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ABSTRACT 
 

The aim of this study is to address the challenges of pneumonia diagnosis under constraint resources and 
the need for quick decision making. We present the PneumFC Net, a novel architectural solution where our 
approach focuses on minimizing the number of trainable parameters by incorporating transition blocks that 
efficiently manage channel dimensions and reduce number of channels. In contrast to using fully connected 
layers, which disregard the spatial structure of feature maps and substantially increase parameter counts, we 
exclusively employ only convolutional layer approach. In the study, X-ray image dataset is used to train 
and evaluate the proposed Convolutional Neural Network model. By carefully designing the architecture, 
the model achieves a balance between parameters and accuracy while maintaining comparable performance 
to pre-trained models. The results demonstrate the model's effectiveness in detecting pneumonia images 
reliably. In addition, the study examines the decision-making process of the model using Grad-CAM, which 
helps to identify important aspects of radiographic images that contribute to the positive pneumonia 
prediction. Furthermore, the study shows that the proposed model, Pneum FC Net not only has the highest 
accuracy of 98%, but the total trainable model parameters is only 0.02% of the next best model VGG-16, 
thus establishing the potential of this new robust Deep Learning model. This research primarily addresses 
concerns related to mitigating significant computational requirements, with a specific focus on 
implementing lightweight networks. The contribution of this work involves the development of resource-
efficient and scalable solution for pneumonia detection. 

Keywords: PneumFC Net, Fully Convolutional Neural Network, Pneumonia Detection, Computer Aided 
Diagnosis 

 
1. INTRODUCTION  
 

Pneumonia, is one of the leading cause of death 
among infants globally and contributes 
significantly to infant mortality rates. Traditional 
diagnosis of pneumonia involves a combination of 
physical examination and imaging techniques, 
primarily chest X-rays and computed tomography 
(CT) scans. Radiologists interpret these images, 
relying on their expertise to detect signs of 
pneumonia and guide patient care decisions. 
However, this process is subjective, as 
interpretations can vary among radiologists. 
Moreover, the reliance on human interpretation has 
limitations, and the growing demand for diagnostic 
imaging can strain the healthcare system. The 

limitations related to human factors, subjectivity, 
and technical constraints highlight the necessity for 
more objective, scalable, and efficient methods of 
interpreting diagnostic imaging in pneumonia 
diagnosis (1). CNNs are one of the powerful deep 
learning methods that can easily identify complex 
patterns from images (2,3) . A typical CNN 
consists of many layers of artificial neurons, often 
including different types of layers that perform 
specific tasks. They are widely used to diagnose 
and classify diseases through imaging, from skin 
lesions to brain tumours and, more recently, lung 
conditions such as pneumonia. However, many 
challenges remain. One of the obstacles is the 
computational resources required to train robust 
CNN models. When dealing with huge datasets or 
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complicated models, training techniques are 
frequently complicated and time-consuming, 
requiring advanced hardware that is not always 
available. 

Transfer learning models such as VGGNet, 
AlexNet, MobileNet, and ResNet have been 
extensively used for a variety of tasks, including 
image classification in the medical domain. While 
these models have proven their efficacy, these 
model architecture were designed to do multiclass 
classification on dataset like Imagenet which has 
more than 100 classes. These models are an 
overkill for applications where there are only two 
classes like pneumonia detection and where input 
image is often grayscale with single channel. 
Moreover due to the complex network architecture 
and more number of channels the size of the 
models are heavy which in turn requires good 
computational resources. Hence   there is a growing 
need for lightweight models with fewer parameters, 
especially for tasks like X-ray image classification 
where there are resource constraints. In this article, 
we explore a novel approach to designing a 
lightweight X-ray image classification model that 
leverages the concept of progressive dimension 
reduction and channel count reduction through the 
use of max-pooling and point-wise convolution.  

 Additionally, CNN models tend to have a lack 
of detail behind the decisions, which means that 
although they can process images well, 
understanding the reasoning behind their decisions 
can be confusing. This kind of "black box" of CNN 
can make it difficult for them to be accepted by 
medical professionals. Despite these challenges, the 
success of CNN models in detecting pneumonia 
cannot be underestimated. They have consistently 
demonstrated the ability to provide high-quality 
analytics, quick decision-making, and the ability to 
handle large amounts of data. 

The main idea of this study is that a compact and 
robust CNN model can provide predictions equal to 
or even higher than existing methods, even with a 
much smaller size. Our efforts will explore this 
hypothesis and address critical questions regarding 
the balance between model complexity and 
diagnostic accuracy. 

The following are the manuscript’s main 
contributions: 

• A fully convolutional CNN model was trained for 
the classification of Pneumonia  

• The input images for the proposed method were 
gathered from different X-ray image datasets and 
suitable pre-processing was performed  

• Experiments were performed to come up with an 
architecture with 5 blocks similar to contemporary 
CNN architectures but with careful selection of 
number of channels and usage of transition blocks 
to keep the channels dimension and count in check 
at the same time retain as much spatial information 
as required for accurate prediction 

• The classification performance of the proposed 
model was compared with transfer learning models 
(trained on same dataset) like VGG and ResNet to 
prove its efficacy while having an apples to apples 
comparison  

• GradCAM method was used to attribute the 
predictions of the model back to individual pixels 

• Another comparison of the result was performed 
with methods proposed in related works 

The remaining sections are structured as follows: 
Section 2 shows results of literature survey. The 
proposed model, components of the model and 
architecture with model summary containing 
parameter count for each layer are described in 
Section 3. The results are presented and discussed 
in Section 4. Section 5 talks about future scope in 
section 6 concludes the manuscript [9]. 

2. RELATED WORKS  

Khan et al. (4) proposed a lightweight 
Convolutional Neural Network (CNN) architecture 
designed for the detection of COVID-19 cases in 
X-ray and CT scan images. The model consisted of 
seven convolutional layers, which made it efficient 
and required less computational power during 
training. Each hidden layer utilized the Rectifier 
linear unit (ReLU) activation function to handle 
negative inputs and avoid vanishing gradients. A 
pooling layer was placed in the initial layers to 
determine the maximum value for the pixels. 
Following convolutional layers had 256 filters 
which subsequently reduced to 128, 64, and 32 
filters. A dropout layer of 0.5 was inserted between 
two fully connected layers, and an output layer 
with softmax for categorical classification and 
sigmoid for binary classification was added after 
that. 
Asif et al. (5) presented a shallow convolutional 
neural network (CNN) model and assessed its 
effectiveness in comparison to established transfer 
learning models such as Inception V3, Xception, 
MobileNet, NASNet, and DenseNet201. The 
suggested model exhibited significant 
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improvements over the transfer learning 
counterparts; however, it featured a shallow 
architecture and incorporated a fully connected 
layer for classification. 
Alduaiji et al. (6) proposed a CNN model design 
which used images of size 256x256x3. The CNN 
structure included four convolution layers with 
increasing filters (64, 64, 128, 256) and 2x2 
kernels. The architecture integrated GAP as the 
final layer, enhancing class-specific activation 
maps and reducing overfitting risk. The model had 
32.95 million parameters, where the major 
contribution came from dense layer at the end. 
Nayak et al. (7) proposed an automated light CNN 
model where they used a GAP layer towards the 
end of the architectute. In the study the model was 
compared with other pretrained model. The model 
showed good AUROC score in comparison to other 
models but the ResNet model had better accuracy 
and F1 score. 
Senan et al. (8) proposed an architecture where, 
output features from a light weight CNN model 
were combined with texture based features to 
enhance pneumonia detection. A dense layer was 
used at the end of the architecture for the 
classification task. 
Souid et al. (9) used a modified MobileNet V2 
architecture for thoracic radiographic predictions. 
The study utilized transfer learning with metadata, 
the study employed the NIH Chest-Xray-14 
database, comparing their method's performance 
using AUC statistics. The average AUC was 0.811 
with over 90% accuracy. 
Oh et al. (10) in their study propose a patch-based 
deep neural network model, trained on small 
datasets, and decisions based on larger polls from 
random lung patches, and introduce a Grad-CAM 
saliency map for interpretation details 
Khan et al. (11) developed a model called CoroNet, 
based on the Xception architecture and trained on a 
dataset of COVID-19 and Pneumonia x-ray 
images, achieved an accuracy of 89.6%, with a 
precision and recall rate of 93% and 98.2% for 
COVID-19. 
Ozturk et al. (12) proposed a new model in their 
study for the automatic diagnosis of COVID-19, 
which achieved an accuracy of 98.08% for the 
classification of two variables (COVID vs No-
Findings). 
Nikolaou et al. (13) in their research developed a 
hybrid CNN using the EfficientNetB0 as a baseline 
model. The EfficientNetB0 was chosen due to its 
parameter efficiency, cost-effectiveness, and 
accurate classification of COVID-19 cases. The 
model included a fully dense layer for feature 

extraction. With around 5 million parameters, the 
CNN was faster and less likely to overfit, aided by 
20% and 50% dropout rates. These actions 
improved the model's functionality while lowering 
the chance of overfitting during training and 
validation. 
A recent study conducted by Hussein et al. (14) 
focuses on creating a lightweight convolutional 
neural network (CNN) that makes use of both 
convolutional and fully connected layers. Rather 
than depending more on the feature extractor, this 
method restricts the depth of the network and 
assigns the classification responsibility to the fully 
connected layer for categorization. Another 
relevant investigation, undertaken by Shi et al. (15) 
focuses on using chest X-ray (CXR) image data 
and makes use of a customized four-layer network 
with 11 × 11 or 3 × 3 kernels. Interestingly, they 
provide a pruning criterion that is weight-based in 
order to maximize network efficiency. Even with 
the pruning strategy used in this work to remove 
connections, there is still not enough depth in the 
network to enable reliable feature extraction. 
 
In conclusion, it is clear that the development of a 
novel CNN model is necessary. When doing 
predictive tasks, this model should give feature 
extraction precedence over a strong dependence on 
the fully connected layers. Reducing parameters is 
also an important way to optimize the model 
because it improves computational efficiency. As a 
result, the optimal approach should keep model 
parameters minimal to guarantee usefulness and 
effective use of resources. This method will not 
only improves the suggested CNN model's feature 
extraction performance but also makes it more 
appropriate for practical application. 
 
3. MATERIALS AND METHODS 

X-ray images, which serve as the dataset for model 
construction and validation is used in this study. 
These images were obtained from a medical 
institution in China, and they show different 
manifestations of pneumonia. We have developed a 
simple CNN model designed to handle the 
complexity of pneumonia detection. In order to 
manage the trade-off between model size and 
diagnostic precision while taking into account the 
constrained resources of the actual clinical context, 
this model was carefully built. We partitioned our 
data set into separate portions for training, 
validation, and testing in order to assess the model 
performance. Along with the development and 
evaluation of the model, we also analyzed the 
details of the model's understanding of problem 
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using visualization tools Grad-CAM by 
highlighting important areas in the X-ray image 
that affect the prediction of the model, thus 
providing insight into the inner workings of the 
model and improving reliability. 

3.1 Dataset 
The dataset used in this study consists of X-ray 
images of the chest, which are divided into two 
groups: pneumonia and normal. The database was 
provided by Guangzhou Children's Hospital in 
Guangzhou, China (16). A pneumonia group has 
images that show different levels and severity of 
the disease, while a normal group includes images 
without pneumonia. This data collection, given its 
source from a well-known hospital and its variety, 
serves as a reliable basis for the development and 
evaluation of our simple CNN model for the 
analysis of pneumonia. In study, the images used 
had varying dimensions, although the majority 
measured 255x255 pixels with a bit depth of 24, 
and they were all in PNG format. 

 

 

Figure 1: Sample images from dataset 

Table 1: Train and test split for dataset 

 
3.2 Preprocessing 
In the study all the images were resized by scaling 
them to 224 x 224 pixels, increasing the 
consistency of the dataset and making model 
training easier and the results comparable. Finally, 
we apply image normalization, which helps to 
bring consistency in pixel values across different 
images and enhances model's ability to learn 
meaningful patterns. The normalized pixel values 
are calculated by following formula (17): 
 
normalized_value = (pixel_value - mean_value) / 
standard_deviation                        (1) 

 
3.3 Deep Neural Network Classifier 
The proposed lightweight CNN model is designed 
to classify pneumonia cases into two categories: 
pneumonia and normal. Its primary objective is to 
detect pneumonia in patients using chest X-ray 
images while addressing the constraints of 
computational power and memory requirements. 
The parts that follow will give a general overview 
of this CNN model and go into detail on its 
construction and evaluation of results. 
 
3.3.1 Convolutional Layer 
The CNN model's core layers, which extract 
features, employ a collection of filters (kernels) 
with fixed sizes (such as 3x3, 5x5, or 7x7). To find 
pertinent features, these filters are convolved over 
the input images. Each block in the input image 
must match the size of the filter in order to 
complete the convolution operation, which entails 
element-wise multiplying each block by the filter. 
A feature map, which is the output matrix's 
matching position, is created by adding the results 
to create a single output value. Different filters are 
used to create a variety of feature maps and each 
represent a different aspect of the original image. 
An activation function like ELU or ReLU is used 
to add nonlinearity to the convolution operation's 
output (18). 
3.3.2 Batch Normalization 
Batch normalization is a critical technique that 
addresses the issue of internal covariate shift. It 
involves normalizing the intermediate feature maps 
within a batch of training samples to have zero 
mean and unit variance. By applying BatchNorm, 
the network becomes less sensitive to variations in 
the distribution of inputs, leading to improved 
training stability and faster convergence. The 
BatchNorm layer is typically inserted after the 
convolutional or fully connected layers in a CNN. 
BatchNorm has been shown to enhance the 
performance of CNNs by reducing the effects of 
internal covariate shift, enabling more effective 
gradient flow during back propagation, and 
improving the generalization capability of the 
network (19). 
We can define the normalization formula of Batch 
Norm as: 

 
(2) 

 

where _z and  represent the mean and 
standard deviation 

Class label Training Testing 

Normal 1340 3874 

Pneumonia 224 241 
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3.3.3 Exponential Linear Unit (ELU) 
Exponential Linear Unit (ELU) is an activation 
function commonly used in Convolutional Neural 
Networks (CNNs) to introduce nonlinearity. ELU 
addresses the limitations of ReLU by mitigating the 
"dying ReLU" problem, where neurons can 
become non-responsive and produce zero outputs 
for negative inputs, leading to dead activation 
units. ELU overcomes this issue by allowing 
negative values, which can help preserve gradient 
flow and improve network learning (20). 
The ELU activation function is defined as follows: 

 
 

(3) 
3.3.4 Max Pooling 
Convolutional neural networks (CNNs) frequently 
use the downsampling method known as max 
pooling to minimise the spatial dimensions of 
feature maps while retaining the most important 
features. To construct downsampled feature maps, 
it divides the feature maps into non-overlapping 
rectangular regions (often with a stride) and 
chooses the maximum value inside each zone. The 
input feature map is traversed by a sliding window 
during the max pooling procedure. The position in 
the output feature map that corresponds to each 
value is taken from the window's maximum value. 
The strongest and most representative traits are 
effectively kept while using max pooling, while 
less important aspects are eliminated (21). 
 
 
3.3.5 Global Average Pooling 
 
Global Average Pooling (GAP) is a technique used 
in Convolutional Neural Networks (CNNs) for 
spatial downsampling and dimensionality reduction 
of feature maps. GAP accomplishes pooling over 
the whole spatial dimensions of the feature maps, 
in contrast to max pooling or average pooling, 
which work on discrete portions of the feature 
maps. The feature maps are initially spatially 
averaged in the GAP procedure by averaging each 
feature map's width and height. The feature maps' 
spatial dimensions are reduced to a single value per 
channel by this pooling technique. The final results 

are then entered into classification tasks or used as 
features for later layers. GAP can capture global 
context and lessen the impact of local fluctuations 
or noise by averaging the entire feature map. Also, 
GAP provides a degree of spatial invariance, as it 
discards specific spatial information and 
emphasizes the overall distribution of features. One 
notable characteristic of GAP is its ability to 
generate a fixed-length feature vector regardless of 
the input size or spatial dimensions of the feature 
maps. This makes GAP particularly suitable for 
tasks like image classification, where the network's 
output is a fixed-size vector representing the 
image's class probabilities (22). 
 
3.3.6 Softmax and Negative Log Loss 
Softmax is an activation function that converts a 
vector of real numbers into a probability 
distribution. Negative Log Loss is a commonly 
used loss function to measure the dissimilarity 
between predicted probabilities and the true labels. 
In the context of classification tasks, the negative 
log loss calculates the average logarithmic loss 
over all samples in the dataset. The negative log 
loss penalizes incorrect predictions more strongly, 
encouraging the network to learn accurate class 
probabilities. Minimizing the negative log loss 
during training helps the network converge towards 
the optimal set of weights that produce accurate 
predictions. 
 
3.3.7 Architecture of Proposed Model 
The proposed CNN model is designed to perform 
image classification tasks. It consists of multiple 
convolutional layers, pooling layers, and a GAP 
layer. The model architecture is implemented in 
Python using the PyTorch library. The model 
follows a squeeze and expand way of adding 
channels and consists of two major groups of 
layers namely convolutional layers and Transition 
Layers as shown in figure 3. Each convolutional 
layer has some input channels on which a kernel of 
fixed size is convolved and is followed by batch 
normalization and activation function (ELU). In 
these convolutional layers, we have flexibility in 
specifying the number of input and output 
channels, kernel size (default:3x3), 
stride(default:1), and padding(default:0). 

After the a few convolutional layer, a transition 
layer, is introduced. This layer performs max 
pooling with a kernel size of 2 and stride of 2, 
reducing the spatial dimensions of the feature 
maps. Followed by a 1x1 Convolution to reduce 
the number of channels (as shown in figure 2) and 

is then followed by batch normalization and the 
ELU activation function. 
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Figure 2: Point wise convolution 
 
 
 

 
 

Figure 3: Model architecture: convolution and transition layer 
 
 

 
 

Figure 4: Proposed architecture of the proposed CNN model 
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Table 2: Model summary of the proposed cnn model for pneumonia detection 

Layer Kernel 
Size 

BatchNorm Activation Input 
Shape 

Output Shape Parameters Block 

Input - - - - [3, 224, 224] 0  
Conv2d 3x3 Yes ELU [3, 224, 224] [8, 222, 222] 216 + 16 1 
Conv2d 3x3 Yes ELU [8, 222, 222] [16, 220, 220] 1152 + 32 1 
Conv2d 3x3 Yes ELU [16, 220, 

220] 
[32, 218, 218] 4608 + 64 1 

MaxPool2d 2x2 - - [32, 218, 
218] 

[32, 109, 109] 0 1 

Conv2d 1x1 Yes ELU [32, 109, 
109] 

[8, 109, 109] 256 + 16 1 

        
Conv2d 3x3 Yes ELU [8, 109, 109] [16, 107, 107] 1152 + 32 2 
Conv2d 3x3 Yes ELU [16, 107, 

107] 
[32, 105, 105] 4608+64 2 

MaxPool2d 2x2 - - [32, 105, 
105] 

[32, 52, 52] 0 2 

Conv2d 1x1 Yes ELU [32, 52, 52] [8, 52, 52] 256 + 16 2 
        
Conv2d 3x3 Yes ELU [8, 52, 52] [16, 50, 50] 1152 + 32 3 
Conv2d 3x3 Yes ELU [16, 50, 50] [32, 48, 48] 4608+64 3 
MaxPool2d 2x2 - - [32, 48, 48] [32, 24, 24] 0 3 
Conv2d 1x1 Yes ELU [32, 24, 24] [8, 24, 24] 256 + 16 3 
        
Conv2d(with 
Padding) 

3x3 Yes ELU [8, 24, 24] [16, 24, 24] 1152 + 32 4 

Conv2d 3x3 Yes ELU [16, 24, 24] [32, 22, 22] 4608+64 4 
MaxPool2d 2x2 - - [32, 22, 22] [32, 11, 11] 0 4 
Conv2d 1x1 Yes ELU [32, 11, 11] [8, 11, 11] 256 + 16 4 
        
Conv2d 3x3 Yes ELU [8, 11, 11] [16, 7, 7] 3200+32 5 
Conv2d 3x3 Yes ELU [16, 7, 7] [32, 5, 5] 4608+64 5 
AvgPool2d 5x5 - - [32, 5, 5] [32, 1, 1] 64 5 
Conv2d 1x1 Yes ELU [32, 1, 1] [2, 1, 1] 64 5 
     Total 

Parameters 
32712  

 
  
The proposed architecture begins with a 224x224 
image and employs a sequence of three 
convolutional layers with outputs of 8, 16, and 32 
channels. These convolutional layers, depicted as 
grey blocks, perform feature extraction on the input 
image. The width of the blocks represents the 
number of channels, while the dimensions of the 
image are denoted length and breadth of the block. 
As a result of these three layers, the image size 
reduces to 218x218 with 32 channels. 
Subsequently, a transitional layer is applied, which 
incorporates maxpooling to downsample the feature 
maps while simultaneously reducing the depth back 
to 8. This transitional layer prepares the 
architecture for another cycle of increasing depth, 
accomplished through subsequent convolutional 
layers with outputs of 16 and 32 channels. This 

cycle is repeated four times until the image size 
decreases to 11x11 with 8 channels. 
  Following these repeated convolutional layers, 
another stack of convolutional layers is applied. 
However, instead of using a transitional layer, a 
global average pooling technique is employed. This 
global average pooling operation calculates the 
average value for each feature map, resulting in a 
fixed-length vector representation of the input, 
specifically 1x1x2. This vector is then reshaped and 
fed into a softmax function, which produces the 
final probability distribution over the classes. The 
step by step operation and parameter calculation is 
shown in the model summary as shown in table II. 
 
As it is evident from the architecture that the model 
only uses convolutional layers that prioritizes 
feature extraction over reliance on fully connected 
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layers for predictive tasks. Additionally, the total 
parameter count is only 32712 which makes this 
model very light weight. 
 
 
3.3.8 Model Training and Testing 
For training and testing firstly, the dataset is 
divided into two parts: training and testing data. 
PyTorch's DataLoader module is utilized to 
efficiently load and preprocess the data. In the 
training phase, the CNN model is trained using the 
training data. The chosen optimizer is 'SGD' 
(Stochastic Gradient Descent), which updates the 
model parameters to minimize the loss function 
during backpropagation. The learning rate is set to 
0.01, allowing the optimizer to control the step size 
during parameter updates. Additionally, a 
momentum value of 0.9 is specified, which helps 
accelerate convergence during training. The 
training process is performed iteratively over a 
fixed number of epochs (in this case, 20). Each 
epoch consists of multiple batches, and the batch 
size is set to 32. The model is trained by feeding the 
batches through the network, computing the loss, 
and backpropagating the gradients to update the 
model parameters. This process continues until all 
epochs are completed. Finally, the trained model is 
evaluated using the testing data. The test data is fed 
through the model, and the predicted outputs are 
compared with the ground truth labels. 

Table 3: Hyperparameters for model training 

Hyperparameter Value 
Optimizer SGD 

Learning Rate 0.01 

Momentum 0.9 

Epochs 20 

Batch Size 32 

 
3.3.9 Performance Evaluation 
In this investigation, assessing the performance of 
the suggested model forms a crucial aspect as it 
verifies the model's ability to diagnose pneumonia 
accurately. Primarily, the model's accuracy is 
determined, quantified as the proportion of correct 
predictions relative to total predictions made. 
Nevertheless, considering the potential inaccuracies 
in datasets, the evaluation also employs precision, 
recall, F1 scores as reliable metrics. 
 
 
 
 
 

4. RESULTS AND DISCUSSION 
 
For this section, a thorough evaluation was 
conducted on the proposed lightweight CNN 
models for Pneumonia detection using commonly 
used performance measures. The implementation of 
the models was carried out in Python programming 
language. The results obtained from the proposed 
models are reported and discussed in the 
subsequent subsections. Furthermore, a 
comparative analysis is presented, highlighting the 
differences between our proposed model and the 
existing models. 

4.1 Accuracy and Loss vs Epochs 
Throughout the training phase of a given classifier 
algorithm, accuracy and loss metrics are commonly 
used to assess the performance of the model over 
successive epochs. These metrics serve the purpose 
of controlling overfitting and understanding the 
state of predictions. It is generally assumed that 
accuracy and loss are inversely related, meaning 
that lower loss values correspond to higher 
accuracy values. 

 

Figure.5: Train and test accuracy over epochs 

 

Figure 6: Train and test loss over epochs 
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4.2 Confusion Matrix Analysis 
The confusion matrix reveals that out of 224 
instances where the true label was 0, the model 
correctly predicted 221 of them as 0 (TP), but 
erroneously classified 3 instances as 1 (FP). 
Similarly, out of 241 instances where the true label 
was 1, the model correctly predicted 234 as 1 (TP) 
but misclassified 7 instances as 0 (FN). 

 

Figure 7: Confusion matrix 
 
 

4.3 Receiver Operating Characterstic (ROC) 
Curve 

As seen in the graph below AUC of the ROC curve 
is close to 1, it indicates that the model has 
excellent discriminative ability and is able to 
effectively separate the positive and negative 
instances which is highly desirable 

 

Figure 8: ROC Curve 
 

4.4 GradCAM Output 
Shown below are the GradCAM output for the 
Pneumonia Images. The highlighted region show 
the importance of the region in prediction of 
pneumonia. 

 

Figure 9: GradCAM output 
 

4.5 Model Performance 
In the table 4 the accuracy, precision, recall, F1 
score, and model parameters of different models 
have been compared. These transfer learning 
models were trained on the same data as Pneum FC 
Net. It can be observed that the Pneum FC Net 
model stands out as an accurate and compact model 
compared to others. In terms of accuracy, the 
Pneum FC Net achieves an accuracy of 0.9806, 
which is higher than all the other models. This 
indicates that the Pneum FC Net model performs 
exceptionally well in accurately classifying 
pneumonia cases. Additionally, the proposed model 
demonstrates competitive precision, recall, and F1 
scores, showcasing its ability to maintain a good 
balance between correctly identifying positive 
instances (precision) and capturing all relevant 
positive instances (recall). 

Table 4: Comparison of proposed model with 
transfer learning model (size / parameter count in 
millions) 

Model Accuracy Precision 
 
Recall F1 Size 

Pneum FC 
Net 
(Proposed) 

0.98 0.98 0.98 0.98 
0.032 
M 

MobileNet 
V2 

0.96 0.96 0.96 0.96 
22.26 
M 

Resnet34 
0.95 0.95 0.95 0.95 

21.28 
M 

AlexNet 
0.97 0.97 0.97 0.97 

57.01 
M 

VGG-16 
0.97 0.97 0.97 0.97 

134.26 
M 

 

The distinguishing feature of the Pneum FC Net 
model lies in its notably reduced parameter count. 
With only 32,712 parameters, it surpasses all other 
models under consideration in terms of 
compactness. This advantage becomes particularly 
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evident when comparing it to larger models such as 
AlexNet with 57,012,034 parameters, VGG-16 with 
134,268,738 parameters, and even MobileNetV2 
with 2,226,434 parameters. Remarkably, the 
proposed model achieves commendable accuracy 
levels while maintaining significantly smaller 
model size. 

 

 

Figure 10: Comparison of proposed model with transfer 
learning models 

 

 

Figure 11: Parameter count for models 

 

4.6 Model Comparison 
In this section, we evaluate the performance of our 
proposed model in relation to existing CNN based 
approaches in the field for pneumonia detection. 
Our study demonstrates notable advancements, 
albeit with modest improvements, over the other 
studies. 

Table 5: Model Comparison 

 Accuracy Precision Recall F1Score 
Pneum 
FC Net  

0.98 0.981 0.98 0.98 

Souid 
et al. 
(9) 

0.94 0.991 0.38 0.558 

Oh et 
al. (10) 

0.889 0.834 0.859 0.844 

Khan 
et al. 

0.896 0.90 0.899 0.898 

(11) 
Ozturk 
et al. 
(12) 

0.87 0.89 0.85 0.87 

In summary, the thorough evaluation of our 
proposed lightweight CNN models for Pneumonia 
detection has provided valuable insights into their 
performance using a range of performance 
measures including accuracy and loss versus 
epochs, confusion matrix analysis, ROC curve, 
GradCAM output, and comprehensive model 
comparisons. Notably, the Pneum FC Net model 
emerged as a standout performer, achieving an 
accuracy of 0.9806 and demonstrating remarkable 
precision, recall, and F1 scores. The model's 
distinctiveness lies in its significantly reduced 
parameter count, exemplified by its 32,712 
parameters, which surpasses larger models while 
maintaining commendable accuracy levels. The 
model comparison against existing CNN-based 
approaches showcased notable advancements, 
signaling the potential of our approach to enhance 
the effectiveness of medical image classification in 
the context of pneumonia detection. These findings 
contribute to the ongoing discourse in the field and 
underscore the significance of our proposed model 
in achieving accurate and compact solutions for 
medical image classification tasks. 

5. CONCLUSION 
 

In conclusion, our research has effectively 
addressed the pressing need for an advanced 
lightweight pneumonia detection model. 
Recognizing the limitations of existing models, we 
undertook the development of a fully convolutional 
neural network (CNN) which prioritizes feature 
extraction over heavy reliance on the fully 
connected layer and meets the computational 
efficiency requirements. Our chosen method 
involved a meticulous process of model 
development and evaluation. Our CNN model 
showcased superior performance, outperforming 
pre-trained models across various metrics crucial 
for pneumonia detection. The need for a reliable 
and efficient solution was met through the 
successful implementation of our approach. The 
results obtained from our model, supported by 
receiver operating characteristic (AUC-ROC) 
analysis, demonstrated its robust discriminatory 
capabilities, effectively distinguishing between 
pneumonia and non-pneumonia cases. This 
outcome not only fulfills the primary objective of 
accurate detection but also adds a layer of 
confidence in the model's diagnostic abilities. In 
aligning with the need for interpretability in AI 
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systems, we incorporated the Gradient-Weighted 
Class Activation Mapping (Grad-CAM) method. 
This strategic inclusion allows for a visual 
understanding of the model's decision-making 
process, serving as a crucial bridge between 
artificial intelligence and human expertise. In 
essence, our research journey, driven by the 
identified need, navigated through methodical 
model development, and culminated in outstanding 
results. The implications can extend beyond 
pneumonia detection, offering a promising outlook 
for the broader field of medical AI.  
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