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ABSTRACT 
 

The essential step in guaranteeing an adequate supply of water is water desalination. Nevertheless, since 
many water quality measures interact in a complex way, it is difficult to estimate pH levels accurately. 
To further comprehend and regulate pH levels in water from desalination, this study proposes a synergistic 
structure that blends the predictive ability of Extreme Learning Machines (ELM) with the strategic insights 
offered by game theory. The precision needed for effective desalination is frequently lacking in current pH 
prediction techniques. Traditional models could find it difficult to represent the complex interactions between 
changes in pH and input factors. Furthermore, the lack of a strategic decision-making component in dynamic 
operational contexts exposes processes to less-than-ideal results. The merging of game theory and ELM is 
innovative. Because of its quick training and ability to generalize, ELM is a good pH predictor. Concurrently, 
Game Theory is utilized to simulate strategic exchanges between stakeholders, taking into account how pH 
forecasts affect decision-making procedures. High-quality data on water quality is used to train an ELM 
model as part of the suggested methodology. Next, using the concepts of game theory, stakeholders' strategic 
behaviors that are impacted by the anticipated pH levels are modelled. This research enhances pH prediction 
accuracy using Extreme Learning Machine and Game Theory, optimizes desalination resource allocation for 
sustainability, addresses real-world challenges, and provides a versatile framework for widespread 
application in diverse desalination scenarios. The suggested method's efficacy is determined by a thorough 
performance review. The integrated strategy is thought to be superior to traditional approaches in terms of 
metrics like accuracy of predictions, satisfaction with stakeholders, and operational effectiveness. These 
metrics present a potential path forward for the advancement of water desalination procedures. 
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1. INTRODUCTION  
 

Water desalination is an essential process that 
purges brackish or salty water of salt and other 
contaminants, preparing it for use in industry and 
human consumption. Desalination has become a 
practical way to increase the amount of freshwater 
available as the world's population grows and 
traditional water sources become more stressed as a 
result of pollution, climate change, and population 
growth [1]. Water desalination can be accomplished 
primarily through two methods: membrane-based 
processes and distillation. Refining techniques like 
multi-stage flash distillation and multi-effect 
distillation boil saltwater to create steam, which is 
subsequently condensed to produce fresh water 
while removing the salts. Conversely, membrane-

based handles use semi-permeable membranes to 
selectively let water molecules through while 
keeping out contaminants and salts. The most 
popular membrane-based desalination method is 
reverse osmosis, which involves pushing water 
through a membrane at high pressure to separate it 
from the concentrated brine [2]. 

Desalination is a dependable source of freshwater, 
but it is not without its difficulties. The energy cost 
of the desalination process is a major concern, 
especially when using thermal methods. New 
developments in energy-efficient technologies, like 
better membrane materials and renewable energy 
sources, are intended to solve these problems and 
make desalination more sustainable. Another factor 
to consider is the environmental impact of 
desalination; the return of concentrated brine to the 
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sea can damage marine ecosystems, and the intake of 
seawater can have a detrimental effect on marine life 
[3]. Research is being done to create environmentally 
friendly brine disposal techniques and intake 
systems that minimize ecological disturbances. 
Desalination has emerged as a crucial part of water 
management plans in arid regions and coastal areas 
that are experiencing a shortage of water, despite 
these difficulties. To meet their increasing water 
needs, nations like Saudi Arabia, Israel, and the 
United Arab Emirates have successfully 
implemented large-scale desalination projects. 
Water desalination is expected to be more and more 
important in providing communities worldwide with 
a sustainable and dependable water supply as 
technology develops and becomes more affordable 
[4]. 

The pH level of desalinated water can change 
depending on how it is made and if any extra steps 
are taken to treat it. Desalinated water usually has a 
pH that is not too high or too low. The number of 
ions that make the water more acidic or basic usually 
goes down when salts and impurities are taken out 
during desalination, such as through distillation or 
reverse osmosis. Therefore, the desalinated water 
usually has a pH close to 7, which is considered 
neutral. Remember that desalination might not 
eliminate all gases and ions, which could influence 
pH levels through remaining ions or environmental 
carbon dioxide. Sometimes, when water is cleaned 
of salt, it might have a slightly lower pH than normal 
because it is missing bicarbonate ions that usually 
help keep the water alkaline. This happens because 
bicarbonate ions are often found in freshwater and 
help balance the pH level [5]. Desalinated water 
might have its pH changed by water treatment plants 
to meet specific needs or to make sure it works well 
with pipes and the people who use it. Water utilities 
and treatment facilities need to keep a close eye on 
the pH of the desalinated water to make sure it's safe 
for things like drinking and industrial use. This is 
necessary to follow the rules and regulations. 
Research can use chemicals or other methods to 
change the pH level of the water and keep it clean 
and safe [6]. 

There is a lot of water on earth, but because it 
contains very little salt, only a portion of it is suitable 
for drinking and watering plants. Scientists have 
recently discovered methods for producing drinking 
water from brackish water that isn't too salty and 
salty seawater. Here, the two most popular methods 
for extracting salt from water are reverse osmosis 
(RO) and thermal desalination, such as MED and 
MSF. Nine thousand reverse osmosis (RO) 

desalination plants have been established in the last 
two decades. Computer systems are used in 
desalination plants for both plant control and large-
scale data collection. It's challenging to store a lot of 
data when you have a lot of things to remember. Due 
to the high sensitivity of SWRO processes to changes 
in operational circumstances, accurate prediction 
and monitoring of SWRO plant processes is 
necessary to keep system performance as close to 
optimal as feasible. To address the issues mentioned 
above and analyse data from different SWRO 
procedures, multivariate statistical techniques can be 
employed. Moreover, a remote centralized operation 
center may be able to monitor the condition of an 
SWRO plant through the use of multivariate 
statistical techniques [7].   In MCDI or CDI 
procedures, the pH of the solution has a major impact 
on ion adsorption. Particularly for materials like 
phosphorus, copper, boron, or carbonate forms, 
whose dissociation forms change with the solution's 
pH, the charge form also changes with the pH of the 
solution, potentially having a significant impact on 
the rate of adsorption (or removal). Additionally, if 
ions like H+ and OH− stick to the electrode before 
the target compounds, it may slow down the removal 
of those compounds. So, we need to predict and think 
about the pH of the waste water using 
electrochemical reactions. This will help us 
understand how well the MCDI process removes 
ions and how to make the process work better [7]. 

One of the main issues with the RO desalination 
method has always been membrane clogging. 
According to recent research, the issue of converting 
saltwater into drinking water can be resolved by 
combining RO with Nano filtration. The process of 
removing salt from water is significantly improved 
when NF is added to RO systems. It accomplishes 
this by softening the water and removing impurities, 
organics, and ionic strength. The overall cost of 
desalination is also lowered by using this combined 
strategy. NF can balance RO; it is also appealing. Its 
many advantages, including low installation costs, 
excellent water throughput (flux), operation at lower 
pressures, and economical operation and 
maintenance, are highly appreciated by researchers. 
Nevertheless, relying solely on NF has certain 
limitations [8]. If NF is used alone, it is not sufficient 
to sufficiently reduce the high salinity present in 
seawater to create drinkable water, even though it is 
effective at treating other types of water impurities. 
In order to overcome this weakness and produce 
better desalination outcomes, the combined power of 
NF and RO truly shines.  NF's attraction goes beyond 
its ability to balance RO. Its many advantages are 
praised by researchers, including its relatively cheap 
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installation costs, remarkable water throughput 
(flux), maintenance at lower pressures, and cost-
effective operation and maintenance. However, there 
are disadvantages to depending solely on NF. Even 
though NF alone is insufficient to sufficiently reduce 
the high salinity present in seawater to create 
drinkable water, it can effectively treat a variety of 
water impurities. Because of this weakness, the 
combined power of NF and RO excels, producing 
better desalination outcomes. New studies on 
membrane technologies—whether they are NF, RO, 
or novel hybrid separating techniques—always 
emphasise that the biggest obstacle to their 
operational range is energy consumption. Permeate 
rate, recovery, pH (potential hydrogen) levels, 
rejection rate (RR), conductivity, permeate quality 
(PQ), energy consumption, and related costs are just 
a few of the complex parts that make up the 
desalination process. To maximise these variables, a 
number of experimental projects have promoted 
hybrid solutions, like the NF–RO conjunction and 
the NF–SWRO–MSF hybrid process. NF essentially 
serves as an effective pre-treatment step in these 
creative configurations, laying the groundwork for 
the more involved RO desalination process [9]. 

A growing number of adaptable tools called 
artificial neural networks (ANNs) are being used to 
forecast and predict variables related to water 
resources. The water quality parameters for multiple 
years in a specific area must be taken into account 
when developing neural network models [10]. It is 
believed that nonlinear methods, like artificial neural 
networks, are sufficient for forecasting freshwater 
and subsurface water quality parameters. Prior 
research demonstrated that artificial neural networks 
(ANNs) could accurately forecast parameters related 
to water quality, including TDS, and flowrate 
conductivity, in subterranean rivers, and water, and 
desalination facilities. ANNs were able to model the 
performance of desalination facilities by capturing 
nonlinear relationships between input and output 
variables.  Research conducted research to construct 
ANN models aimed at assessing and forecasting 
various criteria for drinking water quality inside a 
system for distributing water. Similarly, a model 
using ANN was created by researchers with the 
express purpose of forecasting critical parameters in 
the process of reverse osmosis desalination facilities, 
namely flux and salty rejections. ANN technology 
was employed by many researchers to create a model 
that predicted a reverse osmosis plant's performance. 
To precisely estimate the water permeates, the 
artificial neural network (ANN) underwent training 
on three input variables: feed temperatures, pressure, 
and salt content. Furthermore, in a related usage, 

scientists used the neural network-based approach to 
forecast RO desalination plant performance. This 
entailed utilizing experiment water quantity 
information to anticipate the rejection of salt and 
water flows under different process circumstances. 
The outcomes of the model underwent extensive 
testing, were compared to observable data, and had 
their error percentages computed [8]. 

The groundbreaking research venture, which 
amalgamates Extreme Learning Machine (ELM) and 
Game Theory for predicting pH levels in water 
desalination, exhibits a marked departure from 
preceding studies, bringing forth several key 
distinctions that elevate its significance. At the 
forefront is the dual implementation of ELM and 
Game Theory, strategically leveraging the 
expeditious training capabilities of ELM and the 
adaptive, decision-making process of Game Theory. 
This synergistic approach surpasses the limitations 
of conventional static models by augmenting 
prediction accuracy and endowing the model with a 
dynamic adaptability to fluctuations within water 
desalination systems. A noteworthy aspect of this 
research lies in its proactive stance toward resource 
optimization through the lens of Game Theory [11]. 
By incorporating strategic decision-making 
principles, the model seeks to optimize the allocation 
of resources within water desalination processes. 
This strategic optimization holds the promise of 
enhancing energy efficiency, curtailing operational 
costs, and overall elevating the sustainability profile 
of desalination operations. This emphasis on 
resource allocation sets the research apart, 
positioning it as a practical solution with direct 
implications for addressing real-world challenges 
faced by the water desalination industry. Crucially, 
the research distinguishes itself by its resolute focus 
on real-world applicability. Unlike some earlier 
studies that may have been more theoretical in 
nature, this research aligns itself with the practical 
concerns of industry practitioners. It addresses the 
complex and dynamic nature of water desalination 
processes, making its findings immediately relevant 
to the operational realities of desalination plants. 
Furthermore, the research showcases a forward-
looking perspective by offering a model with the 
potential for generalization [9]. This versatility 
enables the integrated framework to be applied 
across diverse water desalination scenarios, 
providing a more broadly applicable solution 
compared to studies with more narrow and 
specialized scopes. In essence, this research 
represents a profound advancement in the realm of 
water desalination prediction models. Its 
comprehensive and innovative approach not only 
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enhances the accuracy and adaptability of pH 
predictions but also pioneers a strategic and 
resource-optimized framework that holds promise 
for transforming the efficiency and sustainability of 
desalination operations on a global scale. 

The key contribution are as follows, 

1. The research improves pH prediction accuracy 
by combining Extreme Learning Machine and 
Game Theory. 

2. It optimizes resource allocation in desalination, 
enhancing sustainability through strategic 
decision-making. 

3. The study directly addresses real-world 
challenges in water desalination, offering 
practical insights for industry applications. 

4. The integrated framework's versatility allows 
for widespread use, making it a valuable tool in 
diverse desalination scenarios 

The paper follows a structured organization: 
Section 1 introduces the research context, Section 2 
reviews related work, Section 3 defines the problem 
statement, and Section 4 outlines the methodology 
integrating ELM and Game Theory. Section 5 
presents results and discussions on the model's 
performance, and Section 6 concludes by 
summarizing findings and suggesting avenues for 
future research. This clear organization ensures a 
logical flow, guiding readers through the exploration 
of pH prediction in water desalination. 

2. RELATED WORKS 

In Gaza, most people make drinking water by 
using small private machines to remove salt from 
seawater and brackish water. This is a new and 
growing way to get freshwater.  Prior study looks at 
using a type of computer program called artificial 
neural networks to predict how well reverse osmosis 
desalination plants will work in an area. The goal is 
to predict how much solid material will be in the 
water and how quickly it will flow through the filter 
next week. To predict how fast water will flow next 
week, we used two different types of computer 
programs called neural networks. We trained these 
programs using information about the pressure, 
acidity, and conductivity of the water. TDS 
concentrations were predicted using both MLP and 
RBF neural networks, with training conducted using 
parameters related to product water quality, 
including pH, conductivity, temperature, and 
pressure. The results demonstrated that both varieties 
of neural networks could predict TDS levels in 
product water with a high degree of accuracy and 
provide reliable permeate flowrate forecasts. The 
ANN predictions outperformed the traditional 

methods when compared to standard statistical 
models. This work shows how artificial neural 
networks can be used to improve the accuracy of 
performance predictions for desalination plants, 
offering a more sophisticated and reliable substitute 
for conventional statistical models. The results 
highlight the potential of neural network applications 
in water resource management and aid in the 
optimisation of water production processes in the 
Gaza Strip [12]. 

Kammon et al. [13] study focuses on predicting 
Nano filtration performance for brackish water 
desalination, with a specific case study involving 
Tunisian groundwater. Utilizing advanced modelling 
techniques, particularly artificial neural networks 
(ANN), the research aims to forecast key parameters 
relevant to Nano filtration efficiency in treating 
brackish water from Tunisian aquifers. The model 
considers various input factors such as water 
temperature, salinity, and operating pressure to 
predict Nano filtration performance metrics, 
including permeate flux and salt rejection. Despite 
the promising results obtained in predicting Nano 
filtration performance, it is essential to acknowledge 
certain drawbacks in the study. One limitation lies in 
the reliance on historical data and assumptions about 
the stability of aquifer characteristics, which may 
vary over time. Additionally, the model's 
generalizability to diverse geographical locations 
and varying water compositions may be a concern. 
Furthermore, uncertainties associated with fouling 
and membrane degradation are inherent challenges 
that impact the accuracy of long-term predictions. 
Addressing these limitations is crucial for enhancing 
the robustness and applicability of the developed 
predictive model in real-world scenarios [13]. 

Z. Ullah et al. [14] study presents a comprehensive 
comparison between a tree-based model and a deep 
learning model for predicting effluent pH and 
concentration in the context of capacitive 
deionization (CDI) processes. The research explores 
the effectiveness of traditional tree-based models, 
such as decision trees or random forests, in contrast 
to more complex deep learning architectures, 
specifically artificial neural networks (ANNs). The 
predictive models are trained and evaluated using 
experimental data from capacitive deionization 
systems, considering various operational parameters 
and influent characteristics. While both tree-based 
and deep learning models exhibit promising 
predictive capabilities, it is crucial to acknowledge 
certain drawbacks in the comparison. One limitation 
arises from the interpretability of the deep learning 
model, as understanding the complex relationships 
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embedded within the neural network architecture can 
be challenging. Additionally, the availability of a 
substantial amount of training data is essential for the 
deep learning model's optimal performance, 
potentially posing challenges in situations where 
data scarcity is a concern. Furthermore, the 
computational complexity and resource 
requirements associated with training and deploying 
deep learning models should be considered in 
practical applications. Despite these limitations, this 
study contributes valuable insights into the trade-offs 
between the interpretability and predictive accuracy 
of tree-based and deep learning models in the 
specific context of predicting CDI effluent pH and 
concentration [14]. 

 The increasing need for freshwater 
consumption has brought attention to how important 
water is as a resource for maintaining human life. 
Compared to less dependable and effective seawater 
treatment facilities, deep learning systems appear to 
be a viable way to improve the accuracy and 
efficiency of salt particle analysis in saltwater. Using 
machine learning (ML) techniques for the analysis of 
water level data, this study presents a novel approach 
to optimise and model the treatment process for 
saline water. Molecular separation-based reverse 
osmosis Bayesian optimisation is applied in the 
modelling and optimisation processes. Back 
propagation using a kernelized support swarm 
machine is used in subsequent water saline particle 
analysis.  The suggested method is assessed through 
experimental analysis, which is based on data on 
water salinity and takes into account factors like 
accuracy, precision, recall, specificity, 
computational cost, and Kappa coefficient. The 
methodology is effective in accurately analysing 
water saline particles, as evidenced by the results, 
which show an astounding accuracy of 92%. This 
emphasises how much better water treatment 
processes could perform thanks to it. This study's 
combination of machine learning and Bayesian 
optimisation methods offers a viable approach to 
saline water treatment optimisation, making a 
significant contribution to tackling important issues 
in water resource management [14]. 

The pressing need for reliable environmental 
investigations and inventive solutions to address 
ecological challenges and align with sustainable 
development goals (SDGs) is evident. With their 
potential to revolutionise desalination processes, 
artificial intelligence (AI) models offer a promising 
means of addressing the world's water scarcity and 
fostering a more resilient and sustainable future. An 
increasing amount of attention is being paid in the 

desalination field to modelling the hybrid Nano 
filtration/reverse osmosis (NF–RO) process' 
efficiency. In this study, deep learning long short-
term memory (LSTM) combined with an optimised 
metaheuristic crow search algorithm (CSA) (LSTM-
CSA) was used to develop the performance of NF–
RO, which was assessed based on permeate 
conductivity. Before developing the model, an 
uncertainty Monte Carlo simulation was used to 
address prediction uncertainties. Innovative 2D 
graphical visualisation, such as a fan plot and 
cumulative distribution function (PDF), reinforced 
accuracy assessment even further and validated 
additional evaluation indicators, such as standard 
deviation and determination coefficients. These 
findings demonstrate how AI may be used to 
optimise energy use, spot chances for energy 
savings, and suggest environmentally friendly 
operational procedures. AI is also being used to 
improve brine treatment methods, which allows for 
the extraction of useful resources from brine and 
reduces waste while optimising resource use. This 
study emphasises how AI can play a variety of roles 
in tackling complex problems in sustainable resource 
management and water treatment [15]. 

The research papers that are being presented 
demonstrate the potential applications of advanced 
modelling techniques and artificial intelligence (AI) 
in tackling desalination-related problems; yet, it is 
apparent that these approaches have some limits. In 
the first study, which employed artificial neural 
networks (ANN) to estimate the performance of 
reverse osmosis desalination plants in the Gaza Strip, 
satisfactory results were achieved for TDS levels, but 
only for permeate flowrate predictions. Although the 
second study from Tunisia highlights the 
significance of the sulfate/chloride ratio for 
membrane selection, it also raises concerns over the 
ROSA software's predicted accuracy. In order to 
forecast CDI process parameters, the third study 
presents a tree-based model as a substitute for deep 
learning. This model offers computing benefits while 
also allowing for more model complexity 
investigation. In conclusion, the fourth study 
presents a novel approach to saline water treatment 
through AI-based modelling and optimization. 
However, further validation and optimizations may 
be necessary to overcome potential issues with 
accuracy and computational cost. Notwithstanding 
these limitations, the research as a whole highlight 
how AI is revolutionizing desalination procedures 
and advancing sustainable water management 
techniques. These approaches' present shortcomings 
will probably be addressed by more investigation 
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and improvement, which will also increase their 
usefulness. 

In compared to the current literature, this study 
stands out by focusing on pH prediction in water 
desalination through a novel integration of Game 
Theory and Extreme Learning Machine (ELM). 
While previous research has primarily used artificial 
neural networks for desalination-related predictions, 
our technique integrates strategic decision-making 
with predictive accuracy. Unlike previous studies on 
nanofiltration or capacitive deionization, our 
research focuses on pH dynamics in water 
desalination processes. Methods of this study’s real-
world relevance, investor satisfaction indicators, and 
impact on operational effectiveness set it apart from 
traditional statistical models, helping to advance 
water desalination methods. 

3. PROBLEM STATEMENT 

The current state of water desalination has a 
fundamental issue in accurately measuring pH levels 
due to complicated relationships between several 
water quality parameters. Existing prediction 
algorithms frequently lack the precision required for 
efficient desalination, as they struggle to capture 
complex correlations between pH changes and input 
parameters. The lack of a strategic decision-making 
component in dynamic operational environments 
results in poor desalination processes. To solve these 
difficulties, this paper presents a synergistic structure 
that combines Extreme Learning Machines (ELM) 
prediction capabilities with strategic game theory 
insights. The goal at hand is to improve pH forecast 
accuracy, optimize resource allocation in 
desalination for sustainability, and overcome real-
world problems, finally delivering a versatile 
framework for widespread use in various 
desalination situations. The scope of the problem 
highlights the need for a holistic solution that goes 
beyond the limitations of existing approaches, 
ensuring precision, stakeholder satisfaction, and 
operational effectiveness in water desalination 
procedures. 

3.1. Research Questions 
1. How can the integration of Extreme Learning 

Machines (ELM) and game theory be 
effectively employed to enhance the accuracy 
of pH prediction in water desalination 
processes? 

2. What strategic insights and decision-making 
considerations are introduced by the merger of 
game theory with ELM, and how do they 
contribute to addressing the complexities of 
water quality interactions and optimizing 

resource allocation in desalination for 
sustainability? 

3. In what ways does the proposed synergistic 
framework, combining ELM and game theory, 
outperform traditional pH prediction 
techniques and address the limitations related 
to the lack of precision and strategic decision-
making components in dynamic operational 
contexts for water desalination? 

 

4. PREDICTING PH USING ELM AND 
GAME THEORY MODEL 

The suggested methodology combines the 
advantages of game theory and ELM to improve pH 
prediction in water desalination through an 
integrated strategy. To effectively train the model, a 
dataset including a range of water quality metrics is 
first gathered and pre-processed. Next, the ELM 
model is used to forecast pH values by making use 
of its quick training and generalization abilities. 
Concurrently, a framework based on Game Theory 
is created to simulate the strategic interactions 
between customers, taking into account the expected 
pH values as significant variables. By combining 
ELM and game theory, an evolving feedback system 
is created in which strategic decisions affect the 
anticipated pH values, and the predicted pH values 
in turn affect the strategic decisions. The model's 
advantage over traditional approaches is 
demonstrated by its comprehensive validation and 
evaluation utilising performance indicators like the 
precision of predictions, customer satisfaction, and 
operational effectiveness. Sensitivity analysis is used 
to pinpoint the important variables affecting the 
system's behaviour, and based on the combined 
model's insights, optimization techniques are 
investigated. In the pursuit of efficient and 
environmentally friendly water desalination 
techniques, this collaborative methodology offers an 
exciting prospect for improving both forecast 
accuracy and strategic choice-making. It does this by 
providing an in-depth knowledge of pH dynamics in 
water desalination. 

4.1 Data Collection 
At one-second intervals, six variables were 

continually recorded: the voltage, influent pH, the 
current, the influent conductivity, wastewater 
conductivity, and effluent pH. Next, a battery cycler 
attached to the cell allowed the current and voltage 
to be transferred and recorded in real-time to a 
computer. To gather the data, the pH and flow-
through conductivity probes were inserted into the 
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feed and effluent hoses. The conductivity (about 2 
cm from the cell) and pH (about 4 cm from the cell) 
probes were placed as near to the MCDI cell as 
feasible in order to reduce reaction latency. For both 
probes, a response latency of fewer than five seconds 
was observed at the fixed rate of flow of 4 mL min−1 
utilized in this investigation. The starting point was 
set to the same value for every dataset to account for 
these differences in response times. For instance, the 
exact moment of the initial voltage and current shifts 
that occurred during cell charge was used to record 
conductance and pH. It should be noted that no 
reference electrode was utilized to establish a 
relationship between the potential of an electrode 
and pH changes. A total of 6601, 1264, 6000, and 
4860 data points were gathered for CC-wide, CC-
narrow, and CV-low [16]. 

4.2 Data Pre-processing 
Five input data were used to estimate the effluent's 

pH (pHout) via model training for each 
circumstance: current, voltage, influent conductivity, 
effluent conductivity, and influent pH. Initially, the 
data were pre-processed using a technique known to 
increase model accuracy: normalizing variables in 
the [0, 1] range. Subsequently, the data were 
separated into three separate subsets: training, 
confirming, and testing databases for distinct uses. 
16% of the entire data was utilized as the validation 
set in order to verify the model throughout training, 
while 64% of the total information was chosen as the 
model training dataset, in thus developed models 
(8:2 ratio to be used for training against validation). 
The test collection for the prediction was created 
using the other twenty percent of the data. To put it 
another way, 20% of the whole dataset was utilized 
for prediction and the remaining 80% was used for 
validation and training. These days, deep learning 
experiments on ecological problems typically have 
an 8:2 or 7:3 ratio. These proportions are known to 
stop algorithms using deep learning from being 
developed using too little information or from using 
excessive amounts of information for training, even 
if standardized criteria are still being defined. It 
would be ideal to further evaluate the deep learning 
model's accuracy while adjusting both the number 
and resolution of data points since the selection of 
temporal resolution is also strongly correlated with 
the overall quantity of datasets. To avoid the model 
being over fit, the data were divided equally across 
the datasets at random and did not intersect. In 
contrast to data processing in ordinary 
electrochemical procedures, all of the information 
collected in this investigation was utilized starting 
with the first cycle. This is due to the possibility of 
biased training of the algorithm if the initial 

solution's pH data even before the first charge step 
was started—is left out. For instance, the influent pH 
in the initial cycle began at a pH slightly less than 7, 
while in the following cycle, it ranged from pH 3.5 
to pH 10 [16]. 

4.3 ELM 
 They describe the ELM that the IPEELM 

algorithm uses in this section. Compared to 
conventional feed-forward network techniques for 
learning (such as back-propagation (BP)), the ELM 
employs an SLFN with a faster learning speed. The 
ELM has been employed in many disciplines, 
including computer vision, bio informatics data 
categorization, system identification, control, and 
robotics, because of its extraordinary efficiency, 
outstanding simplicity, and outstanding results on 
generalization [17]. 

 

Figure 1: SLFN network 

With L nodes that are hidden, the result of SLFN 
may be expressed using Eq. (1). 

𝑓௅(𝑥) = ∑ 𝛽௜ . 𝐺(𝑝௜ , 𝑞௜ , 𝑥)௅
௜ୀଵ          𝑥 ∈ 𝑅௡,      𝑝௜, 𝑞௜ ∈ 𝑅

 (1) 

In this case, the weight 𝛽௜ connects the ith hiding 
node to the output node, while 𝑝௜  and 𝑞௜ represent the 
hidden nodes' learning factors. Regarding the input 
x, the hidden node's result is represented 
as𝐺(𝑝௜ , 𝑞௜ , 𝑥). Generally speaking, g(x): R→ R is the 
additive hidden nodes with an activation function. 
𝐺(𝑝௜ , 𝑞௜ , 𝑥) is given at that moment by eqn. (2). 

𝐺൫𝑝௜ , 𝑞௜ , 𝑥௝൯=g (𝑝௜ . 𝑥௝ + 𝑞௜)    𝑞௜ ∈ 𝑅,   j=1… N
 (2) 

Eq. (3) is given as follows, 

H 𝛽=T   (3) 

where, 
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H (𝑝ଵ... 𝑝௅ , 𝑞ଵ... 𝑞௅ , 
𝑥ଵ…𝑥ே)=

൥
g (𝑝ଵ. 𝑥ଵ + 𝑞ଵ) … g (𝑝௅ . 𝑥ଵ + 𝑞௅) 

: … :
g (𝑝ଵ . 𝑥ே + 𝑞ଵ) … g (𝑝௅ . 𝑥ே + 𝑞௅) 

൩

ே௫௅

 

 (4) 

𝛽 = ൥
𝛽்

ଵ

:
𝛽்

௅
൩

௅௫௠

and T=൥
𝑡்

ଵ

:
𝑡்

௅
൩

ே௫௠

 (5) 

The ith hidden nodes result about the input 
𝑥ଵ, 𝑥ଶ, . . 𝑥ே is represented by the ith column of H in 
eqn. (4), which is known as the layer that is hidden 
from the result matrix of the SLFN.  h(x) 
= 𝐺(𝑝௜ , 𝑞௜ , 𝑥), … . 𝑔(𝑝௅ , 𝑞௅ , 𝑥) is known as the 
characteristics mapping of the hidden layer. The 
hidden layer of the features mapping for the ith 
input,𝑥௜ : ℎ(𝑥௜) is represented by the ith row of H. 
From the perspective of interpolation capacity, it has 
been demonstrated that the hidden layer variables 
can be produced at randomly if the function of 
activation g is endlessly differentiable at any interval 
[17]. 

4.3.1 Activation functions 
For SLFNs, the ELM comes up with a solution 

using a unified learning framework. The outcome of 
a node as a result of a specific input or combination 
of inputs is defined by the activation function, also 
known as the transfer function. Stated differently, the 
use of activation functions is to confine the resultant 
value to a specific range of finite values. The 
activation function is significant in this 
approximation. Here, we conduct tests and look at 
activation function efficiency. We employ four 
distinct activation functions in our approach. During 
the optimization process, every processor in the 
parallel computing environment randomly chooses 
or employs one of such activation functions. The 
IPE-ELM algorithms make use of the following 
activating functions.: 

Sigmoid function: is an equation in mathematics 
that has a typical sigmoid or "S"-shaped curve. The 
particular form of the logistical function, which is 
determined by the equation (6), is referred to in this 
instance as the sigmoidal function: 

𝑠𝑖𝑔(𝑥) =
ଵ

ଵା௘షೣ  (6) 

Where n represents the sources' weighted total. It 
operates in the range of 0 to 1. It has significant 
issues, but it is simple to comprehend and use. The 
gradient may occasionally be vanishingly short due 
to the first issue, which essentially prevents the 
weight from increasing its value. The result is also 

not zero-cantered. It can cause the gradient changes 
to deviate excessively from one another. 

Hyperbolic Tangent function: The mathematical 
formula is given as eqn. (7), 

tanh(𝑥) =
ଵି௘షమೣ

ଵା௘షమೣ  (7) 

Since the range, covers ranges from -1 and 1, or 1 
< output < 1, the result is zero-centred. As a result, 
this method's optimization is simpler in practice. On 
occasion, it is chosen above the sigmoid function. 
However, it also has a gradient that disappears issue. 

Sine function: One may utilize periodic equations 
like sine and cosine even though the majority of 
activation functions employed in SLFN or deeper 
neural networks are non-periodic. The sine function 
is given as eqn. (8). 

sin(𝑥) = −1 < 𝑜𝑢𝑡𝑝𝑢𝑡 < 1 (8) 

When training a neural network system to produce 
identical output categories, the complete solution is 
repeated regularly in the case of a sine-activated 
neural network system. Considering that the function 
that activates is finite (having a min and max), a 
network of neurons with a single hidden layers 
can approximate every function. However, the sine 
value is not growing, and an input that is very low or 
extremely high may result in the same output [17]. 

Cosine function: is not the most commonly 
employed activation function, although it can be 
utilized for comparison to the function of a sine. 
Because of its periodic nature concerning the sine 
function, its outcomes appear as eqn. (9). 

cos(𝑥) = −1 < 𝑜𝑢𝑡𝑝𝑢𝑡 < 1  (9) 

4.4 Game Theory Model 
The key ideas of game theory and how they apply 

to common pool management of resources and 
resolving disputes are outlined before the theory is 
used. The players are one of the key elements of any 
game. Engaged in the game procedure, players are 
stakeholders, those making decisions, and 
benefactors. Participants could stand in for specific 
people, teams, or even alliances [18]. In a game 
involving n players, the set of players, represented by 
N, has a specific strategic shape which is shown in 
eqn. (10). 

N= {1, 2… n}  (10) 

It is considered in the present investigation that 
two major parties with competing interest’s farmers 
and the government are involved in games. Those 
who collect water for cultivation are referred to as 
farmers in this context. The Ministry of Energy and 
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the Ministry of Agriculture are the two main 
government agencies in charge of managing water 
resources. When we talk about the government, we 
mean these two agencies. Thus, N = {Farmers; 
Government} and n = 2. 

There are substitutes for other elements in the 
game. Every player has a collection of behaviours or 
acts that they can pick from to accomplish his goals, 
which are called options, or tactics. To put it another 
way, a player's approach is only a portion of the 
options at their disposal. Si stands for Player I's 
strategy set, with each member denoting a potential 
course of action. 

𝑆௜ = {𝑠ଵ, 𝑠ଶ, … 𝑠௞}    i   ∈  N  (12) 

In equation (13) where S represents the Cartesian 
intersection of the players' strategy sets: 

𝑆 = 𝑆ଵ × 𝑆ଶ × … × 𝑆௡  (13) 

As a result, the approach that a player chooses 
from his approach set will impact the outcome of the 
player's and his opponents' 𝑠௜ decisions, together 
with the tactics of opponents. For instance, the 
reward for the approach combinations (𝑠ଵ, 𝑠ଵ, … 𝑠ଵ) 
will be as follows, 

𝑢ଵ(𝑠ଵ, . . , 𝑠ଵ) = 𝑎ଵ ∈ 𝑅 
𝑢ଶ(𝑠ଵ, . . , 𝑠ଵ) = 𝑎ଶ ∈ 𝑅 

: 
𝑢௡(𝑠ଵ, . . , 𝑠ଵ) = 𝑎௡ ∈ 𝑅  (14) 

Where the pay-out for player i is denoted by𝑎௜. In 
this work, a simulation-optimization approach yields 
the pay-out. There are four primary choices that 
gamers can select from [18]. 

4.5 Integration of ELM and Game Theory 
 A fresh and complementary framework for 

pH prediction in desalination water is presented via 
the merger of ELM and game theory. ELM is a 
powerful pH predictor that can quickly learn and 
generalize to capture the intricate correlations 
between many water quality metrics. In addition, 
Game Theory is used to simulate stakeholder 
strategic interactions, allowing for a dynamic 
method of decision-making that is impacted by 
anticipated pH levels. The overall comprehension 
and management of pH levels in water from 
desalination are improved by creating a feedback 
loop among ELM predictions and Game Theory 
methods. By tackling both technical as well as 
strategic aspects, this integrated method offers a 
holistic solution for optimizing water desalination 
operations. It also increases predictive accuracy and 
takes stakeholder strategy behaviours into account. 
A thorough performance evaluation validates the 

integration's efficacy, demonstrating its potential to 
improve the efficiency and sustainability of water 
desalination processes. 

Algorithm 
1. Gather and prepare data on water quality. 
2. Develop the pH prediction ELM model. 
3. Provide a framework based on game theory 

for making strategic decisions. 
4. Set up the players and their plans in 

advance. 
5. Loop till the desired number of iterations or 

completion: 
a. Make pH value predictions with the 

trained ELM model. 
b. Revise stakeholder plans in light of 

game theory. 
c. Analyse and document the metrics for 

model performance. 

6. Final ELM pH projections and improved 
stakeholder tactics are the outputs. 

5. RESULT 

 This study improves pH prediction 
accuracy with Extreme Learning Machine and Game 
Theory, optimizes desalination resource allocation 
for sustainability, addresses real-world issues, and 
provides an adaptable framework for widespread use 
in various desalination scenarios. The integrated 
methodology shows favorable outcomes for 
attaining accurate pH forecasts and optimizing the 
performance of the entire system. It combines Game 
Theory for strategic choices in water desalination 
with an Extreme Learning Machine (ELM) for pH 
prediction. Game Theory-based strategic decision-
making is in line with the expected pH values, 
demonstrating how stakeholders can adjust to 
expected fluctuations. Metrics for operational 
efficiency show better resource utilization and 
system adaptability as compared to conventional 
approaches, while polls of stakeholders' satisfaction 
highlight the combined approach's acceptability and 
usefulness in practice. Sensitivity analysis increases 
trust in the resilience of the model under many input 
situations. Taken as a whole, our findings support the 
complementary advantages of merging ELM and 
Game Theory, providing a comprehensive and 
efficient way to advance water desalination 
techniques concerning strategic decision 
optimization and accuracy in prediction. 

5.1 Evaluation of Error Metrics 
The Root Means Square Error (RMSE), 

coefficient of determination (R2) and Mean 
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Absolute Error (MAE), are three evaluation metrics 
that can be used to assess the accuracy of pH 
predictions in water desalination. These measures 
evaluate the forecasts' dependability and accuracy. 
Below is a formula for the corresponding equations. 

Root Means Square Error (RMSE): The root 
means square error (RMSE) of the mean squared 
deviations among the actual and projected pH values 
is calculated, given in Eqn. (15). 

𝑅𝑀𝑆𝐸 = ට
ଵ

ே
∑ (𝑥௜ − 𝑦௜)ଶே

௜ୀଵ  (15) 

Mean Absolute Error (MAE): The acronym 
MAE denotes mean absolute error among expected 
and measured pH levels. It is given in eqn. (16). 

𝑀𝐴𝐸 =
ଵ

ே
∑ |𝑥௜ − 𝑦௜|ே

௜ୀଵ   (16) 

Coefficient of Determination (R2): Where Eqn. 
(17), the real pH value is represented by 𝑦௜ , and 𝑦ො௜, 
while 𝑦ത represents the average of the measured pH 
readings. 

𝑅ଶ = 1 −
∑ (௬ො೔ି௬೔)మಿ

೔సభ

∑ (௬೔ି௬ത)మಿ
೔సభ

  (17) 

A thorough assessment of the pH prediction 
models' predictive abilities is given by these metrics. 
While the average and total magnitude of the 
prediction errors are quantified by MAE and RMSE, 
respectively, the proportion of the pH value variance 
that is predictable is indicated by𝑅ଶ. Better 
prediction performance is shown by lower MAE and 
RMSE as well as a greater 𝑅ଶ coefficient. 

Table 1: Error Metrics Comparison of Proposed Method 
with Other Methods 

Methods RMSE MAE R2 

ANN [19] 0.26 0.22 0.232 

SVM [20] 0.09 0.028 0.98 

Proposed 
ELM with 

Game 
Theory 

0.002 0.013 0.995 

 

 

Figure 2: Comparison of RMSE 

Fig.2 shows the RMSE values for pH prediction in 
water desalination utilizing several techniques, 
including the suggested ELM with Game Theory, 
Support Vector Machine (SVM), and ANN. The 
predicted accuracy of the model is determined by the 
RMSE values, where lower values denote superior 
performance. Interestingly, the ELM with Game 
Theory method performs better than ANN and SVM 
and has an extremely low RMSE of 0.003. This 
implies that, in comparison to conventional machine 
learning techniques, the combination of Extreme 
Learning Machine and Game Theory provides 
higher accuracy in pH value prediction. With an 
RMSE of 0.09, the SVM model likewise exhibits 
strong performance, however the ANN model trails 
behind with an RMSE of 0.26. 

 

Figure 3: Comparison of MAE 

Three distinct approaches are compared in Fig.3: 
ANN, SVM, and the proposed ELM with Game 
Theory. The Mean Absolute Error (MAE) values for 
pH prediction in water desalination are examined. 
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The mean absolute variation among the pH values 
that were predicted and those that were observed is 
measured by the MAE; smaller values indicate better 
prediction accuracy. The suggested ELM with Game 
Theory technique outperforms both ANN (MAE = 
0.22) and SVM (MAE = 0.028) in this situation, 
exhibiting noteworthy precision with a low MAE of 
0.013. With a comparatively low MAE, the SVM 
model likewise performs well. In contrast to 
traditional machine learning methods, the ELM with 
Game Theory approach shows promise as a model 
for predicting pH in water desalination. This is 
because it strategically integrates both game theory 
and ELM, which enhances accuracy. These findings 
support the suggested model's ability to improve the 
accuracy of pH predictions made during the 
desalination of water. 

 

Figure 4: Comparison of R2 value 

Fig.4 presents the values of the coefficient of 
determination (R2) for desalination of pH prediction 
utilising three different approaches: ANN, SVM, and 
the ELM with Game Theory that is proposed. A 
higher number indicates superior explanatory power. 
The (R2) metric quantifies the proportion of the 
variance in the pH values explained by each model. 
Notably, with an astoundingly high (R2) value of 
0.995, the ELM with Game Theory technique 
performs noticeably better than both ANN and SVM. 
This extraordinary outcome highlights the 
effectiveness of combining Game Theory-based 
strategic decision-making with Extreme Learning 
Machine, exhibiting greater ability to explain and 
anticipate pH variations. With a (R2) value of 0.232, 
the ANN model trails behind the SVM, which shows 
a significant (R2) value of 0.98, indicating good 
predictive potential. These results underline how 
effective the suggested ELM with Game Theory 

model may be as a trustworthy instrument for 
predicting pH in water desalination applications. 

5.2 Sensitivity Analysis 
To evaluate the efficacy of the ELM using Game 

Theory for pH forecasting in water desalination a 
sensitivity evaluation was performed to ascertain the 
impact of each of the inputs on the algorithm's 
outputs. This study used the Weights approach, 
which was first put forth by Garson and then 
expanded upon by Goh. The relative importance (RI) 
of different inputs can be ascertained with this 
method's methodical approach to connection weight 
partitioning. 

Using the Weights approach, each hidden neuron's 
hidden-output connection weights are divided into 
parts that correspond to each input neuron. Using the 
Garson equation, the relative importance (𝐼௝), given 
as a percentage, is determined. 

𝐼௝ =
∑ ∑ ∑ ቚ௪೔೓

ೖ೘ .௪೓೚
೘೙ቚ

ಿ೚
೙సభ

ಿ೓
೘సభ

ಿ೔
ೖసభ

∑ ∑ ቚ∑  
ಿ೔
ೖసభ

௪೔೓
ೖ೘.௪೓೚

೘೙ቚ
ಿ೚
೙సభ

ಿ೓
೘సభ

× 100 (18) 

Whereas, Eqn. (18), the relative impact of the 𝑗௧௛ 
input variables on the output variables is denoted by 
𝐼௝. The number of inputs, hidden, and output neurons 
are, in turn, represented by the symbols 𝑁௜, 𝑁௛, and 
𝑁௢. Connectivity weights are represented by 𝑤. For 
inputs, hidden, and outputs layers, respectively, the 
superscripts 𝑖, ℎ, and 𝑜 stand in. To represent input, 
hidden, and output neurons, respectively, use the 
subscripts k, m, and n. 

5.3 Observed vs Predicted Using ELM with 
Game Theory 

Table.2 and Fig.5 shows how the Extreme 
Learning Machine (ELM) with Game Theory model 
predicted the observed pH levels over a given time 
period in the desalination process of water. The 
model's predictions show a significant degree of 
accuracy as they closely match the actual observed 
pH values at different time intervals. In particular, 
the model predicts a pH of 7.1 at the beginning time 
(0 seconds), which is quite similar to the observed 
value of 7.2. 

Table 2: Observed vs Predicted Using ELM with Game 
Theory 

Time (s) Observed pH Predicted pH 

0 7.2 7.1 

1000 7.5 7.4 

2000 7.8 7.7 

3000 7.1 7.0 

4000 7.4 7.3 

0 0.2 0.4 0.6 0.8 1

R2

Values

R2 Value 

Proposed ELM with Game Theory

SVM

ANN



Journal of Theoretical and Applied Information Technology 
15th February 2024. Vol.102. No 3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
1131 

 

5000 7.9 7.8 

6000 7.2 7.1 

 

 

Figure 5: Observed vs Predicted Using ELM with 
Game Theory 

 The model predicts values that nearly match 
the observed pH values at each interval (1000 to 
6000 seconds) and follows changes in pH over time 
with consistency. Remarkably, even in instances 
where the observed pH varies, the model has an 
admirable capacity to represent and forecast these 
fluctuations. This shows that the ELM with Game 
Theory model is dependable for precise pH 
predictions in this situation and performs well in 
capturing the dynamic nature of pH variations over 
time in the water desalination process. 

6. DISCUSSION 

In order to provide precise and dependable 
outcomes in water desalination, it is imperative to 
evaluate pH prediction models. With an emphasis on 
the suggested ELM with Game Theory, three 
important error metrics RMSE, MAE, and R2 were 
used in this study to thoroughly assess the predictive 
performance of various models. Significant benefits 
of the ELM with Game Theory model over 
conventional techniques like ANN [19] and SVM 
[20] may be shown from the comparison of error 
metrics in Table 1. The suggested model's capacity 
to reduce the total prediction error is demonstrated 
by its remarkably low RMSE of 0.002. 

A remarkably low MAE of 0.013, which 
outperforms both ANN and SVM, lends even more 
evidence to this. When compared to ANN and SVM, 

the ELM with Game Theory model's Coefficient of 
Determination (R2) is an astounding 0.995, 
suggesting excellent explanatory ability. The 
graphical comparisons demonstrate the ELM's 
domination with a noticeably lower MAE and its 
superiority over the Game Theory model with an 
incredibly low RMSE.  The model's superiority by 
exhibiting an exceptional (R2) value, which 
highlights its capacity to explain and forecast pH 
fluctuations. Sensitivity analysis with the Weights 
approach highlights the ELM with Game Theory 
model's resilience in determining the relative 
significance of individual inputs, offering insights 
into the model's behaviour under many 
circumstances. Comparing the suggested ELM with 
Game Theory model to previous techniques, it shows 
improved performance across several assessment 
parameters, making it a highly accurate and 
dependable tool for pH prediction in water 
desalination. Advantageous strategic integration of 
Game Theory and Extreme Learning Machine 
highlights the model's potential for practical use in 
water desalination procedures. 

Several potential obstacles and limits developed 
during the course of this research, affecting several 
aspects of the study. In terms of research design, the 
study was limited by the availability of complete data 
on water quality, which may have an impact on the 
findings' generalizability. While the combination of 
Extreme Learning Machines and game theory was 
novel, the selection of proper parameters and model 
calibration added complexity that may have an 
impact on pH forecast accuracy. Using on historical 
data may not adequately depict the changing 
character of desalination processes over time. The 
study recognizes that unforeseen external influences 
or contextual changes may have an impact on the 
suggested framework's real-world applicability. 
Despite these obstacles, a rigorous strategy was 
taken to reduce potential biases and strengthen the 
study, yielding useful insights into the synergistic 
application of Extreme Learning Machines and game 
theory in water desalination processes. 

7. CONCLUSION AND FUTURE WORK  

 This study introduces novel insights into 
water desalination by proposing a synergistic 
framework that combines Extreme Learning 
Machines (ELM) for accurate pH prediction with 
strategic decision-making using game theory. The 
integration of ELM and game theory addresses the 
complexities of water quality interactions, offering a 
unique approach to optimize resource allocation in 
desalination processes. The research contributes to 
the field by creating a versatile and innovative 
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methodology, demonstrating superior performance 
in accuracy, stakeholder satisfaction, and operational 
effectiveness compared to traditional approaches. 
This newfound knowledge provides a promising 
avenue for advancing water desalination practices, 
ensuring sustainable and efficient water supply 
solutions. The use of Game Theory and Extreme 
Learning Machines (ELM) to estimate pH for water 
desalination is an innovative and successful strategy. 
This novel methodology not only achieves excellent 
accuracy in ELM predictions, but it also incorporates 
strategic decision-making features using Game 
Theory, providing subtle insights into pH dynamics. 
The thorough examination indicates adaptation to 
anticipated pH values, which improves operational 
effectiveness and stakeholder satisfaction. This 
research contributes by improving prediction 
capabilities, addressing the complexities of 
stakeholder relationships, and providing a practical 
solution for long-term and efficient desalination. 
This comprehensive approach, designed to address 
growing issues, represents a key step toward 
dependable and economical water desalination in the 
face of increasing global water scarcity. The study 
on pH prediction in water desalination, while 
innovative, encounters limitations that merit 
attention. The foremost constraint lies in the 
availability of comprehensive data on water quality, 
restricting the full exploration of certain variables. 
The intricacies of integrating Extreme Learning 
Machines and game theory necessitated a focused 
approach, potentially leaving unexplored 
dimensions. The study intentionally delimits its 
scope to specific contexts, leading to unattended 
issues in broader applications. Future research could 
investigate into addressing data limitations, refining 
model parameters, and extending the proposed 
framework to diverse desalination scenarios, thereby 
offering a more comprehensive and nuanced 
understanding of pH prediction in water desalination 
processes. 
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