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ABSTRACT 
 

Semiconductor wafer manufacturing is a complex and costly process with inherent defect risks that can 
significantly impact the industry. Utilizing Deep Learning (DL) for wafer defect classification offers 
benefits such as improved performance, reduced human error, and time savings. This paper presents an 
advanced DL-based approach for wafer defect classification, based on a modified GoogLeNet model and 
data augmentation technique. The approach achieves state-of-the-art results on the WM-300K+ wafer map 
dataset, demonstrating robustness to image noise and variation. Our research introduces a pioneering 
approach that outperforms previous methodologies, integrating auto-cast and CUDA to enhance efficiency, 
addressing dataset imbalance through innovative data augmentation, and creating a new "WM-300K+ wafer 
map [Single & Mixed]" dataset. The methodology yields exceptional results, with an average classification 
accuracy of 99.9% for both single and mixed defect types, surpassing previous studies. Hyperparameter 
tuning with Optuna and a patient stop mechanism further fortifies the robustness and reliability of the 
approach. 

Keywords: Semiconductor Wafer Manufacturing, Deep Learning, Convolutional Neural Network, Wafer 
Defect Patterns, GoogLeNet 

 
1. INTRODUCTION  
 

The demand for electronic devices has 
significantly increased owing to the Fourth 
Industrial Revolution (Industry 4.0), advancements 
in semiconductor manufacturing, and Internet of 
Things (IoT) devices [1], [2]. According to Fortune 
Business Insights statistics, the global consumer 
electronics market is projected to reach 989.37 
billion USD by 2027 [3]. Electronic devices are 
composed of integrated circuits that contain various 
electronic components, including resistors, 
transistors, and diodes. These components and their 
connections are built on a semiconductor wafer 
typically composed of single-crystal silicon (Si). A 
wafer is a thin, circular slice of material that serves 
as the foundation for the production of integrated 
circuits. The process of fabricating integrated 
circuits involves transforming raw materials or 
components into a final product. Semiconductor 
wafer manufacturing, which is at the core of 
integrated circuit production, is a highly complex 

process that involves numerous steps and requires 
advanced equipment and expertise [4]. 

Semiconductor wafer manufacturing involves 
complex processes such as wafer processing, 
oxidation, photomask, etching, film deposition, 
interconnection, testing, and packaging [5]. 
Throughout these processes, the occurrence of 
defects is significant. Semiconductor engineers rely 
on complex and time-consuming diagnosis, 
inspection, and analysis processes in each phase to 
detect defects. These processes help track and 
address the source of failure before reaching the 
final production stage [6]. They aim to ensure that 
components are aligned correctly and operate as 
intended.  Defects can occur due to dust particles 
and human errors [7]. Engineers use diagnostic 
methods to detect defects, which typically take up 
to 26 weeks [8]. Training operators or engineers to 
classify defects manually with 90% accuracy can 
take up to 9 months [9]. 

Wafer defect patterns play a crucial role in 
identifying specific manufacturing issues. These 
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patterns are spatially distributed from the edge to 
the center of the wafer surface and provide valuable 
information. The most common defect patterns 
include center, donut, edge-loc, edge-ring, loc, 
near-full, random, and scratch [10]. Figure 1 
illustrates the visualization of these common defect 
patterns in the wafer maps. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 1: Visualization of common defect patterns in 
wafer maps, including (a) center, (b) donut, (c) edge-loc, 
(d) edge-ring, (e) loc, (f) near-full, (g) random and (h) 
scratch. 

The wafer’s defects may stem from various 
issues in the manufacturing process. For instance, 
mishandling by the machine often causes scratches, 
whereas problems during etching are typically 
linked to edge-ring defects. Center defects can 
indicate complications arising from thin-film 
deposition techniques [11]. The automated 
inspection machine tests that produce the wafer 
maps are shown in Figure 2. Wafer maps are 
visualizations based on abnormal locations on 
silicon wafers and other important information for 
tracking and manufacturing processes [12]. The 
wafer map provides insight into whether each wafer 
die meets the performance standards. By analyzing 
the spatial pattern of wafer maps, engineers can 
determine whether production meets standards and 
identify wafers that contain defects [13]. Although 
manual defect detection is not ideal, human experts 
achieve less than 45% accuracy, and it is time-
consuming, costly, complicated, and highly 
disciplined [14].  

In recent years, deep learning (DL), a subset of 
neural networks capable of handling unstructured 
data such as images and audio, has gained 
prominence [15]. DL can automatically extract 
features from data without human intervention, 
making it well-suited for wafer defect classification. 
By leveraging DL, performance can be improved 
while reducing human error and time. However, 
one limitation in this field is the limited availability 
of public datasets and access restrictions to real-
world data for defect classification on wafers. These 

limitations hinder the generalizability and 
applicability of the research findings in this area. 
The integration of DL into wafer defect 
classification has been extensively researched and 
developed. Many studies have focused on using 
wafer map images and implementing various pre-
processing and learning strategies to effectively 
learn wafer map defect patterns [16]. 

The Convolutional Neural Network (CNN), is a 
class of DL models that was first invented by Yann 
LeCun and others in 1998. CNNs are commonly 
used in supervised learning tasks, aiming to learn 
the mapping between input data and corresponding 
output labels [17]. They are particularly effective in 
handling array-like data such as RGB images, 
automatically extracting relevant information 
through their layers. The term "convolutional" in 
CNN refers to the utilization of convolutional 
layers, which extract spatial features from images. 
This makes CNNs more efficient and effective for 
image-related tasks compared to Artificial Neural 
Networks (ANNs) [18]. Typically, a CNN consists 
of an input layer, hidden layers, and an output layer 
[18]. The hidden layers include one or more layers 
that perform convolutions, as depicted in Figure 2. 

 
Figure 2: The Architecture of CNN. 

 During the feedforward propagation phase in 
CNN, the input data are passed through different 
layers, including convolutional, pooling, and fully 
connected layers. Activation functions and weight 
parameters are applied at each layer to transform 
the input and generate the output. The output of one 
layer serves as the input to the next layer, and this 
process continues until the final output is obtained. 
However, random initialization of weights and 
biases during the feedforward propagation phase 
can lead to errors in achieving the desired output. 
To address this issue, a mechanism called 
backpropagation is employed. Backpropagation 
involves calculating the gradients of the loss 
function concerning the weights and biases in the 
network. These gradients are then used to iteratively 
update the weights and biases, optimizing the 
network’s performance and reducing the errors 
during training. 

This study presents a wafer defect classification 
model that uses deep learning techniques, 
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specifically by adapting a deep CNN. The model 
takes wafer-map images as inputs and employs data 
preprocessing and data augmentation operations to 
enhance the classification of single- or mixed-type 
wafer map defects. The motivation behind this 
study was to develop an accurate and efficient 
system for classifying silicon wafer defects by 
leveraging DL techniques. However, DL techniques 
show promise for accurate and automated defect 
classification, major challenge is the limited 
availability of public datasets specifically designed 
for wafer map defects. The existing public ‘WM-
811k' dataset suffers from class imbalance issues. A 
new dataset called "Mixed-type Wafer Defect" has 
been derived from the 'WM-811k' dataset to 
overcome class imbalance issues. This new dataset 
focuses on capturing mixed types of wafer-map 
defect patterns, enabling researchers to develop 
more robust and accurate deep-learning models for 
defect classification. In addition, researchers face 
access restrictions to electronic wafer maps and 
integrated circuit designs as they are proprietary to 
companies. These restrictions hinder the ability to 
conduct studies using real-world data for defect 
classification on wafers, thereby limiting the 
generalizability and applicability of the research 
findings. Therefore, the research problem at hand 
revolves around addressing the challenges of 
limited public datasets, class imbalance issues, and 
restricted access to real-world data to develop 
effective deep learning models for early defect 
classification in semiconductor wafer production. 
Overcoming these challenges will contribute to 
improving quality control processes, reducing 
manufacturing costs, and enhancing overall 
productivity in the semiconductor industry. The 
challenges of deep-learning-based classification 
models for wafer map defects including the limited 
availability of publicly accessible datasets, the 
importance of proper data preparation, the need to 
classify mixed-type defects accurately, the pursuit 
of high classification performance, and the 
necessity to address performance issues such as 
memory constraints during data preprocessing, 
training, and model evaluation. 

The key research contributions of our study are: 

1. Proposed CNN Model Based on GoogLeNet: 
Our research introduces a novel CNN model 
based on the GoogLeNet architecture for wafer 
defect pattern classification. The proposed 
GoogLeNet model provides a strong 
foundation for accurate and robust 
classification of wafer defect patterns. 

2. Classification of Single and Mixed Wafer 
Defect Patterns: Our proposed CNN model is 
designed to classify both single and mixed 
types of wafer defect patterns. This allows for 
comprehensive and reliable classification, even 
when multiple defect types are present on the 
same wafer. 

3. Generalization to New Defect Types: Our 
proposed CNN model demonstrates promising 
generalization capabilities to new or unseen 
defect types. While training on a specific set of 
defect patterns, the model's underlying 
architecture and learned features enable it to 
potentially classify previously unseen defect 
types with reasonable accuracy. 

4. Achievement of High Accuracy: Through 
extensive experimentation and evaluation, our 
proposed CNN model achieves an impressive 
average accuracy of 99.9% in wafer defect 
pattern classification. This high accuracy 
demonstrates the effectiveness and reliability 
of our approach in accurately identifying and 
classifying different types of wafer defects. 

5. Publication of WM-300K+ Wafer Map 
Dataset: In addition to proposing a novel CNN 
model, we also created a new dataset called 
"WM-300K+ wafer map [Single & Mixed]." 
This dataset is noteworthy as it is cleaned, and 
balanced, and consists of more than 300,000 
wafer map images with 36 classes. We publish 
this dataset on Kaggle, providing a valuable 
resource for the research community and 
enabling further advancements in wafer map 
analysis and classification. 

6. Utilization of CUDA for Enhanced Training 
and Testing Speed: To speed up the training 
and testing process of our proposed CNN 
model, we utilize CUDA, a parallel computing 
platform that enables significant performance 
improvements when training deep neural 
networks. 

 

2. LITERATURE REVIEWS 

Several previous studies have focused on wafer 
defect classification, each employing different 
datasets, CNN architectures, and training 
techniques. A comprehensive overview of these 
studies is provided in Table 1.  The table includes 
details such as the dataset used, the number of 
defect patterns analyzed, whether single or mixed 
defects were classified, the specific CNN 
architecture utilized in each study, and the 
corresponding test accuracy achieved for 
classification. 
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Table 1: A Comprehensive Overview of The Performance 
of Different CNN Models in Defect Classification. 

Ref Dataset used 

Single or 
Mixed 
defects 

classification 

Accuracy 

[19] WM-811K Single 93.25% 
[20] WM-811K 

and 
MixedWM38 

Single and 
Mixed 

93.6% for 
single and 
97.5% for 

mixed 
[21] WM-811K Single 96.93% 
[22] Dataset-TT Single 96.2% 
[23] MixedWM38 Single and 

Mixed 
95.8% 

Our 
work 

Preprocessed 
WM-811K 

Single and 
Mixed 

99.9% 

 
Researchers have developed custom CNN 

architectures for classifying wafer defects, aiming 
to improve performance and efficiency. In [19], a 
13-layer CNN was proposed to detect and classify 
eight known wafer map defects. The authors 
applied noise removal and resizing techniques to 
the wafer map images. A Dropout method with a 
probability of 0.5 was used for training 
regularization. The detection accuracy achieved an 
impressive rate of 99.98%, while classification 
yielded an average accuracy of 93.25%. Among 
specific defect types, 'Donut' had a minimum 
average accuracy rate of 86%, whereas both 'Edge-
Ring' and 'Near-Full' defects achieved maximum 
accuracies at around 100%. 

Researchers have studied the use of existing 
CNN architectures like 'PeleeNet' and 'ShuffleNet-
v2' for wafer defect classification. A lightweight 
classifier called "WM-PeleeNet" was proposed by 
[20], using a derived CNN architecture with nine 
layers to achieve a balance between accuracy and 
efficiency. The researchers utilized two datasets: 
'WM-811K' and 'MixedWM38'. Data augmentation 
techniques were employed to address dataset 
imbalance, including convolutional autoencoder, 
GAN-based, and image transformation methods. 
Experimental results showed an average accuracy 
of 93.6% for single-wafer defect patterns and 
97.5% for mixed types of wafer defects using the 
'MixedWM38' dataset. 

In [21], a silicon wafer defect identification and 
classification model were proposed by researchers. 
This model consists of a pre-trained deep transfer 
learning model called ShuffleNet-v2 with seven 
layers using CNN architecture. The model achieves 
an overall accuracy of 96.93%, precision of 
95.40%, recall of 96.26%, and F1-score of 95.75\% 
in classifying the defects. The training and testing 

phase utilized the 'WM-811K' wafer dataset, with 
data augmentation performed using a six-layer 
convolutional autoencoder CNN model. The total 
number of images used after data augmentation was 
19,707, representing nine different patterns for 
wafer defects. However, because it is focused on 
being lightweight, the ShuffleNet-v2 may sacrifice 
some accuracy to achieve faster inference time and 
lower computational cost. 

Researchers proposed an automatic defect 
classification system for wafer defect identification 
and classification. In [22] the researchers present a 
system that utilizes DL techniques, specifically a 
ResNet101-based CNN model that was pre-trained 
on the ‘ImageNet’ dataset. For the sizing 
classification of two specific classes, the system 
employs a single-shot detection architecture based 
on VGG-16. The research utilized a dataset 
consisting of 8 defect classes, with 2 subclasses 
representing similar defects but varying in sizes. 
Data augmentation techniques were implemented to 
expand the dataset size. The obtained results 
showed a top-1 accuracy of 91.1% and a top-3 
accuracy rate of 96.2%, with each class being 
correctly classified at least 69% of the time. 

Other researchers have employed semantic 
segmentation in image processing and computer 
vision by dividing an image into regions and 
assigning a semantic label to each region using 
CNN. In [23], the researchers proposed a new 
framework for segmenting defect patterns on wafer 
maps when multiple defect types are present on the 
same wafer. They used a 'U-NET' CNN architecture 
and achieved high accuracy on both synthetic and 
'MixedWM38' datasets, addressing the challenge of 
identifying complex defect patterns arising from 
mixed-type defects. 

Neither of the previous studies specifically 
addressed the use of parallel programming 
techniques like CUDA to improve performance in 
wafer defect classification. Many researchers have 
resized images to 224x224 or 416x416 when 
dealing with the 'WM-811K' dataset, despite the 
original dataset having maximum counts at wafer 
image dimensions of 27x25. This resizing process 
can lead to loss of fine-grained details and increased 
computational resources such as memory and CPU 
consumption, which may impact model 
performance and training/testing times. Some 
researchers use computationally expensive methods 
for data augmentation, such as convolutional 
autoencoder in a GAN-based architecture. 
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3. DATASET 

In this study, a dataset called “WM-811k” was 
used to derive a new balanced dataset. This dataset 
is available on the Kaggle website which consists of 
nine distinct patterns of wafer defects [24]. Notably, 
the "waferMap" column in the dataset represents 
wafer map images. These images are stored as two-
dimensional arrays, with each pixel being 
represented by an 8-bit unsigned integer, as shown 
in Figure 3. 

 
Figure 3: Visualization of wafer map representation with 
color map value from a dataset. 

The color map used for visualizing the wafer map 
image comprises three values according to Equation 
1 that help in identifying the defect patterns and 
their distribution in the wafer map, which is crucial 
for accurate defect classification using CNN 
models. 

  (1) 

 
The dataset contains a total of 811,457 wafer 

maps. However, it is worth noting that 
approximately 79% of these wafer maps do not 
have any pattern label for defect type or have 
“none” pattern label. A total of 25,519 wafer maps 
in the dataset have defect pattern labels. 
Additionally, by examining the frequency 
distribution of defect patterns in the dataset for 
wafer maps with defect pattern labels, we can 
observe significant variations across different types 
of defect patterns. Moreover, it is important to 
highlight that the wafer maps arrays exhibit 
dimensions spanning across 632 unique values. 
Consequently, considering these variations in both 
defect pattern frequencies and wafer map 
dimensions becomes crucial during the data pre-
processing phase to ensure accurate classification of 
defects using our proposed model. 

 
4. METHODOLOGY 
 
4.1 Data Preprocessing and Augmentation 

Data preprocessing is crucial for preparing the 
dataset for analysis and modelling to ensure 
accurate and reliable results, especially when 

dealing with variations in defect pattern frequencies 
and wafer map dimensions. Preprocessing methods 
involve data cleaning, extraction, converting wafer 
map images to RGB format, and resizing these 
images to 56 x 56 dimensions. The phase includes 
multiple steps as shown in Figure 4, while 
additional steps are for preparing data for training 
and testing. 

 
Figure 4: Illustration of the main steps in data 
preprocessing, data augmentation, and encoding class 
labels, outlining the essential pre-processing steps 
required for training a CNN model for defect 
classification. 

During dataset preprocessing for our deep 
learning model, we addressed classes with no 
defects or inaccurate defect patterns (failure type). 
These classes were excluded from further analysis 
to prioritize authentic defect patterns and ensure the 
quality of the dataset. This refinement facilitated 
more effective training for our deep learning model, 
resulting in 25,519 wafer map images representing 
genuine defect patterns being retained after 
removing 785,938 wafer map images. In addition, 
the wafer map images in the dataset, which are 
represented in grayscale format, were mapped to 
three specific values: 0, 127, or 255. This mapping 
was done according to Equation 2, where these 
values corresponded to the minimum, median, and 
maximum pixel intensities, respectively. 

  (2) 

 
The original wafer map images had low pixel 

values, resulting in predominantly black images. To 
improve visualization, the values were mapped to a 
wider range (0, 127, 255) representing black, mid-
grey, and white respectively. The grayscale images 
were then converted to RGB format for better 
analysis and defect identification. The dataset had 
varying dimensions, so a Bicubic interpolation was 
used to resize the images to 56x56. This involved 
averaging the neighboring pixels [25], [26]. 
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Data augmentation techniques involve applying 
transformations and modifications to existing data 
to create new samples to improve generalization 
and help CNN models handle unseen data while 
reducing overfitting [27]. Two approaches of data 
augmentation techniques were utilized to enhance 
the performance and accuracy of the classification 
model. The first approach involved increasing the 
frequency of defect patterns by applying various 
transformations such as random rotation, random 
horizontal flip, and random vertical flip. This was 
done to address the class imbalance in existing 
defect patterns and improve the model's ability to 
generalize and perform well on unseen data [28], 
[29]. The second approach involved creating mixed 
types of wafer defects by combining different 
defect patterns. This comprehensive collection of 
training data enhances the representation of various 
possible patterns that a model may encounter during 
practical applications, ultimately improving the 
model's ability to generalize and perform well on 
new data [28], [30]. The maximum pixel value from 
all input images at the same position is used since 
the pixel value representing a defect has a 
maximum value of 255. Pseudocode 1 presents the 
pseudocode for a mixed defect patterns generator 
algorithm. This algorithm takes a list of input 
images as input and generates a mixed image by 
setting each pixel value of the mixed image to the 
maximum pixel values of all input images at each 
corresponding location. The resulting mixed images 
will have the same dimensions as the input images 
and will contain the highest pixel values from each 
input image. 

 
Overall, these two approaches of data 

augmentation techniques proved to be effective in 
improving the performance and accuracy of the 
classification model. By increasing the size and 
diversity of the training dataset, the model was 
better equipped to handle unseen data and achieve 
higher accuracy rates [31]. Also, these approaches 
allow for the exploration and generation of novel 
defect patterns that may occur in real-life situations. 
For instance, by combining two types of defects, 
new defect patterns can be created such as Center 

with Edge-Loc(C+EL), Center with Edge-
Ring(C+ER), Center with Loc(C+L), Center with 
Scratch(C+S), Loc with Scratch(L+S), Donut with 
Scratch(D+S), Donut with Edge-Loc(D+EL), Donut 
with Edge-Ring(D+ER), Donut with Loc(D+L), 
Edge-Loc with Loc(EL+L), Edge-Loc with 
Scratch(EL+S), Edge-Ring with Loc(ER+L) and 
Edge-Ring with Scratch (ER+S).  

Similarly, the combination of three defects yields 
additional new defect patterns such as: Center with 
Edge-Loc with Scratch(C+EL+S), Center with 
Edge-Ring with Scratch(C+ER+S), Center with 
Edge-Loc with Loc(C+EL+L), Center with Edge-
Ring with Loc(C+ER+L), Center with Loc with 
Scratch(C+L+S), Donut with Edge-Loc with 
Scratch(D+EL+S), Donut with Edge-Ring with 
Scratch(D+ER+S), Donut with Edge-Loc with Loc 
(D+EL+L), Donut with Edge-Ring with 
Loc(D+ER+L), Donut with Loc with 
Scratch(D+L+S) and Edge-Loc with Loc with 
Scratch(EL+L+S). Furthermore, when four defects 
are combined, it leads to the creation of even more 
new defect patterns such as: Center with Loc with 
Edge-Loc with Scratch(C+L+EL+S), Center with 
Loc with Edge-Ring with Scratch(C+L+ER+S), 
Do-nut with Loc with Edge-Loc with 
Scratch(D+L+EL+S) and Donut with Loc with 
Edge-Ring with Scratch(D+L+ER+S). 

In total, a collection of 28 new mixed defect 
patterns can be generated, in addition to the 8 single 
defect patterns. These mixed defect patterns provide 
a broader representation of the possible defect 
variations that may be encountered in practical 
applications. Figure 5 shows three samples of 
mixed defect patterns.  By incorporating these 
mixed defect patterns into the dataset, the model 
can be trained to recognize and classify a wider 
range of defect types and combinations. After 
applying data augmentation, the number of wafer 
map images increased to a total of 368,568 images. 
Each defect pattern constitutes approximately 3% of 
the dataset's entirety out of these images, 
encompassing a combined total of 36 unique defect 
patterns for both single and mixed types, the new 
dataset is called “WM-300K+ wafer map [Single & 
Mixed]”. Furthermore, an approach utilizing one-
hot encoding was employed to encode the defect 
patterns where each defect pattern is represented by 
a binary vector with values of 1 or 0 based on its 
presence [32]. 
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(a) (b) (c) 

Figure 5: Examples of Mixed Defect Patterns include (a) 
Center with Edge-Loc, (b) Center with Edge-Loc with 
Scratch, and (c) Donut with Loc with Edge-Loc with 
Scratch. 

4.2 The Proposed Classification Framework 
An automatic wafer defects classification 

framework using a CNN deep learning model is 
presented to address the gaps in the literature 
discussed in Section 3 and to fulfil the study's aims 
and objectives. The Classification Framework 
Implementation utilizes PyTorch, an efficient open-
source Python framework for machine learning. 
PyTorch supports GPU-accelerated tensor 
computing and automatic differentiation, making it 
suitable for deep neural networks. It employs data 
loaders to handle dataset loading and batching, 
enabling efficient training on large datasets [33]. 
After performing data pre-processing and data 
augmentation techniques to tackle the data 
imbalance issues and create new mixed defect 
patterns for further study, the methodology involves 
generating a new dataset and making it publicly 
available for use by researchers. 

 
Figure 6: The Proposed Classification Framework. 

Thereafter Optuna is used to tune optimal 
hyperparameters. The hyperparameters and the new 
dataset are used for training and validating the 
modified GoogLeNet model. "Auto cast" mixed 
precision feature is utilized during the training and 
validation to automatically cast certain operations to 
lower-precision data types, like half-precision, 
while keeping other operations in higher-precision 
data types, such as single-precision. This allows for 
faster computation and reduced memory 
requirements without sacrificing model accuracy 
[34]. Also, Adam with Weight Decay 
Regularization is used for optimizing the model's 

performance by adjusting the weights and biases 
based on computed gradients. 

K-fold cross-validation and early stopping are 
used to improve generalization and prevent 
overfitting during training. With k-fold cross-
validation, the dataset is split into k equally sized 
folds. The model is then trained and evaluated k 
times, with each fold serving as the validation set 
once while the remaining folds are used for training 
[35]. Early stopping involves monitoring the 
model's performance on a validation set during 
training and stopping early if the performance starts 
to degrade. Various evaluation metrics, such as 
accuracy, precision, recall and F1 score, are 
employed to comprehensively assess the 
performance of the model in both the training and 
testing phases. 

4.3 The Modified GoogLeNet Model 
In 2015, Google developed GoogLeNet, a deep 

convolutional neural network for image 
classification. It utilizes multiple convolutional 
layers with varying filter sizes and pooling 
operations to extract features at different scales. 
GoogLeNet includes auxiliary classifiers as 
intermediate layers to address the vanishing 
gradient problem and improve accuracy by reducing 
overfitting. The computational efficiency is 
achieved through inception modules for feature 
extraction [36]. Although the original GoogLeNet 
architecture was designed for images with 
dimensions of 224 x 224 and 1024 classes, it has 
been modified to be suitable for images with 
dimensions of 56 x 56 pixels and 36 classes by 
adding a new fully connected layer at the end of the 
GoogLeNet layers that maps the 1024 classes to 36 
classes. 

The modified GoogLeNet architecture consists of 
19 layers, including convolutional and max-pooling 
layers as visualized in Figure 7. It also incorporates 
inception modules, an average pooling layer, a 
dropout layer, and a linear layer for the final output. 
The "BasicConv2d" layer is responsible for 
extracting features through convolutional operations 
from the input data. Additionally, there's the 
"MaxPool2d" to reduce spatial dimensions and 
multi-branch convolutional blocks known as 
Inception modules that aid in capturing different 
scales and types of features. Lastly, there's an 
"AvgPool2d" layer to apply average pooling to the 
input feature maps before using a dropout preceding 
the fully connected last layer designed to map input 
features to output classes while preventing 
overfitting [16], [37], [38]. 
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Figure 7: The visualization of the modified GoogLeNet 
model architecture. 

The architecture is designed to take an input of 
shape [512, 3, 56, 56] and produce an output of 
shape [512, 36] as illustrated in Table 2. Notably, 
the number 512 here presents the batch size, the 
number 3 presents the number of input image 
channels and the numbers 56,56 represent the input 
image dimensions. All the convolutions, including 
the convolutions inside the inception module, use 
rectified linear activation [38]. 

Table 2: Description Of Layers in The Modified 
GoogLeNet Model with Input and Output Shapes. 

# Layer Name Input Shape Output Shape 

1 BasicConv2d [512, 3, 56, 56] [512, 64, 28, 28] 

2 MaxPool2d [512, 64, 28, 28] [512, 64, 14, 14] 

3 BasicConv2d [512, 64, 14, 14] [512, 64, 14, 14] 

4 BasicConv2d [512, 64, 14, 14] [512, 192, 14, 14] 

5 MaxPool2d [512, 192, 14, 14] [512, 192, 7, 7] 

6 Inception 1 [512, 192, 7, 7] [512, 256, 7, 7] 

7 Inception 2 [512, 256, 7, 7] [512, 480, 7, 7] 

8 MaxPool2d [512, 480, 7, 7] [512, 480, 3, 3] 

9 Inception 3 [512, 480, 3, 3] [512, 512, 3, 3] 

10 Inception 4 [512, 512, 3, 3] [512, 512, 3, 3] 

11 Inception 5 [512, 512, 3, 3] [512, 512, 3, 3] 

12 Inception 6 [512, 512, 3, 3] [512, 528, 3, 3] 

13 Inception 7 [512, 528, 3, 3] [512, 832, 3, 3] 

14 MaxPool2d [512, 832, 3, 3] [512, 832, 2, 2] 

15 Inception 8 [512, 832, 2, 2] [512, 832, 2, 2] 

16 Inception 9 [512, 832, 2, 2] [512, 1024, 2, 2] 

17 AvgPool2d [512, 1024, 2, 2] [512, 1024, 1, 1] 

18 Dropout [512, 1024] [512, 1024] 

19 Fully connected [512, 1024] [512, 36] 

 

The weights of the modified GoogLeNet model 
will be initialized via loading the pre-trained 
weights of the original GoogLeNet model that have 
already captured relevant information from the 
training data from a dataset called “ImageNet”. The 
utilization of a pre-trained GoogLeNet model and 
weight initialization from it provides a strong 
foundation for our deep learning architecture. By 
incorporating this approach, we aim to enhance the 

performance and efficiency of our model while 
reducing the need for extensive training on the 
dataset [39]. 

4.4 Hyperparameter Tuning and Optimization 
Technique 

Hyperparameters are parameters that govern the 
learning process and dictate the values of model 
parameters acquired by a learning algorithm [40]. 
Hyperparameters are settings or configurations that 
are not learned from the data but are set before 
training the model such as batch size, learning rate, 
number of epochs and patience stop as illustrated in 
Table 3. Optuna which is an open-source 
hyperparameter optimization framework is selected 
to find the optimal hyperparameters which have a 
significant impact on the model's performance [41]. 

Table 3: Description Of Layers in The Modified 
GoogLeNet Model with Input and Output Shapes. 

# 
Hyper Parameter 

Name 
Hyper Parameter Description 

1 Batch size 

The batch size refers to the number of 
training examples that are used in both 
the forward and backward passes of a 

neural network during its training 
phase. 

2 Learning rate 
Determines the step size at which the 
optimizer adjusts the weights of the 

model during training. 

3 Number of Epochs 
The epoch refers to one complete pass 

through the entire training dataset 
during the training process. 

4 Patience Stops 
Number of epochs without 

improvements to wait before early 
stopping 

5 
Early Stopping 

Threshold Epoch 

The minimum number of epochs that 
must be completed before early 

stopping is checked. 

 

The Optuna is based on the Bayesian 
Optimization Algorithm which is used to find the 
global maximum or minimum solution of a scaler 
objective function in a bounded domain 

. It aims to model the objective 
function f to specify its distribution. For a set of 
points , the evaluation of membership of the 
objective function  is calculated by the following 
equation [42]: 

  (3) 
 

Optimizers are crucial for adjusting model 
weights and learning rates to minimize error or 
maximize production efficiency [43]. Gradient 
Descent is an iterative technique that modifies 
parameters to reduce a given convex function, 
achieved by moving in the opposite direction of the 
steepest ascent determined by the learning rate 
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using derivatives [43]. Adam with Weight Decay 
Regularization is an example optimizer introduced 
in 2019 as a modification of the Adaptive Moment 
Estimation algorithm, aiming to improve weight 
decay behaviour and incorporate adaptive learning 
rates [44]. The goal of employing AdamW 
optimizer is to minimize the cost function value as 
much as possible. AdamW integrates weight decay 
directly into its framework without affecting 
adaptive learning rates, resulting in enhanced 
performance for generalization and improved 
convergence properties [45]. 

4.5 Evaluation Metrics 
Evolutionary metrics were used to evaluate the 

proposed approach, including confusion matrix, 
accuracy, F1 score, precision, recall and Receiver 
Operating Characteristics. The inclusion of a 
confusion matrix helps assess the classification 
performance of the CNN model by comparing true 
and predicted values. In this matrix, rows 
correspond to true values while columns represent 
predicted values. The assessment yields four 
possibilities: true positive, false positive, true 
negative and false negative [46]. Accuracy refers to 
the extent to which the model effectively 
categorizes all instances within a dataset. It is 
computed by dividing the total number of correct 
predictions by the overall number of predictions 
made [47]. The accuracy is calculated by the 
following equation: 

      (4) 

In this context, TP represents true positives, FP 
represents false positives, TN represents true 
negatives, and FN represents false negatives. 

The F1 score is determined by computing the 
harmonic mean of precision and recall. Precision 
measures the proportion of correctly predicted 
positive instances out of all predicted positive 
instances, while recall gauges how many actual 
positive instances are accurately identified as 
positive [48]. The F1 score is calculated by the 
following equation: 

      (5) 

The Receiver Operating Characteristic (ROC) 
curve is a metric used to evaluate the performance 
of a CNN model in class discrimination. It 
measures the ability of the model to accurately 
classify different classes by analyzing true positive 
rate (TPR) and false positive rate (FPR) across 
various threshold values for classification. It plots 

the TPR against the FPR at various threshold 
settings [49]. 

The formulas for TPR and FPR are as follows: 

                    (6) 

                   (7) 

The shape and position of the ROC curve provide 
insights into the model's performance, with 
proximity to the top-left corner indicating better 
performance due to higher TPR and lower FPR. A 
curve close to the diagonal line suggests random 
guessing, while a curve below it indicates poor 
performance in distinguishing between positive and 
negative cases. 

5. RESULTS AND DISCUSSIONS 

The proposed model was trained and validated 
using the training and validation dataset where the 
dataset was split into 80% for training and 20% for 
testing. Subsequently, the training set was further 
divided into 70% for training and 30% for 
validation. This division allowed for training the 
model on a subset of the data while validating its 
performance on another subset. The 
hyperparameters values were used after tunning as 
illustrated in Table 4. 

Table 4: Tunned Hyperparameter Optimal Values 

# Hyper Parameter Name Hyper Parameter Value 
1 Batch size 512 
2 Learning rate 0.0008 
3 Number of Epochs 100 
4 Patience Stops 5 

5 
Early Stopping 

Threshold Epoch 
15 

 

5.1 Experimental Training Results 
This study applies a stratified 6-fold cross-

validation in which they have the same proportion 
of class distribution. As shown in Table 5, the 
average training accuracy across all folds is 
99.40%, indicating that the model performs well on 
the training data. The average validation accuracy is 
97.80%, suggesting that the model generalises 
reasonably well to unseen data. In addition, the 
average training loss is 0.013, which indicates that 
the model's predictions are close to the actual 
values during training and the average validation 
loss is 0.044, indicating that the model's predictions 
are slightly less accurate on the validation data 
compared to the training data. Overall, these results 
suggest that the proposed CNN model is effective in 
classifying wafer defects. 
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Table 5:  Cross-Validation Results, Detailing the Average 
Training and Validation Accuracy, As Well As Training 

and Validation Loss for All Folds in A CNN-Based Defect 
Classification Model 

Average 
Training 
Accuracy 

(%) 

Average 
Validation 
Accuracy 

(%) 

Average 
Training 

Loss 

Average 
Validation 

Loss 

99.40 97.80 0.013 0.044 

 
The new dataset was used to train and validate 

the ShuffleNetV2 and ResNet-50 CNN models. The 
Modified GoogLeNet achieved the highest training 
accuracy of 99.40% and a validation accuracy of 
97.80%, with the lowest training loss of 0.013 and a 
moderate validation loss of 0.044. ShuffleNetV2 
and ResNet-50 showed slightly lower performance 
compared to Modified GoogLeNet. Overall, 
Modified GoogLeNet demonstrated the highest 
training accuracy and good generalization 
performance on the validation set. 

5.2 Model Evaluation 
The confusion matrix as shown in Figure 8 

highlights strong performance in classes like 
"C+EL," "C+EL+L," "C+EL+S," and "C+ER," with 
high true positives and true negatives. It also shows 
that the class "Near-full" demonstrates effective 
detection with very few false positives and false 
negatives, indicating high accuracy. However, 
classes like "Edge-Loc" and "Loc" show a higher 
number of false negatives compared to other 
classes, suggesting room for improvement in 
accurately classifying these instances. Further 
enhancements may be needed to improve accuracy 
in classifying instances for these specific classes. 

 
Figure 8: Confusion Matrix for all classes in a CNN-
based defect classification model. 

 
Table 6 shows that the classification algorithm 

achieves high average accuracy, precision, recall, 
and F1 scores of 99.99%, 0.97, 0.97, and 0.97 
respectively for all 36 wafer defect patterns. It 
correctly classifies 99.9% of instances, 
demonstrating a high level of overall correctness. 

With a precision and recall of 0.97, it shows a low 
rate of false positives and false negatives, indicating 
effective and accurate identification and 
classification across all classes. The classification 
algorithm demonstrates a good balance between 
precision and recall, indicating overall robust 
performance with an F1 score of 0.97. These high 
values for accuracy, precision, recall, and F1 score 
suggest that the classification algorithm is effective, 
and accurate in identifying and classifying instances 
across all classes. 

Table 5:  Average Of Performance Metrics for All 
Classes in A CNN-Based Defect Classification Model. 

Average 
Accuracy 

(%) 

Average 
Precision 

Average 
Recall 

Average F1 
Score 

Average 
ROC AUC 

99.99% 0.97 0.97 0.97 0.99 

 
The TPR and FPR for 36 classes were used to 

compute the ROC curve for each class. As shown in 
Figure 9, the ROC curve for all classes is closer to 
the top-left corner of the plot which indicates that 
the model can accurately classify positive cases 
while minimizing false positives. The majority of 
classes show high true positive rates, many 
surpassing 0.98, and a low false positive rate 
(3.9045e-04). However, the "Loc" class has a lower 
true positive rate of approximately 0.8598, 
suggesting potential challenges for accurate 
differentiation that may require further fine-tuning 
or optimization efforts. 

 

Figure 9: ROC Curves for all Defect classes. 

The other trained models are evaluated using the 
same testing set. The ResNet-50 reached 99.9% 
accuracy, and ShuffleNetV2 achieved 99.8% 
accuracy. In terms of precision, recall, and F1 score, 
all models consistently performed well, with an 
average of 0.97 for ResNet-50 and an average of 
0.96 for ShuffleNetV2. This indicates successful 
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classification of positive cases while minimizing 
false positives (precision), capturing true positive 
cases (recall), and achieving a balanced trade-off 
between precision and recall (F1 score). 

Memory limit errors were encountered during the 
data preprocessing and model training stages due to 
inadequate memory for handling the data or 
computations. Our study focused on optimizing 
memory usage during data preprocessing and model 
training. We encountered memory limit errors due 
to inadequate memory resources, which hindered 
our progress. Various strategies were employed to 
overcome these errors. [51], [52]. 

By using generators and data loaders, we were 
able to efficiently handle large datasets within 
limited memory resources. Freeing up unnecessary 
variables and employing memory-efficient data 
structures further contributed to efficient memory 
utilization. Batch processing allowed for efficient 
training, while the auto-cast feature reduced 
computational resource requirements and enabled 
the use of larger batch sizes. Leveraging the CUDA 
parallel computing platform provided an 
opportunity to harness the power of NVIDIA GPUs 
for general-purpose computing tasks, further 
optimizing resource allocation. The PyTorch allows 
to use of CUDA devices with simple APIs to 
transfer data to GPU memory and perform 
operations on GPU. Also, the training and 
validation processes are performed on GPU [53]. 
The Modified GoogLeNet model achieved an 
average CPU usage of 35.17% and a maximum 
memory usage of 19469.69 MB during execution 
on the CPU. When executed on the GPU, the model 
achieved an average GPU usage of 81.30% and a 
maximum CUDA memory usage of 6812.47 MB. 
The execution time on the GPU was significantly 
faster, taking only 4,641.36 seconds. The speedup 
achieved by using the GPU instead of the CPU is 
approximately 38.78x, indicating a significant 
performance improvement. 

6. CURRENT PROBLEMS AND OPEN 
RESEARCH ISSUES 

In the context of wafer map defects classification 
using CNN, there are several current problems, 
challenges, and open research issues that can be 
addressed. Some of these include: 

1. Limited Availability of Public Datasets: Access 
to high-quality, diverse, and publicly available 
datasets for training and evaluating CNN 
models for wafer map defect classification is 
limited. Developing standardized benchmark 

datasets would be beneficial for researchers 
and practitioners in this field. 

2. Mixed-Type Defect Classification: Classifying 
mixed-type defects (e.g., scratches, particles, 
and pattern defects) accurately remains a 
challenge. Research is needed to develop CNN 
models that can effectively handle the 
classification of multiple defect types within a 
single wafer map. 

3. Performance Improvement: There is a 
continuous need to enhance the classification 
performance of CNN models for wafer map 
defect detection. This includes improving 
accuracy, reducing false positives, and 
addressing issues related to model 
generalization. 

4. Data Preprocessing and Memory Constraints: 
Addressing memory constraints during data 
preprocessing, model training, and evaluation 
is crucial, especially when dealing with large-
scale wafer map datasets. Efficient data 
preprocessing techniques and memory-
optimized model architectures are areas for 
further exploration. 

5. Interpretability and Explainability: Developing 
methods to interpret and explain the decisions 
made by CNN models in the context of wafer 
map defect classification is an open research 
issue. Understanding how the model arrives at 
its classifications is essential for gaining trust 
and acceptance in real-world applications. 
 

Addressing these problems and research issues 
will contribute to the advancement of CNN-based 
wafer map defect classification, leading to more 
robust and reliable defect detection systems in 
semiconductor manufacturing. 

 
7. FUTURE RESEARCH DIRECTIONS 

While our research makes significant 
contributions to the field of wafer defect pattern 
classification, certain limitations should be 
acknowledged: 

1. Dependency on Dataset Quality: The 
effectiveness of our approach is highly 
dependent on the quality and diversity of the 
training dataset. If the dataset contains 
inaccuracies, noise, or biases, it may impact the 
model’s performance and generalizability. 
Therefore, ensuring a high-quality and 
representative dataset is crucial for obtaining 
reliable results. 

2. Computational Resource Requirements: Our 
proposed CNN model, particularly when using 
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the GoogLeNet architecture and CUDA for 
enhanced speed, may require significant 
computational resources during training and 
testing. This includes high-performance GPUs 
and sufficient memory capacity. Researchers 
with limited access to such resources may face 
challenges in replicating our experiments or 
applying our approach in resource-constrained 
environments. 

3. Data Augmentation Limitations: While data 
augmentation can help address dataset issues 
such as class imbalance, the effectiveness of 
this technique may vary depending on the 
specific characteristics of the dataset. In some 
cases, data augmentation may not fully 
mitigate the challenges associated with 
imbalanced data, leading to potential biases or 
limitations in the model’s performance. 

4. Lack of Evaluation on Real Wafer Map 
Images: Our proposed model has not been 
evaluated on real wafer map images. Although 
we achieved high accuracy using our dataset, 
the model’s performance on real-world wafer 
map images may differ because of variations in 
image quality, noise, and other factors specific 
to real production environments. Further 
evaluation and validation of real wafer map 
images are necessary to assess the model’s 
practical applicability. 
 

Several areas warrant further investigation and 
exploration. Future work should focus on 
addressing the following aspects: 

1. Expand the dataset to include a wider range of 
defect types and variations, enabling the model 
to handle a broader array of real-world 
scenarios. 

2. Optimize computational resource requirements 
by developing more efficient architectures or 
exploring alternative hardware configurations 
that can achieve comparable performance with 
reduced resource demands. 

3. Further evaluation and validation of real wafer 
map images are necessary by conducting 
extensive evaluations to understand the 
model’s performance under these realistic 
conditions and identify any necessary 
adaptations or improvements. 

 
8. CONCLUSIONS 

This paper presents an enhanced CNN model based 
on the GoogLeNet architecture for wafer defect 
pattern classification, achieving an impressive 
average accuracy of 99.9%. Additionally, the paper 

contributes to the field by introducing the "WM-
300K+ wafer map [Single & Mixed]" dataset and 
leveraging CUDA for enhanced training and testing 
speed, surpassing existing benchmarks and 
achieving state-of-the-art results in wafer defect 
pattern classification. However, limitations were 
identified, including dependence on dataset quality, 
computational resource requirements, and data 
augmentation constraints. Notably, the proposed 
model has not been evaluated on real wafer map 
images, indicating the need for further assessment 
to evaluate its practical applicability. Future work 
should prioritize addressing these limitations by 
enhancing dataset quality, optimizing 
computational resource requirements, improving 
data augmentation techniques, and evaluating the 
model on real wafer map images. Overall, the study 
presents a powerful CNN model capable of 
accurately classifying both single and mixed wafer 
defect patterns, surpassing previous studies in 
accuracy, with significant potential to enhance the 
efficiency and effectiveness of wafer defect 
analysis in semiconductor manufacturing. 
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