
Journal of Theoretical and Applied Information Technology 
15th February 2024. Vol.102. No 3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
1049 

 

 OPTIMIZING SENTIMENT ANALYSIS IN ONLINE 
SHOPPING: UNVEILING THE PRECISION OF SIMPSON 

RULE-OPTIMIZED SUPPORT VECTOR MACHINE 
 

R. ANITHA1, D. VIMAL KUMAR2 

 
1Research Scholar, Department of Computer Science, Nehru Arts and Science College, India 

2Associate Professor, Department of Computer Science, Nehru Arts and Science College, India 
E-mail:  1anitharavi67@gmail.com, 2drvimalcs@gmail.com 

 
 

ABSTRACT 
In the domain of online shopping, customer reviews serve as invaluable repositories of insights, encapsulating 
the sentiments and experiences associated with a wide array of products. However, the extraction of nuanced 
sentiments from this extensive pool of reviews faces a formidable challenge due to the inherent complexities 
of language and context. Sentiment analysis, a pivotal tool for distilling sentiments from textual data, grapples 
with accurately deciphering nuanced expressions, sentiment subtleties, and contextual intricacies. To address 
these challenges, this study introduces the Simpson Rule-Optimized Support Vector Machine (SR-SVM) for 
sentiment analysis in online shopping. Built on Support Vector Machines (SVM) principles, SR-SVM 
leverages Simpson's rule to optimize sentiment pattern identification within the expansive landscape of online 
shopping reviews. Through the application of mathematical optimization techniques, SR-SVM refines 
sentiment analysis outcomes, promising a more nuanced understanding of customer sentiments. Preliminary 
results indicate a noteworthy enhancement in sentiment classification accuracy, underscoring the 
transformative potential of SR-SVM in optimizing sentiment analysis for online shopping platforms. This 
study opens a promising avenue for refining and advancing sentiment analysis methodologies in the dynamic 
and complex context of online retail. 
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1. INTRODUCTION  

Online shopping has transformed the retail 
landscape, offering consumers unprecedented 
convenience and various products at their fingertips. 
With just a few clicks, shoppers can explore a global 
marketplace, compare prices, and make purchases 
without leaving the comfort of their homes. This 
convenience has led to a significant shift in 
consumer behaviour, with a growing number of 
people shopping online [1], [2]. E-commerce 
platforms have become integral to modern retail, 
providing millions worldwide with a seamless and 
efficient shopping experience. Online shopping 
offers numerous benefits, including 24/7 
accessibility, various choices, and the convenience 
of doorstep delivery. Additionally, the ability to read 
and contribute to customer reviews enhances the 
decision-making process. Before purchasing, 
shoppers often turn to these reviews to gain insights 
into product quality, reliability, and the overall 
buying experience [3]. 

 
Sentiment analysis, synonymous with 

opinion mining, assumes a pivotal role in the 
intricate landscape of natural language processing, 

aiming to decipher the subtle emotional 
undercurrents interwoven within textual narratives 
[4]. In this era characterized by an exponential surge 
in digital data, the ability to distil sentiments from 
the deluge of information disseminated across social 
media, reviews, and customer feedback becomes not 
just advantageous but imperative [5]. Sentiment 
analysis, underpinned by the fusion of machine 
learning algorithms and sophisticated linguistic 
techniques, meticulously classify textual content, 
affording businesses and researchers the invaluable 
ability to glean insights into the prevailing public 
opinion – a compass guiding decision-making and 
strategy formulation [6]. 

 
The trajectory of machine learning within 

the sentiment analysis realm depicts a perpetual 
evolution journey. As technological strides push the 
boundaries of what is achievable, incorporating deep 
learning and natural language processing imparts 
newfound capabilities to models, allowing them to 
extract nuanced insights from the vast ocean of 
textual data [7]. The horizon promises the 
integration of real-time processing. This leap 
envisages machine learning models comprehending 
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contextual intricacies in an even more granular and 
timely fashion. The symbiotic relationship between 
machine learning and sentiment analysis stands as a 
linchpin, an ongoing collaboration essential for 
unravelling the complex tapestry of human emotions 
intricately woven into the digital fabric of 
conversations [8]. It is a journey where each 
advancement augments the precision of sentiment 
analysis and serves as a testament to the 
inexhaustible potential for understanding the rich 
tapestry of human expression in the digital age [9]–
[11]. 
 
1.1. Problem Statement 

Cross-domain sentiment variability 
presents a substantial challenge in sentiment 
analysis, as existing models need help transitioning 
seamlessly across diverse product domains. The 
problem lies in the need for models to grasp nuanced 
sentiments unique to each part, hindering their 
generalization capabilities. The lack of adaptability 
leads to diminished accuracy and effectiveness when 
applied to reviews spanning various industries. 
Addressing this challenge requires innovative 
approaches to enhance the model's capacity to 
discern sentiment expressions specific to different 
products, ensuring a more robust and adaptable 
sentiment analysis framework. 

 
1.2. Motivation 

The motivation for delving into the 
intricacies of cross-domain sentiment variability 
stems from the critical need to enhance sentiment 
analysis models' adaptability and generalization 
capabilities. Current models often need help 
seamlessly navigating sentiments across diverse 
product domains, resulting in diminished accuracy. 
This research aims to innovate and develop 
methodologies that empower sentiment analysis 
models to discern and understand nuanced emotions 
unique to each part. By addressing cross-domain 
variability, we aspire to elevate the reliability of 
sentiment predictions, making these models versatile 
and practical across various industries. The 
motivation lies in bridging the gap between existing 
limitations and the demand for robust sentiment 
analysis that can provide accurate insights in the face 
of diverse linguistic patterns and user expectations. 

 
1.3. Research Objective 

The primary objective of this research is to 
propose and evaluate the effectiveness of the 
Simpson Rule-based Support Vector Machine (SR-
SVM) algorithm in mitigating the challenges posed 
by cross-domain sentiment variability in sentiment 

analysis. The focus is enhancing sentiment analysis 
models' adaptability and generalization capabilities 
when transitioning across diverse product domains. 
By leveraging SR-SVM, we aim to develop a robust 
sentiment analysis framework that can discern and 
understand nuanced sentiments unique to each part, 
ultimately improving the accuracy and versatility of 
sentiment predictions across various industries. 

 
2. LITERATURE REVIEW 

"Cross-Correlation Attention" [12] 
introduces aspect-level sentiment analysis by 
incorporating cross-correlation attention 
mechanisms. It dynamically adjusts the model's 
focus based on intricate relationships between 
different aspects of textual data. This adaptive 
mechanism significantly enhances the granularity of 
sentiment analysis, allowing for a more nuanced 
understanding of sentiment expressions associated 
with specific elements. "Contextualized 
Bidirectional Language and Generative Adversarial" 
[13] presents a sentiment analysis model that 
integrates BERT with techniques. The technical 
innovation lies in enhancing the contextualized 
embeddings obtained from BERT through 
adversarial training provided by CBLBGA. 
Integrating transformer architectures with generative 
malicious processes contributes to improved 
accuracy in text sentiment analysis, marking a 
significant advancement in the field. "Vision-
Language Pre-Training (VLP)" [14] combines 
vision and language pre-training, capturing 
sentiment from both textual and visual modalities. 
The technical ingenuity broadens the scope of 
sentiment analysis, allowing the model to leverage 
richer information from diverse data sources. This 
extension represents a significant step toward 
achieving a comprehensive understanding of 
sentiments in the context of both text and visuals. 
 

"Customer Satisfaction" [15] evaluates the 
sentiments present in restaurant customer reviews 
during the COVID-19 pandemic. The essential 
contribution lies in using sentiment analysis 
methodologies to discern the evolving views of 
customers amid challenging circumstances. It 
demonstrates the adaptability of sentiment analysis 
methodologies to dynamic, real-world scenarios. 
"Dynamic Hypergraph Convolutional Network" 
[16] enhances the model's ability to discern nuanced 
sentiments from diverse data sources by adapting 
hypergraph structures. It represents a significant 
advancement in the evolving landscape of 
multimodal sentiment analysis. By introducing a 
dynamic hypergraph approach, the study contributes 
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to the adaptability and sophistication of sentiment 
analysis models dealing with multimodal data. 
"Product Feature Sentiment Analysis" [17] is based 
on Gated Recurrent Units (GRU) with Context-
Aware Pooling (CAP) tailored explicitly for product 
feature sentiment analysis, focusing on Chinese 
sarcasm recognition. It lies in the seamless 
integration of GRU and CAP techniques, enabling 
the model to effectively handle sarcasm nuances 
while analyzing sentiments associated with specific 
product features. This approach represents a 
significant advancement in sentiment analysis 
models, showcasing their adaptability to specific 
linguistic and contextual nuances, particularly in 
product reviews and sentiment expression. 

 
"Large Language Models" [18] explores 

sentiment nuances within the unique context of 
performing arts feedback. The study aims to enhance 
the understanding of sentiments expressed by 
audiences, critics, and enthusiasts in response to 
various performances. This approach represents a 
specialized application of sentiment analysis 
methodologies, catering to the intricacies of the 
performing arts domain. "Pre-trained Models" [19] 
focus on synthesizing existing knowledge and 
methods related to rapid learning for sentiment 
analysis. By systematically reviewing the efficiency 
gains and challenges associated with prompt-based 
learning approaches, the study provides insights into 
optimizing the usage of pre-trained models for 
sentiment analysis applications. "Prompt-based 
learning with Attention Mechanism" [20] integrates 
the prompt-based learning techniques with attention 
mechanisms to enhance the model's focus on specific 
aspect categories. By dynamically adjusting 
attention, the model achieves a more nuanced 
understanding of sentiments associated with 
different aspects. This novel methodology advances 
sentiment analysis by offering a refined and context-
aware approach to dissecting sentiments within 
distinct categories. 
 

"Coordinated-Joint Translation Fusion 
Framework" [21] attempts to integrate translation 
fusion and graph convolutional networks by 
enabling a coordinated analysis of multimodal data. 
It enhances the model's ability to capture interactions 
between different modalities and their influence on 
sentiments. "2-Tuple Fuzzy Linguistic Model" [22] 
is proposed for recommending health care services, 
grounded on aspect-based sentiment analysis. It 
incorporates fuzzy linguistic modelling to capture 
the uncertainty and imprecision inherent in 
healthcare service recommendations. Combining 

aspect-based sentiment analysis with fuzzy linguistic 
modelling provides a nuanced and contextually 
aware approach to recommending health care 
services. "Co-Space Representation Interaction 
Network" [2] operates in a shared space 
representation, facilitating the interaction between 
different modalities. It enhances the model's capture 
of complex relationships and interactions among 
diverse data sources. It advances multimodal 
sentiment analysis by introducing a novel network 
architecture focusing on shared space representation 
and interaction networks, providing a sophisticated 
framework for understanding sentiments in diverse 
contexts. Utilization of bio-inspired optimization 
makes better result in many classification tasks [23], 
[24], [33]–[41], [25]–[32]. 
 

"Cloze Task Network based Convolutional 
Hierarchical Attention Networks (CCHAN)" [42] 
offers a seamless solution for sentiment analysis 
across diverse domains. By integrating a Cloze Task 
Network (CTN) with Convolutional Hierarchical 
Attention Networks (CHAN), CCHAN addresses 
the intricate challenges associated with varying 
linguistic styles in different domains. Incorporating 
a CTN empowers the model with domain-agnostic 
representations, ensuring adaptability to diverse 
contextual nuances. Augmented by CHAN, CCHAN 
excels in capturing intricate hierarchical 
dependencies within textual data, allowing for 
nuanced sentiment analysis. This end-to-end 
architecture enhances efficiency and eliminates the 
need for complex preprocessing steps and domain-
specific feature engineering, making CCHAN a 
versatile and robust model for cross-domain 
sentiment classification. 
 

"Hybrid Neural Network techniques using 
Binary Coordinate Ascent Algorithm (HNN-BCA)" 
represents an approach to sentiment analysis. This 
method seamlessly blends the power of HNN with 
the efficiency of the BCA algorithm. The HNN 
aspect harnesses the pattern recognition capabilities 
of neural networks, enhancing the model's 
proficiency in deciphering the intricacies of 
emotional language. The BCA algorithm introduces 
a strategic optimization mechanism, streamlining the 
learning process for improved convergence and 
heightened performance. By incorporating binary 
representations within the coordinate ascent 
algorithm, the model navigates sentiment analysis 
feature spaces with enhanced computational 
efficiency. This fusion of neural network 
architecture and optimization strategies 
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demonstrates the continuous evolution of sentiment 
analysis.  

 
The need for the present work stems from 

the escalating significance of online shopping and 
the pivotal role customer reviews play in shaping 
purchasing decisions. As the e-commerce landscape 
continues to expand, businesses are increasingly 
reliant on understanding customer sentiments 
expressed in reviews to refine their products and 
services. However, existing sentiment analysis 
methodologies encounter challenges in accurately 
deciphering the nuanced language and contextual 
intricacies present in online shopping reviews. The 
current literature underscores the demand for 
advanced sentiment analysis techniques that can 
navigate these challenges effectively. 

 
The novelty of this work lies in the 

introduction of the Simpson Rule-Optimized 
Support Vector Machine (SR-SVM) for sentiment 
analysis in online shopping. While Support Vector 
Machines (SVM) are well-established in sentiment 
analysis, the integration of Simpson's rule for 
optimization represents a unique approach. This 
novel methodology aims to enhance sentiment 
classification accuracy and provide a more nuanced 
understanding of customer sentiments in the diverse 
landscape of online shopping reviews. The current 
literature emphasizes the need for innovative 
solutions that go beyond conventional sentiment 
analysis approaches, and SR-SVM contributes to 
this by merging mathematical optimization 
principles with advanced machine learning 
techniques. 

 
In the context of existing research, the 

proposed SR-SVM methodology offers a distinctive 
contribution by addressing the limitations of current 
sentiment analysis approaches. By optimizing 
sentiment pattern identification through Simpson's 
rule, this work presents a novel approach to refining 
sentiment analysis outcomes. The uniqueness of the 
SR-SVM model positions it as a pioneering solution 
in the realm of sentiment analysis for online 
shopping. As such, this research adds a valuable 
dimension to the current literature by introducing a 
novel methodology that holds the potential to 
significantly advance the field of sentiment analysis 
in the context of online retail.  

 
 
 

 

3. SIMPSON RULE-OPTIMIZED SUPPORT 
VECTOR MACHINE  
3.1. Defining Simpson's Rule Integration 
Strategy  

The integration strategy for Simpson's Rule 
(SR) within the context of Support Vector Machines 
(SVM) involves the weighted averaging of decision 
function values across distinct regions of the feature 
space. Let 𝑓(𝑥) represent the SVM decision function 
for a given data point 𝑥, which is a function of the 
feature vector. The integrated decision function 
𝐹(𝑥) incorporating SR is defined in Eq.(1), and it is 
the weighted sum of 𝑓(𝑥) values across regions 𝑅 
of the feature space. 

𝐹(𝑥) =  𝑤 . න 𝑓(𝑥)𝑑𝑥
ଵ

ோ

ே

ୀଵ
 (1) 

where 𝑁 represents the number of distinct regions 
partitioning the feature space, 𝑤  denotes the weight 
assigned to the 𝑖-th region, and the integral is 
computed using SR. 
 

The SR integration over a region 𝑅  is 
given by Eq.(2). 

න 𝑓(𝑥)𝑑𝑥
ଵ

ோ

= 

ℎ

3


𝑓(𝑥) + 4𝑓(𝑥ଵ)

+2𝑓(𝑥ଶ) + ⋯ . +4𝑓(𝑥ିଵ) + 𝑓(𝑥)
൨ 

(2) 

where ℎ is the step size, 𝑛 is the number of 
subintervals in the region, and 𝑥  represents the 𝑘-
th point within the region. 
 

The weights 𝑤  assigned to each region are 
determined based on the specific characteristics or 
importance of the region in the overall SVM 
decision function. These weights can be derived 
using Eq.(3), the domain knowledge or a learning 
process during model training. The normalization 
constant in Eq.(3) ensures that the weights 
collectively sum to 1, and the importance measure 
reflects the significance of each region in 
contributing to the integrated decision function. 

𝑤 = 
1

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
× 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 

(3) 

 
The final integrated decision function 𝐹(𝑥) 

is a combination of SVM decision function values 
weighted by the SR integration over different feature 
space regions, and the same is expressed as Eq.(4). 

𝐹(𝑥) = 


𝑤

3

ே

ୀଵ

𝑓(𝑥) + 4𝑓(𝑥ଵ) + 2𝑓(𝑥ଶ) +

… . +4𝑓(𝑥ିଵ) + 𝑓(𝑥)
൨ 

(4) 
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Algorithm 1: SR Integrated Decision Function 

Input: 
 𝑓(𝑥): SVM decision function for a given 

data point 𝑥 
 𝑁: Number of distinct regions 

partitioning the feature space 
 𝑤: Weights assigned to each region 

based on importance measures 
 𝑅: Regions of the feature space 
 ℎ: Step size for SR integration 
 𝑛: Number of subintervals in each region 
 𝑥: Points within each region 

 
Output: 

 𝐹(𝑥): Integrated decision function 
incorporating SR 

 
Procedure: 

1. Initialize: Set 𝐹(𝑥) to zero. 
2. For each region 𝑅: 

a. Compute weights 𝑤  : Determine 
the importance measures  
for each region and normalize the 
weights. 

b. Apply SR Integration: Calculate 
the integrated decision function 
for the region using SR. 

c. Weighted Summation: Update 
𝐹(𝑥) by adding the weighted 
integration value for the current 
region. 

 
3.2. Feature Selection in SR-SVM 

The relevance analysis of features is crucial 
for the overall effectiveness of the integrated 
decision function. The SVM decision function, 
denoted by 𝑓(𝑥), depends on the feature vector 𝑥. 
Feature relevance analysis involves the computation 
of feature importance scores, which directly 
contribute to the weighted decision function values 
across different regions. Mathematically, this can be 
expressed as Eq.(5). 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒(௫) = 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑓(𝑥), 𝑥) 

(5) 

where 𝑥 represents the 𝑖-th feature, and the 
correlation between 𝑓(𝑥) and 𝑥is computed to 
determine the relevance of the feature to the SVM 
decision function. 
 

The relevant features are selected for the 
SR-SVM model from the relevance analysis carried 
out using Eq.(5). The selection process involves 
choosing features with higher importance scores to 
enhance the integration strategy. The selected 

feature set is denoted as 𝑋௦௧ௗ  is expressed as 
Eq.(6). The term threshold in Eq.(6) is determined 
through cross-validation to ensure that only 
sufficiently relevant features are included. 

𝑋௦௧ௗ = ൛𝑥ห𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒(௫)

≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ൟ 
(6) 

 
An analysis of the integrated function 

across different regions is performed to assess the 
impact of the selected features on the integrated 
decision function. This involves evaluating how the 
inclusion of specific features influences the 
weighted decision function values. The impact on 
the integrated decision function, denoted by 
𝐹௦௧ௗ(𝑥), is expressed as Eq.(7). 

𝐹௦௧ௗ(𝑥) =  𝑤 .
ே

ୀଵ
න 𝑓(𝑥௦௧ௗ)𝑑𝑥

ଵ

ோ

 (7) 

where 𝑓(𝑋௦௧ௗ) represents the SVM decision 
function with only the selected features. 
 

The feature selection process is iterative, 
allowing for refinement based on the impact 
analysis. The selection criteria and threshold may be 
adjusted, and the integration impact analysis is 
repeated to enhance the relevance of features in 
contributing to the integrated decision function. 
 

Algorithm 2: Feature Selection 
Input: 

 𝑓(𝑥): SVM decision function for a given 
data point 𝑥 

 𝑋: Feature vector 
 𝑁: Number of distinct regions 

partitioning the feature space 
 𝑤: Weights assigned to each region 

based on importance measures 
 𝑅: Regions of the feature space 
 Threshold: Importance score threshold 

for feature selection 
 
Output: 

 𝑋௦௧ௗ: Subset of relevant features 
 𝐹௦௧ௗ(𝑥): Integrated decision 

function with selected features 
 
Procedure: 

1. Initialize:  
a. Set 𝑋௦௧ௗ  to an empty set. 

2. Relevance Analysis: 
a. Calculate the importance score 

for each feature. 
3. Feature Selection: 
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a. Select features with importance 
scores greater than or equal to 
the threshold. 

b. Form the subset 𝑋௦௧ௗ  with 
the selected features. 

4. Integration Impact Analysis: 
a. Modify the SVM decision 

function 𝑓(𝑥) to consider only 
the selected features. 

b. Evaluate the integrated 
decision function 𝐹௦௧ௗ(𝑥) 
using SR over different regions. 

 
3.3. Kernel Function Selection 

The choice of a suitable kernel function 
significantly influences the integrated decision 
function. A kernel function (𝐾(𝑥, 𝑦)) is employed to 
map input data points into a higher-dimensional 
space, facilitating the delineation of non-linear 
relationships. The integration strategy is inherently 
linked to selecting an appropriate kernel function in 
the SVM framework, expressed in Eq.(8). 

𝐾(𝑥, 𝑦) = Φ(𝑥). Φ(𝑦) (8) 

where 𝛷(𝑥) and 𝛷(𝑦) represent the mappings of the 
input data points 𝑥 and 𝑦 into the higher-dimensional 
space. 
 

The SVM decision function (𝑓(𝑥)) is 
kernelized to accommodate the transformed feature 
space, and it is defined using Eq.(9). 

𝑓(𝑥) =  𝛼𝑦𝐾(𝑥, 𝑥) + 𝑏


ୀଵ
 (9) 

where 𝑚 is the number of support vectors, 𝛼  are the 
Lagrange multipliers, 𝑦  is the class label of the 𝑖-th 
support vector, 𝑥 is the 𝑖-th support vector, and 𝑏 is 
the bias term. 
 

The integration strategy necessitates 
modifying the SVM decision function to incorporate 
SR-based integration, and Eq.(10) expresses the 
same. 

𝐹(𝑥) =  𝑤 . න 𝑓(𝑥)𝑑𝑥
ோ

ே

ୀଵ
 (10) 

 
The integration process considers the 

kernelized decision function 𝑓(𝑥), ensuring that SR 
is applied to the integrated decision function across 
different regions. The final integrated decision 
function, considering both the kernelized SVM 
decision function and SR integration, is given by 
Eq.(11). 

𝐹(𝑥) = 

 𝑤 . න ቆ 𝛼𝑦𝐾൫𝑥, 𝑥൯


ୀଵோ

ே

ୀଵ

+ 𝑏ቇ 𝑑𝑥 

(11) 

 
Eq.(11) encapsulates the comprehensive 

nature of the SR-SVM model, where the kernelized 
SVM decision function is integrated across various 
regions of the feature space. 
 

Algorithm 3: Kernel Function Selection 
Input: 

 𝐾(𝑥, 𝑦): Kernel function mapping input 
data points 𝑥 and 𝑦 into a higher-
dimensional space 

 𝑓(𝑥): SVM decision function in the 
transformed feature space 

 𝑁: Number of distinct regions 
partitioning the feature space 

 𝑤: Weights assigned to each region 
based on importance measures 

 𝑅: Regions of the feature space 
 
Output: 

 𝐹(𝑥): Integrated decision function 
incorporating SR with kernelized SVM 
decision function 

 
Procedure: 

1. Kernel Function Choice: 
a. Select an appropriate kernel 

function 𝐾(𝑥, 𝑦) based on the nature 
of the data and integration strategy. 

b. Define the mapping function 𝛷(𝑥) 
associated with the chosen kernel. 

2. Kernelized Decision Function: 
a. Transform the SVM decision 

function 𝑓(𝑥) using the selected 
kernel function 𝐾(𝑥, 𝑦). 

b. Express the kernelized decision 
function as a summation of support 
vectors, Lagrange multipliers, class 
labels, and the bias term. 

3. Integration Modification: 
a. Modify the SVM decision function 

to incorporate SR-based integration. 
b. Express the integrated decision 

function 𝐹(𝑥) as a weighted sum of 
the kernelized decision function 
values over different regions. 

4. Overall Kernelized Integrated Decision 
Function: 
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a. Formulate the final integrated 
decision function, considering both 
the kernelized SVM and SR 
integration. 

b. Sum the weighted kernelized 
decision function values across 
different regions to obtain the 
comprehensive, integrated decision 

 
Algorithm 3 emphasizes the choice of an 

appropriate kernel function, the transformation of 
the SVM decision function, and the modification of 
the decision function to accommodate SR-based 
integration. The output includes the final integrated 
decision function (𝐹(𝑥)), which reflects the 
amalgamation of the kernelized SVM decision 
function and the integration strategy across various 
regions of the feature space. 
 

3.4. Hyperparameter Optimization 
The practical hyperparameter tuning is 

paramount for optimizing the performance of the 
model. The hyperparameters associated with the 
SVM and SR integration are crucial in shaping the 
integrated decision function. The optimization 
process is mathematically expressed as Eq.(12). 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
=  arg 𝑚𝑖𝑛ఏ 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) 

(12) 

where 𝜃 represents the set of hyperparameters, and 
the objective function 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) quantifies the 
model's performance, which considers factors such 
as accuracy or loss. 
 

Exploring the hyperparameter space 
involves systematically varying hyperparameter 
values and evaluating their impact on the model's 
performance. This exploration is often performed 
through techniques like randomized search in a grid. 
The hyperparameter space 𝛩 is defined as Eq.(13). 

𝛩 = {𝜃ଵ, 𝜃ଶ, … , 𝜃} (13) 

where 𝑛 represents the number of hyperparameters 
and each 𝜃 represents a specific hyperparameter 
value within its respective range. 
 

Cross-validation is employed to assess the 
performance of different hyperparameter 
configurations robustly. The objective function is 
evaluated over multiple folds of the dataset to 
mitigate the impact of variations in training and 
validation sets. The cross-validation performance 
metric is defined as Eq.(14). 

𝐶𝑉_𝑀𝑒𝑡𝑟𝑖𝑐 =  
1

𝐾
 𝑀𝑒𝑡𝑟𝑖𝑐(𝑀𝑜𝑑𝑒𝑙)



ୀଵ
 (14) 

where 𝐾 denotes the number of folds and 
𝑀𝑒𝑡𝑟𝑖𝑐(𝑀𝑜𝑑𝑒𝑙) represents the chosen evaluation 
metric for the 𝑘-th fold. 
 

The hyperparameters yielding the optimal 
performance are selected and used to update the SR-
SVM model. The updated hyperparameters 𝜃∗ are 
determined based on the optimization process 
expressed in Eq.(15). 

𝜃∗ = arg 𝑚𝑖𝑛ఏ 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) (15) 

 
These updated hyperparameters are then 

employed in the final SR-SVM model, ensuring an 
optimal configuration for both the SVM and SR 
integration. 

 
Algorithm 4: Hyperparameter Optimization 

Input: 
 𝛩: Hyperparameter space 
 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃): Objective function 

measuring model performance 
 𝐾: Number of cross-validation folds 

 
Output: 

 𝜃∗: Optimized hyperparameters 
 
Procedure: 

1. Hyperparameter Tuning: 
a) Initialize 𝜃∗  as the first 

hyperparameter configuration. 
b) Evaluate 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) for 𝜃∗ 

2. Hyperparameter Space Exploration: 
a) For each 𝜃 in 𝛩: 

 Update 𝜃∗ if 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) <
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃∗). 

3. Cross-Validation: 
a) Split the dataset into 𝐾 folds for 

cross-validation. 
4. For each fold: 

a) Train the SR-SVM model using 
the current hyperparameter 
configuration. 

b) Evaluate the model 
performance using 
𝑀𝑒𝑡𝑟𝑖𝑐(𝑀𝑒𝑡𝑟𝑖𝑐). 

5. Hyperparameter Update: 
a) Choose 𝜃∗ as the 

hyperparameter configuration 



Journal of Theoretical and Applied Information Technology 
15th February 2024. Vol.102. No 3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
1056 

 

yields the minimum cross-
validation metric. 

b)         Return 𝜃∗ as the optimized 
hyperparameters for the SR-SVM 
model. 

 
3.5. Evaluation 

The performance evaluation involves 
assessing the effectiveness of the integrated decision 
function across the feature space. The decision 
function 𝐹(𝑥) combines the kernelized SVM 
decision function and SR-based integration. It is 
evaluated over a validation set 𝑉 or through cross-
validation expressed as Eq.(16). 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐

=
1

|𝑉|
 𝑀𝑒𝑡𝑟𝑖𝑐(𝐹(𝑥), 𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙(𝑥))

௫∈

(16
) 

where |𝑉| represents the size of the validation set, 
𝑀𝑒𝑡𝑟𝑖𝑐(𝐹(𝑥), 𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙(𝑥)) denotes the chosen 
evaluation metric comparing the integrated decision 
function values to the true labels. 
 

Hyperparameters are analyzed within their 
specified ranges to find the impact of 
hyperparameter choices. The performance metric is 
observed as hyperparameters are systematically 
modified: 

𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐼𝑚𝑝𝑎𝑐𝑡

=  
1

|𝛩|
 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐(𝛩)

ఏ∈௵
 

(17) 

where |𝛩|represents the number of hyperparameter 
configurations explored, and 
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐(𝛩) signifies the 
performance metric associated with the 
hyperparameter configuration 𝜃. 

 
The relevance of selected features in 

contributing to the integrated decision function is 
crucial. The assessment involves analyzing the 
impact of each feature on the performance metric 
expressed in Eq.(18). 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

=
1

|𝑋௦௧ௗ|
 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟

௫∈ೞ

(1
8) 

where |𝑋௦௧ௗ| represents the number of selected 
features and 𝑥 signifies each selected feature. 
 

The generalization capability of the SR-
SVM model is evaluated on a separate test, the set 𝑇, 
to ensure its performance on unseen data. The 
generalization metric is defined as Eq.(19). 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐

=
1

|𝑇|
 𝑀𝑒𝑡𝑟𝑖𝑐(𝐹(𝑥), 𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙(𝑥))

௫∈்
 

(19
) 

 
This assessment provides insights into how 

well the SR-SVM model adapts to diverse data 
distributions. 
 

Algorithm 5: Evaluation 

Input: 
 𝐹(𝑥): Integrated decision function of the 

SR-SVM model 
 𝑉: Validation set 
 𝑇: Test set 
 𝑋௦௧ௗ: Subset of relevant features 
 𝛩: Hyperparameter space 

 
Output: 

 Hyperparameter Impact 
 Feature Relevance 
 Generalization Metric 

 
Procedure: 
1. Decision Function Evaluation: 

a) Evaluate the integrated decision 
function 𝐹(𝑥) over the validation 
set 𝑉. 

b) Compute the performance metric 
comparing 𝐹(𝑥) to the true labels in 
𝑉. 

2. Hyperparameter Impact Analysis: 
a) For each hyperparameter 

configuration 𝜃 in 𝛩: 
 Train the SR-SVM model 

with hyperparameters 𝜃. 
 Evaluate the performance 

metric on the validation set 
𝑉. 

b) Calculate the average performance 
metric over all explored 
hyperparameter configurations. 

3. Feature Relevance Assessment: 
a) For each selected feature 𝑥  in 

𝑋௦௧ௗ : 
 Evaluate the performance 

metric with only the 
selected features. 

b) Calculate the average performance 
metric over all selected features. 

4. Model Generalization: 
a) Evaluate the integrated decision 

function 𝐹(𝑥) over the test set 𝑇. 
b) Compute the generalization metric 

comparing 𝐹(𝑥) to the true labels in 
𝑇. 
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3.6. Refine and Validate 
The refinement process involves iteratively 

updating the model based on the insights gained 
from the performance evaluation. The model is 
refined by adjusting hyperparameters, feature 
selections, and integration strategies to enhance 
overall performance. The refinement process is 
mathematically expressed as Eq.(20). 

𝑅𝑒𝑓𝑖𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙
= 𝑅𝑒𝑓𝑖𝑛𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑀𝑜𝑑𝑒𝑙, 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

(20
) 

where 𝑅𝑒𝑓𝑖𝑛𝑒 (. ) represents the refinement process, 
and 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 indicates the current state. 
 

The refined model undergoes iterative 
validation to assess its performance improvements. 
The validation is conducted using the set 𝑉 or 
through cross-validation, providing a consistent 
evaluation framework. Eq.(21) represents the 
iterative validation process. 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

=
1

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 𝑀𝑒𝑡𝑟𝑖𝑐(𝑅𝑒𝑓𝑖𝑛𝑒𝑑 

ூ௧௧௦

ୀଵ

(2
1) 

where 𝑅𝑒𝑓𝑖𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙  signifies the model state 
after the 𝑖-th iteration, and Iterations represent the 
total number of refinement iterations. 

The refined model is further validated on 
the test set 𝑇 to ensure its generalization capability 
on unseen data. The validation metric is expressed as 
Eq.(22). This assessment externally validates the 
model's effectiveness beyond the training and 
validation phases. 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐
= 𝑀𝑒𝑡𝑟𝑖𝑐(𝑅𝑒𝑓𝑖𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙, 𝑇) 

(22) 

The refinement and validation process 
establishes a feedback loop with the integration 
strategy. The insights gained from performance 
evaluations influence how 𝑆𝑅 is applied, the 
relevance of features, and the choice of kernel 
functions, forming an adaptive integration strategy: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛ோௗ  

= 
 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒(𝑅𝑒𝑓𝑖𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙,  

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘) 

(23) 

where 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒(. ) represents the integration 
process incorporating feedback from the refinement 
and validation. 
 

Algorithm 7: Refinement and Validation 

Input: 
 Current Model: The current state of the 

SR-SVM model 

 Evaluation Results: Results from the 
performance evaluation stage 

 𝑉: Validation set 
 𝑇: Test set 
 Iterations: Total number of refinement 

iterations 
 
Output: 

 Refined Model: Model state after the 
refinement process 

 Iterative Validation Metric: Metric 
evaluating the refined model over 
iterations 

 Validation Metric: Metric evaluating the 
refined model on the test set 

 
Procedure: 

1. Model Refinement: 
a. Update the current model based 

on insights from the evaluation 
results. 

b. Set the Refined Model to the 
updated model. 

2. Iterative Validation: 
a. For each iteration 𝑖 from 1 to 

Iterations: 
3. Training: 

a. Train the 𝑅𝑒𝑓𝑖𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙  
using the updated model. 

4. Evaluation:  
a. Compute the average metric 

over all iterations to obtain the 
Iterative Validation Metric. 

5. Model Validation: 
a. Evaluate the Refined Model on 

the test set 𝑇. 
b. Compute the Validation Metric 

based on the model's 
performance on the test set. 

6. Integration Feedback Loop: 
a. Incorporate insights from the 

refinement and validation 
process into the integration 
strategy. 

b. Update the integrated decision 
function using the adapted 
integration strategy. 

7. Output Result: 
a. Return the Refined Model, 

Iterative Validation Metric, and 
Validation Metric as the 
outputs of the refinement and 
validation process in the SR-
SVM model. 
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3.7. Integration Culmination 
The final step involves configuring the 

model based on the insights gained from the 
refinement and validation process. Integration 
culmination integrates the optimal hyperparameters, 
feature selections, and an adapted integration 
strategy. Eq.(24) mathematically expresses the 
same. 

𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙
= 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒(𝑅𝑒𝑓𝑖𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙, 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 

(24
) 

where the Refined Model represents the model state 
after the refinement process, and Integration 
Strategy Feedback signifies the feedback loop with 
the integration strategy. 
 

To ensure the robustness and reliability of 
the final model, a comprehensive assessment of its 
performance is conducted. The Performance 
Assurance Metric is calculated using Eq.(25) and 
evaluates the final model on a validation set or 
through cross-validation. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐴𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐

=
1

|𝑉|
 𝑀𝑒𝑡𝑟𝑖𝑐(𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙(𝑥), 𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙(𝑥))

௫∈
 

(25
) 

where |𝑉| represents the size of the validation set, 
and 𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙(𝑥) denotes the true label for data 
point 𝑥. 

 
The deployment involves using the model 

to predict new, unseen data points. The deployment 
process is mathematically represented as Eq.(26). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑒𝑙𝑠 = 𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙(𝑈𝑛𝑠𝑒𝑒𝑛 𝐷𝑎𝑡𝑎) (26) 

where 𝑈𝑛𝑠𝑒𝑒𝑛 𝐷𝑎𝑡𝑎 represents new data points for 
which predictions are generated. 

The Integrated System ensures seamless 
communication between the model and external 
components, as expressed in Eq.(27). 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑆𝑦𝑠𝑡𝑒𝑚
= 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 (𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙, 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚) 

 

where 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 signifies the external 
components or systems with which the SR-SVM 
model is integrated 

Algorithm 8: Integration Culmination 

Input: 
 Refined Model: Model state after the 

refinement process 
 Integration Strategy Feedback: 

Feedback loop with the integration 
strategy 

 𝑉: Validation set 
 External System: External components 

or systems 
 Unseen Data: New, unseen data points 

 
Output: 

 Final Model: A configured model for 
deployment 

 Performance Assurance Metric: Metric 
assessing the final model's performance 

 Predicted Labels: Predicted labels for 
unseen data points 

 Integrated System: Integration with 
external systems 

 
Procedure: 

1. Final Model Configuration: 
a. Integrate the Refined Model with 

the Integration Strategy Feedback to 
obtain the Final Model. 

2. Model Performance Assurance: 
a. Evaluate the Final Model on the 

validation set 𝑉 to compute the 
Performance Assurance Metric. 

3. Model Deployment: 
a. Use the Final Model to generate 

predicted labels for the Unseen 
Data. 

4. Integration with External Systems: 
a. Integrate the Final Model with the 

External System to create the 
Integrated System. 

 
Algorithm 9 provides the overall steps 

involved in SR-SVM. 

Algorithm 9: SR-SVM 

Input: 
 𝑋: Input dataset 
 𝑌: Class labels for each data point in 𝑋 
 𝑁: Number of distinct regions 

partitioning the feature space 
 𝛩: Hyperparameter space 
 𝑉: Validation set 
 𝑇: Test set 
 Iterations: Total number of refinement 

iterations 
 External System: External components 

or systems 
 Unseen Data: New, unseen data points 

 
Output: 

 Final Model: A configured model for 
deployment 
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 Performance Assurance Metric: Metric 
assessing the final model's performance 

 Predicted Labels: Predicted labels for 
unseen data points 

 Integrated System: Integration with 
external systems 

 
Procedure: 

1. Define Integration Strategy: 
a. Specify the integration strategy, 

incorporating SR into the SVM 
decision function. 

2. Data Preprocessing: 
a. Clean and preprocess the input data, 

handling missing values and scaling 
features. 

3. Feature Selection: 
a. Choose relevant features based on 

their impact on the integrated 
decision function. 

4. Kernel Function Selection: 
a. Choose an appropriate kernel 

function for the SVM, considering 
the nature of the data and integration 
strategy. 

5. Hyperparameter Optimization: 
a. Fine-tune hyperparameters for the 

SR-SVM model through 
exploration of the hyperparameter 
space. 

6. Evaluation: 
a. Assess the SR-SVM performance 

on a validation set or through cross-
validation. 

7. Refinement and Validation: 
a. Refine the model iteratively based 

on performance evaluations. 
b. Validate the refined model on the 

test set and assess its generalization 
capabilities. 

c. Integrate feedback from the 
refinement process into the 
integration strategy. 

8. Integration Culmination: 
a. Configure the final model based on 

the refined model state and 
integration strategy feedback. 

b. Assess the performance of the final 
model on a validation set. 

c. Deploy the final model for 
generating predictions on new, 
unseen data points. 

d. Integrate the final model with 
external systems for practical 
utilization. 

 
4. CONSUMER REVIEWS DATASET 

The "Consumer Reviews Dataset," 
featuring over 34,000 reviews for Amazon products 
from Datafiniti's Product Database, is valuable for 
analyzing consumer sentiments and product 
performance. With comprehensive information, 
including product details, ratings, and review text, 
analysts can delve into diverse analyses. These 
include identifying the most-reviewed products and 
exploring the correlation between early reviews and 
factors like pricing and days available for sale. This 
subset dataset, part of a more extensive collection, 
offers a foundation for in-depth studies, including 
sentiment mapping for machine learning 
applications. Aligned with Datafiniti's mission of 
providing standardized databases, the "Consumer 
Reviews Dataset" is essential for researchers and 
analysts seeking insights into Amazon's consumer 
electronics landscape trends. For those desiring a 
more extensive understanding, access to the 
complete dataset is available through Datafiniti's 
Product API, enhancing its utility for professionals 
in the realm of e-commerce analytics and consumer 
insights.  

Table 1. Features of Consumer Reviews Dataset 

Feature Description 

id Unique identifier for each entry 

dateAdded 
Date when the entry was added 
to the dataset 

dateUpdated 
Date when the entry was last 
updated 

name Name of the product 

asins 
Amazon Standard Identification 
Numbers associated with the 
product 

brand Brand of the product 

categories 
Categories to which the product 
belongs 

primaryCateg
ories 

Primary category to which the 
product is assigned 

imageURLs 
URLs of images associated with 
the product 

keys 
Keywords or key phrases 
associated with the product 

manufacturer Manufacturer of the product 
manufacturer
Number 

Manufacturer's identification 
number for the product 

reviews.date Date of the consumer reviews 
reviews.dateS
een 

Dates when the reviews were 
observed or recorded 

reviews.didP
urchase 

Indicator of whether the 
reviewer claims to have 
purchased the product 
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reviews.doRe
commend 

Indicator of whether the 
reviewer recommends the 
product 

reviews.id 
Unique identifier for each 
review 

reviews.num
Helpful 

Number of users who found the 
review helpful 

reviews.ratin
g 

Rating given by the reviewer 

reviews.sourc
eURLs 

URLs of the sources from 
which reviews were obtained 

reviews.text Text content of the reviews 

reviews.title Title or summary of the reviews 
reviews.usern
ame 

Username of the reviewer 

sourceURLs 
URLs of the sources providing 
information about the product 

 
5. PERFORMANCE METRICS  

 True Positive Rate: True Positive Rate 
(TPR) is the ratio of correctly identified 
positive instances to the total actual 
positive instances. 

 False Postive Rate: False Postive Rate 
(FPR) is the proportion of negative 
instances incorrectly predicted as positive 
by the model among all actual negative 
instances. 

 True Negative Rate: True Negative Rate 
(TNR) is the ratio of correctly identified 
negative instances to total negative 
instances. 

 False Negative Rate: False Negative Rate 
(FNR) is the ratio of incorrectly identified 
negative instances to the total actual 
positive instances. 

 Classification Accuracy: Classification 
Accuracy (CA) is the proportion of 
correctly classified instances (both true 
positives and true negatives) among all 
instances in the dataset. 

 F-Measure: F-Measure (FM) is the 
harmonic mean of precision and recall, 
emphasizing balanced performance in both 
precision (positive predictive value) and 
recall (sensitivity). 

 
6. RESULTS AND DISCUSSIONS 
 
6.1. Positivity Analysis 

Figure 1 and Table 2 collectively serve as a 
comprehensive visual and tabular representation of 
the TPR and FPR metrics for three distinct sentiment 
classification algorithms: CCHAN, HNN-BCA, and 

SR-SVM. The graph visually encapsulates the 
comparative performance of these algorithms, while 
Table 2 offers precise numerical values 
corresponding to their TPR and FPR percentages. 
TPR signifies the algorithms' effectiveness in 
correctly identifying positive instances, while FPR 
reflects how they incorrectly classify negative 
instances as positive. This dual representation 
provides a holistic understanding of the algorithms' 
sensitivity and specificity in discerning sentiment, 
forming a basis for nuanced discussions. 
 

The TPR, indicating the algorithm's ability 
to identify positive instances accurately, unfolds 
distinctive insights into their performance. CCHAN, 
with a TPR of 63.228%, demonstrates moderate 
success in capturing actual positive instances. The 
incorporation of Cloze Task Network and 
Convolutional Hierarchical Attention Networks 
contributes to its contextual understanding, albeit 
with room for improvement. HNN-BCA exhibits a 
slightly higher TPR of 67.318%, showcasing 
improved sensitivity through the synergy of Hybrid 
Neural Network techniques and Binary Coordinate 
Ascent Algorithm. SR-SVM stands out with a 
remarkable TPR of 81.033%, emphasizing its 
superiority in accurately identifying positive 
instances. The robust performance of SR-SVM can 
be attributed to the intricacies of Simpson Rule-
Optimized Support Vector Machines, indicating 
efficient sentiment discrimination through optimal 
hyperplanes. 

 

 
Figure 1. True Positive Rate and False Positive Rate 

 
FPR measures the algorithms' propensity to 
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into their specificity and the ability to avoid false 
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positives. CCHAN presents an FPR of 43.791%, 
indicating a notable risk of labelling actual negative 
instances as positive. The combination of the Cloze 
Task Network and Convolutional Hierarchical 
Attention Networks, while offering contextual 
understanding, showcases a trade-off with 
specificity. HNN-BCA improves specificity, with a 
lower FPR of 35.412%, suggesting a more 
discerning nature in avoiding false positives than 
CCHAN. The Hybrid Neural Network techniques 
and the Binary Coordinate Ascent Algorithm 
contribute to a more balanced performance. SR-
SVM stands out again with an impressive FPR of 
20.260%, showcasing stringent control over false 
positives. The Simpson Rule-Optimized Support 
Vector Machines' capacity for finding optimal 
hyperplanes contributes to the algorithm's ability to 
avoid misclassifying negative instances. 
 

The significant analysis of TPR and FPR 
for the three algorithms sheds light on their strengths 
and weaknesses in sentiment classification. While 
CCHAN emphasizes adaptability and HNN-BCA 
balances sensitivity and specificity, SR-SVM excels 
in achieving both a high TPR and a minimal FPR. 
Understanding these intricacies is vital for selecting 
the most suitable algorithm based on the specific 
requirements of sentiment analysis tasks, where the 
balance between true positives and false positives 
plays a crucial role in determining the overall 
efficacy of the model. 
 

Table 2. True Positive Rate and False Positive Rate 
Classification 
Algorithms 

True Positive 
Rate (%) 

False Positive 
Rate  (%) 

CCHAN 63.228 43.791 

HNN-BCA 67.318 35.412 

SR-SVM 81.033 20.260 

 
6.2. Negativity Analysis 

Figure 2 and Table 3 collectively 
encapsulate the technical evaluation of TNR and 
FNR metrics across three distinct sentiment 
classification algorithms. This detailed scrutiny aims 
to uncover the algorithms' nuanced performance in 
correctly identifying negative instances and where 
they misclassify actual negatives. The graphical 
representation is a visual tool for discerning patterns 
and trends, while the tabular data provides precise 
numerical values essential for a quantitative 
understanding of algorithmic efficacy. 
 

Intricate distinctions emerge in dissecting 
the TPR, a pivotal metric gauging the algorithms' 

precision in correctly identifying positive instances. 
The initial algorithm demonstrates commendable 
sensitivity, capturing a noteworthy fraction of 
positive instances. The second algorithm exhibits an 
enhanced TPR, indicative of improved sensitivity 
through the amalgamation of Hybrid Neural 
Network techniques and Binary Coordinate Ascent 
Algorithm. The third algorithm, leveraging Simpson 
Rule-Optimized Support Vector Machines, stands 
out with an impressive TPR, underscoring its 
proficiency in accurately identifying positive 
instances. This superiority in sentiment 
discrimination is attributed to the algorithm's 
capacity for optimizing hyperplanes and effectively 
navigating the intricacies of sentiment feature 
spaces. 

 
Delving into the FPR, an indicator of the 

algorithms' proclivity to misclassify negative 
instances as positive, unveils notable intricacies. The 
initial algorithm exhibits a substantial FPR, implying 
a significant risk of erroneously labelling actual 
negative instances as positive. In contrast, the second 
algorithm demonstrates improved specificity with a 
lower FPR, showcasing a more discerning nature in 
avoiding false positives. Integrating Hybrid Neural 
Network techniques with Binary Coordinate Ascent 
Algorithm contributes to this enhanced specificity. 
The third algorithm maintains stringent control over 
false positives, substantiating its capacity for 
steering clear of misclassifying negative instances. 
This proficiency is rooted in the algorithm's 
adeptness at finding optimal hyperplanes by utilizing 
Simpson Rule optimization. 

 

 

Figure 2. True Negative Rate and False Negative Rate 
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The technical exploration of TNR and FNR 
for these algorithms provides a rich tapestry of their 
intricate performance dynamics in sentiment 
classification. The interplay between true negatives 
and false negatives, as well as true positives and false 
positives, underscores the algorithms' capabilities 
and points towards avenues for refinement in 
alignment with the nuanced demands of sentiment 
analysis tasks. 

 
 

Table 3. True Negative Rate and False Negative Rate 
Classificatio

n 
Algorithms 

True 
Negative 
Rate (%) 

False 
Negative 
Rate  (%) 

CCHAN 56.209 36.772 

HNN-BCA 64.588 32.682 

SR-SVM 79.740 18.967 

 
6.3. Classification Accuracy and F-Measure 

Analysis 
Figure 3 and Table 4 are pivotal 

instruments for the technical evaluation of three 
distinct sentiment classification algorithms: 
CCHAN, HNN-BCA, and SR-SVM. These two 
representations offer a comprehensive insight into 
the algorithms' comparative performance, focusing 
on Classification Accuracy and F-Measure. 
 

 

Figure 3. Classification Accuracy and F-Measure 
 

Classification Accuracy serves as a 
foundational metric, gauging the overall correctness 
of an algorithm in classifying instances. For 
CCHAN, the accuracy of 59.554% implies that the 
model correctly classifies sentiment in nearly 
59.55% of instances. This indicates a moderate level 
of correctness, leaving room for improvement. 

Moving to HNN-BCA, the algorithm demonstrates 
an enhanced accuracy of 65.934%, signalling a 
notable improvement in overall correctness 
compared to CCHAN. However, the standout 
performer in this category is SR-SVM, boasting an 
accuracy of 80.389%. This impressive accuracy 
underscores the algorithm's superior precision in 
sentiment classification. The notable variation in 
accuracy values across the algorithms indicates their 
differing abilities to classify sentiment correctly. The 
intricate workings of SR-SVM, particularly its 
utilization of Simpson Rule-Optimized Support 
Vector Machines, contribute to its heightened 
accuracy, showcasing the algorithm's efficacy in 
discerning sentiment with precision. This accuracy 
metric is a crucial benchmark, especially in 
applications where correct sentiment classification is 
paramount, such as customer feedback analysis or 
opinion mining. 

 
F-Measure, a harmonic mean of precision 

and recall, provides a more nuanced evaluation, 
which is precious in scenarios where achieving a 
balance between precision and sensitivity is crucial. 
CCHAN's F-Measure of 59.840% suggests a 
relatively balanced trade-off between precision and 
recall. HNN-BCA advances this equilibrium with an 
F-Measure of 66.084%, indicating an enhanced 
balance between precision and recall compared to 
CCHAN. However, the standout performance is 
again demonstrated by SR-SVM, boasting an 
impressive F-measure of 80.565%. This underscores 
the algorithm's exceptional ability to balance 
precision and sensitivity effectively, a crucial aspect 
in sentiment analysis where false positives and 
negatives have significant implications. The F-
Measure's incorporation of precision and recall 
offers a more comprehensive view of the algorithms' 
precision in sentiment classification tasks. While 
accuracy provides a broader overview of 
correctness, the F-Measure delves deeper into the 
nuanced interplay between true positives, false 
positives, and false negatives. SR-SVM's dominance 
in this metric suggests its adeptness at striking a 
delicate balance between minimizing false positives 
and false negatives, a testament to its robust 
sentiment classification capabilities. 

Table 4. Classification Accuracy and F-Measure 

Classification 
Algorithms 

Classification 
Accuracy (%) 

F-
Measure 

(%) 

CCHAN 59.554 59.840 

HNN-BCA 65.934 66.084 

SR-SVM 80.389 80.565 
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Comparing the performances of CCHAN, 
HNN-BCA, and SR-SVM across both Classification 
Accuracy and F-Measure unveils distinctive 
strengths and weaknesses. While demonstrating 
moderate correctness, CCHAN showcases a 
balanced trade-off between precision and recall. 
Incorporating Cloze Task Network and 
Convolutional Hierarchical Attention Networks 
contributes to its contextual understanding, but there 
is room for enhancement in precision. HNN-BCA 
strikes a more favourable balance with improved 
correctness and a commendable F-Measure, 
suggesting a refined equilibrium between precision 
and recall. The synergy of Hybrid Neural Network 
techniques and Binary Coordinate Ascent Algorithm 
contributes to its enhanced performance. However, 
SR-SVM emerges as the frontrunner, excelling in 
accuracy and F-Measure. Using Simpson Rule-
Optimized Support Vector Machines allows it to 
navigate sentiment feature spaces with heightened 
precision and sensitivity. 
 

The technical depth of this comparative 
analysis is pivotal for decision-makers seeking to 
implement sentiment classification algorithms in 
real-world applications. It guides the selection 
process based on the specific requirements of the 
task at hand. In scenarios where a high level of 
correctness is paramount, SR-SVM's superior 
accuracy makes it a compelling choice. HNN-BCA's 
refined equilibrium offers an attractive alternative 
when striking a balance between precision and recall 
is critical. While showing moderate correctness, the 
contextual understanding of CCHAN might find its 
niche in applications where a nuanced interpretation 
of sentiment is vital. 
 
7. CONCLUSION 

Despite the promising aspects of the 
Simpson Rule-Optimized Support Vector Machine 
(SR-SVM) for sentiment analysis in online 
shopping, it is essential to recognize certain 
shortfalls in the current work. The inherent 
challenges associated with interpreting highly 
nuanced language and context in customer reviews 
persist, necessitating further refinement of the SR-
SVM model to comprehensively address these 
complexities. Additionally, the study primarily 
focuses on sentiment classification accuracy, leaving 
room for improvement in handling specific types of 
sentiments and expressions. Future research 
directions should concentrate on enhancing the 
robustness of SR-SVM by incorporating more 
sophisticated natural language processing (NLP) 
techniques to capture subtle nuances in customer 

sentiments. Exploring the integration of deep 
learning approaches and considering domain-
specific adaptations could further bolster the model's 
effectiveness. Moreover, investigating the 
scalability and adaptability of SR-SVM across 
different online retail domains and platforms is 
essential for its broader applicability. The study's 
acknowledgment of shortfalls and proposed future 
research directions paves the way for ongoing 
exploration and development, emphasizing the 
dynamic nature of sentiment analysis in the ever-
evolving landscape of online retail. 
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