized micro strip antenna arrays for emerging millimeter wave wireless applications". В. Biglarbegian. M. Fakharzadeh, D. Busuioc, M. R. N. Ahmadi, S. S. Naeini. IEEE Trans. Antennaspropagation, May 2011, Vol. 59, No. 5, pp. 1742–1747.
- [8] Wideband high-gain 60-GHz LTCCL probe patch antenna array with a soft surface, L. Wang, Y.-X. Guo, and W.-X. Sheng, IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1802-1809, April 2013.
- [9] Mi Li and K.-M Luk, "Low-Cost Wideband Micro strip Antenna Array for 60-GHz Applications", IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, June 2014, pp. 3012-3018.
- [10] Daniel H. Scnaubert and David M. Pozar, "Microstrip Antenna: The Analysis and Design of Microstrip Antenna and Array". Sponsor: IEEE antenna and propagation society.
- [11] Rupak Kumar Gupta, T. Shanmuganantham, and R. Kirthika, "A Staircase Hexagonal Shaped Microstrip Patch Antenna for Multiband Applications".ICCICCT 2016, pp. 298–303, International Conference on Control, Instrumentation, Communication and Computational Technologies.
- [12] NavreetKaur and ShivaniMalhotra, "A review on significance of design parameters of microstrip patch antennas" in 2016 IEEE Conference publications, pages(1-6).
- [13] "Design a single band microstrip patch antenna at 60GHz millimeter wave for 5G applications" in 2017 international conference on Computer, Communications, and Electronics (Comptelix), IEEE Conference Publications, pages (227-230).
- [14] Wonbin Hong, Kwang-hyunBaek, and SuengtaeKo, "Millimeter-wave 5G Antennas for Smartphones: Overview and Experimental Demonstration," IEEE Early Access Articles, 2017 IEEE Transaction on Antennas and Propagation, pages(1-1).
- [15] 2016 IEEE International Symposium on Antennas and Propagation(APSURSI), Fajardo, PR, USA, Y. A. M. K. Hashem, O. M. Haraz, and E. D. M. El-Sayed, "6-Element 28/38 GHz dual-band MIMO PIFA for future 5G cellular systems," pp. 393-394.

© Little Lion Scientific

		37111
ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

- [16] Paithane Ajay, PaithaneSakshi; Dambhare Sunil; ThigaleMadhav; Alagirisamy, "Implementing jerk free bldc position control using soc with fourth order trajectory planning" Journal of Theoretical and Applied Information Technology, Vol 101 Issue 14, 2023, pp. 5553-5565.
- [17] Patil U. G., S. D. Shirbahadurkar, and A. N. Paithane. "Linear collaborative discriminant regression and Cepstra features for Hindi speech recognition." Journal of Engineering Research, (2019).