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ABSTRACT 
 

Over the past few decades, the integration of software into vehicles has experienced exponential growth. This 
expansion affects nearly all aspects of recent automotive engineering, encompassing various components. 
Simultaneously, testing becomes increasingly crucial. Significant efforts are required for software 
verification and validation to meet security, quality, and reliability standards. These essential tests become 
more complex and costly with the proliferation of functionalities, risking delays in market deployment. 

The integration of new technologies, such as predictive analysis based on machine learning algorithms, could 
anticipate the expected number of anomalies, improving resource management, reducing deployment time, 
and mitigating the risk of potentially disastrous software errors. 

This paper aims to assess the applicability of software defect prediction methods in the automotive domain. 
To achieve this, we will construct a dataset from real industrial software projects, anonymized and 
confidential. This effort will culminate in the creation of a new and unique database that will serve as the 
foundation for our study. Through a series of experiments, we will evaluate the relevance of various machine 
learning algorithms, aiming to surpass classical approaches in constructing our predictive analysis model. 

This paper introduces a novel solution for predicting software faults in the automotive domain. The 
innovation lies in the realistic approach, relying on the application of complex domain knowledge to a unique 
database derived from real industrial automotive software projects. Systematic efforts were exerted not only 
to optimize the usability of this dataset but also to achieve superior performance. 

Keywords: Machine Learning, Features Selection, Predictive Analysis, Automotive Software, Software 
Metrics, Automotive Software Projects, Software Defect Prediction 

 
1. INTRODUCTION  
 

Software development, particularly in automotive 
systems, faces a critical challenge in predicting and 
addressing defects. With a significant portion of a 
vehicle’s value now attributed to its electronic 
systems and software-driven functionalities, the 
automotive industry confronts the need for more 
sophisticated, reliable, and cost-effective defect 
prediction methods. Robert Charette [11] compares 
the complexity between an airplane and a car, 
demonstrating that it takes more lines of code (LOC) 
to operate a typical car than an airplane.  Dvorak et 
al. [17] indicate that a representative car from 
General Motors (GM) went from 10,000 LOC in the 

1970s to 100,000 LOC in 2010. Broy [7] asserts that 
modern premium cars can contain up to 100,000,000 
LOC. In earlier work, Broy [1] reveals that the 
development of electronics and software consumes 
up to 40% of the total development budget 
nowadays. Which highlights the pressing need for 
early-stage defect prediction to ensure quality and 
reliability. 

Numerous approaches and predictive models have 
been explored in software engineering to anticipate 
defects. Machine learning emerges as a pivotal tool 
in this landscape, enabling predictive analysis based 
on data. By discerning the appropriate mathematical 
transformations, machine learning models establish 
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correlations between inputs and outputs, catering to 
both linear and non-linear relationships. 

Model developers face an escalating need for 
comprehensive insights into their models’ learning 
processes. Various machine learning algorithms like 
discriminant analysis, support vector machines, 
logistic regression, or deep learning methods like 
neural networks, and hybrid methods have been 
explored in previous studies for software defect 
prediction. Similarly, an array of feature selection 
approaches, such as Chi-2 test, evolutionary 
methods, and hybrid techniques, have been proposed 
to enhance the result of prediction, but the 
combination of both have never been experimented 
with a real-world projects dataset from automotive 
industry. 

Throughout this research, we aim to assess how 
software defect prediction techniques could be 
effectively applied within the automotive domain. 
To achieve this, we will construct a dataset from real 
industrial software projects, anonymized and 
confidential due to the sensitive nature of the studied 
domain. However, the initial analysis of our dataset 
will reveal the need for several preprocessing steps 
to make it usable. 

In addition to conventional preprocessing 
techniques, we’ll explore methods to reduce the 
number of features, identifying correlations among 
them. Three feature selection techniques will be 
studied, selecting the most suitable for our dataset. 
We’ll then present the results of this method, 
highlighting key software metrics. 

Through a series of predictive analysis method 
experiments, we’ll evaluate the relevance of various 
machine learning classifiers (e.g., SVM, KNN, LR, 
RF, XGBoost), to build a strong predictive analysis 
model. 

The performance assessment encompasses, 
confusion matrices, and ROC curve and AUC score 
to compare the effectiveness of these methods on 
both raw and new datasets. The resulting selected 
features are subsequently utilized to compare the 
performance of the classifiers, providing a 
comprehensive insight into their comparative 
efficacy. 

2. SUBJECT AREA 

The importance of electronics in the automotive 
industry is on the rise, with car manufacturing also 
following this trend. Nowadays, cars heavily rely on 
electronics, and most of the added value in modern 
automotive comes from the integration of over 50 
embedded computers known as Electronic Control 

Units (ECUs) and numerous sensors within the 
vehicle’s physical system [28] [3]. These ECUs 
require embedded software to connect and function 
within the car network. To gain a competitive edge, 
car manufacturers focus on developing software that 
enables new safety, comfort, and economy functions, 
resulting in more complex software development. 
However, this complexity brings challenges such as 
increased time and cost pressures and the demand for 
high-quality software. 

One of the most challenging aspects within 
software engineering is automotive software 
development. Software errors and 
misunderstandings of specifications often arise in the 
late phases of the car’s life cycle, typically occurring 
when the car is almost ready for market launch. 

In the realm of software defect prediction, 
research has flourished due to the growing 
complexity of software. Detecting software failures 
plays a crucial role in ensuring software quality and 
reducing the risk of bugs that could lead to incorrect 
or unexpected behavior. Traditionally, statistical-
based approaches such as logistic regression, 
classification trees, and logical classification 
methods were used to predict software defects [10]. 
However, these methods have their limitations, and 
alternative approaches have been explored. 

Machine learning techniques have gained 
popularity in recent times for software defect 
prediction [24] [9]. The process involves several 
steps: first, the construction of a dataset, which can 
be collected from car manufacturing archives or 
software suppliers, and issue tracking systems used 
by software developers can serve as valuable sources 
for the dataset. Next, feature extraction techniques 
are applied to identify key features representing 
software complexity and development process. Once 
the dataset is labeled, a model is constructed and 
trained using the selected features. Finally, the model 
is evaluated using a test set, and predictions can be 
made based on the trained model. 

Through this approach, the automotive industry 
can anticipate potential software challenges and 
optimize development processes to ensure robust 
performance. The use of machine learning 
techniques empowers the system to predict the 
software’s reliability and functionality, ultimately 
contributing to improved safety, comfort, and overall 
performance of vehicles. 

In our previous work we experimented several 
supervised machine learning algorithms on publicly 
available dataset, our main goal was to experiment 
those algorithms to test their performance [18]. In 
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this paper we build a model based on machine 
learning algorithms and feature selection techniques 
adapted to perform on an industrial dataset. 

3. METHODOLOGIE 

Most original equipment manufacturers (OEMs) 
in the automotive industry adopt Model-Driven 
Development (MDD). In both literature and 
development standards, the software development 
lifecycle in the automotive domain is depicted 
through approaches based on the V-model [15], [2]. 

The process followed in each iteration within the 
production software development phase can be 
described using a V-model, essentially comprising 
the following steps for each iteration: first, 
requirements are defined or revised, followed by 
System Design (functional design and system 
architecture). After system design, Electronic 
Control Unit (ECU) specifications are established, 
which can also be termed as software design because 
the software is usually designed for specific ECUs 
and is commonly co-developed and optimized for 
particular functionalities. 

Next comes the implementation, where the 
designed software is put into action (in the form of 
code, either manually written in an object-oriented 
language or automatically generated from a 
functional model built using a domain-specific 
language like Matlab/Simulink). According to Broy 
et al. [8] and Bock et al. [5], the majority of 
automotive software is developed using graphical or 
model-driven programming approaches, such as 
Matlab Simulink [26], with automatic code 
generation, for instance, using TargetLink [16]. 
Following this process, correlated code and model 
files are available during the development stages. 

The objective of this study is to construct a dataset 
from industrial software projects, then to develop a 
predictive analysis system for automotive software 
by establishing connections between various 
software metrics and software performance. To 
achieve this, we collected extensive datasets from 
OEM archives, encompassing information about 
software defects, development processes, and other 
relevant metrics. Through feature extraction 
techniques, key indicators of software complexity, 
structure, etc... are identified. 

First, this paper aims to demonstrate the benefits 
of feature selection from complexe dataset of 
automotive software, in order to conduct an analysis 
for fault prediction and to introduce a robust machine 
learning model. To achieve these objectives, we 
define two hypotheses. 

The first hypothesis: The choice of feature subsets 
significantly impacts defect classification 
performance. 

The second hypothesis: Combine strong 
classifiers will lead to a stronger one that will 
demonstrate superior performance compared to 
individual classifiers when applied to our dataset. 

3.1 Data-related Challenges 

Confidentiality is the first difficulty faced on this 
domain. Our work is based on dataset acquired from 
four different automotive embedded software 
projects that have been developed for an automotive 
constructor within last seven years. 

From these projects we generated a new database 
based on software metrics. We acknowledge the 
limitations of relying on a single metric to 
encompass all aspects of interest. As a result, we opt 
to utilize a comprehensive set of metrics that 
specifically target internal attributes, such as code 
structure, size, and complexity. 

These selected metrics are chosen based on our 
expertise and with a primary objective of 
encompassing fault-related aspects of the source 
code that can be automatically measured using 
internal product metrics. By employing this diverse 
set of metrics, we aim to gain a deeper understanding 
of the software and identify areas that require 
attention in the context of fault prediction. 

3.2 Feature Selection 

In software fault prediction, features correspond to 
software metrics extracted from the source code. 
However, certain features might be redundant or 
irrelevant, necessitating the removal of the latter. In 
fact, this preprocessing step is anticipated to 
significantly enhance the classification performance. 
In this section we will present the methods that we 
used to optimize our dataset. 

Correlation-based feature selection ranks features 
based on their correlation with the target variable. It 
measures the linear relationship between each 
feature and the target and features with higher 
correlation values are considered more relevant. 

First, it calculates the correlation coefficient 
between each feature and the target variable. The 
correlation coefficient is calculated within various 
methods: Pearson correlation (for continuous 
variables) and Point-Biserial correlation which is a 
special case for a binary target variable and a 
continuous feature, in our case, the second approach 
is more adapted. [23] 
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Point-Biserial Correlation Coefficient measures 
the correlation between our target variable and a 
continuous variable. This coefficient quantifies the 
strength and direction of the linear relationship 
between the target and feature. 

Then, we rank the features based on their 
correlation coefficients, features with higher 
absolute correlation values are considered more 
relevant to the target. 

Even if, it only captures linear relationships, and 
may not consider non-linear dependencies between 
features and the target, this method is simple and 
computationally efficient. And can be used for both 
regression and classification tasks. 

Recursive Feature Elimination (RFE) is a wrapper 
method that recursively removes less important 
features by training the model iteratively and 
selecting the features with the lowest importance 
scores. 

Initially, the model is trained on the entire set of 
features. After the model is   trained, it ranks the 
features based on their importance or contribution to 
the model’s performance. This ranking is typically 
obtained from the model-specific feature importance 
scores. The least important feature(s) according to 
the ranking are removed from the dataset. The model 
is retrained on the reduced feature set (with the least 
important features removed). We iterate until the 
model’s performance no longer improves. [23] 

This method accounts for inter-feature 
dependencies, can work with any machine learning 
algorithm that provides feature importance scores. 

But it is more computationally intensive compared 
to correlation-based feature selection and forward 
selection. 

Last, forward selection starts with an empty 
feature set and iteratively adds one feature at a time 
based on its individual performance in improving the 
model’s predictive accuracy. 

It is a simple and computationally efficient 
method, that can be effective for small to medium-
sized feature sets. 

However, it may not always find the globally 
optimal feature subset. And can be prone to 
overfitting with a large number of features [21]. 

3.6 Software Metrics Employed for Data 
Construction 

In every engineering domain, including computer 
science, objective measurement is essential for rating 
and evaluating processes and systems. Software 

metrics, which measure the level of input belonging 
to a system product or process, play a crucial role in 
this context. For software metrics to be truly 
valuable, effective characterization and validation 
are necessary to establish their proven worth. 

Radjenovi´c et al. [29] presented an overview of 
software metrics and studied their applicability in 
software fault prediction. They categorized software 
metrics on three categories: traditional, object 
oriented and process metrics. Their overall analysis 
on the usage of metrics showed metric effectiveness 
in terms of size, programing language and overall. 

Based on the result of the study, to calculate the 
complexity of the program Mc Cabe cyclomatic 
complexity (CC) [27] was used. For size and 
complexity measures Halstead’s software metrics 
[22] were used. Even if the study presented weak 
effectiveness of those metrics, we consider them due 
to their simplicity of calculation, ease to use and 
language independent, not to mention that we wanted 
to confirm one the hypothesis, the correlation 
between automotive software complexity and effort 
and fault tendency. 

For the analysis of classes, three popular 
Chidamber and Kemerer (1994) [12], [14], were 
used WMC metric (Weighted Methods per Class) is 
defined as the sum of methods complexity CBO 
(Coupling between objects) and RFC (Response for 
a class) measures the coupling. Chidamber and 
Kemerer metrics are not only the most used in 
studies, but also demonstrated great effectiveness. 

And finally, Lines of Code (LOC) is any line of 
text in a code that is not a comment or blank line, due 
to its sole focus on code volume, Lines of Code 
(LOC) can only be utilized for comparing or 
estimating projects written in the same programming 
language and adhering to identical coding standards. 

3.6 Presentation of Mccabe Selected Metric 

McCabe Cyclomatic Complexity (CC) is a widely 
adopted software metric that plays a vital role in 
measuring the complexity of a software system. 
Introduced by Thomas 

J. McCabe in 1976, CC provides valuable insights 
into the maintainability, testability, and overall 
quality of software code. 

McCabe Cyclomatic Complexity stands out as a 
powerful and widely used measure to effectively 
manage and evaluate software complexity. Software 
complexity is a critical aspect that significantly 
influences software quality and maintainability. 
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McCabe Cyclomatic Complexity is based on the 
graph-theoretic approach. The complexity of a 
software program is determined by calculating the 
number of independent paths within its control flow 
graph [27]. The formula for calculating McCabe 
Cyclomatic Complexity is as follows: 

CC  =  E  − N  + 2P  (1) 

 

Where: 

E Represents the number of edges N Denotes the 
number of nodes 

P Signifies the number of connected components 

3.5 Presentation of Halstead selected metrics 

Halstead software metrics, proposed by Maurice 
H. Halstead in 1977, have become widely recognized 
and adopted for quantifying various aspects of 
software complexity and performance. 

Halstead software metrics offer a valuable set of 
measures to quantitatively evaluate software 
programs based on their code structure and 
implementation characteristics. The metrics are 
grounded in information theory and aim to measure 
the volume, effort, and difficulty of software code. 
they present complex metrics based on the 

number of operators and operands. [22] 

o n1: the number of unique operators 
o n2: the number of unique operands 
o N1: the total number of operators 
o N2: the total number of operands 
 
3.5.1 Halstead Program Volume 

The Halstead program volume (V) serves as an 
indicator of program size and is computed using the 
following formula [22]: 

V   =  N   ∗ log2(n)  (2) 

Where: 

N Represents the total number of program operands 
and operators n Denotes the number of distinct 
program operands and operators 

Halstead program volume quantifies the raw size of 
a program, regardless of its functionality. 

3.5.2 Halstead Program Difficulty 

Halstead program difficulty (D) is a measure of how 
challenging it is to comprehend the code logic and is 
calculated as [20]: 

D  =  (n1/2) ∗ (N 2 / n2) (3) 

Halstead program difficulty provides valuable 
insights into the complexity of the software code, 
aiding in identifying areas that may require 
improvement or refactoring. 

3.5.3 Halstead Program Effort 

Program effort (E) provides insights into the 
implementation effort required for a software 
program and is determined by the following equation 
[20]: 

E  = V  / D  (4) 

Where: 

D Is the program difficulty 

Halstead program effort represents the human effort 
needed to understand, implement, and maintain the 
software code. 

Halstead software metrics offer valuable tools for 
quantitatively evaluating software programs based 
on their size, effort, and complexity. 
3.6 Presentation of Chidamber and Kemerer 
selected metrics 

Chidamber and Kemerer software metrics, proposed 
by S.R. Chidamber and C.F. Kemerer in 1994 [12], 
have gained significant recognition in the field of 
software engineering for assessing software quality 
and complexity. 

The metrics aim to evaluate object-oriented software 
design characteristics and identify potential areas for 
improvement. 

3.6.1 Weighted Methods per Class (WMC) 

The Weighted Methods per Class (WMC) metric is 
used to measure the complexity   and size of a class 
by calculating the sum of complexities of all its 
methods [13]. The formula for calculating WMC is 
as follows: 

WMC = Σ complexity(method)     (5) 

Where “complexity(method)” the complexity of 
each local method is calculated using McCabe’s 
cyclomatic complexity. 

The WMC is not really an OO metric, but it is more 
of a size or complexity metric, depending on 
implementation. 

3.6.2 Coupling Between Objects (CBO) 

Coupling Between Objects (CBO) measures the 
degree of interdependence between classes in a 
software system [4]. It quantifies the number of other 
classes to which a class is coupled. In other words, 
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CBO indicates how many other classes the class in 
question interacts with. 

CBO is an essential metric to assess the 
maintainability and flexibility of a software system. 
Lower CBO values indicate better design and 
reduced interdependence. 

3.6.3 Response for a Class (RFC) 

Response For a Class (RFC) is used to determine the 
number of methods in a class that can potentially be 
executed in response to a message [30]. It quantifies 
the ability of a class to respond to various events and 
messages. The formula for RFC is as follows: 

RFC = Number of Methods Receiving a Message 
(6) 

When calculating RFC for a class, we consider all 
the methods in that class that are triggered in 
response to messages coming from outside the class. 
These messages can be in the form of method calls, 
event notifications, or other forms of communication 
between classes. 

RFC provides insights into the complexity and 
responsiveness of a class, helping in identifying 
classes that may require reorganization or better 
cohesion. 
 
4. SYSTEM DESIGN TO BUILD OUR 
MODEL 

4.1 Design methodology model 

To address the software defect prediction 
problem, we followed a structured process, the 
proposed framework is described in Figure 1. Firstly, 
we collected the necessary data for our analysis, an 
essential phase in any machine learning problem. 
Next, we conducted features extraction and 
definition to create an analytical dataset, enabling us 
to identify the relevant software defect factors. 

Due to excessive size, redundant, and irrelevant 
features of the original dataset, feature selection 
techniques were used to optimize it. To validate our 
primary hypothesis, machine learning algorithms 
were applied to both, the original dataset and to the 
optimized datasets resulting from the three distinct 
feature selection techniques. Comparative analysis 
of model performance across the three optimized 
datasets allowed us to identify the most suitable 
dataset resulting from the best-performing feature 
selection technique for our case study, which we 
further utilized in the subsequent steps. 

Data pre-processing was then performed to 
prepare the data for machine learning algorithms. 

The dataset was split into a training set (70%) and a 
testing set (30%). 

Following this, our pursuit to construct 
automotive software defect prediction models led us 
to create an ensemble classifier integrating six 
distinct learning algorithms: logistic regression, 
SVM, KNN classifier, random forests, gradient 
boosting, and XGBoost. These classifiers have 
diverse yet complementary performances. 

For robust model validation, we utilized 
techniques like Confusion Matrices, which helped in 
evaluating the models’ performance by analyzing 
their classifications. The corresponding performance 
of our model and of two basic classifiers is assessed 
in terms of the area under the receiver operating 
characteristic (ROC) curve (AUC) scores, which is 
widely used to assess the performance. 

Figure 1: Software defect prediction model design 

4.2 Data Pre-processing 

Before applying machine learning algorithms, 
several data treatments were performed to prepare 
the analytical dataset. This involved handling null 
values, treating outliers, and addressing garbage 
values. The resulting dataset consisted of 8954 rows 
and 8 columns. 

Subsequently, as specified feature selection was 
conducted to enhance the classification performance 
and increase the predictive capacity of the model. 
We considered three feature selections models that 
helps us first limit the number of features on 10 (8 
relevant, 1 description and target variable, and 
consider the most relevant features for our target 
variable. Details of this experiment will be included 
in result section (5.2.1). 

4.3 Feature description 

This section presents the features selected to 
conduct the second part of our experiment; these are 
the result of feature selection: 

 

 

 

 

 

Table 1: Presentation of selected features 

Feature Description 

SubProject_num Subproject number 
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CC Mc Cabe cyclomatic complexity 
(CC) 

LOC Lines of Code 

H(V) Halstead volume 

H(D) Halstead difficulty 
H(E) Halstead effort 

WMC Weighted Methods per Class 

CBO Coupling between objects 
RFC Response for a class 

Bug Bug presence (booleen ) 

 

4.4 Ensemble learning 

In this research study, we present an ensemble of 
classifiers tailored to address the intricate challenge 
of robust software defect classification. For our 
proposed model, the final prediction is determined 
by averaging the predictions from all the base 
classifiers. This ensemble approach is strategically 
designed to mitigate common issues encountered 
within software defect datasets, such as data 
imbalance. Notably, the ensemble’s robustness is 
fortified through the averaging of classification 
outcomes across multiple classifiers, which 
systematically mitigates uncorrelated errors, leading 
to a marked enhancement in the overall classification 
performance. 

Within our proposed Ensemble model, each 
individual classifier within the ensemble is tasked 
with predicting the probability that a software 
component pertains to the fault class. Subsequently, 
these output probabilities are averaged to yield the 
final probability estimation. A visual representation 
of the proposed model is described in Fig. 1, wherein 
six distinct base classifiers are synergistically 
amalgamated to constitute the model. These base 
classifiers are logistic regression, SVM, KNN 
classifier, random forests, gradient boosting and 
XGBoost. 

Each of the base classifiers employed within our 
proposed ensemble learning model is introduced in 
detail in the following sections. 

4.4.1 Logistic regression 

Logistic regression relies on the logistic function, 
also known as the sigmoid function: 

 1/ (1 + e − x)  (6) 

The logistic function is represented by an S-
shaped curve that can take any real value and map it 
to a value between 0 and 1. 

The coefficients (beta values) need to be 
estimated. The model’s output for each input value, 

X = [x1, x2, ..., xn],  (7) 

 

is calculated as follows: 

y = 1/(1 + e − (β0 + β1x1 + β2x2 + ... + βnxn))  (8) 

 Therefore, we need to estimate all the coefficients of 
the model: 

β0is the intercept. 

β1 is the coefficient for x1. 

Βn is the coefficient for xn. 

These coefficients are determined by maximizing the 
likelihood function, which involves maximizing the 
probability of the observed data: 

max(β0, β1) = Y(P (Y = yi) | (X = xi))  (9) 

To maximize this function, we take its derivative and 
find the points where it equals zero. Since the 
derivative of a product is complex to solve, we apply 
the logarithm to transform this product into a sum: 

max(β0, β1) = max(log(β0, β1))       (10) 

 

Several models are available to find the beta values 
that maximize this function (such as the Logit model 
from Statsmodels or LogisticRegression from scikit-
learn). Here, we apply the scikit-learn model. 

These models take various hyperparameters, which 
can be user-defined or set to default values. The goal 
is to find the best model, meaning the 
hyperparameters that yield the best results. To 
achieve this, we use GridSearchCV, allowing us to 
obtain the optimal model with the available data. 

4.4.2 SVM 
Support Vector Machines (SVM) are 

classification methods that extend linear classifiers. 
These methods essentially create a line that 
minimizes the distance between data points. The 
placement of this line depends on the support points, 
which are the points from each of the two distinct 
classes that are closest to each other. The distance 
between points is calculated using the L2 norm. 

The distance between the line (M = (Mx, My)) and 
a support point (D (a, b)), characterized by a 
directional vector ax + by + c = 0. It’s worth noting 
that regardless of the number of dimensions, this 
formula can be generalized for a plane of any 
dimension. 

Furthermore, SVMs can separate various types of 
data, not limited to linearly separable data, by 
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constructing a hyperplane (using a kernel function) 
to transform non-linearly distributed data into 
linearly distributed data. In other words, this method 
transforms” the space of data points into a space 
where these points are linearly separable, making 
separation straightforward. The kernel function is 
responsible for this transformation. 

4.4.3 KNN Classifier 

K-Nearest Neighbors (KNN) classification involves 
placing a point from the dataset X into a space of the 
same dimension as the number of features in X. The 
estimated Y value is determined by considering the 
k nearest neighbors to this new point and the Y 
values associated with those neighbors. 
Consequently, the Y value associated with this new 
point is a result of a “majority vote” among its k 
closest neighbors. If the majority of these neighbors 
are classified as 1, then this point will also be 
classified as 1. 

4.4.4 Random Forest 

Random Forests consist of multiple unpruned 
classification or regression trees, and these trees are 
constructed using random feature selection from 
bootstrap samples of   the training data [6]. In a 
classification problem, each data sample is passed 
through every tree in the random forest. Each tree 
independently classifies the data sample, and the 
random forest makes its final decision by selecting 
the class that receives the majority of votes from the 
individual trees. This ensemble approach has been 
shown by Breiman [6] to be effective, with error 
rates depending on the individual tree’s strength and 
the correlation between the trees in the forest. One 
notable advantage of random forests is their ability 
to handle high-dimensional data and mitigate 
overfitting, thanks to the feature subsets and 
bootstrapped samples used in each tree’s 
construction. Despite their effectiveness, results 
derived from random forests can be challenging to 
interpret due to the complexity of the ensemble. 

4.4.5 Gradient boosting 

Gradient boosting, introduced by Friedman [19], 
is a powerful technique for regression problems. It 
utilizes an ensemble of weak predictors, typically 
decision trees. The algorithm iteratively minimizes 
the error function through gradient descent. The 
gradient provides the direction for descending 
towards the minimum. The challenge lies in avoiding 
local minima and selecting an appropriate learning 
step size to prevent overshooting. For classification 
problems, gradient boosting can be applied by 
transforming them into regression tasks using an 

appropriate loss function [13], as expressed in the 
formula below: 

f (x) = w0 + w1h1(x) + w2h2(x) + ... + wnhn(x)                 
(11) 

where hi(x) is the output decision of the ith 
individual tree. The weights, wi, applied on the 
individual decisions are optimized by minimizing a 
differentiable loss function. 

4.4.6 XGBoost 
XGBoost (Extreme Gradient Boosting) is an 

efficient implementation of gradient boosting, 
renowned for its high performance and unique 
features. It improves upon traditional gradient 
boosting with algorithmic enhancements such as 
regularized objectives, parallelization, and advanced 
pruning to combat overfitting. XGBoost handles 
missing data, incorporates L1 (Lasso) and L2 
(Ridge) regularization, and employs an exact greedy 
algorithm for precise tree construction. Its scalability 
and speed make it a popular choice. While XGBoost 
is a standout implementation, gradient boosting 
encompasses other variations like LightGBM and 
CatBoost, each tailored to specific needs. The choice 
depends on factors like dataset size and problem 
requirements. 

5. RESULT AND DISCUSSION 

5.1 Conducting the Experiment 

Our experimental design comprehensively 
addresses various performance factors, including the 
effectiveness of feature selection techniques and the 
ensemble learning model introduced in this study. 
All the algorithms under evaluation were 
implemented using the Python programming 
language for consistency and ease of comparison. 

We employed the AUC (Area Under the Curve) 
score as the primary metric for assessing 
classification performance. The AUC score provides 
a robust measure of the model’s discriminative 
power and ability to distinguish between classes. 

To benchmark the performance of our proposed 
model, we compared it against the classifiers, 
XGBoost and random forests. These classifiers, 
previously utilized in our earlier work [18], have 
exhibited promising results, serving as strong 
reference points for our evaluation. 

Furthermore, this study assesses feature selection 
techniques to investigate Hypothesis 1 and 
determine their impact on classification 
performance. 

5.2 Analysis and discussion 
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In this section, we will be presenting the analysis 
of the experiment and the discussion. To verify the 
hypothesis stated in section 2 we will evaluate first 
the impact of feature selection on our model, then we 
will also be evaluating the performance of ensemble 
learning model. 

5.2.1 Feature Selection Performance Analysis 

Figure 2 illustrates the impact of three proposed 
feature selection techniques, Correlation based 
selection (Point-Biserial correlation), Recursive 
Feature Elimination (RFE), and Forward selection, 
on defect classification performance, as evaluated 
using the AUC measure. 

Figure 2 uncovers a noteworthy trend in the 
classification performance achieved by the 
Recursive Feature Elimination (RFE) technique. 
Remarkably, RFE not only surpasses both the PBC 
and Forward selection methods in our datasets but 
also achieves the highest AUC values while utilizing 
the fewest number of features to attain optimal 
classification accuracy (only 8 features). 

The list of features resulted by RFC technique is 
presented in section 3.3. this is   the adopted method 
that we used in pre-processing our dataset that we be 
used to compare the performance of our model. 
Which indicates, that by employing a compact yet 
highly informative feature subset, our classifier 
achieved notable AUC scores of 0.84. 

These results, providing empirical validation for 
Hypothesis 1. As anticipated, the strategic 
application of feature selection, specifically the 
Recursive Feature Elimination (RFE) technique in 
our study, not only substantially enhanced 
classification performance but also effectively 
reduced the requisite number of features to attain 
these enhanced results. Consequently, we find 
Hypothesis 1 to be supported by our findings. 

5.2.2 Proposed model Performance Analysis 

We present result of our six classifiers and our 
model in Figure 3. As previously mentioned, the 
ensemble learning model we have introduced 
comprises six base classifiers. These classifiers 
collectively contribute to the final classification 
decision by averaging their output probabilities. we 
choose to compare firstly the classifiers to our model 
by accuracy. 

Overall, the results obtained are very interesting, 
we can observe that our model acquires the best 
result, and KNN classifier obtained the weaker 
outcome. The proposed model has outperformed all 
classifiers even the strong one of them like XGBoost 
and SVM. 

In the context of boosting ensemble learning, the 
weighted combination of other learners has the effect 
of adjusting decision boundaries to accommodate 
minority class samples more effectively. This 
weighted combination is a result of each learner 
attempting to correct errors introduced by the others 
in the ensemble. Beyond addressing imbalanced 
data, boosting ensemble methods can also improve 
their robustness when faced with the presence of 
redundant or irrelevant features. These 
characteristics make boosting ensembles a robust 
choice for tasks like software defect classification. 

In conclusion, the performance outcomes, as 
presented in Figure 3, provide confirmation for the 
hypothesis 2 advanced in this study. As 
hypothesized, ensemble learning exhibits superior 
classification accuracy when compared to individual 
classifiers, particularly when the selection of base 
classifiers is grounded in their established 
performance. 

As a way to use our model with confidence, the 
model performance should be evaluated. 

Confusion matrices that include information about 
actual and predicted model outputs are shown in 
Table 2. 

Several model performance evaluation metrics 
can be generated from the confusion matrix as 
sensitivity, specificity, precision. . . 

We also used Receiver Operating Curve (ROC to 
measure the classification effectiveness of our 
predictive model run with training and testing data. 

ROC plots the sensitivity (true positive) versus 
specificity (false positive) of the model. 

Table 2. Confusion matrix for proposed model 

  Predicted output 

  + - 

Actual 
Output 

+ TP= 680 FN=5 

- FP=25 TN=2678 
 

The enhancement in performance resulting from 
the feature selection process, which retains only 
relevant software metrics, reveals an intriguing 
finding deserving of analysis. 

6. CONCLUSIONS AND FUTURE WORK 

Machine learning techniques have demonstrated 
significant promise in addressing such problem-
solving tasks, particularly considering the continual 
expansion of data within organizations. This paper 
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explored a dataset obtained from real industrial 
projects within the automotive industry, based on 
standard software development processes. The 
outcome was an unbalanced dataset that required 
adaptation. Initially, data treatment techniques were 
employed, followed by feature selection methods, 
aiming to enhance the performance of machine 
learning algorithms. Our study focused on various 
feature selection methods for software defect 
prediction, showing that the selection of a quality 
features significantly improves the AUC, this result 
was obtained by comparing the accuracy and the 
AUC result of two algorithms on the raw dataset 
(before applying any features selection techniques) 
and the obtained dataset. Subsequently, this dataset 
was used to train an ensemble model containing 
robust classifiers (both basic and ensemble). The 

obtained result was highly satisfactory, our solution 
demonstrated impressive performance, reaching 
nearly 94% accuracy. 

The model’s performance was evaluated using 
multiple metrics on test data. Our observations from 
the confusion matrix and the ROC curve instill 
confidence in the model’s accuracy and 
effectiveness. However, further analysis is 
imperative as this domain lacks extensive studies on 
this topic to our best knowledge. For future 
investigations, we aim to explore larger datasets to 
validate the performance of our model. We also want 
to experiment cross-organizations projects to test our 
model. 

 

 

 

Figure 1: Software defect prediction model design 
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Figure 2 : Comparing Feature Selection Techniques Based On AUC Score 

 
Figure 3: Results Of Software Defect Predictions Using Supervised ML Algorithms 
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