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ABSTRACT 
 

With the persistent evolution of Android malware, advanced detection techniques have become paramount. 
This paper introduces a novel approach to Android malware detection, harnessing the power of ensemble 
stacking classifiers combined with regularization-based feature selection techniques, specifically Lasso, 
Ridge, and Elastic Net, applied to the Drebin-215 dataset. Using base classifiers including Random Forest, 
K-Nearest Neighbors, Support Vector Machine, Logistic Regression, and Bernoulli Naive Bayes, with 
Logistic Regression as the meta classifier, our methodology aims to capture the collective strengths of 
diverse algorithms. Initial results of individual classifiers laid the foundation, upon which the ensemble 
model furthered the detection rates. Implementing the regularization-based feature selection significantly 
enhanced the model's efficiency, leading to improved classification accuracy. Compared to traditional 
methods, our proposed system offers a notable enhancement in malware detection capabilities, providing a 
resilient solution to the prevailing challenges in Android security. This study underscores the potential of 
integrating machine learning-driven ensembles with advanced feature selection techniques for bolstered 
security measures. 
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1. INTRODUCTION  

Android is one of the most widely used operating 
systems for smartphones today. Based on data 
released by Statista, there are an estimated 2.2 
billion android users worldwide by 2022 [1]. The 
large number of android users today makes the 
operating system a popular target for cyberattacks. 
Approximately 98.5% of smartphone attacks are 
primarily directed at Android devices [2]. One 
method of attack that is of much concern today is 
malware. Malware is defined as software that aims 
to infiltrate a computer system without the 
knowledge and consent of the system owner which 
can be intrusive, dangerous, and even destructive to 
the system [3]. Malware is one of the tools from 
attackers that internet users in the world must be 
aware of, including Android users. 

Malware detection on Android is one of the 
important research topics in the field of 
cybersecurity today. One method that can be used 
to detect android malware is to manually analyze 
the malware, but this method is less relevant 
because it takes a lot of time [4]. Machine learning 

techniques are the right choice to deal with the 
complexity of android malware [5]. In general, 
methods that can be used in modeling android 
malware detection systems fall into three 
categories, namely supervised learning, 
unsupervised learning, semi-supervised learning, 
and reinforcement learning [6]. However, there is 
another development, namely ensemble learning, 
whose concept is to combine machine learning 
models. The application of ensemble learning 
provides improved performance of the detection 
model [7] [6]. 

The ensemble method is a type of machine 
learning algorithm that aims to improve prediction 
performance on a task by combining predictions 
from multiple estimators or models [8]. Bagging, 
Boosting, and Stacking are some of the popular and 
widely used ensemble techniques [9]. Stacking is 
the most popular meta-learning method and gets its 
name because it stacks a second classifier (meta 
learner) on top of its base classifier [8]. 

There are two methods that can be used for 
android malware detection, static analysis and 
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dynamic analysis. The static method decompiles 
APK files and extracts features from files or 
program instructions, while the dynamic method 
runs the application in an isolated device [10]. 
Static features can be obtained quickly by parsing 
the APK file after the decompilation process. Static 
analysis has some limitations in the face of 
modifications from malware, but it is still more 
effective to use because it can quickly detect and 
prevent the installation process of malware [11]. 

The ubiquitous use of Android operating systems 
has made smartphones prime targets for cyber 
threats, particularly malware attacks. Defined as 
software infiltrating computer systems without the 
owner's consent, malware poses a grave risk to user 
privacy and system integrity. Existing manual 
analysis methods are time-consuming, underscoring 
the need for advanced approaches to Android 
malware detection. This study addresses this 
imperative by introducing an ensemble stacking 
framework, leveraging various classifiers to 
enhance the efficiency of Android malware 
detection. The research objectives involve a 
comprehensive evaluation of individual base 
classifiers, the implementation of regularization-
based feature selection to optimize model accuracy, 
and a thorough comparative analysis to demonstrate 
the superiority of the proposed ensemble stacking 
framework over conventional Android malware 
detection methods. Through these specific 
objectives, the research aims to provide a novel and 
robust solution to the evolving cybersecurity threats 
faced by Android users. 

In this paper, we introduce an ensemble stacking 
framework for Android malware detection. The 
contributions of this article can be summarized as 
below: 

- A novel approach to Android malware 
detection was introduced, utilizing the 
combined power of ensemble stacking 
classifiers and regularization-based feature 
selection. 

- Individual performances of base classifiers 
were extensively evaluated, providing 
foundational insights into their strengths and 
limitations. 

- By employing Lasso, Ridge, and Elastic Net 
for feature selection from the Drebin-215 
dataset, the ensemble model's accuracy was 
notably enhanced, with a concomitant 
reduction in computational overhead. 

- A comprehensive comparative analysis was 
showcased, highlighting the distinct 
advantages of the proposed system over 
conventional Android malware detection 
methods. 

The rest of the paper is summarized as follows in 
Section 2 provides a summary of relevant past 
research. In Section 3, the proposed methodology is 
laid out, encompassing the dataset description, the 
application of the regularization-based feature 
selection, and details of the ensemble stacking 
model. Section 4 presents the experiments and their 
results, beginning with the experimental setup, 
followed by the performance metrics, results from 
base classifiers, ensemble stacking outcomes, and a 
comparative analysis of the results. Finally, Section 
5 concludes the paper and offers insights into 
potential avenues for future research. 

 

2. RELATED WORKS 

EnDroid is a dynamic analysis framework for 
accurate malware detection proposed in [12]. The 
research utilizes runtime behavior information 
obtained through the DroidBox tool, which captures 
various application activities and system calls. 
EnDroid uses feature selection to extract critical 
behavioral features, helping in the identification of 
malicious activities such as personal information 
theft and malicious service communication. The 
framework uses ensemble stacking method to 
achieve effective android malware detection. 
Overall, EnDroid's accuracy against all android 
malware samples reached 94.5% and the malware 
detected by EnDroid was almost evenly distributed 
across the malware families of the Drebin dataset. 

Idrees et al. (2017) proposed PIndroid, an 
innovative android malware detection framework, 
which combines permissions and intents to identify 
malicious apps [13]. The framework uses a 
stepwise classification approach enhanced with 
ensemble techniques for optimized detection 
results. The proposed method achieved a 
remarkable accuracy of 99.8% when applied to 
1,745 apps, making it one of the most accurate 
solutions reported to date. This study highlights the 
effectiveness of permissions and intents in 
detecting malware, and reveals their potential to 
detect malicious apps and other types of malware. 

Yerima and Sezer (2018) proposed a fusion 
approach, called DroidFusion, to improve the 
predictive ability of machine learning algorithms in 
detecting android malware [14]. This framework 
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combines a lower-level base classifier and applies a 
higher-level ranking-based algorithm to obtain the 
final classification. DroidFusion can utilize 
traditional machine learning algorithms (e.g., 
Decision Tree, Naive Bayes) and ensemble learning 
algorithms (e.g., Random Forest, Boosting) to 
improve classification accuracy. Extensive 
experiments were conducted on four datasets, 
including samples from Android Malgenome and 
DREBIN, to demonstrate the effectiveness of this 
approach. DroidFusion outperforms other stacking 
models, despite using only a high-level 
computational approach (meta classifier). 

Rahman & Saha (2019) introduced StackDroid, a 
stacked generalization approach that combines base 
classifiers, including Extremely Randomized Tree 
(ET), Random Forest (RF), Multi-Layer Perceptron 
(MLP), and Stochastic Gradient Descent (SGD) in 
the first layer, with Extreme Gradient Boosting 
(XGBoost) as a meta classifier in the second layer. 
This approach achieved good results, with a 
detection accuracy of 97%, a False Positive Rate 
(FPR) of 1.67%, and an Area Under Curve (AUC) 
of 99% on the DREBIN dataset. 

Dhalaria and Gondotra (2020) proposed an 
ensemble stacking method for android malware 
detection based on static and dynamic features [16]. 
The method involves using a chi-square feature 
selection algorithm to select features that are 
relevant in malware detection, thereby reducing the 
dimension of the feature vector. The selected 
features are used to build the base classifier, and the 
top three classifiers are combined with the 
ensemble stacking technique to improve the 
detection rate. The proposed approach achieves a 
high detection accuracy of 98.02% when evaluated 
on the AndroMD dataset, which outperforms 
existing classification engines. The experimental 
results demonstrate the effectiveness of the 
proposed approach in detecting Android malware. 

Zhu et al. (2020) introduced SEDMDroid, an 
ensemble stacking framework that combines static 
analysis and machine learning [17]. SEDMDroid 
ensures individual accuracy and diversity in the 
ensemble by utilizing random feature subspaces 
and bootstrapping to generate diverse subsets. 
Principal component analysis (PCA) is applied to 
each subset. Experimental results on two datasets, 
including features such as permissions, sensitive 
APIs, and events from monitoring systems, 
demonstrate the effectiveness of SEDMDroid with 
accuracy rates of 89.07% and 94.92%. Comparison 
with existing methods further confirms the 

superiority of the proposed two-layer ensemble 
learning framework. 

Wang et al. (2022) proposed an Android 
malware detection framework named MFDroid 
based on ensemble stacking, which overcomes the 
limitations of single feature selection and 
traditional machine learning methods [18]. The 
framework utilizes seven feature selection 
algorithms to process permissions, API calls, and 
opcodes features, which are then combined to form 
a new feature set. This feature set is then used to 
train five base classifiers in the first layer of the 
ensemble stacking framework, and utilize logistic 
regression as the meta classifier in the second layer. 
MFDroid achieved an F1 score of 96.0% for 
android malware detection. 

Another method is GA-StackingMD introduced 
in [19]. GA-StackingMD combines five base 
classifiers using stacking, then optimized using 
genetic algorithm for hyperparameter tuning. This 
research uses a two-step feature selection method, 
utilizing information gain and chi-square. The 
proposed concept achieved a detection accuracy of 
98.43% and 98.66% on the CIC-AndMal2017 and 
CICMalDroid2020 datasets, respectively. 

Our proposed method introduces an ensemble 
stacking framework that adeptly integrates diverse 
base classifiers, including Random Forest, K-
Nearest Neighbors, Support Vector Machine, 
Logistic Regression, and Bernoulli Naive Bayes, 
with Logistic Regression serving as the meta 
classifier. Applied to the real-world Drebin-215 
dataset and enhanced with regularization-based 
feature selection techniques (Lasso, Ridge, and 
Elastic Net), our experiments underscore the 
robustness and efficacy of this approach in Android 
malware detection. 

 

3. PROPOSED METHODOLOGY 

In this study, an experimental research design 
was employed for the analysis of Android malware 
detection using the Drebin-215 dataset. The 
variables under investigation encompass features 
and attributes crucial for understanding malware 
instances within the Android environment. 
Specifically, we examine how various 
characteristics influence the effectiveness of 
ensemble stacking classifiers in detecting and 
mitigating malware threats. The proposed analysis 
criteria involve the utilization of ensemble stacking 
classifiers and regularization-based feature 
selection techniques. These methods were 
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deliberately chosen to enhance the precision of our 
Android malware detection model. By employing 
ensemble techniques and feature selection, we aim 
to provide a robust and efficient approach to 
address the complex challenges posed by evolving 
malware threats in the Android ecosystem. The 
chosen research design and analysis criteria are 
intricately linked to our research objectives, 
ensuring a comprehensive exploration of the 
Android malware detection landscape and 
facilitating meaningful interpretation of the 
achieved results. 

3.1 Dataset Description 

The primary dataset underpinning this research is 
Drebin-215, a creation of Yerima and Sezer in 
2019. This dataset was meticulously crafted with 
the specific intent of pioneering advancements in 
the domain of Android malware detection. 
Spanning across a diverse range of 15,036 APK 
files, the Drebin-215 dataset boasts 215 uniquely 
identified features. Delving deeper into its 
composition, it's noteworthy to highlight that of 
these APK files, 5,560 have been identified as 
malicious, while the remaining 9,476 are benign in 
nature. Each feature within this rich dataset was 
extracted through an exhaustive static analysis 
procedure applied to every individual APK file. To 
streamline and standardize representation, these 
features are encoded in binary format and distinctly 
categorized under 'malware' or 'benign' labels, 
ensuring clarity and precision.  

For analytical and structural purposes, the dataset 
further organized into four primary classifications: 
API call signatures, manifest permissions, intents, 
and command signatures. The API call signatures 
are particularly fascinating as they represent the 
specific invocations of functions found within .dex 
file extensions. In contrast, the manifest 
permissions offer insights into the various 
permissions an application seeks, as explicitly 
declared within its inherent manifest file. Intents, 
another pivotal category, shed light on the intricate 
communication protocols established between 
different apps or services, as meticulously 
documented within the AndroidManifest.xml. 
Lastly, the command signatures serve as a 
repository of Linux commands, extracted from an 
array of file types including but not limited to .dex, 
.jar, .so, and .exe extensions. 

3.2 Feature Selection using Regularization 

In shaping predictive models for the Drebin-215 
dataset, which is characterized by its vast 
dimensionality, the implementation of 

regularization techniques is crucial. These methods 
not only bolster the model's precision but also 
fortify its resilience against overfitting—a common 
challenge in high-dimensional spaces. The Lasso 
method applies L1 regularization to prune the 
feature set, diminishing certain coefficients to zero 
and thus performing dual roles in optimization and 
feature selection. Ridge regression, through L2 
regularization, minimizes the coefficients' squares, 
ensuring that each feature's impact, while reduced, 
remains in the model. Elastic Net, adeptly 
combining L1 and L2 regularization, excels in 
situations where features are interdependent or 
excessively numerous. 

Our choice to harness these regularization 
methods for the Drebin-215 dataset stems from 
their capacity to condense the feature space 
effectively. Lasso's sparsity-inducing approach is 
instrumental in discarding non-contributory 
features, streamlining the model in the process. 
Ridge is incorporated for its proficiency in 
managing feature interrelations without excluding 
any, thus preserving the integrity of the model's 
predictive power. Elastic Net is poised to capitalize 
on the combined strengths of Lasso and Ridge, 
offsetting their individual limitations and ensuring a 
balanced feature selection mechanism. This 
strategic selection is predicated on the belief that 
marrying the concepts of sparsity and controlled 
coefficient reduction can cultivate a model that 
offers both interpretability and wide applicability. 

In our research, the feature selection is 
strategically designed to leverage the strengths of 
regularization techniques, crucial for sifting 
through the complex feature space of the Drebin-
215 dataset. We propose using Lasso, Ridge, and 
Elastic Net methods, which are renowned for their 
efficacy in reducing overfitting and enhancing 
model interpretability. These techniques will be 
applied conceptually to identify and retain the most 
predictive features while discarding the redundant 
ones. The tuning of the regularization parameter 
alpha will be a focal point across all methods to 
determine the most effective level of penalization. 
For Elastic Net, the l1_ratio is preset at 0.5 to 
maintain a balanced approach between L1 and L2 
regularization. This targeted calibration aims to 
construct a streamlined feature set, laying the 
foundation for a robust ensemble stacking classifier 
that is anticipated to improve the detection rates of 
Android malware significantly. 
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3.3 Ensemble Stacking Model 

Ensemble stacking is a sophisticated machine 
learning technique that leverages the strengths of 
multiple classifiers to achieve superior predictive 
performance. Unlike traditional ensemble methods 
that often involve simple voting or averaging of 
predictions, stacking involves multiple layers of 
classifiers. The primary idea behind stacking is to 
use predictions from several base classifiers as 
input features for a higher-level, or meta, classifier. 
This hierarchical structure allows the model to learn 
from the diverse strengths of the base classifiers, 
potentially leading to enhanced accuracy and 
robustness. In our model, we utilize Random 
Forest, K-Nearest Neighbors, Support Vector 
Machine, Logistic Regression, and Bernoulli Naive 
Bayes as our base classifiers, with Logistic 
Regression serving as the meta classifier. 

Before diving into the specifics of the chosen 
classifiers, it's worth noting that each classifier's 
performance can be heavily influenced by its 
hyperparameters. In our research, we recognized 
the importance of this and dedicated a substantial 
amount of time to rigorously tuning the 
hyperparameters for each classifier. This was done 
using random search techniques, ensuring that we 
harness the maximum potential of each base 
classifier in our ensemble stacking model. 

3.3.1 Base Classifiers 

In our research, we opted for a combination of 
Random Forest, K-Nearest Neighbors, Support 
Vector Machine, Logistic Regression, and 
Bernoulli Naive Bayes as our base classifiers. The 
selection of these classifiers was driven by their 
diverse underlying methodologies, ensuring a broad 
spectrum of decision boundaries and prediction 
strategies. This diversity is crucial in ensemble 
methods, as it increases the chances of capturing 
various aspects and nuances of the data. 

Random Forest: Random Forest was chosen for its 
ensemble nature, which inherently promotes 
diversity in decision-making. By constructing 
multiple decision trees and aggregating their 
outputs, RF offers a robustness against overfitting. 
Its ability to handle large datasets with higher 
dimensionality, manage missing values, and 
provide feature importance scores made it 
indispensable for our ensemble. 

K-Nearest Neighbors: The inclusion of KNN was 
driven by its ability to capture local patterns and 
non-linear relationships in the data. As a non-
parametric algorithm, KNN doesn't make strong 

assumptions about the underlying data distribution, 
making it versatile and adaptive to various data 
structures. 

Support Vector Machine: SVM was selected for 
its efficacy in high-dimensional spaces and its 
capacity to find the optimal hyperplane using the 
kernel trick. This allows SVM to capture complex 
relationships in the data, even when they are not 
linearly separable. Its resilience against overfitting, 
especially with the right choice of kernel and 
regularization, made it a valuable addition to our 
ensemble. 

Logistic Regression: Logistic Regression's 
probabilistic nature offers a clear advantage in 
scenarios where understanding the likelihood of 
class membership is crucial. Its ability to provide 
calibrated probabilities and its interpretability, 
where each feature's effect on the outcome can be 
quantified, made it a strategic choice for our 
ensemble, especially in the context of malware 
detection where understanding feature influence 
can be pivotal. 

Bernoulli Naive Bayes: The decision to include 
BernoulliNB stemmed from its efficiency with 
binary/boolean features and its probabilistic 
foundation. Given that many features in malware 
detection can be binary (e.g., presence or absence 
of a certain permission), BernoulliNB's ability to 
handle such features efficiently and provide 
probabilistic outputs made it a complementary 
choice to the other classifiers. 

3.3.2 Meta Classifier 

For the meta classifier, we selected Logistic 
Regression. The choice was motivated by several 
factors. Firstly, Logistic Regression's probabilistic 
nature is inherently suited for the role of a meta 
classifier. In ensemble stacking, the meta classifier 
is presented with predictions from multiple base 
classifiers, each with its own confidence or 
probability score. Logistic Regression's ability to 
weigh these probabilities in a nuanced manner 
ensures that the final decision is a balanced 
reflection of the collective wisdom of the base 
classifiers. This is especially crucial in malware 
detection, where the stakes are high, and a false 
positive or false negative can have significant 
implications. 

Furthermore, the interpretability of Logistic 
Regression is a significant advantage in the context 
of our research. In the realm of Android malware 
detection, understanding the influence of each base 
classifier on the final decision can provide valuable 
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insights into the nature of the malware and the 
features that are most indicative of malicious 
behavior. Logistic Regression, with its coefficients 
and odds ratios, offers a transparent view into this 
decision-making process, allowing researchers and 
practitioners to gain a deeper understanding of the 
detection mechanism. In summary, the selection of 
Logistic Regression as the meta classifier was not 
only driven by its technical merits but also by its 
alignment with the goals and requirements of our 
research in Android malware detection. 

 
 

Figure 1: Proposed Methodology 

 

4. EXPERIMENTS AND RESULTS 

4.1 Experimental Setup 

For the entirety of this research, a dedicated 
workstation was utilized, ensuring a consistent and 
controlled environment throughout the 
experimental phase. The workstation was equipped 
with an Intel(R) Core(TM) i7-7700HQ CPU, 
operating at approximately 2.8GHz with eight 
processing units. Accompanying this was a sizable 
32GB DDR4 RAM operating at 2400MHz and an 
NVIDIA GeForce GTX 1070 graphics card. 
Storage capabilities were dual-faceted, 
encompassing a 1TB HDD with a spin rate of 
7200rpm, complemented by a faster 512GB NVMe 
SSD, ensuring swift data read and write operations. 

The primary toolkit for this venture was the 
scikit-learn library, a comprehensive machine 
learning tool in the Python ecosystem. It facilitated 
most of the experimental tasks, from model 
definition and training to evaluation. Furthermore, 
the nuances of feature selection using genetic 
algorithms were adeptly handled using the scikit-
genetic-opt library, enhancing the optimization 
phase of the research. 

Train-test split approach was adopted in this 
research, allocating 80% of the data for training and 
reserving 20% for testing. This method ensures that 
our model evaluations are based on a clear 
separation of data, with the training set used to 
develop the model and the testing set used to assess 
its performance. Such a split not only simplifies the 
evaluation process but also provides a focused 
measure of how well the model can generalize to 
new, unseen data, thereby offering a realistic 
perspective on its predictive capabilities. 

In the quest to optimize our machine learning 
classifiers, we employed the RandomizedSearchCV 
methodology from scikit-learn. This approach 
allows for a more efficient and strategic exploration 
of the comprehensive hyperparameter grid we 
established for each classifier. Instead of 
exhaustively searching through every possible 
combination, RandomizedSearchCV samples a 
subset, striking a balance between thoroughness 
and computational efficiency. The detailed results 
of this hyperparameter tuning process, including the 
best parameters identified for each model, are 
meticulously presented in Table 1. 

Table 1: Hyperparameters of Classifiers 

Classifier Hyperparameters 

Random Forest 

n estimators = 200 

max depth = none 

criterion = gini  

min samples split = 2 

min samples leaf = 1 

max features = log2 

K Nearest Neighbors n neighbors : 1 

Support Vector Machine 
C = 100 

kernel = rbf 
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Logistic Regression 

solver = liblinear 

penalty = l1 

C = 10 

Bernoulli Naïve Bayes alpha = 0.001 

 
4.2 Performance Metrics 

In order to comprehensively assess the 
performance of the proposed android malware 
detection ensemble stacking approach, we utilize a 
set of well-established evaluation metrics. These 
metrics provide insights into various aspects of the 
detection model's effectiveness, covering its ability 
to accurately distinguish between benign and 
malicious applications. In this study, several 
performance metrics were used, including 
Accuracy, Error Rate, Precision, and Recall.  

Central to our assessment is Accuracy, which 
measures the model's general predictive prowess by 
gauging the overall correctness of the classifier's 
predictions. Representing the proportion of 
correctly classified samples to the entire dataset, a 
heightened accuracy suggests a commendable 
predictive ability. Alongside, the True Positive Rate 
(TPR) or Sensitivity offers a deeper dive, 
evaluating the model's proficiency in identifying 
genuine threats—the malicious applications—
amidst all actual positive instances. Complementing 
the TPR is Precision, which quantifies the 
exactness of the model's positive predictions and is 
vital for minimizing false alarms. Lastly, to offer a 
holistic view of the model's performance, the F-1 
Score—a harmonious blend of precision and 
recall—provides a comprehensive assessment, 
especially crucial when dealing with skewed 
datasets. The formula of each metric for model 
evaluation used is shown in Table 2. 

Table 2: Evaluation Metrics 

Evaluation Metric Formula 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

TPR 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1-score 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
4.3 Regularizatio-based Feature Refinement 

Feature selection is a pivotal step in machine 
learning, especially for high-dimensional datasets 
like Drebin-215. In our study, we harness the power 
of regularization techniques to refine and select the 
most pertinent features for android malware 
detection. We employed three prominent 
regularization methods: Lasso, Ridge, and 
ElasticNet. Each of these techniques introduces a 
penalty to the model's loss function, shrinking some 
feature coefficients and thereby refining the feature 
set. 

Lasso (L1 regularization): Lasso penalizes the 
absolute values of the coefficients, leading to some 
feature coefficients becoming zero. This method 
resulted in retaining 194 features out of the original. 

Ridge (L2 regularization): Ridge penalizes the 
square of the coefficients, reducing their magnitude 
but not zeroing them. After applying Ridge, 77 
features were retained. 

ElasticNet: Combining the penalties of both L1 and 
L2 regularization, ElasticNet balanced the strengths 
of Lasso and Ridge. Post-application, 79 features 
were retained. 

The reduced feature set post regularization 
ensures a more streamlined model, focusing on the 
most relevant indicators of malware presence. 
Table 3 provides a detailed breakdown of the 
number of features retained after applying each 
regularization technique. The selected features 
highlight the key characteristics crucial for 
distinguishing between benign and malicious 
applications. 

4.4 Results of Base Classifiers 

To discern the effectiveness of our ensemble 
stacking approach and the influence of feature 
refinement, we meticulously evaluated the base 
classifiers on different datasets: the original dataset, 
which encompasses all features, and three others 
refined through distinct feature selection 
techniques: Lasso (L-Drebin), Ridge (R-Drebin), 
and Elastic Net (EN-Drebin). This methodical, 
side-by-side evaluation is essential to understand 
the nuances of classifier performance and to shed 
light on the potential advantages or challenges 
introduced by feature selection. By comparing the 
results, we can elucidate the tangible impact of 
feature refinement on classifier accuracy, precision, 
recall, and overall effectiveness. Such a comparison 
not only validates the importance of an optimized 
feature set but also provides insights into how each 
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classifier responds to changes in the input feature 
space. Detailed metrics, showcasing the depth of 
this evaluation for each classifier on all datasets, are 
systematically presented below. 

In our ensemble exploration, the Random Forest 
(RF) classifier emerged as a notable contender. It 
adeptly navigated the intricate patterns of our 
dataset, demonstrating an initial performance with 
an accuracy of 98.64%, a recall of 96.88%, 
precision of 99.45%, and an F1 score of 98.15%. 
Upon the introduction of Lasso feature selection, its 
accuracy slightly improved to 98.74%, recall to 
96.97%, precision to 99.63%, and F1 score to 
98.28%. Ridge and ElasticNet feature selections, 
however, saw a decrease in performance with Ridge 
bringing the accuracy down to 97.57%, recall to 
96.16%, precision to 97.29%, and F1 score to 
96.72%, while ElasticNet resulted in an accuracy of 
97.84%, recall of 96.34%, precision of 97.83%, and 
an F1 score of 97.08%. Figure 2 is illustrative of 
the comparative performance of the Random Forest 
classifier on each dataset, showcasing the impact of 
different feature selection methods on key metrics 
in a side-by-side manner. 

 

Figure 2: Evaluation of Random Forest 

The K-Nearest Neighbors (KNN) classifier, with 
its proximity-based logic, initially exhibited an 
accuracy of 98.74%, a recall of 97.86%, precision 
of 98.74%, and an F1 score of 98.30%. The 
application of Lasso maintained the accuracy and 
F1 score at 98.74% and 98.30% respectively, while 
recall and precision saw slight changes to 98.13% 
and 98.48%. With Ridge, the accuracy declined to 
97.57%, recall to 96.52%, precision to 96.95%, and 
F1 score to 96.74%. ElasticNet regularization 
achieved an accuracy of 97.81%, recall of 96.97%, 
precision of 97.14%, and F1 score of 97.05%. 
Figure 3 depicts the performance variations of the 
K-Nearest Neighbors (KNN) classifier, as 
evidenced by the changes in Accuracy, Recall, 

Precision, and F1 Score across the original, Lasso, 
Ridge, and ElasticNet feature-selected datasets. 

 

Figure 3: Evaluation of K-Nearest Neighbors 

The Support Vector Machine (SVM) classifier 
began with a high accuracy of 98.94%, a recall of 
98.39%, precision of 98.75%, and an F1 score of 
98.57%. Post feature selection with Lasso, the 
metrics remained consistent, maintaining an 
accuracy and F1 score of 98.94% and 98.57% 
respectively, with a slight decrease in recall to 
98.22% and an increase in precision to 98.92%. 
Ridge and ElasticNet feature selections resulted in a 
reduction of performance metrics, with Ridge 
leading to an accuracy of 97.41%, recall of 95.00%, 
precision of 97.98%, and F1 score of 96.47%, and 
ElasticNet yielding an accuracy of 97.81%, recall 
of 96.07%, precision of 98.00%, and F1 score of 
97.03%. Figure 4 is indicative of the Support 
Vector Machine (SVM) classifier's performance 
metrics, detailing the comparative influence of the 
original and feature-selected datasets (Lasso, Ridge, 
ElasticNet) on Accuracy, Recall, Precision, and F1 
Score. 

 

Figure 4: Evaluation of Support Vector Machine 

The Logistic Regression (LR) classifier, 
grounded in probabilistic reasoning, initially 
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recorded an accuracy of 97.74%, a recall of 
97.15%, precision of 96.80%, and an F1 score of 
96.97%. Lasso feature selection led to a marginal 
improvement in accuracy to 97.77%, with recall at 
97.06%, precision at 96.97%, and F1 score at 
97.01%. Ridge regularization saw a notable 
decrease in metrics, with accuracy at 96.41%, recall 
at 93.84%, precision at 96.43%, and F1 score at 
95.12%. ElasticNet regularization resulted in an 
accuracy of 96.67%, recall of 94.56%, precision of 
96.45%, and F1 score of 95.50%. Figure 5 presents 
the performance metrics of the Logistic Regression 
classifier, revealing the effects of the original and 
feature-selected datasets (Lasso, Ridge, ElasticNet) 
on Accuracy, Recall, Precision, and F1 Score in a 
comparative context. 

 

Figure 5: Evaluation of Logistic Regression 

Lastly, the Bernoulli Naïve Bayes (BNB) model, 
which excels in handling binary data, began with an 
accuracy of 83.17%, a recall of 95.00%, precision 
of 70.30%, and an F1 score of 80.80%. The 
introduction of Lasso improved accuracy to 
83.87%, recall to 95.63%, precision to 71.09%, and 
F1 score to 81.55%. Ridge regularization resulted 
in a significant improvement in metrics with 
accuracy at 88.83%, recall at 91.70%, precision at 
80.88%, and F1 score at 85.95%. ElasticNet further 
enhanced the performance to an accuracy of 
89.59%, recall of 93.40%, precision of 81.42%, and 
F1 score of 87.00%, emphasizing the adaptability 
and wide-ranging applicability of Bayesian 
classifiers with feature selection. Figure 6 displays 
the comparative impact on the Bernoulli Naive 
Bayes classifier's performance, with the datasets—
original, Lasso, Ridge, and ElasticNet—each 
affecting the Accuracy, Recall, Precision, and F1 
Score metrics. 

 

Figure 6: Evaluation of Bernoulli Naive Bayes 

 
4.5 Ensemble Stacking Results 

The core of our research hinges on the efficacy 
of the ensemble stacking approach. By integrating 
the strengths of multiple base classifiers, the 
stacking model aims to deliver superior 
performance, especially in the realm of Android 
malware detection. In this section, we delve into the 
performance of the ensemble stacking model, 
evaluated on different datasets: the original dataset, 
which encompasses all features, and three others 
refined through distinct feature selection 
techniques: Lasso (L-Drebin), Ridge (R-Drebin), 
and Elastic Net (EN-Drebin). The comprehensive 
performance metrics derived from these evaluations 
are detailed in Table 3. 

Table 3: Performance Metrics of Ensemble Stacking 

Data Accuracy TPR Precision F-1 Score 

Drebin-215 99.17 98.39 99.37 98.88 

L-Drebin 99.24 98.31 99.64 98.97 

R-Drebin 97.71 95.81 97.99 96.89 

EN-Drebin 97.90 96.52 97.83 97.17 

 
In our study, we compared the performance of an 

ensemble stacking classifier across four datasets, 
with updated metrics reflecting the latest findings. 
The Lasso feature selection method, applied to the 
L-Drebin dataset, now stands out even more with 
an enhanced accuracy of 99.24%. This 
improvement suggests that the Lasso's ability to 
identify a parsimonious yet effective feature set can 
indeed augment the classifier's discernment 
capability. The original Drebin dataset maintains a 
strong baseline with an accuracy of 99.17%, 
reinforcing the robustness of the initial feature set. 
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When considering recall, the original dataset 
exhibits a commendable rate of 98.39%, which is 
slightly higher than the L-Drebin's 98.31%, 
indicating that the initial features maintain a high 
sensitivity towards malware detection. The Ridge 
and Elastic Net feature selection methods, applied 
to the R-Drebin and EN-Drebin datasets, show a 
decrease in recall to 95.81% and 96.52% 
respectively. This decline may suggest that while 
these methods can help reduce feature 
dimensionality, they might also suppress some 
informative features essential for maintaining high 
sensitivity. 

Precision is led by the L-Drebin dataset at 
99.64%, a slight increase from the original dataset's 
precision of 99.37%. This further supports the 
Lasso method's efficacy in minimizing false 
positives and enhancing the classifier's exactness. 
The Ridge and Elastic Net datasets exhibit 
precision scores of 97.99% and 97.83%, 
respectively, which, while slightly lower, still 
demonstrate a high level of specificity in positive 
predictions. 

The F1 Score, which balances precision and 
recall, is highest for the L-Drebin dataset at 
98.97%, closely followed by the original dataset at 
98.88%. The R-Drebin and EN-Drebin datasets 
show a more noticeable decrease in F1 Scores, 
recording 96.89% and 97.17% respectively. These 
figures reflect the nuanced impact of feature 
selection on the classifier's overall performance, 
highlighting the trade-offs between reducing feature 
space and maintaining high detection capability. 

Lasso feature selection proved to be the most 
beneficial for the ensemble stacking classifier in 
our study, improving its performance across all 
metrics. The original set of features was already 
strong, but Lasso made it even better. The Ridge 
and Elastic Net feature selection methods did not 
help as much and in some cases slightly lowered 
the classifier's effectiveness. This emphasizes the 
importance of choosing the right feature selection 
method to ensure the best performance of a 
malware detection classifier. 

 
5. CONCLUSION 

In this research, we presented an advanced 
method for Android malware detection by 
employing ensemble stacking classifiers coupled 
with regularization-based feature selection on the 
Drebin-215 dataset. This method was designed with 
a clear focus on addressing the initial problem 
statement and achieving the predefined research 
objectives. Our ensemble stacking approach 
effectively combined the capabilities of diverse 

base classifiers: Random Forest, K-Nearest 
Neighbors, Support Vector Machine, Logistic 
Regression, and Bernoulli Naive Bayes, with 
Logistic Regression acting as the meta classifier. 
The introduction of Lasso, Ridge, and Elastic Net 
was pivotal in optimizing the feature selection 
process, emphasizing the ascendancy of advanced 
regularization techniques in the realm of malware 
detection. Following this, the derived results were 
noteworthy, manifesting remarkable accuracy and 
an admirable F1-score. Furthermore, our model 
consistently exhibited elevated values for TPR and 
precision, highlighting its capability to accurately 
identify genuine malware instances while curtailing 
false positives. While there are challenges, such as 
potential variability among base classifiers and the 
constraints of static features, our method marks a 
significant stride in the relentless pursuit of 
shielding the mobile domain from malware 
adversities. 

This study, while contributing significantly to 
Android malware detection, acknowledges inherent 
limitations and assumptions. Relying on the 
Drebin-215 dataset, comprehensive yet potentially 
limited in capturing real-world diversity, poses a 
constraint. The experimental nature of our design 
may restrict generalizability across contexts. 
Assumptions about Android malware behavior 
introduce variability in result applicability. 
Unattended issues surfaced, including the impact of 
evolving malware tactics and the dynamic Android 
ecosystem. Beyond this study's scope, these issues 
merit attention in future research. This transparent 
discussion aims to offer a nuanced understanding of 
findings' scope and applicability. 
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