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ABSTRACT 

A voice recognition system that immediately translates raw audio waveforms into text without the need for 
separate components for language and acoustic modelling or manually constructed feature engineering is 
known as end-to-end deep learning for continuous speech recognition. It learns the whole audio to text 
mapping using a single deep neural network model. Conventional speech systems rely on intricate processing 
pipelines, but this method is far simpler. An end-to-end model in voice recognition is a simple single model 
that operates directly on words, subwords, or characters and may be trained from the ground up. This 
simplifies decoding by doing away with the requirement for both explicit phone modelling and a 
pronunciation lexicon. Deepspeech was used to construct and test the model, which was designed for Indian 
English. Additionally, a comparison is made between the results of the bi-directional RNN-based system and 
the traditional HMM model. With our method, we can quickly get a large amount of heterogeneous data for 
training due to a number of unique data synthesis techniques and an extremely effective RNN development 
system that utilises several GPUs. The connectionist temporal classification (CTC) objective function is used 
to infer the alignments between speech and label sequences, obviating the requirement for pre-generated 
frame labels. Experiments demonstrate that the RNN-based model has been observed to have equal word 
error rates (WERs) while also significantly speeding up the decoding process when compared to traditional 
hybrid HMM based on Kaldi. 
Keywords: End-To-End,HMM,CTC,RNN,CSR, Indian English, Deep Speech 

 

1 INTRODUCTION 

 
The tasks involved in the field of speech 

recognition is difficult and complex. Teaching 
machines to comprehend and interpret spoken 
language is a huge technological achievement, 
despite the ease with which humans can do so. 
Speech variability, background noise, vocabulary 
and language models, contextual understanding, 
dependent and independent speaker models, and 
data availability and quality are some of the 
aspects that make speech recognition difficult. 
Despite these obstacles, recent developments in 
machine learning, deep learning, and neural 
network topologies have allowed for a 
considerable breakthrough in voice recognition 
technology. While attention approaches allow the 

model to focus on salient regions of the input 
signal, transformers facilitate the description of 
long-range relationships within the signal. These 
developments have greatly improved speech 
processing systems' functionality and 
performance, creating new prospects for use in a 
variety of industries.[1] 

Despite significant advancements in speech 
processing, deep learning still has some issues 
that need to be resolved. These difficulties include 
the need for large amounts of labeled data, the 
models' interpretability, and their resilience to 
various  
environmental factors. Deep learning approaches 
have significantly improved the analysis, 
synthesis, and detection of speech signals, 
which are all parts of speech processing. Many 
researchers previous work have shed light on the 
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potential of deep learning for addressing the 
current issues and furthering speech processing 
research by analyzing the current state-of-the-art 
methodologies. 

In recent years Deep learning techniques, have 
aroused a lot of attention as a method to create 
hierarchical representations from unlabeled data. 
Recent developments in algorithms and 
computer technology have enabled end-to- end 
training of neural networks for tasks that 
previously needed significant human knowledge. 
Deep learning algorithms for audio data have not 
been thoroughly investigated. We deploy 
recurrent deep belief networks to audio data in 
this paper and test them on pretrained Mozilla 
model. We show that learnt features match to 
phones/phonemes in the case of speech data. 
Recent papers have shown that the RNN based 
training systems do not need a dictionary. It has 
been proved as a benchmark performance in a 
noisy environment. [2] A system based on a 
combination of deep bidirectional LSTM 
recurrent neural network architecture and CTC 
function have proved to reduce the word error 
rates considerably. [3] Furthermore, we calculate 
the word error rate and character error rate with 
and without the language and dictionary. We 
hope that this paper will spark additional 
research into deep learning algorithms for a 
variety of audio recognition tasks. 

2. RECURRENT NEURAL NETWORK 
  
Our approach is based on a recurrent neural network 
that has been trained to process voice spectrograms 
and produce text transcriptions. Assign a label y to 
a training set that will be sampled for a single 
utterance (x). Every utterance is a time series in 
which every time slice has a vector of audio 
properties. [4] The purpose of RNN is to turn a 
sequence of input characters into a sequence of 
character probabilities for transcription with   

……………(2.1) 

Our RNN is made up of five levels of concealed 
units. The first three layers do not repeat 
themselves. For the first layer, the output is 
determined by the spectrogram frame xt and a 
context of C frames on either side at each time t. 
For each time step, the remaining non-recurrent 
layers act on independent data. As a result, the 
first three layers are computed for each time ‘t’ 
by: 

..……….(2.2) where 

g(z) is the clipped rectified -linear activation 
function and w and b are the weight matrix and the 
bias parameters for layer 1. 

[4] The fourth layer includes 2 sets of hidden 
units: a set with forward recurrence   and a set 
with backward recurrence 

.……..(2.3) 

.……..(2.4) 

The inputs to the fifth layer are both forward 
and backward units. The output layer is a 
conventional softmax function that returns the 
anticipated character probabilities for each time 
slice t and alphabet character k. 

...(2.4) 

where Wk and bk denote the kth column of the 
weight matrix  

and kth bias. [2]To measure the error in prediction, 
we compute CTC loss after we compute 
prediction.[5] We can evaluate the gradient with 
respect to the gradient outputs given the ground-
truth character sequence y during training, and 
then compute the gradient with respect to all of the 
model parameters using back propagation across 
the rest of the network. For training, we employ 
Nesterov's accelerated gradient approach.[6] 

                       

Figure 1 : Structure of the RNN 
model[2] 

Unlike kaldi-based models, we just utilize a single 
recurrent layer and do not require LSTM. The 
LSTM system has the drawback of requiring 
numerous gating neuron responses to be computed 
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and stored at each stage. This modest additional 
cost can constitute a computing bottleneck since 
the forward and backward recurrences are 
sequential.[3] 

Figure 2: The Complete RNN Model 

Each of the MFCC characteristics of a time-slice 
of the speech sample is represented by a vector of 
at most n steps vectors. The amount of MFCC 
features will be determined by the data set's 
sampling rate. If the sample rate is 8kHz, we 
employ 13 features in general. The MFCC 
characteristics of a particular time-slice are not 
simply passed to RNN. A context of C frames on 
each side of the frame in question is also provided 
to it. The variable n context stores the number of 
frames in this context. 

3. CONNECTIONIST TEMPORAL 
CLASSIFICATION 

We use the CTC loss function to train neural 
networks to achieve maximum likelihood training 
of letter sequences with auditory information as 
input. CTC is a generic loss function that can be 
used to train systems on sequence problems where 
the input and output sequences are not aligned. 
CTC models possible re-orderings but does not 
account for time warping of the output sequence 
relative to the input sequence. 

When working with voice recognition, re- 
ordering is a difficulty in machine translation, but 
it isn't an issue because our transcripts offer the 
exact order in which words appear in the input 
audio. Connectionist Temporal Classification is an 
objective function that enables an RNN to be 
trained for sequence transcription tasks without 
the input and target sequences being aligned 

beforehand.[3] Each of the transcription labels 
(characters, phonemes, musical notes, etc.) has its 
own unit in the output layer, as well as a 'blank' 
unit that refers to a null emission. 

Bridle (1990) defined a CTC network as having a 
softmax output layer with one more unit than the 
number of labels in L. The probability of seeing 
the appropriate labels at certain times are 
understood as the activations of the initial |L| units. 
The likelihood of seeing a 'blank,' or no label, 
activates the additional unit. These outputs 
describe the probability of all potential label 
sequence alignments with the input sequence 
when combined. The overall probability of any 
label sequence is then calculated by adding the 
probabilities of its various alignments. 

For an input ‘x’ of length ‘T’ we can define a RNN 
with ‘m’ inputs , ‘n’ outputs and ‘w’ weights as a 
continuous map Nw: 

(Rm)T → (Rn)T…………………..(3.1) 

Let y = Nw(x) be the sequence of network outputs 
and weight ‘w’ vector ,  is the activation function 
of the output unit ‘k’ attime ‘t’, then the 
probability distribution over the set L’T of length 
T sequences over the alphabet L’ = LỤ{blank} 

…………….(3.2) 

The next step is to define a many to one map , lets 
say B. We do this simply by removing the blanks 
and repeated labels from the paths. E.g B(a_ _ g_ 
hh_) = agh. This is used to define the conditional 
proability of a given labelling 1εL. 

 

p(l | x) = …………….(3.3) 
 
while constructing the classifier output of the 
classifier should be the most probable labelling for 
the input sequence: h(x) = arg max p (l|x). This task 
of finding the labelling is known as decoding. 
 

4. LANGUAGE MODEL 

The RNN model can learn to produce 
understandable character-level transcriptions when 
trained with huge amounts of labelled speech data. 
Many of the errors that occur in our model are 
proper nouns. Below is an example from the model. 
The speakers are reading from a book author of 
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danger trail,     Philip steel. The speakers are both 
male and female from different backgrounds whose 
dialects impact the English rendered. 
 

Table 1:Original Transcript And The RNN Output 
                            
Original Transcript RNN output 

I was about to do this 
when cooler  judgment 
prevailed 

i was about to do this 
when cooler  judgment 
proved 

why should we bother 
ourselves about this lion 

why should we bother 
ourselves about this line 

 
Table 2: Original Transcript And The RNN Output 

 
Original Transcript RNN output 

I am in search of a 
shelter the hunter cannot 
reach 

I am in search of a 
shelter the hunter in a 
reach 

this third part begins 
with a verse trust not 
even a close friend who 
earlier was your enemy 

this dart but begins with 
the worst trust not even a 
close friend who only a 
was your any me 

 
 
We search for the sequence of letters c1, c2,... that 
is most likely based on both the RNN output and the 
language model using the output P(c|x) of our RNN 
(where the language model interprets the string of 
characters as words).[7] In particular, we're looking 
for a sequence c that optimizes the combined goal. 
 

 
                                                                   
Where   are tunable parameters. 
‘Plm’ is the probability of the sequence ‘c’ as per 
the N-gram model. [7] In this paper experiments 
performed are with and without the language 
model. 
 
5. OPTIMIZATIONS  
 
Here we are using Adam method of optimization, a 
first-order gradient-based optimization technique 

for stochastic objective functions based on adaptive 
lower-order moment estimations. The approach is 
simple to develop, computationally efficient, 
requires minimal memory, is invariant to gradient 
diagonal rescaling, and is ideally suited for issues 
with huge amounts of data and/or parameters. 
Non-stationary targets and situations with highly 
noisy and/or sparse gradients may also benefit from 
the strategy. The hyper-parameters have 
straightforward meanings and need minimal 
adjustment in most cases. [8].Individual adaptive 
learning rates for various parameters are calculated 
using estimations of the first and second moments 
of the gradients; the name Adam comes from 
adaptive moment estimation. 
 
5.1 Data and Model Parallelism 

To successfully utilize multiple GPUs, additional 
abstractions must be introduced that are not present 
while using a single GPU and that assist the 
multiple- GPU use case. In particular, a way to 
segregate the inference and gradient computations 
on the individual GPUs must be introduced. A 
'tower' is the abstraction we propose for this 
purpose. Two qualities define a tower: the first is 
Scope. The function 'tf.name scope()' is used to 
isolate actions inside a tower. All  
activities inside 'tower 0', for example, may be 
prefixed with 'tower 0/'. The second is Device, 
which is a hardware device given by 'tf.device()' 
and on which all tower operations run. All 
operations of 'tower 0', for example, might run on 
the first GPU 'tf.device('/gpu:0'). 
When utterances have variable durations, data 
parallelism is difficult to accomplish because they 
cannot be integrated into a single matrix 
multiplication. We tackle the issue by selecting our 
training samples by length and merging only 
utterances of comparable length into minibatches, 
padding with silence when needed to ensure that all 
utterances in a batch have the same length. The 
ITPACK/ELLPACK sparse matrix format inspired 
this idea.[9] 

similarly we also observe in a paper by Sutskever 
et.al [10] 
When we use multiple GPU we use model 
parallelization, so each GPU has a specific model. 
When one runs the model one GPU does back 
propagation. With that out of the way, we can 
introduce a tower for each GPU and compute and 
report the optimization gradients and average loss 
across towers for each batch. To return and 
aggregate any non-finite files in the batches, the 

mean of the losses is determined along with tower 
gradients. 
Data parallelism improves training time for small 
multiples of the minibatch size (e.g., 2 to 4), but 
the training convergence rate decreases as more 
samples are batch into a single gradient update. 
That is, processing twice as many instances on 
twice as many GPUs doesn't result in a training 
speedup of 2. Fixing the overall minibatch size but 
spreading the samples across two GPUs is likewise 
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inefficient since most operations become memory- 
bandwidth constrained when the minibatch size 
inside each GPU diminishes. By splitting the 
model, we can scale the model even more.[11][12] 
 
5.2 Striding 

We attempted to reduce the running time of our 
RNN's recurrent layers, which are the most 
difficult to parallelize. Finally, we reduce the 
length of the recurrent layers by removing "steps" 
(or strides) of size 2 from the original input, 
resulting in an unrolled RNN with half as many 
steps. This is comparable to a convolutional 
network in the first layer with a step-size of 2.[13] 
Our dataset has been provided by IITM for Indian 
English. The wall street journal, switchboard and 
the fischer corpora are all published by the 
linguistic data consortium. [14] 
 

Table3 : Summary Of All The Datasets Used To Train  
Deep Speech [14] 

 

  

 6. RELATED WORK 

Several aspects of our study are based on earlier 
findings. In the early 1990s, neural network 
acoustic models and other connectionist methods 
were initially applied to speech 
pipelines.[15][16][17]. Graves et al. [18]earlier 
established the "Connectionist Temporal 
Classification" (CTC) loss function for grading 
RNN transcriptions and previously used this 
technique to speech using LSTM networks. [3]We 
employ the CTC loss for part of our training, but 
we use considerably simpler recurrent networks 
with rectified-linear activations instead. 
[19][20][21]. This experiment is comparable to 
Hannum et al [7] bidirectional   RNN, but with 
some adjustments to improve its scalability. We 
demonstrated that these simpler networks may be 
successful even without the more complicated 
LSTM machinery by concentrating on scalability. 
In [3] the system is based on a combination of the 
deep bi-directional LSTM recurrent neural 

network architecture and the CTC objective 
function. The system achieved an error rate of 
27.3% on the WSJ corpus with no prior linguistic 
information, 21.9% with only a lexicon of allowed 
words and 8.2% with a trigram language model. 
They concluded that character level speech 
transcription can be performed by RNN with 
minimal pre-processing and no explicit phonetic 
representation. In [2] the key approach is a well 
optimized RNN training system without the need 
for a phonetic dictionary that uses multiple GPU’s 
as well as set of novel data synthesis techniques. It 
has been a benchmark in noisy environments’ [22]. 
G.Dahl et.al have described the method to apply 
CD-DNN- HMMs to LVSR (large vocabulary 
speech recognition) that analyses the effects of 
various modeling choices on performance. An 
absolute SER of 5.8% and 9.2% over the CD-
GMM-HMMs trained using MPE and ML criteria. 
In [23] J.Dean et.al have developed a software 
framework called DistBelief that can utilize 
computing clusters with thousands of machines to 
train large models. D.Ellis et.al [17] the network 
architecture comprised of a single large hidden 
layer where doubling the training data and system 
has provided diminishing returns of error rate 
reduction. A.Graves et.al [18] find that CTC is 
suitable for tasks like keyword spotting where 
segme ntation is required. CTC implicitly models 
inter-label dependencies as well. In [4] Mike 
Schuster et.al researched that BRNN may be 
trained without being restricted to just utilising 
input data up to a predetermined future frame. This 
is achieved by concurrently training it in both 
positive and negative time directions. I.Sutskever 
et.al in [10] have shown that LSTMs trained on 
reversed source sentences performed much better 
on lengthy sentences than LSTMs trained on raw 
source sentences, suggesting that reversing the 
input phrases improves memory use. They used 
LSTMs with 4 layers and stated that deep LSTMs 
outperformed shallow LSTMs. 
In [24] Y.Miao et.al used Eesen framework and 
concluded that Acoustic modelling in Eesen 
entails training a single recurrent neural network 
(RNN) to predict context-independent targets 
(phonemes or characters). We use the 
connectionist temporal classification (CTC) 
objective function to infer the alignments between 
speech and label sequences, which eliminates the 
necessity for pre-generated frame labels. L.Lu et.al 
obtained promising identification accuracy 
without using an explicit language model or 
pronunciation lexicon, showing that this technique 
deserves further exploration. 

Data Set Type Hours Speakers 

WSJ Read 80 280 

Switchbo
ard 

Conversat
ional 

300 4000 

Fisher Conversat
ional 

2000 23000 

Baidu Read 5000 9600 
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The use of coupled BiRNNs in the encoder is 
critical to the success of this model architecture, 
and employing distinct feedforward neural 
networks for feature extraction in the encoder may 
lower the word error rate. Reducing the durations 
of input sequences makes RNN training simpler, 
which increases recognition accuracy while also 
speeding up the training process.[25] T.Mikolov 
et.al in [26] were able to create a topic-conditioned 
RNNLM by doing Latent Dirichlet Allocation 
utilising a block of previous text. The main benefit 
of this technique is that it avoids the data 
fragmentation that comes with developing several 
topic models on distinct data subsets. The primary 
concept is to use a continuous space representation 
of the preceding words and sentences to condition 
the hidden and output vectors. One may avoid the 
data fragmentation associated with the usual 
method of developing several topic-specific 
language models by using a representation based 
on Latent Dirichlet Allocation. 
The importance of scalability in deep learning has 
been extensively researched, [27][[28]and the 
utilization of parallel processors (particularly 
GPUs) has been critical to recent large-scale DL 
achievements.[28][10]. To obtain even greater 
efficiency, researchers have started to choose 
architectures that transfer well to GPU hardware, 
such as convolutional [29][30][31]and locally 
linked networks[32] particularly when optimized 
libraries like cuDNN [33]and BLAS are available. 
Indeed, leveraging high performance, computing 
infrastructure, neural networks with more than 10 
billion connections can now be trained using GPU 
clusters.[11] These outcomes from the various 
research related work prompted us to prioritize 
scalable design decisions that would allow us to 
efficiently use many GPUs before attempting to 
create the algorithms and models themselves. As 
huge labelled training sets have been utilized to 
feed bigger and larger DL systems, considerable 
gains in performance have been made.[34][30]. 
Huge standard datasets, like the Fisher 
corpus[14]which has 2000 hours of recorded 
speech, are uncommon and have just lately been 
explored. We depend on both vast collections of 
labelled utterances and synthesis approaches to 
produce unique instances to fully use the 
interpretive capacity of the recurrent networks at 
our disposal. This method is well-known in 
computer vision, but we've found it to be very 
useful and successful for speech when correctly 
implemented. 
Using a well-designed random initialization and a 
certain sort of slowly growing schedule for the 

momentum parameter, stochastic gradient descent 
with momentum may train both DNNs and RNNs 
(on datasets with long- term dependencies) to 
levels of performance previously only possible 
with Hessian-Free optimization.[6] In [35] The 
authors provide char2Wav, a system that consists 
of two parts: a reader and a neural vocoder. With 
attention, the reader is an encoder-decoder model. 
The encoder is a bidirectional recurrent neural 
network (RNN) that receives text or phonemes as 
inputs and creates vocoder acoustic characteristics, 
while the decoder is a recurrent neural network 
(RNN) with attention. A conditional expansion of 
Sample RNN, neural vocoder creates raw 
waveform samples from intermediate 
representations. Unlike typical voice synthesis 
algorithms, Char2Wav learns to generate sounds 
from text. 

X.Jin et.al [36] experimented and reveal 
that in the the training of acoustic models, the 
models trained by GMM- HMM are used as 
baselines and inputs, then BLSTM-RNN and 
TDNN are used for training respectively. After 
that another 3 acoustic models are generated 
through transfer learning. ally the test set is 
decoded and each model is evaluated separately. 
The experimental results are evaluated and 
analyzed by WERs. According to the experimental 
results, when dealing with a low-resourced 
language such as Indian English, PLP is 
recommended for feature extraction and BLSTM-
RNN is recommended for acoustic model training. 
In industrial applications W.Xiong et.al in [37] 
have discussed Microsoft's 2016 conversational 
voice recognition technology. 
The application of CNNs in the acoustic model, as 
well as RNN language models, has shown to be 
quite useful. On the NIST 2000 Switchboard set, 
our best single system has an error rate of 6.9%.On 
the Switchboard test data, an ensemble of acoustic 
models improves the state of the art by 6.3 percent. 
In [38] K.Li et.al have build a cache model and a 
deep neural network on conversational 
transcriptions and found 3.9% relative WER 
reduction and 10.5% PPL reduction on the 
eval2000 dataset and obtained a 5.6% WER 
reduction on the subset of eval2000. H.Soltau in 
[39] have shown that CTC word models perform 
very well as an end-to-end all-neural speech 
recognition model without the need of standard 
context-dependent sub-word phone mes that 
require a pronunciation lexicon, and without any 
language model that eliminates the need to 
decode.A strong, more sophisticated, state-of-the-
art baseline with sub-word units performs better 
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than the CTC word models. On a tough YouTube 
video transcription job, the final system 
outperforms a well-trained, traditional context-
dependent phone-based system, with a 13.4% 
word error rate. 
In [40] W.Chan et.al have developed a model that 
learns all components of a speech recognizer 
simultaneously. The encoder in LAS features a 
pyramid structure, which lowers the amount of 
timesteps the decoder needs to deal with. The 
listener is a pyramidal recurrent network encoder 
that takes as input the spectra of the filter bank. 
The speller is a character-emitting recurrent 
network decoder that is dependent on attention. 
 

7. EXPERIMENTAL SETUP  

We have compared our system to the above 
mentioned related work as reference on an Indian 
English dataset spoken by both male and female 
speakers. The dataset consists of 45,000 tokens. 
WER(word error rate) and CER (character error 
rate ) has been processed in Jupyter notebook in 
anaconda enviroment. We use a basic kind of 
speaker adaptation that involves normalising 
spectral data per speaker.The deepspeech model 
consists of 5 dense layers and one unidirectional 
RNN layer, a total of 6 layers in all which is novel 
to this dataset.  
 

Figure 3: Flowchart Of The Unidirectional RNN Based Deepspeech Dataflow Implemented 
 
7.1 Metrics 

WER ( word error rate) is defined as the 
edit/levenshtein distance on word level divided by 
the amount of words in the original text.  
 
In case of the original having more words (N) than 
the result and both being totally different, the 
WER will always be 1 (N/N =1). It has been 
computed as follows, similarly CER has been 

computed. 
 

WER = sum(s.word_distance for s in sample)/ 
sum(s.word_length for s in samples) 
CER = sum(s.char_distance for s in sample)/ 
sum(s.char_length for s in samples) 
 
Word error rate is the most common metric used 
today to evaluate the effectiveness of an automatic 
speech recognition system (ASR).  
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Product developers and data scientists while 
evaluating speech recognition APIs consider WER 
as a reliable evaluating system. It is simply 
calculated as[41] 
                                 
                                   WER = S+D+I /N 
…………..(7.1) 
 
where S = S stands replacing a word,I stands for 
inserting a word ,D stands for omitting a word ,N 
is the number of words that were actually spoken. 
 
From our experiments, let us see an example. We 
observe that ‘I’ has been substituted by ‘the’ The 
following words have been spelled correctly. 
Example 1: 

mh1045 ref  i brought this flock with me from 
there 
              mh1045 hyp the brought this flock with 
me fromthere . 
   mh1045 op:  
                                                                                               
S       C        C  C C        C   C       C 
The brought this flock     with    me from there 
 
                                 CER = 
S+D+I/(S+D+C)……………(7.2) 
 
where S is the number of substitutions 

D is the number of deletions 
I is the number of insertions 
C is the number of correct characters 
N is the number of characters in the reference.[42]  
 
The minimum string distance (MSD) between the 
provided and transcribed text strings is calculated 
in character errorr. This is the smallest number of 
basic operations (substitutions, insertions, and 
deletions) required to convert one string to 
another. 
 
The MSD statistic represents the amount of 
mistakes made by the user when inputting the 
given text string. 
 
The WER and CER obtained are shown in the 
table below. We have computed separately for 
male and female speakers. 
 
 
 
 
              

Table4 : WER (Word Error Rate) And CER(Character   
Error Rate) Obtained Through Analysis 

 
Dataset 

 
WER 

 
1-WER 

 
CER 

 
1-CER 

 
Male 
speake
rs 

 
0.1721 

 
0.8278 

 
0.0857 

 
0.9142 

 
Female 
speake
rs 

 
0.1937 

 
0.8062 

 
0.0982 

 
0.9017 

 

7.2 Discussions 

The network must not only learn how to detect 
speech sounds, but also how to convert them into 
letters, in order to offer character-level 
transcriptions. To put it another way, it needs to 
learn how to spell. This is difficult, particularly in 
a language with orthographic irregularities like 
English. The following samples from the 
evaluation set, decoded without the use of a 
lexicon or language model, show how the network 
works: 
Original: now you're coming down to business 
phil he exclaimed. 
Output: now you're coming down to business phil 
he exclaimed. 
Original : in the picture he saw each moment a 
greater resemblance to jeanne. 
Output: in the picture he saw each woman a greater 
resemblance to gene. 
Original :its alright thieves first let me know about 
your expertise in the art and then decide.  
Output: is all right dives first let me now about 
your expertise in the art and then decide. 
Original: all of us are trapped in this net because 
of our weakness for  
Output: on furs are trapped in this net because of 
our weakness for food. 
The network, like other voice recognition systems, 
makes phonetic errors, such as saying 'each lady' 
instead of 'each moment,' and sometimes mixes 
homophones like 'hear'-here,' 'hour-are,' and so on. 
The second issue may be more difficult to solve 
using a language model than typical, since words 
that sound similar might spell differently. Unlike 
phonetic systems, the network produces lexical 
mistakes, such as mistaking 'knight' for 'night,' and 
errors that mix the two, such as mistaking 'alright' 
for 'all right.' 
It can accurately transcribe fairly complicated 
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terms that occur regularly, such as'salutations,' 
'possibility,' and'shuffled,' but it has trouble with 
the sound and spelling of new words, particularly 
proper names like 'Tanaliraman' and 'harness.' This 
shows that even in the absence of a dictionary, out-
of-vocabulary terms may be a barrier for 
character-level recognition. The fact that the 
network can spell at all indicates that it can infer 
important linguistic information from the training 
transcripts, opening the door for a true end-to-end 
voice recognition system. 
 
8. CONCLUSION  
 
This paper shows that a recurrent neural network 
can perform character-level voice transcription 
with little pre-processing and no explicit phonetic 
representation. We have also shown how to 
combine the network outputs with a language 
model during decoding using an unique objective 
function that enables the network to be directly 
optimised for word error rate. Finally, we obtained 
state-of-the-art accuracy for speaker independent 
identification on the Indian English dataset. In the 
future, it would be fascinating to apply the system 
to datasets where the language model is less 
important, such as spontaneous speech, or when 
the training set is big enough for the network to 
develop a language model just from the transcripts. 
Integration of the language model into the CTC or 
anticipated transcription loss goal functions during 
training is another potential avenue. 
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