
Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

801

ENHANCING ANDROID MALWARE DETECTION
THROUGH ENSEMBLE STACKING CLASSIFIERS AND

REGULARIZATION-BASED FEATURE SELECTION

ELISA BAHARA SORITUA1 , DITDIT NUGERAHA UTAMA2
1Student, Master Program in Computer Science, BINUS Graduate Program, BINUS University, Indonesia

2Lecturer, Master Program in Computer Science, BINUS Graduate Program, BINUS University, Indonesia

E-mail: 1elisa.soritua@binus.ac.id, 2ditdit.utama@binus.ac.id

ABSTRACT

With the persistent evolution of Android malware, advanced detection techniques have become paramount.
This paper introduces a novel approach to Android malware detection, harnessing the power of ensemble
stacking classifiers combined with regularization-based feature selection techniques, specifically Lasso,
Ridge, and Elastic Net, applied to the Drebin-215 dataset. Using base classifiers including Random Forest,
K-Nearest Neighbors, Support Vector Machine, Logistic Regression, and Bernoulli Naive Bayes, with
Logistic Regression as the meta classifier, our methodology aims to capture the collective strengths of
diverse algorithms. Initial results of individual classifiers laid the foundation, upon which the ensemble
model furthered the detection rates. Implementing the regularization-based feature selection significantly
enhanced the model's efficiency, leading to improved classification accuracy. Compared to traditional
methods, our proposed system offers a notable enhancement in malware detection capabilities, providing a
resilient solution to the prevailing challenges in Android security. This study underscores the potential of
integrating machine learning-driven ensembles with advanced feature selection techniques for bolstered
security measures.

Keywords: Android Malware Detection, Machine Learning, Ensemble Stacking, Genetic Algorithm.

1. INTRODUCTION

Android is one of the most widely used operating
systems for smartphones today. Based on data
released by Statista, there are an estimated 2.2
billion android users worldwide by 2022 [1]. The
large number of android users today makes the
operating system a popular target for cyberattacks.
Approximately 98.5% of smartphone attacks are
primarily directed at Android devices [2]. One
method of attack that is of much concern today is
malware. Malware is defined as software that aims
to infiltrate a computer system without the
knowledge and consent of the system owner which
can be intrusive, dangerous, and even destructive to
the system [3]. Malware is one of the tools from
attackers that internet users in the world must be
aware of, including Android users.

Malware detection on Android is one of the
important research topics in the field of
cybersecurity today. One method that can be used
to detect android malware is to manually analyze
the malware, but this method is less relevant
because it takes a lot of time [4]. Machine learning

techniques are the right choice to deal with the
complexity of android malware [5]. In general,
methods that can be used in modeling android
malware detection systems fall into three
categories, namely supervised learning,
unsupervised learning, semi-supervised learning,
and reinforcement learning [6]. However, there is
another development, namely ensemble learning,
whose concept is to combine machine learning
models. The application of ensemble learning
provides improved performance of the detection
model [7] [6].

The ensemble method is a type of machine
learning algorithm that aims to improve prediction
performance on a task by combining predictions
from multiple estimators or models [8]. Bagging,
Boosting, and Stacking are some of the popular and
widely used ensemble techniques [9]. Stacking is
the most popular meta-learning method and gets its
name because it stacks a second classifier (meta
learner) on top of its base classifier [8].

There are two methods that can be used for
android malware detection, static analysis and

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

802

dynamic analysis. The static method decompiles
APK files and extracts features from files or
program instructions, while the dynamic method
runs the application in an isolated device [10].
Static features can be obtained quickly by parsing
the APK file after the decompilation process. Static
analysis has some limitations in the face of
modifications from malware, but it is still more
effective to use because it can quickly detect and
prevent the installation process of malware [11].

The ubiquitous use of Android operating systems
has made smartphones prime targets for cyber
threats, particularly malware attacks. Defined as
software infiltrating computer systems without the
owner's consent, malware poses a grave risk to user
privacy and system integrity. Existing manual
analysis methods are time-consuming, underscoring
the need for advanced approaches to Android
malware detection. This study addresses this
imperative by introducing an ensemble stacking
framework, leveraging various classifiers to
enhance the efficiency of Android malware
detection. The research objectives involve a
comprehensive evaluation of individual base
classifiers, the implementation of regularization-
based feature selection to optimize model accuracy,
and a thorough comparative analysis to demonstrate
the superiority of the proposed ensemble stacking
framework over conventional Android malware
detection methods. Through these specific
objectives, the research aims to provide a novel and
robust solution to the evolving cybersecurity threats
faced by Android users.

In this paper, we introduce an ensemble stacking
framework for Android malware detection. The
contributions of this article can be summarized as
below:

- A novel approach to Android malware
detection was introduced, utilizing the
combined power of ensemble stacking
classifiers and regularization-based feature
selection.

- Individual performances of base classifiers
were extensively evaluated, providing
foundational insights into their strengths and
limitations.

- By employing Lasso, Ridge, and Elastic Net
for feature selection from the Drebin-215
dataset, the ensemble model's accuracy was
notably enhanced, with a concomitant
reduction in computational overhead.

- A comprehensive comparative analysis was
showcased, highlighting the distinct
advantages of the proposed system over
conventional Android malware detection
methods.

The rest of the paper is summarized as follows in
Section 2 provides a summary of relevant past
research. In Section 3, the proposed methodology is
laid out, encompassing the dataset description, the
application of the regularization-based feature
selection, and details of the ensemble stacking
model. Section 4 presents the experiments and their
results, beginning with the experimental setup,
followed by the performance metrics, results from
base classifiers, ensemble stacking outcomes, and a
comparative analysis of the results. Finally, Section
5 concludes the paper and offers insights into
potential avenues for future research.

2. RELATED WORKS

EnDroid is a dynamic analysis framework for
accurate malware detection proposed in [12]. The
research utilizes runtime behavior information
obtained through the DroidBox tool, which captures
various application activities and system calls.
EnDroid uses feature selection to extract critical
behavioral features, helping in the identification of
malicious activities such as personal information
theft and malicious service communication. The
framework uses ensemble stacking method to
achieve effective android malware detection.
Overall, EnDroid's accuracy against all android
malware samples reached 94.5% and the malware
detected by EnDroid was almost evenly distributed
across the malware families of the Drebin dataset.

Idrees et al. (2017) proposed PIndroid, an
innovative android malware detection framework,
which combines permissions and intents to identify
malicious apps [13]. The framework uses a
stepwise classification approach enhanced with
ensemble techniques for optimized detection
results. The proposed method achieved a
remarkable accuracy of 99.8% when applied to
1,745 apps, making it one of the most accurate
solutions reported to date. This study highlights the
effectiveness of permissions and intents in
detecting malware, and reveals their potential to
detect malicious apps and other types of malware.

Yerima and Sezer (2018) proposed a fusion
approach, called DroidFusion, to improve the
predictive ability of machine learning algorithms in
detecting android malware [14]. This framework

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

803

combines a lower-level base classifier and applies a
higher-level ranking-based algorithm to obtain the
final classification. DroidFusion can utilize
traditional machine learning algorithms (e.g.,
Decision Tree, Naive Bayes) and ensemble learning
algorithms (e.g., Random Forest, Boosting) to
improve classification accuracy. Extensive
experiments were conducted on four datasets,
including samples from Android Malgenome and
DREBIN, to demonstrate the effectiveness of this
approach. DroidFusion outperforms other stacking
models, despite using only a high-level
computational approach (meta classifier).

Rahman & Saha (2019) introduced StackDroid, a
stacked generalization approach that combines base
classifiers, including Extremely Randomized Tree
(ET), Random Forest (RF), Multi-Layer Perceptron
(MLP), and Stochastic Gradient Descent (SGD) in
the first layer, with Extreme Gradient Boosting
(XGBoost) as a meta classifier in the second layer.
This approach achieved good results, with a
detection accuracy of 97%, a False Positive Rate
(FPR) of 1.67%, and an Area Under Curve (AUC)
of 99% on the DREBIN dataset.

Dhalaria and Gondotra (2020) proposed an
ensemble stacking method for android malware
detection based on static and dynamic features [16].
The method involves using a chi-square feature
selection algorithm to select features that are
relevant in malware detection, thereby reducing the
dimension of the feature vector. The selected
features are used to build the base classifier, and the
top three classifiers are combined with the
ensemble stacking technique to improve the
detection rate. The proposed approach achieves a
high detection accuracy of 98.02% when evaluated
on the AndroMD dataset, which outperforms
existing classification engines. The experimental
results demonstrate the effectiveness of the
proposed approach in detecting Android malware.

Zhu et al. (2020) introduced SEDMDroid, an
ensemble stacking framework that combines static
analysis and machine learning [17]. SEDMDroid
ensures individual accuracy and diversity in the
ensemble by utilizing random feature subspaces
and bootstrapping to generate diverse subsets.
Principal component analysis (PCA) is applied to
each subset. Experimental results on two datasets,
including features such as permissions, sensitive
APIs, and events from monitoring systems,
demonstrate the effectiveness of SEDMDroid with
accuracy rates of 89.07% and 94.92%. Comparison
with existing methods further confirms the

superiority of the proposed two-layer ensemble
learning framework.

Wang et al. (2022) proposed an Android
malware detection framework named MFDroid
based on ensemble stacking, which overcomes the
limitations of single feature selection and
traditional machine learning methods [18]. The
framework utilizes seven feature selection
algorithms to process permissions, API calls, and
opcodes features, which are then combined to form
a new feature set. This feature set is then used to
train five base classifiers in the first layer of the
ensemble stacking framework, and utilize logistic
regression as the meta classifier in the second layer.
MFDroid achieved an F1 score of 96.0% for
android malware detection.

Another method is GA-StackingMD introduced
in [19]. GA-StackingMD combines five base
classifiers using stacking, then optimized using
genetic algorithm for hyperparameter tuning. This
research uses a two-step feature selection method,
utilizing information gain and chi-square. The
proposed concept achieved a detection accuracy of
98.43% and 98.66% on the CIC-AndMal2017 and
CICMalDroid2020 datasets, respectively.

Our proposed method introduces an ensemble
stacking framework that adeptly integrates diverse
base classifiers, including Random Forest, K-
Nearest Neighbors, Support Vector Machine,
Logistic Regression, and Bernoulli Naive Bayes,
with Logistic Regression serving as the meta
classifier. Applied to the real-world Drebin-215
dataset and enhanced with regularization-based
feature selection techniques (Lasso, Ridge, and
Elastic Net), our experiments underscore the
robustness and efficacy of this approach in Android
malware detection.

3. PROPOSED METHODOLOGY

In this study, an experimental research design
was employed for the analysis of Android malware
detection using the Drebin-215 dataset. The
variables under investigation encompass features
and attributes crucial for understanding malware
instances within the Android environment.
Specifically, we examine how various
characteristics influence the effectiveness of
ensemble stacking classifiers in detecting and
mitigating malware threats. The proposed analysis
criteria involve the utilization of ensemble stacking
classifiers and regularization-based feature
selection techniques. These methods were

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

804

deliberately chosen to enhance the precision of our
Android malware detection model. By employing
ensemble techniques and feature selection, we aim
to provide a robust and efficient approach to
address the complex challenges posed by evolving
malware threats in the Android ecosystem. The
chosen research design and analysis criteria are
intricately linked to our research objectives,
ensuring a comprehensive exploration of the
Android malware detection landscape and
facilitating meaningful interpretation of the
achieved results.

3.1 Dataset Description

The primary dataset underpinning this research is
Drebin-215, a creation of Yerima and Sezer in
2019. This dataset was meticulously crafted with
the specific intent of pioneering advancements in
the domain of Android malware detection.
Spanning across a diverse range of 15,036 APK
files, the Drebin-215 dataset boasts 215 uniquely
identified features. Delving deeper into its
composition, it's noteworthy to highlight that of
these APK files, 5,560 have been identified as
malicious, while the remaining 9,476 are benign in
nature. Each feature within this rich dataset was
extracted through an exhaustive static analysis
procedure applied to every individual APK file. To
streamline and standardize representation, these
features are encoded in binary format and distinctly
categorized under 'malware' or 'benign' labels,
ensuring clarity and precision.

For analytical and structural purposes, the dataset
further organized into four primary classifications:
API call signatures, manifest permissions, intents,
and command signatures. The API call signatures
are particularly fascinating as they represent the
specific invocations of functions found within .dex
file extensions. In contrast, the manifest
permissions offer insights into the various
permissions an application seeks, as explicitly
declared within its inherent manifest file. Intents,
another pivotal category, shed light on the intricate
communication protocols established between
different apps or services, as meticulously
documented within the AndroidManifest.xml.
Lastly, the command signatures serve as a
repository of Linux commands, extracted from an
array of file types including but not limited to .dex,
.jar, .so, and .exe extensions.

3.2 Feature Selection using Regularization

In shaping predictive models for the Drebin-215
dataset, which is characterized by its vast
dimensionality, the implementation of

regularization techniques is crucial. These methods
not only bolster the model's precision but also
fortify its resilience against overfitting—a common
challenge in high-dimensional spaces. The Lasso
method applies L1 regularization to prune the
feature set, diminishing certain coefficients to zero
and thus performing dual roles in optimization and
feature selection. Ridge regression, through L2
regularization, minimizes the coefficients' squares,
ensuring that each feature's impact, while reduced,
remains in the model. Elastic Net, adeptly
combining L1 and L2 regularization, excels in
situations where features are interdependent or
excessively numerous.

Our choice to harness these regularization
methods for the Drebin-215 dataset stems from
their capacity to condense the feature space
effectively. Lasso's sparsity-inducing approach is
instrumental in discarding non-contributory
features, streamlining the model in the process.
Ridge is incorporated for its proficiency in
managing feature interrelations without excluding
any, thus preserving the integrity of the model's
predictive power. Elastic Net is poised to capitalize
on the combined strengths of Lasso and Ridge,
offsetting their individual limitations and ensuring a
balanced feature selection mechanism. This
strategic selection is predicated on the belief that
marrying the concepts of sparsity and controlled
coefficient reduction can cultivate a model that
offers both interpretability and wide applicability.

In our research, the feature selection is
strategically designed to leverage the strengths of
regularization techniques, crucial for sifting
through the complex feature space of the Drebin-
215 dataset. We propose using Lasso, Ridge, and
Elastic Net methods, which are renowned for their
efficacy in reducing overfitting and enhancing
model interpretability. These techniques will be
applied conceptually to identify and retain the most
predictive features while discarding the redundant
ones. The tuning of the regularization parameter
alpha will be a focal point across all methods to
determine the most effective level of penalization.
For Elastic Net, the l1_ratio is preset at 0.5 to
maintain a balanced approach between L1 and L2
regularization. This targeted calibration aims to
construct a streamlined feature set, laying the
foundation for a robust ensemble stacking classifier
that is anticipated to improve the detection rates of
Android malware significantly.

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

805

3.3 Ensemble Stacking Model

Ensemble stacking is a sophisticated machine
learning technique that leverages the strengths of
multiple classifiers to achieve superior predictive
performance. Unlike traditional ensemble methods
that often involve simple voting or averaging of
predictions, stacking involves multiple layers of
classifiers. The primary idea behind stacking is to
use predictions from several base classifiers as
input features for a higher-level, or meta, classifier.
This hierarchical structure allows the model to learn
from the diverse strengths of the base classifiers,
potentially leading to enhanced accuracy and
robustness. In our model, we utilize Random
Forest, K-Nearest Neighbors, Support Vector
Machine, Logistic Regression, and Bernoulli Naive
Bayes as our base classifiers, with Logistic
Regression serving as the meta classifier.

Before diving into the specifics of the chosen
classifiers, it's worth noting that each classifier's
performance can be heavily influenced by its
hyperparameters. In our research, we recognized
the importance of this and dedicated a substantial
amount of time to rigorously tuning the
hyperparameters for each classifier. This was done
using random search techniques, ensuring that we
harness the maximum potential of each base
classifier in our ensemble stacking model.

3.3.1 Base Classifiers

In our research, we opted for a combination of
Random Forest, K-Nearest Neighbors, Support
Vector Machine, Logistic Regression, and
Bernoulli Naive Bayes as our base classifiers. The
selection of these classifiers was driven by their
diverse underlying methodologies, ensuring a broad
spectrum of decision boundaries and prediction
strategies. This diversity is crucial in ensemble
methods, as it increases the chances of capturing
various aspects and nuances of the data.

Random Forest: Random Forest was chosen for its
ensemble nature, which inherently promotes
diversity in decision-making. By constructing
multiple decision trees and aggregating their
outputs, RF offers a robustness against overfitting.
Its ability to handle large datasets with higher
dimensionality, manage missing values, and
provide feature importance scores made it
indispensable for our ensemble.

K-Nearest Neighbors: The inclusion of KNN was
driven by its ability to capture local patterns and
non-linear relationships in the data. As a non-
parametric algorithm, KNN doesn't make strong

assumptions about the underlying data distribution,
making it versatile and adaptive to various data
structures.

Support Vector Machine: SVM was selected for
its efficacy in high-dimensional spaces and its
capacity to find the optimal hyperplane using the
kernel trick. This allows SVM to capture complex
relationships in the data, even when they are not
linearly separable. Its resilience against overfitting,
especially with the right choice of kernel and
regularization, made it a valuable addition to our
ensemble.

Logistic Regression: Logistic Regression's
probabilistic nature offers a clear advantage in
scenarios where understanding the likelihood of
class membership is crucial. Its ability to provide
calibrated probabilities and its interpretability,
where each feature's effect on the outcome can be
quantified, made it a strategic choice for our
ensemble, especially in the context of malware
detection where understanding feature influence
can be pivotal.

Bernoulli Naive Bayes: The decision to include
BernoulliNB stemmed from its efficiency with
binary/boolean features and its probabilistic
foundation. Given that many features in malware
detection can be binary (e.g., presence or absence
of a certain permission), BernoulliNB's ability to
handle such features efficiently and provide
probabilistic outputs made it a complementary
choice to the other classifiers.

3.3.2 Meta Classifier

For the meta classifier, we selected Logistic
Regression. The choice was motivated by several
factors. Firstly, Logistic Regression's probabilistic
nature is inherently suited for the role of a meta
classifier. In ensemble stacking, the meta classifier
is presented with predictions from multiple base
classifiers, each with its own confidence or
probability score. Logistic Regression's ability to
weigh these probabilities in a nuanced manner
ensures that the final decision is a balanced
reflection of the collective wisdom of the base
classifiers. This is especially crucial in malware
detection, where the stakes are high, and a false
positive or false negative can have significant
implications.

Furthermore, the interpretability of Logistic
Regression is a significant advantage in the context
of our research. In the realm of Android malware
detection, understanding the influence of each base
classifier on the final decision can provide valuable

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

806

insights into the nature of the malware and the
features that are most indicative of malicious
behavior. Logistic Regression, with its coefficients
and odds ratios, offers a transparent view into this
decision-making process, allowing researchers and
practitioners to gain a deeper understanding of the
detection mechanism. In summary, the selection of
Logistic Regression as the meta classifier was not
only driven by its technical merits but also by its
alignment with the goals and requirements of our
research in Android malware detection.

Figure 1: Proposed Methodology

4. EXPERIMENTS AND RESULTS

4.1 Experimental Setup

For the entirety of this research, a dedicated
workstation was utilized, ensuring a consistent and
controlled environment throughout the
experimental phase. The workstation was equipped
with an Intel(R) Core(TM) i7-7700HQ CPU,
operating at approximately 2.8GHz with eight
processing units. Accompanying this was a sizable
32GB DDR4 RAM operating at 2400MHz and an
NVIDIA GeForce GTX 1070 graphics card.
Storage capabilities were dual-faceted,
encompassing a 1TB HDD with a spin rate of
7200rpm, complemented by a faster 512GB NVMe
SSD, ensuring swift data read and write operations.

The primary toolkit for this venture was the
scikit-learn library, a comprehensive machine
learning tool in the Python ecosystem. It facilitated
most of the experimental tasks, from model
definition and training to evaluation. Furthermore,
the nuances of feature selection using genetic
algorithms were adeptly handled using the scikit-
genetic-opt library, enhancing the optimization
phase of the research.

Train-test split approach was adopted in this
research, allocating 80% of the data for training and
reserving 20% for testing. This method ensures that
our model evaluations are based on a clear
separation of data, with the training set used to
develop the model and the testing set used to assess
its performance. Such a split not only simplifies the
evaluation process but also provides a focused
measure of how well the model can generalize to
new, unseen data, thereby offering a realistic
perspective on its predictive capabilities.

In the quest to optimize our machine learning
classifiers, we employed the RandomizedSearchCV
methodology from scikit-learn. This approach
allows for a more efficient and strategic exploration
of the comprehensive hyperparameter grid we
established for each classifier. Instead of
exhaustively searching through every possible
combination, RandomizedSearchCV samples a
subset, striking a balance between thoroughness
and computational efficiency. The detailed results
of this hyperparameter tuning process, including the
best parameters identified for each model, are
meticulously presented in Table 1.

Table 1: Hyperparameters of Classifiers

Classifier Hyperparameters

Random Forest

n estimators = 200

max depth = none

criterion = gini

min samples split = 2

min samples leaf = 1

max features = log2

K Nearest Neighbors n neighbors : 1

Support Vector Machine
C = 100

kernel = rbf

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

807

Logistic Regression

solver = liblinear

penalty = l1

C = 10

Bernoulli Naïve Bayes alpha = 0.001

4.2 Performance Metrics

In order to comprehensively assess the
performance of the proposed android malware
detection ensemble stacking approach, we utilize a
set of well-established evaluation metrics. These
metrics provide insights into various aspects of the
detection model's effectiveness, covering its ability
to accurately distinguish between benign and
malicious applications. In this study, several
performance metrics were used, including
Accuracy, Error Rate, Precision, and Recall.

Central to our assessment is Accuracy, which
measures the model's general predictive prowess by
gauging the overall correctness of the classifier's
predictions. Representing the proportion of
correctly classified samples to the entire dataset, a
heightened accuracy suggests a commendable
predictive ability. Alongside, the True Positive Rate
(TPR) or Sensitivity offers a deeper dive,
evaluating the model's proficiency in identifying
genuine threats—the malicious applications—
amidst all actual positive instances. Complementing
the TPR is Precision, which quantifies the
exactness of the model's positive predictions and is
vital for minimizing false alarms. Lastly, to offer a
holistic view of the model's performance, the F-1
Score—a harmonious blend of precision and
recall—provides a comprehensive assessment,
especially crucial when dealing with skewed
datasets. The formula of each metric for model
evaluation used is shown in Table 2.

Table 2: Evaluation Metrics

Evaluation Metric Formula

Accuracy
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

TPR
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F1-score 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4.3 Regularizatio-based Feature Refinement

Feature selection is a pivotal step in machine
learning, especially for high-dimensional datasets
like Drebin-215. In our study, we harness the power
of regularization techniques to refine and select the
most pertinent features for android malware
detection. We employed three prominent
regularization methods: Lasso, Ridge, and
ElasticNet. Each of these techniques introduces a
penalty to the model's loss function, shrinking some
feature coefficients and thereby refining the feature
set.

Lasso (L1 regularization): Lasso penalizes the
absolute values of the coefficients, leading to some
feature coefficients becoming zero. This method
resulted in retaining 194 features out of the original.

Ridge (L2 regularization): Ridge penalizes the
square of the coefficients, reducing their magnitude
but not zeroing them. After applying Ridge, 77
features were retained.

ElasticNet: Combining the penalties of both L1 and
L2 regularization, ElasticNet balanced the strengths
of Lasso and Ridge. Post-application, 79 features
were retained.

The reduced feature set post regularization
ensures a more streamlined model, focusing on the
most relevant indicators of malware presence.
Table 3 provides a detailed breakdown of the
number of features retained after applying each
regularization technique. The selected features
highlight the key characteristics crucial for
distinguishing between benign and malicious
applications.

4.4 Results of Base Classifiers

To discern the effectiveness of our ensemble
stacking approach and the influence of feature
refinement, we meticulously evaluated the base
classifiers on different datasets: the original dataset,
which encompasses all features, and three others
refined through distinct feature selection
techniques: Lasso (L-Drebin), Ridge (R-Drebin),
and Elastic Net (EN-Drebin). This methodical,
side-by-side evaluation is essential to understand
the nuances of classifier performance and to shed
light on the potential advantages or challenges
introduced by feature selection. By comparing the
results, we can elucidate the tangible impact of
feature refinement on classifier accuracy, precision,
recall, and overall effectiveness. Such a comparison
not only validates the importance of an optimized
feature set but also provides insights into how each

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

808

classifier responds to changes in the input feature
space. Detailed metrics, showcasing the depth of
this evaluation for each classifier on all datasets, are
systematically presented below.

In our ensemble exploration, the Random Forest
(RF) classifier emerged as a notable contender. It
adeptly navigated the intricate patterns of our
dataset, demonstrating an initial performance with
an accuracy of 98.64%, a recall of 96.88%,
precision of 99.45%, and an F1 score of 98.15%.
Upon the introduction of Lasso feature selection, its
accuracy slightly improved to 98.74%, recall to
96.97%, precision to 99.63%, and F1 score to
98.28%. Ridge and ElasticNet feature selections,
however, saw a decrease in performance with Ridge
bringing the accuracy down to 97.57%, recall to
96.16%, precision to 97.29%, and F1 score to
96.72%, while ElasticNet resulted in an accuracy of
97.84%, recall of 96.34%, precision of 97.83%, and
an F1 score of 97.08%. Figure 2 is illustrative of
the comparative performance of the Random Forest
classifier on each dataset, showcasing the impact of
different feature selection methods on key metrics
in a side-by-side manner.

Figure 2: Evaluation of Random Forest

The K-Nearest Neighbors (KNN) classifier, with
its proximity-based logic, initially exhibited an
accuracy of 98.74%, a recall of 97.86%, precision
of 98.74%, and an F1 score of 98.30%. The
application of Lasso maintained the accuracy and
F1 score at 98.74% and 98.30% respectively, while
recall and precision saw slight changes to 98.13%
and 98.48%. With Ridge, the accuracy declined to
97.57%, recall to 96.52%, precision to 96.95%, and
F1 score to 96.74%. ElasticNet regularization
achieved an accuracy of 97.81%, recall of 96.97%,
precision of 97.14%, and F1 score of 97.05%.
Figure 3 depicts the performance variations of the
K-Nearest Neighbors (KNN) classifier, as
evidenced by the changes in Accuracy, Recall,

Precision, and F1 Score across the original, Lasso,
Ridge, and ElasticNet feature-selected datasets.

Figure 3: Evaluation of K-Nearest Neighbors

The Support Vector Machine (SVM) classifier
began with a high accuracy of 98.94%, a recall of
98.39%, precision of 98.75%, and an F1 score of
98.57%. Post feature selection with Lasso, the
metrics remained consistent, maintaining an
accuracy and F1 score of 98.94% and 98.57%
respectively, with a slight decrease in recall to
98.22% and an increase in precision to 98.92%.
Ridge and ElasticNet feature selections resulted in a
reduction of performance metrics, with Ridge
leading to an accuracy of 97.41%, recall of 95.00%,
precision of 97.98%, and F1 score of 96.47%, and
ElasticNet yielding an accuracy of 97.81%, recall
of 96.07%, precision of 98.00%, and F1 score of
97.03%. Figure 4 is indicative of the Support
Vector Machine (SVM) classifier's performance
metrics, detailing the comparative influence of the
original and feature-selected datasets (Lasso, Ridge,
ElasticNet) on Accuracy, Recall, Precision, and F1
Score.

Figure 4: Evaluation of Support Vector Machine

The Logistic Regression (LR) classifier,
grounded in probabilistic reasoning, initially

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

809

recorded an accuracy of 97.74%, a recall of
97.15%, precision of 96.80%, and an F1 score of
96.97%. Lasso feature selection led to a marginal
improvement in accuracy to 97.77%, with recall at
97.06%, precision at 96.97%, and F1 score at
97.01%. Ridge regularization saw a notable
decrease in metrics, with accuracy at 96.41%, recall
at 93.84%, precision at 96.43%, and F1 score at
95.12%. ElasticNet regularization resulted in an
accuracy of 96.67%, recall of 94.56%, precision of
96.45%, and F1 score of 95.50%. Figure 5 presents
the performance metrics of the Logistic Regression
classifier, revealing the effects of the original and
feature-selected datasets (Lasso, Ridge, ElasticNet)
on Accuracy, Recall, Precision, and F1 Score in a
comparative context.

Figure 5: Evaluation of Logistic Regression

Lastly, the Bernoulli Naïve Bayes (BNB) model,
which excels in handling binary data, began with an
accuracy of 83.17%, a recall of 95.00%, precision
of 70.30%, and an F1 score of 80.80%. The
introduction of Lasso improved accuracy to
83.87%, recall to 95.63%, precision to 71.09%, and
F1 score to 81.55%. Ridge regularization resulted
in a significant improvement in metrics with
accuracy at 88.83%, recall at 91.70%, precision at
80.88%, and F1 score at 85.95%. ElasticNet further
enhanced the performance to an accuracy of
89.59%, recall of 93.40%, precision of 81.42%, and
F1 score of 87.00%, emphasizing the adaptability
and wide-ranging applicability of Bayesian
classifiers with feature selection. Figure 6 displays
the comparative impact on the Bernoulli Naive
Bayes classifier's performance, with the datasets—
original, Lasso, Ridge, and ElasticNet—each
affecting the Accuracy, Recall, Precision, and F1
Score metrics.

Figure 6: Evaluation of Bernoulli Naive Bayes

4.5 Ensemble Stacking Results

The core of our research hinges on the efficacy
of the ensemble stacking approach. By integrating
the strengths of multiple base classifiers, the
stacking model aims to deliver superior
performance, especially in the realm of Android
malware detection. In this section, we delve into the
performance of the ensemble stacking model,
evaluated on different datasets: the original dataset,
which encompasses all features, and three others
refined through distinct feature selection
techniques: Lasso (L-Drebin), Ridge (R-Drebin),
and Elastic Net (EN-Drebin). The comprehensive
performance metrics derived from these evaluations
are detailed in Table 3.

Table 3: Performance Metrics of Ensemble Stacking

Data Accuracy TPR Precision F-1 Score

Drebin-215 99.17 98.39 99.37 98.88

L-Drebin 99.24 98.31 99.64 98.97

R-Drebin 97.71 95.81 97.99 96.89

EN-Drebin 97.90 96.52 97.83 97.17

In our study, we compared the performance of an

ensemble stacking classifier across four datasets,
with updated metrics reflecting the latest findings.
The Lasso feature selection method, applied to the
L-Drebin dataset, now stands out even more with
an enhanced accuracy of 99.24%. This
improvement suggests that the Lasso's ability to
identify a parsimonious yet effective feature set can
indeed augment the classifier's discernment
capability. The original Drebin dataset maintains a
strong baseline with an accuracy of 99.17%,
reinforcing the robustness of the initial feature set.

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

810

When considering recall, the original dataset
exhibits a commendable rate of 98.39%, which is
slightly higher than the L-Drebin's 98.31%,
indicating that the initial features maintain a high
sensitivity towards malware detection. The Ridge
and Elastic Net feature selection methods, applied
to the R-Drebin and EN-Drebin datasets, show a
decrease in recall to 95.81% and 96.52%
respectively. This decline may suggest that while
these methods can help reduce feature
dimensionality, they might also suppress some
informative features essential for maintaining high
sensitivity.

Precision is led by the L-Drebin dataset at
99.64%, a slight increase from the original dataset's
precision of 99.37%. This further supports the
Lasso method's efficacy in minimizing false
positives and enhancing the classifier's exactness.
The Ridge and Elastic Net datasets exhibit
precision scores of 97.99% and 97.83%,
respectively, which, while slightly lower, still
demonstrate a high level of specificity in positive
predictions.

The F1 Score, which balances precision and
recall, is highest for the L-Drebin dataset at
98.97%, closely followed by the original dataset at
98.88%. The R-Drebin and EN-Drebin datasets
show a more noticeable decrease in F1 Scores,
recording 96.89% and 97.17% respectively. These
figures reflect the nuanced impact of feature
selection on the classifier's overall performance,
highlighting the trade-offs between reducing feature
space and maintaining high detection capability.

Lasso feature selection proved to be the most
beneficial for the ensemble stacking classifier in
our study, improving its performance across all
metrics. The original set of features was already
strong, but Lasso made it even better. The Ridge
and Elastic Net feature selection methods did not
help as much and in some cases slightly lowered
the classifier's effectiveness. This emphasizes the
importance of choosing the right feature selection
method to ensure the best performance of a
malware detection classifier.

5. CONCLUSION

In this research, we presented an advanced
method for Android malware detection by
employing ensemble stacking classifiers coupled
with regularization-based feature selection on the
Drebin-215 dataset. This method was designed with
a clear focus on addressing the initial problem
statement and achieving the predefined research
objectives. Our ensemble stacking approach
effectively combined the capabilities of diverse

base classifiers: Random Forest, K-Nearest
Neighbors, Support Vector Machine, Logistic
Regression, and Bernoulli Naive Bayes, with
Logistic Regression acting as the meta classifier.
The introduction of Lasso, Ridge, and Elastic Net
was pivotal in optimizing the feature selection
process, emphasizing the ascendancy of advanced
regularization techniques in the realm of malware
detection. Following this, the derived results were
noteworthy, manifesting remarkable accuracy and
an admirable F1-score. Furthermore, our model
consistently exhibited elevated values for TPR and
precision, highlighting its capability to accurately
identify genuine malware instances while curtailing
false positives. While there are challenges, such as
potential variability among base classifiers and the
constraints of static features, our method marks a
significant stride in the relentless pursuit of
shielding the mobile domain from malware
adversities.

This study, while contributing significantly to
Android malware detection, acknowledges inherent
limitations and assumptions. Relying on the
Drebin-215 dataset, comprehensive yet potentially
limited in capturing real-world diversity, poses a
constraint. The experimental nature of our design
may restrict generalizability across contexts.
Assumptions about Android malware behavior
introduce variability in result applicability.
Unattended issues surfaced, including the impact of
evolving malware tactics and the dynamic Android
ecosystem. Beyond this study's scope, these issues
merit attention in future research. This transparent
discussion aims to offer a nuanced understanding of
findings' scope and applicability.

REFERENCES:
[1] P. Taylor, "Global number of internet users

2012-2022, by operating system," 2023.
[2] A. Saracino, D. Sgandurra, G. Dini, and F.

Martinelli, "MADAM: Effective and Efficient
Behavior-based Android Malware Detection
and Prevention," IEEE Transactions on
Dependable & Secure Computing, vol. PP, no.
99, pp. 1-1, 2018.

[3] T. Alsmadi and N. Alqudah, "A Survey on
malware detection techniques," in 2021
International Conference on Information
Technology (ICIT), 2021, pp. 371–376.

[4] C. A. B. de Andrade, C. G. de Mello, and J. C.
Duarte, "Malware Automatic Analysis," in 2013
BRICS Congress on Computational Intelligence
and 11th Brazilian Congress on Computational
Intelligence, 2013.

Journal of Theoretical and Applied Information Technology
15th February 2024. Vol.102. No 3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

811

[5] O. C. Abikoye, B. A. Gyunka, and O. N.
Akande, "Android malware detection through
machine learning techniques: A review,"
International Journal of Online and Biomedical
Engineering, vol. 16, no. 2, pp. 14–30, 2020.

[6] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H.
Liu, "A Review of Android Malware Detection
Approaches Based on Machine Learning," IEEE
Access, vol. 8, pp. 124579–124607, 2020.

[7] M. Ozdemir and I. Sogukpinar, "An Android
Malware Detection Architecture based on
Ensemble Learning," Transactions on Machine
Learning and Artificial Intelligence, vol. 2, no.
3, pp. 90–106, 2014.

[8] G. Kunapuli, "Ensemble Methods for Machine
Learning," 2023.

[9] R. Odegua, "An empirical study of ensemble
techniques (bagging, boosting and stacking)," in
Proc. Conf.: Deep Learn. IndabaXAt, 2019.

[10] N. Xie, Z. Qin, and X. Di, "GA-StackingMD:
Android Malware Detection Method Based on
Genetic Algorithm Optimized Stacking,"
Applied Sciences (Switzerland), vol. 13, no. 4,
2023.

[11] Y. Pan, X. Ge, C. Fang, and Y. Fan, "A
Systematic Literature Review of Android
Malware Detection Using Static Analysis,"
IEEE Access, vol. 8, pp. 116363–116379, 2020.

[12] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, "A
novel dynamic android malware detection
system with ensemble learning," IEEE Access,
vol. 6, pp. 30996–31011, 2018.

[13] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen,
and Y. Rahulamathavan, "PIndroid: A novel
Android malware detection system using
ensemble learning methods," Computers &
Security, vol. 68, pp. 36–46, 2017.

[14] S. Y. Yerima and S. Sezer, "DroidFusion: A
Novel Multilevel Classifier Fusion Approach
for Android Malware Detection," IEEE
Transactions on Cybernetics, vol. 49, no. 2, pp.
453–466, 2018.

[15] S. S. M. Rahman and S. Saha, "StackDroid:
Evaluation of a Multi-level Approach for
Detecting the Malware on Android Using
Stacked Generalization," in the book title (if
available), ISBN: 978-981-13-9180-4, July
2019, pp. 611-623. doi:10.1007/978-981-13-
9181-1_53

[16] M. Dhalaria and E. Gandotra, "Android
malware detection using chi-square feature
selection and ensemble learning method," in
PDGC 2020 - 2020 6th International
Conference on Parallel, Distributed and Grid
Computing, 2020, pp. 36–41.

[17] H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song,
"SEDMDroid: An Enhanced Stacking Ensemble
Framework for Android Malware Detection,"
IEEE Transactions on Network Science and
Engineering, vol. 8, no. 2, pp. 984–994, 2021.

[18] X. Wang, L. Zhang, K. Zhao, X. Ding, and M.
Yu, "MFDroid: A Stacking Ensemble Learning
Framework for Android Malware Detection,"
Sensors, vol. 22, no. 7, 2022.

[19] N. Xie, Z. Qin, and X. Di, "GA-StackingMD:
Android Malware Detection Method Based on
Genetic Algorithm Optimized Stacking,"
Applied Sciences (Switzerland), vol. 13, no. 4,
2023.

