
 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8438

DYNAMIC PROGRAMMING-ENHANCED ENERGY-
EFFICIENT TASK SCHEDULING IN EDGE-CLOUD

ENVIRONMENTS
DR.SARAVANAN.M.S1, MRS. MADHAVI KARUMUDI2

1Professor, Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha
Institute of Medical and Technical Sciences, Chennai.

2Research Scholar, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Chennai.

Assistant Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education
Foundation, Bowrampet, Hyderabad-500043, Telangana, India.

Email: 1saravananms@saveetha.com / saranenadu@gmail.com 2madhavi.karumudi@gmail.com,
madhavi.karumudi@klh.edu.in

ABSTRACT

In the wake of modern Internet of Things (IoT) use cases and workflow applications, edge computing plays
a crucial role in the faster execution of specific tasks. Therefore, the edge-cloud environment offers
computing resources required by modern applications. Using cloud resources for every task may lead to
violation of Service Level Agreements (SLAs), as well as causing impediments to the execution of tasks with
deadlines. In this research, we suggested a system concept and architecture for effective task scheduling in
an edge-cloud setting to address this issue. An algorithm called Dynamic Programming based Energy
Efficient Task Scheduling (DPEETS) is introduced for effective work scheduling in edge-cloud
environments. Our algorithm exploits dynamic programming, hamming distance termination, and
randomization to optimize decisions made in the edge cloud about task scheduling. This suggested algorithm
uses a dynamic programming table to keep track of iterations and eliminate unnecessary computations.
DPEETS considers multiple objectives such as deadline, energy efficiency, and latency of task execution.
The algorithm heuristically converges in a few iterations, leading to energy-efficient scheduling of tasks in
the edge cloud. A simulation study has revealed that DPEETS outperforms many existing heuristic
algorithms.

Keywords – Task Scheduling, Cloud Computing, Edge Computing, Dynamic Programming, Energy-
Efficient Task Scheduling

1. INTRODUCTION

The emergence of cloud computing and its
associated ecosystem has greatly benefited
organizations due to the cost-effective nature of
cloud infrastructure and services. With
consumers' unprecedented usage of cloud
resources globally, it has become crucial for cloud
infrastructure to be optimized to leverage
performance while adhering to service-level
agreements between consumers and service
providers. This optimization is essential for
achieving an equilibrium satisfying consumers
and service providers. With cloud computing, task
scheduling is crucial due to the dynamic
workloads coming from around the world and is
typically handled by various heuristic algorithms
[1]. The emergence of edge computing, which

provides resources closer to users and helps
reduce latency in execution, has led to an
increasing trend of using edge and cloud
computing resources. Numerous academic
researchers have proposed optimal resource
utilization strategies based on multiple service-
level agreements and global user requirements
[2].

Numerous approaches can be used to develop
scheduling algorithms, and the literature contains
many heuristic algorithms that provide the
necessary logic for cloud-based work scheduling.
A probable synopsis of the text is as follows: Lu
et al. [3] provided a cloud computing pre-
migration strategy that maximizes energy
efficiency and resource utilization via
evolutionary algorithms. Tahir et al. [4] outlined

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8439

using evolutionary algorithms (EA) like PSO,
ACO, and GA in cloud computing to lower energy
consumption. Okba et al. [5] spoke about
increasing energy economy, cost-effectiveness,
and length while scheduling work on the cloud
using NSGA-III. Du et al. [6] proposed a Genetic
Algorithm (GA) approach with dynamic
objectives (DOGA) for workflow scheduling.
Peng et al. [7] suggested parallel scheduling of
cloud tasks using a Genetic Algorithm (GA) and
MapReduce to shorten the execution duration.
Son et al. [8] introduced the TCaS algorithm to
schedule tasks in settings using Cloud-Fog, with
plans to research and enhance other evolutionary
scheduling algorithms. Nevertheless, the
requirements of dynamic settings such as cloud
computing can be beyond the scope of these
heuristic techniques. Additionally, new strategies
that may properly employ resources to obtain
performance benefits are essential when cloud
computing is combined with edge computing and
customers wish to leverage edge resources for
better latency performance. To make informed
scheduling decisions, this study examined a
dynamic programming-based approach that
maximizes the use of edge and cloud resources
through various calculations.

This study presents a system idea and architecture
for efficient work scheduling in an edge-cloud
environment. The study aims to develop an
algorithm for energy-efficient task scheduling in
an edge cloud environment. Effective decision-
making using dynamic programming is crucial
since the edge cloud environment consists of both
edge and cloud computing resources. We provide
a work scheduling approach for the edge cloud
termed Dynamic Programming Energy Efficient
Task Scheduling (DPEETS). The approach uses
randomization, dynamic programming, and
hamming distance termination to enhance job
scheduling choices and reduce pointless
calculations. DPEETS considers many goals,
including energy efficiency, task execution
delays, and deadlines. Task scheduling in the edge
cloud becomes energy-efficient due to the
algorithm's heuristic convergence after a few
rounds. Simulation studies show that DPEETS
outperforms existing heuristic algorithms. This is
the format for the remainder of the paper: Part 2
examines the current approaches to task
scheduling in cloud and edge-cloud
environments; Part 3 describes the methodology
that is suggested, including the system model and
algorithm; Part 4 reports the findings of our
empirical investigation; Part 5 talks about the

limitations of the proposed work; and Part 6 wraps
up the investigation and offers recommendations
for further research.

2. RELATED WORK

 The literature has several different techniques for
work scheduling. Velliangiriet al.[1]
Outperforming current algorithms such as
HPSOGA, GA, ES, and ACO, the proposed
Hybrid Electro Search with Genetic Algorithm
(HESGA) improves work scheduling. Sindhu et
al. [2] put out a bi-objective genetic algorithm that
takes application and resource-centric goals into
account when scheduling cloud workloads to
maximize makes pan and average processor
utilization. Lu et al. [3] suggested a pre-migration
plan for cloud computing based on evolutionary
algorithms, which optimizes CPU, network, and
disk dimensions to achieve better resource usage
and energy efficiency. Tahir et al. [4] explained
how cloud computing can cut energy use using
Evolutionary Algorithms (EA), including PSO,
ACO, and GA. Okba et al. [5] explained how to
utilize NSGA-III to schedule tasks on the cloud
while maximizing energy, cost, and duration.

Du et al. [6] discussed scheduling workflow for
cloud computing and suggested a Genetic
Algorithm (GA) method with dynamic objectives
(DOGA) for deadline and cost limitations.
Additional evolutionary methods and dynamic,
multi-objective features will be investigated in the
future. Peng et al. [7] proposed to schedule cloud
tasks in parallel using a Genetic Algorithm (GA)
and MapReduce to reduce execution time. Future
studies might concentrate on real-world graphs
and enhance the steps of reduction and
communication to achieve even more significant
efficiency improvements. Son et al. [8] addressed
the problems with fog computing in the Internet
of Things by developing the TCaS algorithm for
task scheduling in Cloud-Fog scenarios. Other
evolutionary scheduling algorithms will be
investigated and improved in the future,
maximizing time, costs, energy usage, and
resources while considering realistic restrictions
like deadlines, budgets, and resource constraints.
Tao et al. [9] suggested using the Improved
Genetic Algorithm (IGA) in open-source IaaS
cloud platforms to optimize virtual machine (VM)
allocation. Future research will examine
additional environmental thresholds and evaluate
open-source IaaS cloud systems in real-world
settings. Pan et al. [10] explained using the
sophisticated Phasmatodea Population Evolution

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8440

(APPE) algorithm in a diverse cloud to schedule
tasks intelligently. Trials conducted on thirty
reference functions yield better results, with
quicker convergence and better use of resources.

Liu et al. [11] Tasks involving cloud computing
require effective scheduling. The NAGA
algorithm suggests OSIG by improving genetics,
which optimizes CloudSim resource scheduling.
Even with longer execution durations, OSIG
performs well enough to justify further study for
increased effectiveness. Shojafar et al. [12]
enhanced system performance by introducing a
hybrid job scheduling method that combines
fuzzy theory and genetic algorithms. The new
approach dramatically increases efficiency while
lowering iteration and considering VM MIPS.
Paknejad et al. [13] ch-PICEA-g, a multi-
objective algorithm incorporating chaotic systems
for better optimization, is suggested to fix the
scheduling issue with cloud workflows. Findings
demonstrate that it outperforms current
algorithms in several performance measures. [14]
Hindawi retracts the article due to evidence of
systematic manipulation in scope, research
description, data availability, citations, and
content coherence. Liao et al. [15] aimed to
optimize cloud computing resources using a
complete approach, focusing on makingpan and
energy usage. Subsequent research endeavors will
delve into the elements that impact the similarity
function, enhance case library procedures, fine-
tune algorithm parameters, and expand the
applications' reach to service-oriented
manufacturing systems.

Duan et al. [16] reduced makespan in CloudSim
by introducing an Adaptive Incremental Genetic
Algorithm (AIGA) for cloudwork scheduling that
is viable and efficient. Compared to other
algorithms, AIGA performs better in makespan
and computation time. Subsequent research will
entail an increasingly intricate mathematical
framework and assessment for additional
objective functions. Kumar et al. [17] presented
an effective method for allocating cloud tasks
using the Hybrid Genetic Algorithm–Ant Colony
Optimization (HGA–ACO) that takes response
into consideration throughput, time, and finish
time. The findings of the experiment show an
excellent performance. Aziza et al. [18]
recommended using a bi-objective evolutionary
algorithm to solve the cloud computing problem
of NP-hard job scheduling. Future research will
examine workflow dependencies, broader
application of policies, real-world cloud

infrastructure trials, and more optimization
factors. Alsadie et al. [19] explained MDVMA, a
metaheuristic system for cloud computing that
uses dynamic virtual machine allocation and
optimal job scheduling. Optimal workflow
scheduling strategies are part of the work to come.
Jena [20] discussed cloud computing,
emphasizing energy and makespan optimization
using the TSCSA. Further research should look
into more crucial goals and reliable algorithms.

Gad et al. [21] Rapid access to shared resources is
provided by the dynamic paradigm of cloud
computing. Efficient cloud performance requires
careful task scheduling. Forthcoming trends and
problems in cloud task scheduling inform future
research endeavors. Alaei et al. [22] presented the
Improved Differential Evolution (IDE) technique
for cloud computing that is fault-tolerant. The
suggested method improves scheduling
performance and fault tolerance using ANFIS
prediction for resource load control and reactive
fault tolerance. Subsequent research endeavors to
integrate the proposed methodology, carry out
practical cloud testing, and assess substitute
forecasting methods for more improvements.
Sahoo et al. [23] look into combining bacterial
and genetic foraging algorithms to create a hybrid
job scheduling system for the cloud. The
algorithm displays superior performance in
convergence, stability, and solution variety,
which also minimizes energy consumption and
maximizes makespan. Xia et al. [24] responded to
the growing need for an effective cloud
computing work schedule. The future focus will
be exploring the boundaries of binary coding for
optimal work efficiency. Saeedi et al.[25]
introduces I_MaOPSO, a better many-objective
particle swarm optimization technique for cloud
computing scientific workflow scheduling.
Compared to current algorithms, it performs
better and tackles four objectives simultaneously.

Shi et al. [26] examined the efficient ways in
which 5-M challenges in challenging continuous
optimization issues can be handled by
evolutionary computation (EC) techniques. It
offers a taxonomy and recommendations for
future lines of inquiry to improve EC applications.
Sun et al. [28] focused on reducing task
completion time while introducing a hybrid
PSO_PGA algorithm for cloud job scheduling.
The algorithm shows practical efficacy, which
improves convergence accuracy and solution
quality. Valli et al. [29] introduced GEC-DRP, a
genetic algorithm for dynamic resource

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8441

scheduling in cloud infrastructure. Through
simulation tests, it anticipates virtual machine
requirements, improves cost optimization, and
confirms efficiency. Khan et al. [30] provided the
adaptive genetic algorithm (AGA) and the greedy
algorithm for cloud-based real-time work
scheduling. AGA performs better than the greedy
algorithm in terms of solution quality. According
to published research, edge-cloud settings require
novel techniques for managing jobs.

2.1 Problem Statement

The growing demand for Internet of Things (IoT)
applications and complex workflows necessitates
effective task scheduling within edge-cloud
environments to meet performance requirements.
Relying solely on cloud resources can lead to
increased energy consumption and potential
Service Level Agreement (SLA) breaches,
especially for tasks with strict deadlines. This
challenge is compounded by optimizing resource
usage while balancing multiple objectives, such as
energy efficiency, latency, and deadline
adherence. Existing task scheduling methods in
edge-cloud environments often fall short of
achieving a balance between these objectives.
Thus, a robust solution is needed to optimize task
scheduling, minimize energy consumption, and
ensure timely execution.

3. PROPOSED FRAMEWORK

Here, we provide a workable approach to task
scheduling in an edge-cloud setting. Our approach
is built upon dynamic programming and further
improvements. With energy economy as its top

priority, this dynamic programming approach
provides an orderly answer to the job scheduling
problem in edge-cloud settings. We are analyzing
the benefits and drawbacks of local, edge, and
cloud resources while using less energy. Efficient
task scheduling is crucial for edge-cloud
situations to reduce energy consumption and
optimize resource usage.

3.1 The System Model

One possible solution to this complex challenge
would be to use a dynamic programming (DP)
approach. Cloud servers and edge devices are
used to build the state or the smallest quantity of
energy required to plan the actions utilizing the
initial step. The energy costs associated with
moving work to edge devices, cloud servers, or
local processing are included in the equation of
the recurrence relationship. Specifically, it
considers the lowest energy needed in each of
these scenarios, allowing for a comprehensive
analysis of the use of resources. Zero professions
need zero energy under the most basic
circumstances, yet zero-resource vocations result
in limitless energy requirements. The DP table is
produced by repeatedly iterating over the number
of jobs and available resources using the defined
recurrence relation. A tracking procedure may
reveal the optimal scheduled option and the
equipment for each task. By deftly managing the
trade-offs between local, edge, and internet
resources, this flexible programming method aims
to boost system performance and minimize
energy usage.

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8442

Figure 1: Proposed architecture for task scheduling in an edge-cloud environment

 The suggested architecture for the task
scheduling of an edge-cloud system is shown in
Figure 1. It emphasizes how dynamic tasks are
routed through a scheduling algorithm (DPEETS)
and how they interact with cloud and edge nodes,
among other infrastructure components. The three
primary parts of the architecture are
infrastructure, the DPEETS algorithm for job
scheduling, and dynamic tasks. The architecture's
section on dynamic tasks represents the source of
the functions that require scheduling. Users create
dynamic tasks using a variety of client devices.
When users engage with these gadgets, they
generate activities that call for computational
resources, such as memory or processing power,
to be used effectively. After that, the jobs are
passed to the DPEETS method for scheduling
tasks that consider user requests and the most
effective way to allocate them to the necessary
infrastructure. DPEETS, an algorithm for task
scheduling optimization, is the heart of the
architecture. Multiple interrelated components
make up this algorithm. Assuring that jobs are
assigned to increase effectiveness and decrease
delay falls within the purview of the sub-module
known as dynamic programming. By evaluating
the variation (Hamming Distance) between
subsequent task allocations, the Hamming
Distance Termination feature assists in
identifying when the scheduling process has
achieved an optimal or nearly optimal

state. Randomization techniques prevent local
optima and guarantee that the algorithm
investigates a broad spectrum of possible
solutions. Choosing different scheduling routes
for improved results is made more accessible by
this.

Once jobs are allocated to particular resources,
either at the edge or cloud nodes, based on task
needs and current load circumstances, the result of
the optimization and randomization procedures is
sent to the scheduling sub-module. The
infrastructure component represents the
computational resources available for the
assigned tasks. It comprises tasks requiring low
latency, fast response times, or localized
processing handled by edge nodes closer to the
users. Although nodes at the edge are near the
user, they may complete tasks more quickly since
they are typically part of a distributed network.
Higher-processing-demanding jobs with shorter
latency are handled by the cloud nodes. Although
being further distant from users, these nodes
provide more significant amounts of resources,
making them more appropriate for operations that
can wait. To give the best scheduling, the
DPEETS algorithm manages the dynamic tasks
that users (1) define at the start of the engagement.
Dynamic programming, termination methods, and
unpredictability approaches are used in this
strategy to enhance the allocation of these tasks

Client
Devices

Users

Dynamic
Programming

Randomizat
ion

Techniques

Hamming
Distance

Termination

Scheduling Edge Nodes

Cloud Nodes

Dynamic Tasks
DPEETS Algorithm for

Task Scheduling Infrastructure

1 2

3 4

1. Dynamic Tasks 2. Tasks and Resources 3. Scheduling Details 4. Outcomes

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8443

(2). After that, the work is distributed across the
pertinent infrastructure components, such as edge
or cloud nodes (3). Finally, the assigned tasks are
completed, and the results are returned to the users
(4). The design highlights how effective task
scheduling is integrated into a hybrid edge-cloud
system, guaranteeing an exchange of resources for
productivity at work.

3.2 Problem Formulation

To indicate that job i is being executed, let 𝑀௜ ∈
 {0, 1}. If job I is completed on the mobile device,
set 𝑀௜ = 1; otis used in the subscript base , cap
E l , end base , and sub i set 𝑀௜ = 0. The energy
us 𝐸𝑙௜if it is carried out locally. While 𝐸𝑟௜
indicates the energy consumption of the edge
device while job i is done on the cloud, 𝐸𝑡 ௜re
reflects the energy-cost of transmitting task i to
the cloud server. Task i can be executed remotely
on a remote cloud server using the variable 𝑇𝑟௜ ,
whereas task i can be processed locally using the
variable 𝑇𝑙௜ . Task i's transmission time to the
cloud server is represented by the variable 𝑇𝑡௜.
The network's transmission bandwidth will
determine the amount of transmission energy
required to upload each activity. Variations in
wireless network capacity will, therefore, impact
the choice to offload. For instance, each job's
transmission duration would be calculated by
dividing the size by the network's transmission
rate. Thus, any variation in the transmission rate
would affect the final decision to assign this work
to a third party. Equations 1 and 2 determine the
energy consumption function and execution time.

𝐸 = ∑ (𝑀௜𝐸𝑙௜ + (1 − 𝑀௜)𝐸𝑟௜ + (1 − 𝑀௜)𝐸𝑡௜)௜∈ே
(1)

𝑇 = ∑ (𝑀௜𝑇𝑙௜ + (1 − 𝑀௜)𝑇𝑟௜ + (1 − 𝑀௜)𝑇𝑡௜)௜∈ே
(2)

With 𝑇௖௢௡௦௧௥௔௜௡௧ being the required execution
time, all tasks' execution times T must meet the
given condition.

𝑇 < 𝑇௖௢௡௦௧௥௔௜௡௧ (3)

To keep things simple, we will refer to a vector of
binary offloading choices as 𝑀 =
 [𝑀ଵ, 𝑀ଶ, . . , 𝑀ே]. The following is the issue that
we are trying to resolve:

min
ௌ௨௕௝௘௖௧ ௧௢: ்ழ்೎೚೙ೞ೟ೝೌ೔೙೟

𝐸 (4)

There are an exponential number of binary value
possibilities when there are more jobs. 𝑀௜ that

may be used to find the best answer. Identifying
which jobs to transfer to the cloud server to
minimize energy usage and fulfill the task's time
constraint for completion.

3.3 Algorithm Design

Our algorithm, Dynamic Programming based
Energy Efficient Task Scheduling (DPEETS), is
suggested as an effective way to schedule tasks in
edge clouds. Our algorithm exploits dynamic
programming, hamming distance termination, and
randomization to optimize task scheduling
decisions in the edge cloud. The proposed
algorithm uses a dynamic programming table to
keep track of iterations and eliminate unnecessary
computations. DPEETS considers multiple
objectives such as deadline, energy efficiency,
and latency of task execution. The algorithm
heuristically converges in a few iterations, leading
to energy-effective task scheduling in edge cloud
environments. Using this method, an N*N table
holds the bit-streams that indicate which jobs
should be offloaded, where N is the number of
tasks. In the first stage, an initial solution is found
by generating a random bit stream. The stream is
mapped to the table so the next horizontal cell is
allocated to 1s, while the following vertical cell is
assigned to 0s. The beginning cell is (1, 2) if the
stream's initial bit is 1, and (2, 1) if the stream's
first bit is 0. Using this method will save
additional calculations for typical bit
strings. Table 1 lists the notations that are used in
the suggested technique.

Table 1: Notations used in the proposed methodology

Notation Meaning
𝑀௜ ∈
 {0, 1}

Variable reflecting execution
indicator

𝑖 Given task
𝐸𝑙௜, 𝐸𝑟௜ Energy consumed by edge

device
𝑇𝑙௜ Execution time in edge
𝑇𝑟௜ Execution time in the cloud
𝑇𝑡௜ Denotes transmission time
𝑇௖௢௡௦௧௥௔௜௡௧ Required execution time
𝑇 Execution time

Figure 2 shows an 8 by 8 2D table. For
clarification purposes, assume that N = 8 and that
the first random stream consists of either
00110110 (red numbers) or 11100110 (black
numbers)—two examples are shown. Assume that
in every instance, 11000111 is the second random
bit stream. Since the initial bit is 1, the beginning
(1, 2) is the second stream's cell. The green stream

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8444

that results from filling the table according to the
previously described guidelines is seen in Figure
2.

Figure 2: Dynamically filling tables (left and right)

 Every time a bit stream is randomly formed, we
calculate the energy and execution time of every
cell or task in the table. We also simultaneously
calculate the execution time and total energy
consumption of the bit stream. We need to
compute the total energy of the new string up to
that point to compare it with the existing total
energy at the first standard cell if a random bit
stream comprising some standard cells with an
existing string in the table is produced. The old
sub-string is eliminated, the new sub-string is
retained, and new quantities are used instead of
the cell's old quantities if the new total energy at
that specific cell is less than the old total energy.
We record the stream's layout in the database each
time a new one is created. We stop and accept a
solution from an all-one stream whose Hamming
distance exceeds a specified threshold. When
every component is run locally, it is indicated by
the whole stream. In the event where K=20 rounds
or 70% of the jobs have been offloaded, for
example, the algorithm may terminate. By
applying the aforementioned terminating criteria,
conclusions are acceptable.

Algorithm: Dynamic Programming based
Energy Efficient Task Scheduling (DPEETS)
Inputs: Tasks in descending order T={t1, t2,
…, tk}, edge resources Cedge={c1, c2, …, cm},
cloud resources VMpub={vm1, vm2, …, vmn}
Output: Efficient scheduling of tasks

1. Begin
2. Initialize edge resources
Cavailable
3. For each task in T
4. Calculate execution time
in edge resources (𝑇𝑙௜)

5. Calculate execution time
in cloud resources (𝑇𝑟௜)
6. IF 𝑇𝑟௜ < 𝑇𝑙௜ Then
7. Determine remote
execution
8. Else
9. Determine edge
execution
10. End If
11. End For
12. For each task t in T
13. Calculate the public cloud
cost
14. Calculate edge cost
15. Find priority level of t
16. End For
17. For each task in t in T
(priority in descending order)
18. For each resource r in Cedge
19.
estExeTimeUseRuntimeEstimator(
r, t)
20. IF estExeTime<=task
deadline Then
21. Update Cavailable with r
22. End If
23. End For
24. For each task t in T
25. IF Cavailable is empty Then
26. Schedule task t in
public cloud
27. Else
28. Schedule task t in edge
cloud
29. End If
30. End For
31. End

Algorithm: Dynamic Programming based
Energy Efficient Task Scheduling (DPEETS)

Algorithm 1 optimizes job scheduling across edge
and cloud resources, focusing on energy
conservation and meeting work deadlines. The
first set of parameters that the algorithm receives
is a set of descending-ranked tasks, a set of public
cloud virtual machines (VMs), and the presence
of edge resources. The final objective is
determining the most efficient method for each
activity while considering its cost, time, and
resource availability. The variable {Cavailable} is
created at the start of the process. It records the
available edge resources and may be assigned to
tasks. This establishes the foundation for
subsequent choices on the sites of every activity.
To decrease execution time as well as resource
usage while maximizing energy efficiency, the

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8445

method computes two crucial metrics for each job
on the list: on-edge resources ({Tli}) and cloud
resources ({Tri}) will be used for the task
execution timeframes. At this crucial point, the
program decides whether an execution
environment is suitable, favoring edge execution
over distant execution when the execution time on
edge resources ({Tl_i}) is longer than that on the
public cloud ({Tr_i}).

The program determines how much it will cost to
use edge and cloud resources for activities after
deciding on the optimal execution strategy. This
involves deducting any running costs for edge
devices and fees associated with cloud resource
utilization. Duties are ranked in order of priority
after the cost analysis. The subsequent scheduling
process depends on this priority since it
determines how activities are assessed for
resource allocation. Priority levels that were
previously established provide the basis for
scheduling. The decreasing order of relevance of
the algorithm means that tasks with higher
importance are finished first. Examining each
edge resource, the technique estimates the runtime
required to complete the current task using a
runtime estimator function
({UseRuntimeEstimator}). It indicates that the
resource is available for usage if the task is
completed within the estimated time of
accomplishment.

The process then determines if the inner loop's
edge resources are accessible. The job will
execute on the public cloud if {Cavailable} has
insufficient resources. If edge resources are
available, the job is scheduled for edge execution.
With this dual-path scheduling approach, you can
ensure that work is performed efficiently while
meeting deadlines and saving costs. The DPEETS
algorithm offers a complete framework for
dynamic, energy-efficient job scheduling at the
edge and in cloud environments. By integrating
execution time estimates, cost evaluations, and
priority determinations, the approach deftly
navigates the difficulties of resource allocation.
This eventually leads to the most cost-effective
way to complete tasks in distributed computing
systems, improving performance.

4. EXPERIMENTAL RESULTS

In this part, the results of our empirical study are
presented. The recommended work scheduling
strategy and underlying algorithm were simulated
using MATLAB programming. The suggested
methodology was compared with earlier

approaches when the results were observed. The
research's empirical findings might shed light on
the usefulness of dynamic programming in
cutting-edge cloud computing. Edge cloud
computing aims to use resources from edge and
cloud computing environments. Improved
performance might come from using edge
resources.

Figure 3: Results of the proposed Dynamic
Programming based Energy Efficient Task Scheduling
(DPEETS) algorithm in terms of time against number
of tasks

Figure 3 shows the performance of the DPEETS
technique by plotting the time in milliseconds
(ms) and the number of jobs (N) on the y- and x-
axes, respectively. When there are more tasks—
from 10 to 30—the approach takes longer,
gradually increasing from 120 ms to about 280
ms. This exhibits the temporal complexity of the
DPEETS algorithm concerning task scheduling,
showing that its processing time increases as the
workload increases.

Figure 4: Results of the proposed Dynamic
Programming based Energy Efficient Task Scheduling
(DPEETS) algorithm measured in terms of time relative
to the state-of-the-art

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8446

Figure 4 compares the time metrics for different
methods and settings of task scheduling, including
the proposed DPEETS algorithm and a Genetic
Algorithm (GA). The transmission rate, which
ranges from 3 to 10, is represented by the x-axis,
and the duration, which ranges from 0 to 1200
seconds, is shown on the y-axis. Multiple methods
are compared: DPEETS with dynamic and GA
settings, as well as fixed scheduling with dynamic
and GA settings for local, cloud, and all tasks. The
graph shows that DPEETS with dynamic
scheduling consistently perform better than other
methods, with time decreasing as transmission
rates increase. The figure caption indicates that
the DPEETS algorithm is compared with the most
advanced in terms of time efficiency.

Figure 5: Results of the proposed Dynamic
Programming based Energy Efficient Task Scheduling
(DPEETS) algorithm compared to the most advanced
in terms of energy usage

The energy usage of many job scheduling
methods at varying transmission speeds is
contrasted in Figure 5. The transmission rate is
shown on the x-axis, while the energy
consumption in joules is shown on the y-axis. The
different lines represent different algorithms,
including DPEETS with dynamic scheduling,
DPEETS with GA, All Local with dynamic
scheduling, All Local with GA, All on Cloud with
dynamic scheduling, and All on Cloud with GA.
The results show that DPEETS with dynamic
scheduling consistently exceed the other
algorithms' performance in terms of energy
consumption across all transmission rates.

Figure 6: Results of the proposed Dynamic
programming-based Energy Efficient Task Scheduling

(DPEETS) algorithm measured in terms of energy
efficiency against the state-of-the-art

The energy usage of many job scheduling
methods under various conditions is compared in
Figure 6. The y-axis shows the energy
consumption in joules, while the x-axis shows the
various situations. The different bars represent
different algorithms, including All Local with
Dynamic, All Local with GA, DPEETS with
20Mbps with Dynamic, DPEETS with 20Mbps
with GA, DPEETS with 5Mbps with Dynamic,
DPEETS with 5Mbps with GA, DPEETS with
72Mbps with Dynamic, and DPEETS with
72Mbps with GA. Based on all situations, the
findings demonstrate that DPEETS with dynamic
scheduling consistently use less energy than the
other methods, improving performance.

Figure 7: Results of the proposed Dynamic
Programming based Energy Efficient Task Scheduling

(DPEETS) algorithm measured in terms of time
relative to the state-of-the-art

Figure 7 evaluates the differences in task
scheduling techniques' execution times under

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8447

various conditions. The execution duration in
seconds is shown on the y-axis, while the various
situations are shown on the x-axis. The different
bars represent different algorithms, including All
Local with Dynamic, All Local with GA,
DPEETS with 20Mbps with Dynamic, DPEETS
with 20Mbps with GA, DPEETS with 5Mbps
with Dynamic, DPEETS with 5Mbps with GA,
DPEETS with 72Mbps with Dynamic, and
DPEETS with 72Mbps with GA. The results show
that DPEETS with dynamic scheduling generally
take longer to execute than the other algorithms,
especially at higher transmission rates. However,
DPEETS with, when it comes to execution time,
GA regularly performs better than the other
algorithms, especially at lower transmission rates.

5. DISCUSSION

The emergence of edge and fog computing may
prove advantageous for enterprises utilizing
diverse applications, such as Internet of Things
(IoT) systems. The special benefits of cloud
computing and edge computing settings bring this
about. The several service level agreements
between cloud service providers and customers
make the latency viewpoint very important.
Research indicates that edge cloud, which is
closer to the client application, can significantly
impact the execution of various applications.
Instead of solely relying on cloud computing
resources, it is advisable to leverage edge
computing resources to enhance the latency
performance of different applications. The study
found that an edge cloud computing platform can
benefit workflow, IoT-based, and other
commonly used applications. Throughout this
essay, we developed a system model to schedule
tasks as they arrive dynamically. The proposed
methodology is based on dynamic programming
and associated techniques. The research and
results indicate that the proposed framework and
underlying algorithm could perform reasonably
well by utilizing edge resources in conjunction
with cloud computing based on task priority and
energy efficiency requirements. As mentioned in
section 5.1, the suggested approach does,
however, have certain drawbacks.

5.1 Limitations

This study suggests several restrictions on the
system. First, the study does not use real-time
cloud and edge settings; instead, it is based on
simulations. Although the simulated environment
can provide insightful information, real-time
system testing is required to gain discoveries that

can be applied to other situations. The
simulation's reliance confined to a limited number
of tasks and resources, which might limit how
widely the outcomes can be used, is another
serious flaw in this work. Furthermore, artificial
intelligence-enabled methods are not included in
the suggested system even though they are crucial
for improving performance in our next work.

6. CONCLUSION AND FUTURE WORK

We present a comprehensive system concept and
architecture aimed at optimizing the scheduling of
tasks within an edge cloud environment—an
increasingly important area in cloud computing.
Our innovative approach for improving work
scheduling decisions in this setting is the Dynamic
Programming-based Energy Efficient Task
Scheduling (DPEETS) technique. This technique
stands out because it integrates several advanced
methodologies, including Hamming distance
termination, dynamic programming, and
randomization, to significantly enhance the
decision-making process for scheduling tasks.
The incorporation of Hamming distance helps
assess the similarity among various tasks,
enabling more informed decisions on task
grouping and execution order. At the heart of
DPEETS is a dynamic programming table, which
plays a crucial role in tracking the various
iterations of the scheduling process. This table
allows the system to minimize redundant
calculations, thus streamlining the scheduling
process and making it more efficient.
Furthermore, DPEETS considers multiple
objectives during task scheduling, including
energy efficiency, minimizing delays in task
execution, and ensuring system reliability. Once
the DPEETS algorithm heuristically converges
after a few iterations, the edge cloud system can
schedule jobs that consume low energy while
maintaining optimal performance. This capability
is particularly beneficial in environments where
energy consumption is critical, such as edge
computing scenarios, where resources may be
limited. Our simulation studies provide
compelling evidence of the effectiveness of
DPEETS, demonstrating that it outperforms
several existing heuristic techniques commonly
used for task scheduling in edge cloud settings.
The results indicate that DPEETS enhances
energy efficiency and reduces task execution
delays, contributing to a more robust cloud
computing framework. Looking forward, we
intend to explore the implementation of a deep
reinforcement learning-based architecture to

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8448

advance task scheduling efficiency further. This
future direction aims to leverage the strengths of
machine learning to create even more adaptive
and intelligent scheduling strategies that can
dynamically respond to changing conditions and
workloads in the edge cloud environment.

REFERENCES

[1] Velliangiri, S.; Karthikeyan, P.; Arul Xavier,
V.M. and Baswaraj, D. (2020). Hybrid
electro-search with genetic algorithm for task
scheduling in cloud computing. Ain Shams
Engineering Journal, pp.1–
9. doi:10.1016/j.asej.2020.07.003

[2] Sindhu, S. and Mukherjee, Saswati (2013). A
genetic algorithm-based scheduler for cloud
environment. , IEEE, pp.23–
27. doi:10.1109/iccct.2013.6749597

[3] Chen, Shi; Wu, Jie and Lu, Zhihui (2012). A
Cloud Computing Resource Scheduling
Policy Based on Genetic Algorithm with
Multiple Fitness. , IEEE, pp.177–
184. doi:10.1109/CIT.2012.56

[4] Maryam, Khola; Sardaraz, Muhammad and
Tahir, Muhammed (2018). Evolutionary
Algorithms in Cloud Computing from the
Perspective of Energy Consumption: A
Review, IEEE, pp.1–
6. doi:10.1109/ICET.2018.8603582

[5] Latreche Imene a,⇑ , Slatnia Sihem a , Kazar
Okba a,b , Batouche Mohamed. (2022). A
third generation genetic algorithm NSGAIII
for task scheduling in cloud
computing. Journal of King Saud University –
Computer and Information Sciences, p.7515–
7529.

[6] Chen, Zong-Gan; Du, Ke-Jing; Zhan, Zhi-Hui;
Zhang, Jun (2015). Deadline constrained
cloud computing resources scheduling for cost
optimization based on dynamic objective
genetic algorithm. , IEEE, pp.708–
714. doi:10.1109/CEC.2015.7256960

[7] Zhihao Peng, Poria Pirozmand, Masoumeh
Motevalli and Ali Esmaeili. (2022). Genetic
Algorithm-Based Task Scheduling in Cloud
Computing Using MapReduce
Framework. Hindawi, pp.1-11.

[8] Nguyen, Binh Minh; Thi Thanh Binh, Huynh;
The Anh, Tran and Bao Son, Do
(2019). Evolutionary Algorithms to Optimize
Task Scheduling Problem for the IoT Based
Bag-of-Tasks Application in Cloud–Fog
Computing Environment. Applied Sciences,
9(9), pp.1–20. doi:10.3390/app9091730

[9] Zhong, Hai; Tao, Kun and Zhang, Xuejie
(2010). An Approach to Optimized Resource
Scheduling Algorithm for Open-Source Cloud
Systems. , IEEE, pp.124–
129. doi:10.1109/ChinaGrid.2010.37

[10] An-Ning Zhang, Shu-Chuan Chu, Pei-Cheng
Song, Hui Wang and Jeng-Shyan. (2022).
Task Scheduling in Cloud Computing
Environment Using Advanced Phasmatodea
Population Evolution Algorithms. MDPI,
pp.1-16.

[11] Liu, Shaojie and Wang, Ning
(2020). Collaborative Optimization
Scheduling of Cloud Service Resources Based
on Improved Genetic Algorithm. IEEE
Access, pp.1–
13. doi:10.1109/ACCESS.2020.3016762

[12] Kömer, Pavel; Abraham, Ajith; Snášel,
Václav (2014). Hybrid Job Scheduling
Algorithm for Cloud Computing
Environment, Advances in Intelligent Systems
and Computing, pp.43–52. doi:10.1007/978-
3-319-08156-4_5

[13] Paknejad, Peyman; Khorsand, Reihaneh and
Ramezanpour, Mohammadreza
(2020). Chaotic improved PICEA-g-based
multi-objective optimization for workflow
scheduling in a cloud environment. Future
Generation Computer Systems, pp.1–
31. doi:10.1016/j.future.2020.11.002

[14] Zhuoyuan Yu. (2023). Retracted: Research on
Optimization Strategy of Task Scheduling
Software Based on Genetic Algorithm in
Cloud Computing E, Hindawi, pp.1-10.

[15] Tao, Fei; Feng, Ying; Zhang, Lin and Liao,
T.W. (2014). CLPS-GA: A case library and
Pareto solution-based hybrid genetic
algorithm for energy-aware cloud service
scheduling. Applied Soft Computing, 19,
pp.264–279. doi:10.1016/j.asoc.2014.01.036

[16] Duan, Kairong; Fong, Simon; Siu, Shirley;
Song, Wei and Guan, Steven (2018). Adaptive
Incremental Genetic Algorithm for Task
Scheduling in Cloud Environments.
Symmetry, 10(5), pp.1-13.
doi:10.3390/sym10050168

[17] Senthil Kumar, A. M. and Venkatesan, M.
(2019). Multi-Objective Task Scheduling
Using Hybrid Genetic-Ant Colony
Optimization Algorithm in Cloud
Environment. Wireless Personal
Communications, pp.1–
14. doi:10.1007/s11277-019-06360-8

 Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8449

[18] Aziza, Hatem and Krichen, Saoussen
(2017). Bi-objective decision support system
for task-scheduling based on genetic
algorithm in cloud computing. Computing,
pp.1–27. doi:10.1007/s00607-017-0566-5

[19] Deafallah Alsadie; (2021). A Metaheuristic
Framework for Dynamic Virtual Machine
Allocation With Optimized Task Scheduling
in Cloud Data Centers . IEEE Access, pp.1–
16. doi:10.1109/access.2021.3077901

[20] Jena, R.K. (2017). Energy Efficient Task
Scheduling in Cloud Environment. Energy
Procedia, 141, pp.222–
227. doi:10.1016/j.egypro.2017.11.096

[21] Essam H. Houssein;Ahmed G. Gad;Yaser M.
Wazery;Ponnuthurai Nagaratnam Suganthan;
(2021). Task Scheduling in Cloud Computing
based on Meta-heuristics: Review, Taxonomy,
Open Challenges, and Future Trends . Swarm
and Evolutionary Computation, pp.1-
41. doi:10.1016/j.swevo.2021.100841

[22] Alaei, Mani; Khorsand, Reihaneh and
Ramezanpour, Mohammadreza (2020). An
adaptive fault detector strategy for scientific
workflow scheduling based on improved
differential evolution algorithm in cloud.
Applied Soft Computing, pp.1–
16. doi:10.1016/j.asoc.2020.106895

[23] Sobhanayak, Srichandan; Turuk, Ashok
Kumar; Sahoo, Bibhudatta (2018). Task
scheduling for cloud computing using multi-
objective hybrid bacteria foraging algorithm.
Future Computing and Informatics Journal,
pp.1-30. doi:10.1016/j.fcij.2018.03.004

[24] Yiqiu, Fang; Xia, Xiao; Junwei, Ge
(2019). Cloud Computing Task Scheduling
Algorithm Based On Improved Genetic
Algorithm. , IEEE, pp.852–
856. doi:10.1109/ITNEC.2019.8728996

[25] Saeedi, Sahar; Khorsand, Reihaneh; Ghandi
Bidgoli, Somaye and Ramezanpour,
Mohammadreza (2020). Improved Many-
objective Particle Swarm Optimization
Algorithm for Scientific Workflow
Scheduling in Cloud Computing. Computers
& Industrial Engineering, pp.1-
41. doi:10.1016/j.cie.2020.106649

[26] Zhi-Hui Zhan; Lin Shi; Kay Chen Tan and Jun
Zhang; (2021). A survey on evolutionary
computation for complex continuous
optimization . Artificial Intelligence Review,
pp.1–52. doi:10.1007/s10462-021-10042-y

[27] Kaili Shao, Hui Fu and Bo Wang. (2023). An
Efficient Combination of Genetic Algorithm
and Particle Swarm Optimization for
Scheduling Data-Intensive Tasks in
Het. MDPI, pp.1-17.

[28] Xueliang Fu; Yang Sun; Haifang Wang and
Honghui Li; (2021). Task scheduling of cloud
computing based on hybrid particle swarm
algorithm and genetic algorithm . Cluster
Computing, pp.1-10. doi:10.1007/s10586-
020-03221-z

[29] K. Lalitha Devi and S. Valli; (2021). Multi-
objective heuristics algorithm for dynamic
resource scheduling in the cloud computing
environment . The Journal of
Supercomputing, pp.1–
29. doi:10.1007/s11227-020-03606-2

[30] Mahmood, Amjad; Khan, Salman and
Bahlool, Rashed A. (2017). Hard Real-Time
Task Scheduling in Cloud Computing Using
an Adaptive Genetic Algorithm. Computers,
6(2), pp.1–
21. doi:10.3390/computers6020015

