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ABSTRACT 
 

Today, there is a greater need than ever to focus on realistic solutions to efficiently manage the available 
frequency spectrum, due to the scarcity of this limited resource. Thanks to its opportunistic communication 
paradigm allowing fair access for all users, Cognitive Radio (CR) has been commonly recognized as an 
enabling technology to mitigate the spectrum scarcity problem and ensure optimal use of the available 
spectrum. Automatic Modulation Classification (AMC) is an indispensable function for carrying out 
various CR tasks, including link adaptation and dynamic spectrum access. Recently, Deep Learning (DL) 
networks have shown promising results in dealing with AMC compared to traditional methods. However, 
most DL-based approaches proposed so far have high computational and memory requirements, which 
make them impractical for resource-constrained IoT applications. To address this challenge, we introduce 
in this work a novel lightweight hybrid Neural Network for AMC, consisting of a combination of Gated 
Recurrent Unit (GRU) and Convolutional Neural Network (CNN) structures, in which the fully connected 
layers are omitted. Our proposed design outperforms the baseline models in terms of recognition accuracy 
across various Signal-to-Noise Ratios (SNRs), while maintaining a lightweight structure and low 
computational complexity. To further enhance model compression and resource utilization, we have 
introduced an Iterative Magnitude-Based Pruning approach combined with Quantization Aware Training 
(QAT). Simulation results using the RadioML 2018.01A dataset validate the efficacy of our proposed 
model. With a sparsity of 0.7, the pruned variant, comprising 80 GRU cells, attains an average accuracy of 
60.88% across all SNRs. Remarkably, it achieves a highest accuracy of 95.95% at 20 dB, while utilizing 
only 8 210 parameters. 

Keywords: Automatic Modulation Classification, Convolutional Neural Network, Gated Recurrent Unit, 
Cognitive Radio Networks, Spectrum Sensing, Resources-Constrained Objects, Pruning, 
Quantization Aware Training. 

 
1. INTRODUCTION  
 

The frequency spectrum is currently in short 
supply due to several factors, including the inherent 
scarcity of spectral resources, the exclusive use of 
allocated frequency bands by specific 
communication systems derived from the static 
spectrum assignment policy of governmental 
agencies, and the extreme growth of wireless 
technologies, which has resulted in high demand for 
spectrum [1]. 

Cognitive Radio (CR) has been widely 
considered as a promising technology to deal with 
the aforesaid challenges by introducing the 
opportunistic use of the spectral bands that are 
under exploited by authorized users.  

Operating as a Software-Defined Radio (SDR), 
CR dynamically monitors its surroundings, decides 
on spectrum occupancy, and adjusts its operating 
parameters to avoid interference with licensed users 
[1]. One of the main functional phases of the 
cognitive cycle is spectrum sensing. In this step, CR 
explores the radio environment, identifies the free 
channels, and gathers other meaningful information, 
such as modulation types of sensed signals. The 
latter is of paramount importance in detecting 
physical layer attacks and performing several CR 
tasks, including link adaptation and dynamic 
spectrum access [2]. 

Automatic Modulation Classification (AMC) 
involves the process of blindly acquiring knowledge 
about the modulation format of a detected signal. 
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As illustrated in figure 1, a typical AMC classifier 
involves two primary phases: “Signal 
preprocessing” and “Application of a classification 
algorithm”. In the initial phase, preprocessing tasks 
are applied to extract useful signal features such as 
symbol period, signal power, carrier frequency, and 
noise power [3,4]. In the second phase, a suitable 
classification method is employed to classify the 
modulation schemes present in the sensed signals 
[2]. 

 

Figure 1: General AMC Scheme. 

Generally, traditional AMC methods can be 
segregated into two primary classes: Likelihood-
based (LB) and Feature-based (FB) methods [5]. 
The former treat modulation recognition as a 
multiple-hypothesis testing challenge: the 
likelihood function is first calculated for each 
modulation hypothesis based on the incoming 
signal samples, and then the ultimate classification 
decision is established by evaluating the likelihood 
ratio tests against a predefined threshold. Whereas 
the latter addresses modulation classification by 
taking the following steps: first, retrieving features 
from intercepted signals and subsequently applying 
appropriate classifiers, such as K-Nearest Neighbor 
(KNN) and Support Vector Machines (SVM), 
trained with specific handcrafted features to classify 
different modulation types [6]. Cyclic statistics, 
wavelet transform, high-order cumulants and are 
the most commonly used features in FB schemes 
[6]. 

Both LB and FB techniques have their own 
advantages and limitations. While LB methods can 
guarantee optimal classification accuracy, they face 
challenges related to computational complexity and 
the necessity for prior information about intercepted 
signals, which is generally not afforded in real-
world situations. On the other hand, while FB 
solutions are easy to deploy and implement and less 
dependent on prior information about captured 
signals, they have limited performance under severe 
channel impairments [5–7]. 

Driven by the impressive achievements of Deep 
Learning (DL) in diverse fields like computer 
vision and image recognition, many papers have 
explored the use of DL networks to overcome the 
shortcomings of traditional techniques in dealing 
with AMC problem [8]. DL-based schemes 

revolutionize conventional approaches by operating 
as end-to-end learning systems, in which feature 
extraction and classification are seamlessly 
integrated. This joint learning framework enables 
the system to automatically extract discriminative 
features from raw data, eliminating the reliance on 
manually engineered features that often lack robust 
characterization capabilities [6]. 

As discussed in Section II, prior works on AMC 
techniques based on DL architectures can ensure 
high classification accuracy by leveraging the 
intelligence learned from bulk data and stored in the 
network. However, most DL-based approaches 
require a lot of energy, processing power, and 
storage space, which makes them impractical for 
resource-constrained scenarios like Internet-of-
Things (IoT) networks. 

In this paper, we aim to address the AMC 
challenge from the standpoint of resource-limited 
devices by proposing a lightweight DL architecture 
for modulation recognition. It is important to 
highlight that building a lightweight model is 
potentially possible by minimizing the quantity of 
trainable parameters within the layers. To make this 
reduction more significant, we propose, in this 
work, a hybrid DL scheme without dense layers. 
The latter, also known as fully-connected layers, 
refer to the layers whose inner neurons receive 
input from all neurons of their preceding layers and 
accordingly induce a lot of trainable parameters [5].  

Moreover, it has been noted that after the 
completion of the training process for a neural 
network, a considerable proportion of units remain 
inactive, functioning as dormant neurons [9-10]. 
Additionally, certain weights demonstrate minimal 
impact on the final model inference. To leverage 
this notable remark, researchers have explored the 
use of various pruning approaches to reduce the 
complexity of neural networks. These approaches 
are typically categorized into two main types: 
structured pruning and unstructured pruning. In 
structured pruning, entire channels or filters are 
pruned, whereas in unstructured pruning, only 
selected neurons are pruned. However, it has been 
observed that overly aggressive pruning may result 
in a reduction of accuracy [9-11]. To address this 
issue, we have introduced an Iterative Magnitude-
Based Pruning approach to compress our model 
efficiently without compromising accuracy. This 
approach has been used in conjunction with 
Quantization Aware Training (QAT) [12]. The 
latter aims to further optimize the model's 
performance by quantizing the weights and 
activations, enabling more resource-efficient 
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inference and ensuring the preservation of accuracy 
during the pruning process. [12]. 

On the other hand, IoT objects are known for 
their limited signal acquisition capabilities, 
particularly in noisy environments [13]. Therefore, 
to validate our model, we utilized the well-known 
RadioML 2018.01A dataset, which comprises 
wireless signals with 24 distinct modulations, each 
available at 26 SNRs spanning from -20 dB to +30 
dB in increments of 2 dB [14]. 

The primary contributions of the current work are 
outlined as follows: 

 Proposing a highly accurate GRU-
CNN-based AMC scheme, in which 
GRU block is employed to retrieve 
temporal dependencies and CNN block 
is set up to capture additional relevant 
features. 

 The suggested solution is designed to 
be computationally efficient by 
minimizing the number of trainable 
parameters and substituting fully 
connected layers with a Global Average 
Pooling (GAP)-based scheme. This 
design enables its deployment in 
objects with limited computational 
resources.  

 Introducing an Iterative Magnitude-
Based Pruning approach along with 
Quantization Aware Training (QAT) 
for efficient Model compression and 
resource utilization. 

 Investigating and testing our model 
using the RadioML 2018.01A dataset. 

 Comparing our model with some 
conventional DL frameworks and 
contemporary approaches, addressing 
the same problem, our work 
demonstrates superior performance 
across different SNRs.  

The following sections of this paper are 
organized as follows: Section II provides an 
overview of pertinent literature. Section III details 
the methodology applied in this study. In Section 
IV, the simulation results are showcased along with 
a thorough performance analysis. Ultimately, 
Section V serves as the conclusion of the paper. 

2. RELATED WORK 
 

As previously stated, the AMC endeavors 
to recognize the modulation format of intercepted 

signals, which is often regarded as an Artificial 
Intelligence (AI) multi-class decision-making task. 
Typical feature engineering-based approaches may 
be used to develop classification schemes using 
supervised or unsupervised learning to extract the 
underlying radio properties, including modulation 
type information [15]. However, AMC must deal 
with various challenging problems such as the 
growth of modulation formats, the difficulty in 
distinguishing between higher-order digital 
modulation formats, and the significant degradation 
of channel conditions. 

 
In light of the aforementioned 

considerations, a multitude of approaches for 
modulation recognition has been put forward, 
incorporating a range of DL networks like 
Recurrent Neural Networks (RNNs) and 
Convolutional Neural Networks (CNNs), to 
enhance classification performance in respect of 
accuracy, computational complexity, and 
processing speed. It is worth noting that DL 
approaches eliminate the need for handcrafted 
features and decrease the computational complexity 
associated with feature extraction. 

 
The application of CNNs to address AMC 

challenges has been explored in numerous research 
studies. For instance, the study in [16] presented a 
two-phase approach that merges a CNN-based 
structure with the Continuous Wavelet Transform 
(CWT) for multi-class modulation recognition. The 
first phase entails utilizing the CWT to effectively 
extract the time-frequency information. In the 
second phase, the two-dimensional time-frequency 
knowledge obtained from the first phase is used as 
input for the CNN to classify the various 
modulation schemes. This work exhibits superior 
performance under conditions of varying noise 
levels, as compared to previous research. 

 
Similarly, RNN-based techniques have 

been utilized in several AMC methods discussed in 
the literature. For example, authors of [17] 
proposed an effective AMC approach based on 
recurrent neural networks. The latter outperforms 
previous CNN-based approaches, particularly at 
high SNR levels. Specifically, the proposed scheme 
attains a recognition accuracy improvement from 
80% to 91%. 

 
Furthermore, some studies have 

investigated the use of hybrid DL-based AMC 
methods that integrate CNNs and RNNs. These 
hybrid networks are designed to capture both the 
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spatial and temporal characteristics of modulated 
signals and have demonstrated better performance 
than using either CNNs or RNNs independently. 
For example, in [18], a method for AMC using a 
dual-stream architecture based on a fusion of CNNs 
and LSTM networks was proposed. The method 
accounts for the interaction between features and 
leverages the strengths of both CNNs and LSTMs. 
Firstly, the signals are pre-processed and 
transformed into Amplitude/Phase representation 
and I/Q format to obtain more relevant features for 
classification. Then, CNN and LSTM are fully 
integrated to capture the temporal and spatial 
characteristics from each signal representation, 
taking full advantage of CNNs in spatial feature 
extraction and LSTMs in handling sequential data. 
The proposed method demonstrated superior 
performance compared to the baseline methods 
under various SNR conditions. 

 
On the other hand, although several 

studies have investigated the use of DL schemes for 
AMC, only a limited number of publications have 
focused on their use for resource-limited objects. 
Indeed, most developed DL-based AMC methods 
are complex solutions that require a large memory 
footprint and high computational complexity, 
rendering their implementation impractical for 
resource-limited devices. 

 
To develop lightweight deep learning 

schemes intended for end-devices with limited 
resources, two well-known methods have been 
used, namely pruning and quantization techniques. 
Pruning DL models involves examining the weight 
values of neural connections to eliminate redundant 
or unnecessary ones with minimal impact on 
accuracy. As for quantization, it aims to reduce the 
computational cost by decreasing the precision of 
the numerical representation of the weights and 
activations of a neural network. 

 
An example of research using quantization 

is reported in [19], where the authors introduced a 
quantized neural network model for AMC. The 
model subjected to quantization exhibited a 
recognition accuracy of 75% at 10 dB SNR, 
mirroring the performance of the unquantized 
model. 

 
 In [20], a hybrid solution that combines 

pruning and quantization approaches was 
developed to reduce the model’s complexity. The 
proposed approach attained superior accuracy 
compared to the baseline model, utilizing only 40% 

of the hardware resources. It attained a real-time 
throughput of 527 000 classifications per second 
with a latency of 7.5 microseconds on a Field-
Programmable Gate Array (FPGA) platform. 

 
 Another study that merges both 

approaches is discussed in [21]. The authors 
presented a rapid and effective neural network to 
deal with AMC problem. They introduced a 
Multiscale Convolutional (MSC) layer to learn 
important features and employed Separable 
Convolution Blocks (SCB) to decrease network 
complexity. To further reduce complexity, pruning, 
quantization, and factorization techniques were 
employed. As a result, the network achieved high 
classification accuracy while utilizing fewer 
parameters. 

 
A recent study in [22] proposed a 

methodology to assess the effect of quantization on 
accuracy and inference cost in DL networks. The 
findings suggest that independently quantizing each 
layer according to the compromise in performance 
can achieve similar accuracy to non-quantized 
models at a reduced inference cost. 

 
Despite their effectiveness in reducing the 

complexity of DL-based AMC models, pruning and 
quantization techniques present some limitations, 
including potential accuracy reduction, loss of 
information, and difficulty in addressing all 
modulation schemes. 

 
To address the above challenges, less 

complex CNN-based and RNN-based AMC 
approaches were proposed. To improve cost-
effectiveness while preserving classification 
accuracy, Chen et al. presented a single-layer 
LSTM method integrating a random erasing-based 
test time augmentation mechanism (RE-TTA) [23]. 
This method recovered the spatial correlations 
between multiple antenna polarization (AP) 
samples in the input signal by attaching an attention 
scheme between the LSTM layer and the dense 
layer. Numerical analysis of the RadioML2016.10A 
dataset revealed the efficacy of the proposed 
approach, which outperformed basic RNN and 
LSTM-based methods in respect of classification 
accuracy. 

 
 Additionally, in [24], a cost-effective 

CNN-based was proposed for AMC in cognitive 
radio networks. The network architecture features 
various convolutional blocks which utilize 
asymmetric convolution kernels to learn the 
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spatiotemporal signal correlations. The blocks are 
equipped with skip connections to maintain residual 
information. The proposed model, MCNet, 
achieves an overall accuracy of 93.59% at 20 dB 
SNR on the widely used RadioML 2018.01A 
dataset. Similarly, the authors of [25] proposed a 
novel CNN design for AMC using bottleneck and 
asymmetric convolution structures to reduce 
computational complexity and incorporating skip 
connection technique to enhance classification 
accuracy by resolving the vanishing gradient issue. 
Experimental findings on the RadioML 2018.01A 
dataset indicate that the proposed model surpasses 
the traditional MCNet model with regard to 
classification accuracy over a SNR span of -4 dB to 
20 dB. 

 
In the same context in this work, we 

propose a fast and cost-efficient method that offers 
the best balance between computational complexity 
and accuracy compared to baseline models. 

 
3. METHODOLOGY 
 
3.1. Signal Model 

 
A modulated signal emitted in the radio 

environment may experience several changes, such 
as multipath fading and shadowing effects, due to 
its reflection, refraction, and scattering as it 
propagates through the radio environment. These 
effects can cause variations in the signal strength 
and can lead to signal distortion or signal loss. 
Thus, for a transmitted signal x(t), we can express 
the received signal, y(t), as follows [13]: 

 

 (1) 
 

where h(t) represents the channel gain and n(t) 
denotes the Additive White Gaussian Noise 
(AWGN). 

 
The channel gain h(t) involves all the 

effects undergone by the signal during propagation. 
For instance, in the case of a frequency non-
selective fading channel, the channel gain can be 
expressed as [26]: 

 

 (2) 
 
where α(t) is a random variable with a 

Rayleigh distribution and ϕ(t) is the phase. 
In CR systems, radio receivers can provide 

intercepted signals in an I/Q format. The I/Q format 
separates a signal into two components, known as 

the in-phase (I) and quadrature (Q) components. 
These components can be mathematically 
represented as [13]: 

 

 (3) 

 (4) 
 

where A and  are the instantaneous amplitude and 
phase of y(t). 

 
The I and Q components encompass 

valuable information about the signal, such as its 
frequency, phase, and amplitude, enabling the 
recognition of modulation format used in a given 
communication signal.  

 
3.2. Recurrent Neural Networks 
 

Among the different types of DL 
networks, RNNs are the best suited for performing 
predictive operations on sequential or time-series-
based data due to their capacity to capture temporal 
dependencies [27]. Standard RNNs suffer from the 
vanishing gradient problem. In this problem, as 
layers are added to the RNNs, the gradient becomes 
exponentially smaller, making the update of 
weights almost negligible and, therefore, the 
network hard to train. Furthermore, this issue leads 
to a significant disadvantage for RNNs, namely 
short-term memory, where the network fails to 
memorize data for an extended period and starts to 
forget its previous inputs, which results in poor 
performance and low accuracy, especially when 
dealing with longer data sequences.  

 
LSTM and GRU, modified versions of 

RNNs, alleviate this issue by introducing internal 
mechanisms called "gates" to control the flow of 
information. During training, these gates decide 
which information is relevant to include or exclude 
to the hidden state that serves as the neural 
networks' memory. Compared to LSTM, the GRU 
necessitates a smaller number of trainable 
parameters, resulting in reduced memory usage and 
increased processing speed.  

 
On the other hand, BiGRU and 

bidirectional LSTM (BiLSTM) capture features 
from data in both the forward and backward passes, 
enabling them to acquire a more comprehensive 
understanding of context-dependency, thereby 
enhancing the performance of the learning process. 
However, this advantage comes at the expense of 
longer training times and heightened computational 
complexity [27]. 
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In line with our goal of proposing a DL-

based AMC model with fewer parameters, we have 
chosen the Gated Recurrent Unit to endow our 
model with the ability to handle long-term 
dependencies, as it is the lightest variant of RNNs. 
As shown in figure 2, the GRU cell architecture 
involves two gates, namely the reset gate and the 
update gate. The update gate decides on the amount 
of prior information necessary for transitioning to 
the subsequent state, and the reset gate establishes 
what information should be disregarded. 

 
The governing equations for GRUs are 

[28,29]: 
 

 (5) 

 (6) 
 

where ,   , and  denote the hidden state of 
the network at the current time step, the previous 
time step, and the new state at the current time step, 
respectively. The hidden layer at each time step is 
calculated as a combination of the previous hidden 
state and the current input at that time step, 

represented by . 
 
The weight matrices and bias vectors of 

the network are represented as U, W, and b, and are 
learned during the training phase. The hidden layer 
of the GRU contains memory cells that perform the 
main functions of the network, such as retaining 
and forgetting information over time. 

 
The amount of previously disregarded 

information and newly introduced data is 

determined by , while the proportion of this 
information that is incorporated into the new state 

is controlled by  . The equations below can be 

used to calculate and : 
 
 

 (7) 

 (8) 
 
 

where  represents the input at step t. The 
computations involve the use of two mathematical 
functions, namely the logistic sigmoid function, 
denoted by σ, and the hyperbolic tangent function, 
denoted by tanh. 

 
 
Figure 2: Structure of a GRU Cell [28] 

3.3. Convolutional Neural Networks 
 
CNNs are DL neural networks that employ 

convolution and pooling operations to capture 
complex features from the data. These networks are 
the best and most widely used for image analysis, 
where they have resulted in valuable progress. 
Although computer vision and image analysis have 
been the most widespread uses of CNNs, many 
researchers have also investigated the use of CNNs 
for other data analysis and classification problems, 
such as the AMC problem.  

 
CNNs are generally built with three types 

of layers: convolutional layers, pooling layers, and 
fully connected layers [30]. Convolution layers are 
the main building blocks of CNNs, where the 
majority of computations (convolutional 
operations) takes place to extract fundamental 
features from data. Concerning pooling layers, they 
are used to reduce the dimensionality of the feature 
maps and, consequently, the number of parameters 
to be learned and the number of calculations to be 
performed.  

 
Preceded by a flattening layer, which 

converts the multidimensional data into a one-
dimensional format, the fully connected layers are 
set up to wrap up the CNN architecture. As 
mentioned earlier, fully connected layers 
significantly increase the number of trainable 
parameters and the complexity of the network due 
to their high connectedness. In our work, we have 
omitted these layers and replaced them with GAP-
based scheme to ensure the lightness of our 
proposed model intended for resource-constrained 
objects. 

 
Based on the dimensionality of the input 

data, CNNs can be classified into three types: 1D 
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Figure 3: Architecture Of The Proposed Model. 

CNNs (Conv1D), 2D CNNs (Conv2D), and 3D 
CNNs (Conv3D). 

 1D CNNs are designed to operate on 
one-dimensional data, such as 
sequences or time series data. The 
convolutional filters in these networks 
are applied by sliding them over the 
input data and performing element-wise 
multiplications with the data, followed 
by a summation operation. 

 2D CNNs are the most widely used 
type of CNNs, and they are used to 
process two-dimensional data, such as 
images. The convolutional filters, 
which are two-dimensional arrays of 
weights, are applied to the input data in 
a sliding window fashion: At each 
position, the filter weights are 
multiplied by the corresponding input 
data and summed up to produce a 
single output value. 

 3D CNNs are used to process three-
dimensional data, such as videos. The 
convolutional filters in conv3D operate 
similarly to those in conv2D, with the 
main distinction being the number of 
dimensions involved in the convolution 
process. 

Due to their low computational complexity 
and suitability for processing sequential data, we 
have chosen one-dimensional convolutional layers 
(conv1D) to enable our model to extract underlying 
patterns and features from the data. 

 
Given an input channel number of N, the 

  feature map obtained at the output of a 
conv1D layer can be expressed as follows [25]: 

 

 

 

(9) 

 

(10) 

where  is the input of the BN layer, and 
are the mean and variance of the batch of input 

data,  and  are learnable parameters, and  is a 
constant used to avoid division by zero. 

To introduce non-linearity and sparsity to 
our model, we have used The Rectified Linear Unit 
(ReLU) activation function after the BN layer. 
ReLU function has the following form: 

 
 

 (11) 

where  is the input to the activation 
function. 

3.4. Proposed Approach  
 

To take advantage of the complementary 
capabilities of CNNs and RNNs, we propose a 
model that combines both networks using a fusion 
architecture. The use of this hybrid model leverages 
the ability of CNNs to capture relevant features of 
the data, as well as the potential of RNNs to process 
sequential information (see figure 3). 
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As shown in figure 3, our proposed model 
contains two blocks. The first block includes a 
GRU layer with C cells, a BN layer, a ReLU layer, 
and a dropout layer. As explained in the previous 
subsections, the use of the GRU layer, to handle 
sequential dependencies, aligns perfectly with our 
purpose of conceiving a DL model with fewer 
parameters, given that GRU is the lightweight 
variant of RNNs. The input to the GRU layer is a 
Nx2 vector, where N represents the number of 
samples and 2 refers to the "I" and "Q" components 
of each sample. The output of the GRU layer is 
then processed through a BN layer, a ReLU layer, 
and a dropout layer (0.2). The latter is a 
regularization technique widely employed in neural 
networks to prevent overfitting during training.  

 
The second block of the model comprises 

a 1D CNN scheme, which consists of two 1D-
Convolutional layers, batch normalization layers, 
activation layers, a dropout layer, and pooling 
layers. The peculiarity of this structure lies in its 
utilization of a GAP-based scheme, instead of the 
typical dense layers, to wrap up the model. The first 
Conv1D layer involves 16 filters with a kernel size 
of 3 and processes an input vector of shape (N, C), 
where N is the number of samples in a signal 
instance and C is the number of GRU cells. The 
output of this layer is then passed through a BN 
layer and a ReLU layer. Subsequently, an Average 
Pooling layer with a pool size of 2 is applied to 
reduce the spatial dimension of the feature map and 
decrease the number of trainable parameters in the 
network, while also reducing the computation 
required in the forward and backward passes. A 
dropout layer (0.2) is incorporated to further 
mitigate overfitting, the output of this dropout layer 
is fed into the second Conv1D layer which contains 
L filters with a kernel size of 3 (L is the number of 
modulation schemes), followed by a BN layer and a 
ReLU layer.  

 
Finally, to map the signal characteristics 

captured from the previous layers to each of the 
modulation types, a GAP layer is applied, followed 
by a BN layer and a SoftMax layer to generate the 
final classification. 

 
3.5. Model Pruning Approach 
 

As already mentioned, pruning is a 
technique used in Machine Learning (ML) to 
reduce the size of a neural network by eliminating 
unnecessary connections or parameters without 
significantly affecting its performance. This process 

helps reduce model size, memory footprint, and 
inference time, making the model more efficient 
and suitable for resource-constrained objects 
[10][26]. Although pruning typically leads to a 
decrease in accuracy, when implemented gradually 
and with careful consideration, it can yield 
favorable outcomes. Indeed, by methodically 
pruning and subsequently retraining the model, it 
can gradually adapt to the removed parameters, 
potentially mitigating the accuracy loss and 
ultimately achieving desirable results. 

 
The pruning process in this study 

employed magnitude-based pruning [11] with an 
iterative approach to achieve the desired sparsity 
level. Initially, the original model is trained using a 
specific architecture, dataset, and optimization 
algorithm until convergence. Once the model has 
converged, magnitude-based pruning is applied, 
removing weights below a determined threshold. 
The pruned model is then retrained to allow it to 
recover its weights and restore its performance. To 
increase the sparsity further, the pruned model is 
selected as the new "original model" for subsequent 
pruning iterations. This iterative process of pruning 
and retraining is repeated until the target sparsity 
level is reached. The criteria for stopping the 
iterative process are based on the desired sparsity 
level.  

 
As discussed in the following section, the 

experimental findings demonstrate the efficacy of 
the proposed pruning approach in reducing model 
size and computational requirements while 
maintaining satisfactory performance levels. 

 
It's worth noting that pruning has been 

applied along with Quantization Aware Training 
(QAT). Instead of using 32 bits, the weights are 
quantized to 8 bits, yielding a more compressed and 
cost-efficient model. 

 
4. IMPLEMENTATION DETAILS AND 

RESULTS 
 
4.1. Dataset and data preprocessing 
 

In our experiments, we have used the 
RadioML 2018.01A dataset with input dimensions 
of 1024 ×2 as benchmark to evaluate the 
performance of our proposed model. 

 
The RadioML 2018.01A [14] is a publicly 

available dataset that comprises 2 555 904 frames 
in the form of I/Q data with 24 distinct 
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Figure 4: Structural Example Of The RadioML 2018.01A Dataset. 

 

modulations, each available at 26 SNRs (Ranged 
from -20 dB to +30 dB in 2 dB increments). Each 
modulation/SNR combination contains 4096 
instances, each of which is 1024 samples long. 

 
Figure 4 shows a structural example of the 

RadioML 2018.01A dataset and table 1 summarizes 
its parameters and content. 

 
In addition, to avoid the accuracy paradox 

and ensure the reliability of our proposed classifier, 
we have used balanced training and test sets for 
performance analysis. Indeed, providing a classifier 
with imbalanced data may lead to a bias towards 
the majority class due to insufficient data on the 
minority class. Therefore, we have used a random 
undersampling technique with a fixed seed to 
maintain the reproducibility of results. This 
approach preserved the class balance of the original 
datasets, ensuring equal representation of all classes 
in both the training and test sets. 

 
In all experiments conducted, the data was 

divided into a 4:1 ratio, with 80% of the examples 
used for training and 20% used for testing. 

 
It's worth noting that in our simulation 

works, we have used only half of the RadioML 
2018.01A dataset because of hardware limitations. 

 
 

Table 1: RADIOML 2018.01A Dataset Description. 

Parameter Value or description 

Number of 
modulation 
schemes 

24 

Modulation 
formats 

Digital: GMSK, OOK, 256QAM, 
128QAM, 64QAM, 32QAM, 
16QAM, 128APSK, 64APSK, 
32APSK, 16APSK, 32PSK, 
16PSK, 8PSK, 8ASK, 4ASK.  
Analog: FM, AM-DSB-SC, AM-
DSB-WC, AM-SSB-SC, AM-
SSB-WC. 

SNRs(dB) -20: 2: 30 

Signal format I/Q format 

Vector shape 1024x2 

Total number of 
examples 

2 555 904 

Channel 
characterization 

AWGN 
Doppler shift 
Non-impulsive delay spread 
Symbol rate offset 
Carrier frequency offset 
Selective multipath Rician fading 
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4.2. Results and Analysis 
 
Training and testing were conducted using 

Python 3.9.7, Keras 2.7 and TensorFlow 2.7, on a 
workstation with an Ubuntu 18.04.6 LTS OS, an 
Intel® Xeon(R) CPU E5-2660 v4 @ 2.00GHz × 28 
Processor, 32 GB of RAM, and an NVIDIA Quadro 
M6000/PCIe/SSE2 GPU with CUDA, providing 
enhanced processing speed. 

 
The categorical cross-entropy loss function 

and Adam optimizer were used in all experiments, 
employing a learning rate of 0.001. The latter was 
decreased by 90% every 20 epochs, and the training 
was performed for 100 epochs. To avoid 
overfitting, a callback was implemented to halt 
training when the validation loss did not exhibit any 
improvement for 12 consecutive epochs. The batch 
size was set at 128. 

 
The performance of our model is assessed 

by conducting a comparative analysis with several 
well-known conventional models, namely GRU 
[31], PET-CGDNN [26], MCNet[24], 
ResNet[14]and a baseline model (Asymmetric-
CNN) referenced in [25]. The performance 
evaluation metric used for this purpose is 
classification accuracy [32].  

 
In addition, in the realm of CR networks, 

the computational complexity of models is a critical 
factor that needs to be considered, especially in 
real-time communication scenarios. To accurately 
evaluate this complexity, we utilize three essential 
metrics: trainable parameters, memory footprint, 
and inference time. 

 
4.2.1. Impact of the number of GRU cells on 

recognition accuracy 

In our experiments, the performance of 
several versions of the proposed model, which are 
constructed with different numbers of GRU cells is 
evaluated. This allows to investigate the effect of 
the number of GRU cells on recognition accuracy. 

From table 2, it is apparent that as the 
number of GRU cells is increased, the model's 
capacity to learn complex patterns in the data 
increases, leading to improved performance.  
However, with a number of GRU cells greater than 
80, the marginal gain in the performance of our 
model begins to be less important due to the 
principle of diminishing marginal returns [13]. This 
means that the additional benefit of adding more 

cells becomes less significant beyond a certain 
point, leading to a plateau in classification accuracy 
or even a degradation in performance if the model 
becomes too complex. Furthermore, the disparity in 
performance among the various versions of our 
model is minimal when the number of GRU cells is 
equal to or greater than 80. However, there is a 
substantial decline in classification performance for 
our model with 40 cells. Specifically, the overall 
classification accuracy decreases by over 5% when 
downgrading the number of GRU cells from 50 to 
40. 

Table 2: Performance Results Of The Proposed Model. 

Number 
of GRU 

cells 

Average 
accuracy 

(%) 

Highest 
accuracy 

(%) 

Trainable 
parameters 

Memory 
footprint 
(kBytes) 

40 57.36 90.72 8 632 34 

50 60.38 95.35 11 920 48 
60 60.77 95.79 15 840 63 
70 60.85 95.93 20 360 81 

80 61.66 96.65 25 480 102 

90 61.56 96.45 31 200 125 

100 62.04 96.78 37 107 148 

 

4.2.2. Impact of pruning on Model performance 
 

In light of the above results, retrieving 
more GRU cells to reduce complexity is no longer 
efficient as it is accompanied by a high decrease in 
accuracy. For this reason, we have applied an 
Iterative Magnitude-Based Pruning approach, 
explained in the fifth subsection of section 3, to 
further compress our model without compromising 
the performance. To that end, we have selected the 
variant of our model with 80 GRU cells as a base of 
the pruning process.   

 
In our simulation works, the pruning 

process commences at the beginning step with a 
sparsity level of 0.2. It spans a duration of 5 epochs 
to reach the specified end step, at which point the 
target sparsity level is achieved. Throughout this 
process, the learning rate is set to 0.0001, and the 
batch size is configured to 128. Subsequently, the 
pruned model is retrained until convergence. Table 
3 shows the performance of different pruned 
versions of our model. 

 
By employing a number of parameters 

between 4509 and 13144, we have generated higher 
performing models that exhibit an overall accuracy 
surpassing 58.5% and a highest accuracy exceeding 
94%. 
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Table 4: Performance Comparison Of Our Proposed Model With Some Conventional Models (Best Values Are Bold). 

Model Basic 
structure 

Average 
accuracy 

(%) 

Highest 
accuracy 

(%) 

Parameters Memory 
footprint 
(kBytes) 

Inference 
time 

(ms/sample) 
GRU GRU 60.26 95 .2 39 224 156.9 0.233 

MCNET CNN 58.3 92.63 151 224 604.9 0.144 

Lightweight Backbone 
Network 

CNN 60.29 95.7 46 472 185.9 0.14 

PET-CGDNN (sparsity 
0.5) 

CNN+GRU 59.6 94.9 37K 148 0.219 

ResNet CNN 47.47% 76.04 236K 944 0.164 
Our Model (sparsity 

0.7) 
CNN+GRU 60.88 95.95 8 210 8 .2 0.073 

 

Table 3.  Effect Of Pruning On Model Performance. 

Pruned Model Original Model Target 
Sparsity 

Parameters Average 
accuracy 
(%) 

Highest 
accuracy 
(%) 

Memory 
footprint 
(kBytes) 

Model_Sparsity 0.5 Proposed Model (80 cells)  0.5 13 144 61.31 96.43 13.1 

Model_Sparsity 0.7 Model_Sparsity 0.5 0.7 8 210 60.88 95.95 8.2 

Model_Sparsity 0.8 Model_Sparsity 0.7 0.8 5 742 60.18 95.27 5.7 

Model_Sparsity 0.85 Model_Sparsity 0.8 0.85 4 509 58.7 94 .01 4.5 

 

It's important to highlight that the 
substantial reduction in memory footprint is 
attributed to two main factors: pruning and 
quantization. Pruning reduces the number of 
parameters, while quantization reduces the memory 
required to store each parameter from 4 bytes to 
just one byte. 

 
4.2.3. Comparison with conventional models 
 

It is noteworthy that the subsequent 
analysis in this paper pertains to our model with 80 
GRU cells and sparsity 0.7. 

 
As depicted in table 4, our proposed model 

(80 GRU cells), featuring a CNN/GRU architecture 
with a sparsity of 0.7, outperforms the conventional 
models in terms of both average accuracy and 
highest accuracy. 

 
The average accuracy of 60.88% achieved 

by our model surpasses that of other architectures, 
including GRU (60.26%), MCNET (58.3%), 
Lightweight Backbone Network (60.29%), and 
PET-CGDNN-sparsity 0.5- (59.6%).  

 
Our model's effectiveness to learn intricate 

patterns and dependencies within the data using the 
combination of convolutional and recurrent layers 
contributes to its superior performance in correctly 

classifying radio signals. 
 
Additionally, our model achieves the 

highest accuracy of 95.95% among all models 
considered, showcasing its proficiency in correctly 
identifying specific radio signal modulations. This 
result indicates the effectiveness of our proposed 
approach in handling diverse and complex 
modulation schemes present in the dataset. 

 
A notable advantage of our model lies in 

its remarkably low memory footprint of 8.2 
kilobytes. In contrast, conventional models such as 
MCNET (604.9 kBytes), Lightweight Backbone 
Network (185.9 kBytes), and ResNet (944 kBytes) 
require significantly larger memory footprint. This 
demonstrates the efficiency of our model in terms 
of memory utilization, making it well-suited for 
deployment in resource-constrained environments 
or on edge devices. 

Furthermore, our model showcases the 
shortest inference time of 0.073 milliseconds per 
sample compared to other models in the 
experiment. This rapid processing speed enhances 
its potential applicability in real-time scenarios and 
time-sensitive applications, such as wireless 
communication systems and signal analysis in 
dynamic environments. 
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 The performance comparison results 
affirm our model's superiority in accuracy, memory 
efficiency, and inference speed. The combination of 
convolutional and recurrent layers, along with 
pruning and QAT, proves to be a successful 
strategy for achieving state-of-the-art results in 
radio signal modulation classification. The findings 
from this study highlight the practical advantages 
and potential applications of our proposed model in 
the field of radio signal processing and 
communication systems. 

4.2.4. Classification accuracy of 24 modulation 
formats  

Figure 5 presents the complete 
classification accuracy of 24 modulation formats, 
which are categorized into three classes for 

improved visualization: APSK+PSK in figure 5a, 
QAM+ASK in figure 5b, and analog+low-order in 
figure 5c. As reported in this figure, our model 
achieved 100% classification accuracy in 
identifying some modulation types, namely FM, 
AM-DSB-WC, OOK, and 32PSK over the SNR 
range of +0 dB to 30 dB, with an exception of 
99.27% accuracy at 0 dB SNR for 32PSK. 

The remaining schemes can be classified 
into two groups: the low-performance class and the 
high-performance class. For example, the former 
may include 256QAM and AM-SSB-WC which are 
predicted with accuracy rates of 85.12% and 
34.64%, respectively, at 20 dB SNR. Whereas the 
latter may involve 16QAM and GMSK which are 
recognized with an accuracy rate greater than 99% 

 

 
Figure 5: Classification Accuracy Of 24 Modulations Divided Into Three Categories: (a) APSK+PSK, (b) QAM+ASK, and 

(c) Analog+ Low-Order. 
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over the SNR range of +2 dB to 30 dB. 

Furthermore, the vulnerability of high-
order modulation signals to different channel 
impairments results in a reduction in the 
recognition rate as the APSK order increases. In 
particular, the accuracy experiences a notable 
decrease of more than 40% when elevating the 
APSK order from 32 to 64 at SNR levels below 6 
dB. 

For more insights into the effectiveness of 
our model in recognizing different modulation 
schemes, the confusion matrices of our proposed 
model 80 GRU cells (sparsity 0.7) at 10 dB SNR 
and 0 dB SNR are shown in figure 6. For 
comparison purposes, the confusion matrices of the 
Lightweight Backbone Network at the same SNRs 
are also given in figure 7. 

Figure 6a shows that our model achieves 
high accuracy rates exceeding 99% for most 
modulation formats. However, it fails to 
differentiate between AM-SSB-WC and 64QAM, 
all AM-SSB-WC signals are detected as 64 QAM 
signals. Additionally, to a lesser degree, our model 
cannot differentiate AM-DSB-SC from 128APSK 

and 128QAM, and 256QAM from QPSK. 

In addition, figure 6b clearly illustrates the 
impact of noise on classification accuracy, 
particularly on higher-order modulation types. 
Furthermore, as the signal-to-noise ratio decreases, 
the previously identified confusions become more 
pronounced. 

Besides, figure 7 illustrates that the 
Lightweight Backbone Network shares two 
common confusions with our proposed model. 
These confusions specifically involve AM-SSB-
WC with 128APSK and 128QAM, as well as 
256QAM with QPSK. Furthermore, the baseline 
model fails to distinguish 64QAM from AM-SSB-
SC. 

Also from the confusion matrices, it can be 
concluded that our model (with 80 GRU cells and a 
sparsity of 0.7) exhibits superior performance 
compared to the baseline model across the majority 
of modulation schemes, while maintaining a 
lightweight structure and low computational 
complexity. 
 
 

 
 

         Figure 6: Confusion Matrices Of The Proposed Model With 80 GRU Cells (Sparsity 0.7). (a) At 10 dB SNR, Accuracy: 
93.83%. (b) At 0 dB SNR, Accuracy: 54.49%. 
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Figure 7: Confusion Matrices Of The Baseline Model. (a) At 10 dB SNR, Accuracy: 93.71%. (b) At 0 dB SNR, Accuracy: 
53.98%. 

5. CONCLUSION 
 

This paper proposes a highly accurate and 
lightweight hybrid DL method for effectively 
classifying the modulations of radio signals across 
diverse channel impairments in cognitive radio 
networks. The proposed model utilizes a GRU 
block to retrieve temporal dependencies and a CNN 
block to capture higher-order features from the data. 
The model's computational efficiency is achieved 
by reducing the number of trainable parameters and 
substituting fully connected layers with a GAP-
based scheme. 

 In addition to compress further our model, an 
Iterative Magnitude-Based Pruning approach along 
with Quantization Aware Training (QAT) was 
applied. The superiority of the proposed model is 
illustrated through experiments conducted on the 
RadioML 2018.01A dataset, showing higher 
performance across different SNRs compared to 
selected benchmark models.  

In future work, multi-stream feature extraction 
using different types of data representation will be 
introduced to enhance the model's ability to classify 
modulations accurately and avoid all confusions 
existed between them while maintaining its 
lightweight design. 
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