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ABSTRACT 
 

Network intrusion detection is essential for identifying suspicious network activity. However, with 
technological advancements and the increasing need for data, data processing becomes a significant challenge 
in intrusion detection. This research explores a detection system using Long Short-Term Memory (LSTM) 
combined with Random Forest-based feature selection (RFUTE) to enhance performance. RFUTE reduced 
data dimensions by selecting 29 features for binary and 30 for multiclass classification from 43 total features. 
Tested on the NF-UQ-NIDS-v2 dataset, the system showed significant improvements, achieving 99% 
accuracy in binary classification and 95% in multiclass classification. Additionally, the AUC-ROC curve of 
the model with RFUTE showed better performance than the model without RFUTE, with an increase in AUC 
to 0.999 for binary classification and 0.9987 for multiclass classification. These findings demonstrate that the 
integration of Long Short-Term Memory networks with Random Forest-based feature selection significantly 
improves the accuracy and predictive performance of network intrusion detection systems, particularly in 
large-scale and complex environments. This research contributes to the development of a more accurate and 
efficient model for network intrusion detection by integrating Long Short-Term Memory networks with 
Random Forest-based feature selection. This model improves the ability to identify network threats quickly 
and responsively. 

Keywords: Network Intrusion Detection, Binary Classification, Multiclass Classification, LSTM, Random 
Forest Feature Selection (RFUTE), Feature Selection. 

 
1. INTRODUCTION  
 

In the rapidly evolving digital landscape, network 
security has emerged as a critical concern for 
individuals, organizations, and nations alike. Cyber-
attacks, ranging from data theft to service 
disruptions, pose significant threats to the integrity, 
confidentiality, and availability of information 
systems [9]. The increasing sophistication of these 
attacks, such as Distributed Denial of Service 
(DDoS) and advanced malware, demands robust and 
adaptive security measures to protect network 
infrastructure [6]. Network Intrusion Detection 
Systems (NIDS) have become essential in 
identifying suspicious activities within network 
traffic that may indicate potential security breaches 
[16]. The effectiveness of these systems relies on 
their ability to recognize and classify abnormal 
patterns or behaviors, thereby allowing timely and 
targeted responses to detected threats. 

In this context, traffic classification is essential to 
identify the source of traffic from various 
applications and network services, ensuring quality 
management, anomaly detection in network security, 
and recognizing suspicious traffic patterns [1]. As 
the complexity of network attacks increases, the 
volume of data generated by network systems also 
grows significantly. This large and diverse network 
data presents substantial challenges in intrusion 
detection, as it requires extensive computational 
resources for processing and analysis. Efficient data 
handling techniques are necessary to ensure accurate 
and timely detection of intrusions. Feature selection 
is particularly critical in developing effective 
intrusion detection systems, as not all features in 
high-dimensional data are essential. Including 
irrelevant features can lead to model overfitting, 
making feature selection vital for reducing data 
dimensionality and enhancing model efficiency. 
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In light of these challenges and opportunities, this 
study leverages the Random Forest algorithm for 
feature selection, which not only provides accurate 
predictions through multiple decision trees but also 
effectively handles imbalanced data [15]. Random 
Forest is used in this research to perform feature 
selection by ranking and selecting a subset of 
features that enhance the accuracy and precision of 
intrusion detection. The Feature Importance 
Measure (FIM), commonly employed in Random 
Forest, assesses the significance of each feature 
within the model. The selected subset of features is 
then utilized as input for training a Long Short-Term 
Memory (LSTM) method, which is well-suited for 
sequential data like network traffic due to its ability 
to capture temporal relationships within the data 
[11].  

By incorporating LSTM with Random Forest-
based feature selection, this study aims to advance 
the field of intrusion detection by offering a robust 
approach to mitigating modern cyber threats. 
 
1.1 Research Problem 

There are not many network intrusion detection 
systems that can handle large and complex data 
effectively, especially in terms of detecting attacks 
with high accuracy. Many existing solutions still 
face challenges in handling very large data which 
can affect performance and detection accuracy. This 
study examines these problems and applies the Long 
Short-Term Memory (LSTM) method to handle 
large sequential data, and uses Random Forest 
Feature selection to reduce data dimensions and 
improve model efficiency. 
 
2. RELATE WORKS 

    Recent research [10] demonstrates the potential of 
optimizing Random Forest (RF) algorithms for 
feature selection. By enhancing randomness to 
strengthen each tree and reduce inter-tree 
correlations, the optimized RF model achieved a 
sensitivity above 0.8 on expanded datasets. 
However, this study only uses the random forest 
algorithm, while our study combines the Random 
Forest algorithm and Long Short-Term Memory 
Method. Building on these advancements, [3] 
proposed a Hybrid Sampling & Feature Selection 
Random Forest (HF_RF) algorithm. HF_RF 
demonstrated superior performance compared to 
traditional approaches, particularly in managing 
imbalanced datasets. However, this study uses the 
Hybrid Sampling & Feature Selection Random 
Forest (HF_RF) algorithm, while our study 
combines the Random Forest algorithm with the 

Long Short-Term Memory Method. Moreover, 
studies in deep learning approaches, such as the work 
by [2], demonstrate the effectiveness of the Long 
Short-Term Memory (LSTM) method in intrusion 
detection systems. Their multilayer LSTM model 
achieved high accuracy rates of 95% and 96% in 
binary and multiclass classifications, respectively, 
showcasing its scalability and robustness in network 
defense. However, traditional intrusion detection 
systems often suffer from low detection rates and 
challenges in handling large data, imbalanced 
classes, and large feature sets, indicating a critical 
need for improved models and techniques in the 
field. Therefore, this study proposes a combination 
of the Random Forest algorithm and the Long Short-
Term Memory Method. 
 
3. METHODS 

3.1 Decision Tree 
    Decision Tree is a supervised machine learning 
algorithm used for both classification and regression 
tasks. It operates by following a series of nested if-
else conditions to make predictions, commonly 
referred to as Classification and Regression Trees 
(CART). The structure of a Decision Tree begins 
with a root node, which represents the initial 
decision point. From there, branches emerge, 
representing possible decision paths, leading to 
either internal nodes (representing further decisions) 
or leaf nodes, which provide final classifications or 
outcomes [7] [10]. The general structure of a 
Decision Tree is depicted in Figure 1. 

 
Figure 1. Structure of Decision Tree [7] 

 
    The process of Decision Tree learning follows a 
top-down approach known as recursive binary 
splitting, where the algorithm successively divides 
the predictor space into two parts. This greedy 
approach chooses the best split at each step, without 
looking ahead to optimize the overall tree. The 
algorithm evaluates variables using statistical 
criteria to select the optimal split. Two major 
approaches for selecting splits are based on Entropy 
and Information Gain, which measure the purity of 
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the resulting nodes, aiming to create the most 
homogeneous child nodes. 
    Entropy measures the level of disorder within a 
node, with values ranging from 0 (pure) to 1 
(completely impure). The entropy at each split helps 
identify which variable is most effective at dividing 
the data. Information Gain measures the reduction in 
entropy from the parent node to the child nodes. It is 
calculated by subtracting the average entropy of the 
child nodes from the parent node's entropy. Another 
commonly used measure is the Gini Index, which 
focuses on the probability of misclassifying a 
randomly chosen instance, aiming to minimize 
misclassification at each split. 
    Despite its advantages, such as the ability to 
handle complex, unstructured data (both categorical 
and numerical) and imbalanced data, Decision Trees 
have some drawbacks. The most significant 
challenge is overfitting, where the model becomes 
too complex and performs poorly on unseen data. 
Pruning techniques are often applied to reduce tree 
complexity and prevent overfitting. Furthermore, 
Decision Trees can be highly sensitive to small 
changes in the training data, which can lead to 
significantly different trees. To overcome this, 
ensemble methods like Random Forest, which 
aggregates multiple trees, are often employed to 
improve stability and accuracy. 
 
 
3.2 Random Forest Feature Selection 
    Random Forest was employed as the method for 
feature selection due to its effectiveness in 
identifying the most relevant and informative 
attributes from a dataset. As an ensemble algorithm 
that leverages a large number of Decision Trees, 
Random Forest excels at measuring feature 
importance through the Feature Importance Measure 
(FIM), which estimates how frequently a feature is 
utilized to split the dataset and the extent of impurity 
reduction produced by that feature [16]. 
    During the feature selection process, features are 
assessed based on their importance in enhancing 
detection and classification accuracy. Features with 
higher information gain are deemed more critical 
and are retained, while those with lower importance 
can be eliminated from the dataset. This method not 
only facilitates the selection of the most relevant 
feature subset but also helps avoid overfitting by 
reducing data dimensionality. A detailed illustration 
of the feature importance in Random Forest can be 
seen in Figure 2 below. 
 

 
Figure 2. Feature Importance in Random Forest [12] 

     
    Another advantage of Random Forest is its ability 
to identify feature interactions and nonlinear 
relationships between features, which are often 
missed by other feature selection methods. Several 
methods have been developed to address the feature 
selection problem, which can be grouped into three 
general classes: filter methods, wrapper methods, 
and embedded methods [8]. This capability provides 
deeper insights into the factors influencing intrusion 
detection or classification performance. However, 
the results from feature selection using Random 
Forest can vary based on the parameters and 
configurations employed. Therefore, careful 
experimentation and validation are necessary to 
ensure the effectiveness and accuracy of the selected 
features [15]. 
    Let 𝐴 = {𝑎ଵ, 𝑎ଶ, … , 𝑎ௗ} represent the original 
available features. The objective of feature selection 
is to choose a subset of features 𝐴ᇱ(|𝐴ᇱ| = 𝑑ᇱ, 𝑑ᇱ ≪
𝑑) from the original features, meaning 𝐴ᇱ is a part of 
𝐴. The selected features must have the strongest 
statistical dependence [5] on the target class 𝑦𝚤ෝ . In 
this context, Random Forest performs feature 
selection by focusing on maximizing the dependence 
between the selected features 𝐴ᇱ and the information 
provided by the target labels 𝑦𝚤ෝ . This dependence is 
evaluated using FIM based on information entropy. 
    Simply put, Random Forest Feature Selection 
measures the average change in information entropy 
of each feature by examining how nodes are split 
across the Decision Trees in the Random Forest. 
Subsequently, the changes for each feature are 
ranked from highest to lowest, and the top 𝑛ᇱ features 
are chosen to form the target subset 𝐴ᇱ.  
    The entropy calculation can be expressed as 
follows: 
 
𝐸 =  − ∑ 𝑝௜ logଶ 𝑝௜

௡
௜ୀଵ                         (1) 

 
This change is referred to as Information Gain (IG), 
which measures how much information a feature 
contributes to predicting the target variable. It is 
calculated using the following formula: 
 
𝐼𝐺 =  𝐸𝑛𝑡௣௔௥௘௡௧ − 𝐸𝑛𝑡௖௛௜                                  (2) 
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Where 𝐸𝑛𝑡௣௔௥௘௡௧  is the entropy of the parent node 
and 𝐸𝑛𝑡௖௛௜௟ௗ  represents the weighted average 
entropy of the child nodes following the split. 
 
3.3 LSTM 
    The main process in deep learning [3] begins with 
artificial neural networks posing a series of binary 
questions, classifying inputs as either true or false. 
These networks extract numerical values from 
existing datasets and group them based on the 
learned information. The final step involves sorting, 
tagging, and labeling data to ensure accurate and 
relevant results. This method enables the deep 
learning model to effectively capture patterns and 
structure within large datasets.   
    In particular, Long Short-Term Memory (LSTM) 
networks, a specialized form of Recurrent Neural 
Networks (RNN), are highly efficient for processing 
sequential data, such as text, audio, and time series. 
LSTM networks have the unique capability to retain 
information over extended periods, addressing the 
vanishing gradient problem that often plagues 
traditional neural networks. This feature allows the 
LSTM model to capture long-term dependencies 
within the data, making them ideal for tasks 
involving time series forecasting, natural language 
processing, and other sequential data analysis [1].   
    Combining the strengths of general deep learning 
methods with the LSTM architecture, researchers 
can enhance the accuracy and relevance of 
predictions, especially in domains that rely on 
sequential data. The binary classification and data 
grouping mechanisms inherent in the deep learning 
method, along with LSTM capacity to process time-
dependent data, provide a robust framework for 
analyzing complex datasets. This integration is 
crucial in applications like network intrusion 
detection, financial forecasting, and various other 
fields where pattern recognition across time is 
essential. 
    The architecture of an LSTM cell consists of three 
gates: the forget gate, the input gate, and the output 
gate. These gates aim to control and protect the cell 
state while managing the flow of information within 
the memory cell. With these gates, LSTM can 
prevent stored information from being overwritten 
by irrelevant data. Figure 3 below illustrates the 
architecture of the LSTM cell. 

 
Figure 3. Architecture of the LSTM Cell [4] 

 
    Figure 3 depicts the architecture of the LSTM cell, 
where the input layer is represented as 𝑥௧ and the 
output is ℎ௧ at time 𝑡. During the model training 
process and hyperparameter tuning, the LSTM cell 
takes into account the input cell state 𝐶௧

෩ , the output 
state from the previous cell 𝐶௧ିଵ, to produce the 
output state 𝐶௧. The LSTM cell architecture features 
three gates: input gate (𝑖௧), forget gate (𝑓௧), and 
output gate (𝑜௧) (Cui et al., 2018). The formulation 
of the LSTM cell architecture can be expressed as 
follows: 
 
𝑓௜

(௧)
=  𝜎൫𝑏௜

௙ +  ∑ 𝑈௜௝
௙

𝑥௝
(௧)

+௝ ∑ 𝑊௜௝
௙

ℎ௝
(௧ିଵ)

௝ ൯       (3) 

𝑔௜
(௧) =  𝜎൫𝑏௜

௚ +  ∑ 𝑈௜௝
௚

𝑥௝
(௧)

+௝ ∑ 𝑊௜௝
௚

ℎ௝
(௧ିଵ)

௝ ൯      (4) 

𝐶௧
෩ = tanh ൫𝑏௜ +  ∑ 𝑈௜௝௝ 𝑥௝

(௧)
+ ∑ 𝑊௜௝௝ ℎ௝

(௧ିଵ)
൯      (5) 

𝑞௜
(௧) =  𝜎൫𝑏௜

௢ +  ∑ 𝑈௜௝
௢ 𝑥௝

(௧)
+௝ ∑ 𝑊௜௝

௢ℎ௝
(௧ିଵ)

௝ ൯       (6) 
 
    Equations (1) to (4) illustrate the fundamental 
operations in LSTM. In equation (1) 𝑓௜

(௧)
 represents 

the forget gate at time step 𝑡 for cell 𝑖. The sigmoid 
function (𝜎) is employed to adjust weights between 
0 and 1. At time step 𝑡, 𝑥(𝑡) is the current input 
vector, and ℎ(𝑡) is the vector at the hidden layer. 
Biases 𝑏௙, 𝑏௚, 𝑏௢ are applied to each LSTM cell. 
Input weights 𝑈௙, 𝑈௚, and 𝑈௢ are added to the 
current input, while recurrent weights 𝑊௙, 𝑊௚, and 
𝑊௢ are added to the hidden layer vector. Equation 
(3) explains how to update the cell state and timestep 
in LSTM, while equations (2) and (4) describe the 
input gate unit 𝑔௜

(௧) and output unit 𝑞௜
(௧) for timestep 

𝑡. 
    In the context of network intrusion detection, 
LSTM offers the capability to model complex and 
dynamic network activity patterns that may change 
over time. LSTM ability to maintain long-term 
dependencies makes it an effective choice for 
building network intrusion detection systems. 
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3.4 Dataset 
    This research utilizes the NF-UQ-NIDS-v2 
dataset, which provides comprehensive information 
on network attack traffic, categorized to facilitate 
analysis and application [14]. The NF-UQ-NIDS-v2 
dataset includes original NetFlow features as well as 
modified features. These features include source and 
destination IP addresses, the protocol used, 
connection duration, and other key information for 
detecting network attacks. 
    The dataset contains a total of 43 feature columns. 
Of these, 33.12% represent normal (Benign) traffic, 
while 66.88% are labeled as attack traffic. This 
large-scale dataset offers a rich foundation for 
analyzing network behavior and developing 
intrusion detection models. 
 
3.5 Data Preprocessing 
    Data preprocessing is essential for preparing raw 
datasets for machine learning models. This process 
involves separating independent variables, such as 
IP addresses, protocols, and connection durations, 
from dependent variables, which represent network 
activity labels (e.g., benign or attack types). At this 
stage, the original multiclass classification labels, 
which consisted of 21 attack categories, were 
grouped into eight main categories. After this 
grouping, the process of handling imbalanced data 
was conducted. For the multiclass classification, 
manual sampling was applied to ensure a balanced 
representation of each category. The number of rows 
for each category was adjusted to achieve a balance 
between attack categories and normal network 
activity, allowing for more effective model training. 
    The dataset is then split into two subsets: 80% for 
training and 20% for testing. The training set is used 
to teach the model patterns based on historical data, 
while the testing set evaluates the model 
performance on unseen data, ensuring it can be 
generalized effectively in tasks such as IP-based 
network behavior detection. An example of the data-
splitting process can be seen in Table 1 below. 
 

Table 1: Separation of IP Address Feature 
IPV4_SRC_ 

ADDR 
IPV4_ 
SRC_1 

IPV4_ 
SRC_2 

IPV4_ 
SRC_3 

IPV4_ 
SRC_4 

172.31.69.14 172 31 69 14 
 
Additionally, categorical variables are encoded 
using methods such as Label Encoding and One-Hot 
Encoding to convert non-numeric data into 
numerical form. Finally, normalization techniques 
like Standard Scaler are applied to standardize the 
feature values, ensuring all variables are on a 
consistent scale by using the following equations: 
 

𝑧 =  
௫ି ఓ

ఙ
   (7) 

 
3.6 Evaluation Measures 
    This study involves two types of classification 
used in network attack detection, namely binary 
classification and multiclass classification. The 
evaluation of the model in binary classification is 
conducted to measure the model performance in 
distinguishing between two classes: the positive 
class and the negative class. In contrast, for 
multiclass classification, the model performance is 
evaluated based on its ability to differentiate among 
more than two classes. Key terms for evaluation 
include True Positive (TP), which refers to cases 
where the prediction is positive and the actual result 
is also positive; True Negative (TN), where both the 
prediction and the actual result are negative; False 
Positive (FP), where the prediction is positive, but 
the actual result is negative; and False Negative 
(FN), where the prediction is negative, but the actual 
result is positive. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்௉ା்

்௉ା்ேାி௉ାிே
                      (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
்௉

்௉ାி௉
                       (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
்௉

்௉ାி
                      (10) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
௉௥௘௖௜௦௜௢௡ × ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ା ோ௘௖௔௟௟
     (11) 

 
    A receiver operating characteristic (ROC) curve 
provides an overview of the trade-off between the 
true positive rate and false positive rate for a 
predictive model using different probability 
thresholds for performance metrics. 
 
4. RESULTS DISCUSSION 

    This section presents and analyzes the 
experimental results of applying Random Forest 
Feature Selection and the LSTM Model for network 
intrusion detection. 
 

4.1 Random Forest Feature Selection 
    For feature selection, the scikit-learn library was 
employed, utilizing the Random Forest algorithm to 
evaluate the importance of each feature in the 
dataset. The feature selection process involved 
choosing features with the highest importance scores 
based on their contribution to classification 
accuracy. This method was applied for both binary 
and multiclass classification tasks. The Feature 
Importance Measure (FIM) scores obtained from 
this implementation provided a clear understanding 
of the contribution of each feature in predicting the 
target labels. The detailed results of feature 
importance can be seen in Figure 4 for binary 
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classification and Figure 5 for multiclass 
classification. 
 

 
Figure 4. Random Forest FIM Scores Results in Binary 

Classification 
 

 
Figure 5. Random Forest FIM Scores Results in 

Multiclass Classification 
 
    The next step was to select an optimal subset of 
features based on the FIM results. To achieve this, 
the Recursive Feature Elimination with Cross-
Validation (RFECV) method was applied using the 
pre-trained Random Forest model, as implemented 
in the scikit-learn library. RFECV systematically 
evaluates the model performance across different 
feature subsets and recursively removes less 
important features based on cross-validation results. 
    The results from the RFECV method 
demonstrated that for binary classification, 29 
features were selected from the initial 43 features, 
while for multiclass classification, 30 features were 
chosen from the original set of 43. The selection of 
these features aimed to optimize model performance 
by focusing on those that contributed most to 
classification outcomes. The final selection of 
features effectively reduced the dimensionality of 
the data while preserving essential information for 
classification. 
 
4.1 Results of Binary and Multiclass 

Classification 
    The model evaluation stage aims to measure the 
performance of the trained model in both binary and 
multiclass classification using test data. Then, 

compares the model performance with and without 
RFUTE to assess its impact on the model 
effectiveness. 
 
4.1.1 Binary Classification 
    In binary classification, the model was evaluated 
using 400,000 training data points and 100,000 test 
data points. The evaluation compares the training 
and validation performance of two models: one with 
RFUTE (Random Forest-based Feature Selection) 
and one without RFUTE. This comparison is made 
to assess the impact of feature selection on model 
performance. 

 
Figure 6. Comparison of Train and Val Loss in Binary 

Classification 
 
    Figure 6 illustrates the comparison of training and 
validation loss between the models trained without 
and with RFUTE across multiple epochs. For the 
model without RFUTE, the training loss begins at 
0.2917 and decreases to 0.0713 by epoch 30, while 
the validation loss starts at 0.2519 and drops to 
0.0578 in the same period. This indicates that both 
training and validation loss decrease steadily as the 
number of epochs increases, although the validation 
loss remains slightly higher than the training loss. In 
contrast, the model trained with RFUTE shows a 
more significant reduction in training loss, starting 
from 0.0537 at epoch 1 and dropping to 0.0200 by 
epoch 12. Similarly, the validation loss decreases 
from 0.0271 to 0.0189 during the same epochs, 
indicating that RFUTE aids in reducing both training 
and validation loss more effectively. Furthermore, 
the gap between training and validation loss is much 
smaller when using RFUTE, suggesting better 
generalization. 
 

 
Figure 7. Comparison of Train and Val Accuracy in 

Binary Classification 
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    Figure 7 presents the comparison of training and 
validation accuracy for the two models. The model 
without RFUTE shows a training accuracy starting 
at 0.8818 and improving to 0.9502 by epoch 5, with 
validation accuracy also increasing from 0.9070 to 
0.9583 during the same period. As training 
progresses, the model training accuracy reaches 
0.9766 by epoch 30, while validation accuracy 
steadily improves from 0.9069 to 0.9819. 
Conversely, the model trained with RFUTE exhibits 
significantly higher training accuracy from the first 
epoch (0.9828), along with a higher validation 
accuracy of 0.9918. As training continues, the 
RFUTE-enabled model maintains high training 
accuracy, reaching 0.9942 by epoch 10, and 
validation accuracy improves to 0.9947 at the same 
epoch, remaining stable with slight increases until 
epoch 12. The classification report further 
demonstrates that the model with RFUTE achieves 
superior accuracy, precision, recall, and F1 score, 
culminating in an overall performance of 99%, 
compared to the model without RFUTE.  
 

 
Figure 8. Comparison of AUC-ROC Curve in Binary 

Classification 
 

    Figure 8 illustrates the AUC-ROC curve 
comparing the performance of both models. The 
model without RFUTE achieves an AUC of 0.997, 
while the model with RFUTE attains a higher AUC 
of 0.999, indicating that RFUTE enhances the 
model's ability to differentiate between classes and 
improves overall predictive capability. 
4.1.2 Multiclass Classification 
    In multiclass classification, the model was 
evaluated using 303,210 training data points and 
75,803 test data points. Similar to binary 
classification, this evaluation compares the training 
and validation performance of the two models: one 
with RFUTE (Random Forest-based Feature 
Selection) and one without RFUTE. 
 

 
Figure 9. Comparison of Train and Val Loss in 

Multiclass Classification 
 

    Figure 9 illustrates the comparison of training and 
validation loss for both models across various 
epochs. For the model without RFUTE, the training 
loss starts at 1.0743 and decreases steadily to 0.3985 
by epoch 38. The validation loss also shows a 
decrease, dropping from 0.7514 at epoch 1 to 0.3108 
at epoch 38. This decline indicates that the model 
gradually improves its ability to minimize errors in 
predicting both training and validation data. In 
contrast, the model trained with RFUTE exhibits a 
significant reduction in training loss, starting from 
0.3322 at epoch 1 and falling to 0.1537 by epoch 33. 
Similarly, the validation loss decreases from 0.2356 
at epoch 1 to 0.1403 at epoch 33, demonstrating that 
the use of RFUTE allows the model to achieve 
optimal performance more quickly compared to the 
model without RFUTE. 
 

 
Figure 10. Comparison of Train and Val Accuracy in 

Multiclass Classification 

    Figure 10 presents the comparison of training and 
validation accuracy for both models. The model 
without RFUTE shows a training accuracy 
beginning at 0.6055, steadily increasing to 0.8460 by 
epoch 38, while validation accuracy rises from 
0.7261 to 0.8765 over the same epochs. In contrast, 
the model trained with RFUTE displays a significant 
increase in training accuracy, rising from 0.8670 at 
epoch 1 to 0.9412 at epoch 33. The validation 
accuracy also improves from 0.9021 at epoch 1 to 
0.9507 at epoch 32. The model reaches its best 
performance at epoch 28, with the highest validation 
accuracy before stabilizing in subsequent epochs, 
indicating that the use of RFUTE enables the model 
to reach optimal performance faster than the model 
without RFUTE. The classification report indicates 
a substantial improvement with RFUTE, showing 
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higher accuracy, precision, recall, and F1 score, with 
an average result of 95% compared to 88% for the 
model without RFUTE.  

 
Figure 11. Comparison of AUC-ROC Curve in Multiclass 

Classification 

    Figure 11 displays the comparison of the AUC-
ROC curve for multiclass classification. The results 
indicate that the application of RFUTE consistently 
enhances model performance across nearly all 
classes. Specifically, the micro-average AUC 
increases from 0.9926 without RFUTE to 0.9987 
with RFUTE, reflecting an overall improvement in 
the model's ability to accurately predict multiple 
classes. These facts are the key restrictions of this 
work. 

This research contributes to the development of 
a more accurate and efficient model for network 
intrusion detection by integrating Long Short-Term 
Memory networks with Random Forest-based 
feature selection. This model improves the ability to 
identify network threats quickly and responsively. 

This study uses the NF-UQ-NIDS-v2 dataset 
from The University of Queensland, Australia which 
contains network traffic data used to detect network 
attacks. To check the validity, it is better to try with 
datasets from other sources. The model is applied 
with integration with the website interface. Website 
users can upload a CSV of network data collection to 
be predicted. To check the validity, it is better to try 
the Android interface. 

4. CONCLUSIONS 

4.1 Conclusions 
Based on the results of this study, it show that 

the methods used by the author have proven 
effective in improving model performance in 
predicting various types of attacks more accurately, 
both in binary classification and multiclass 
classification to detect network intrusions. This 
research effectively addresses the challenges of 
managing large and complex network data for 
intrusion detection by utilizing Long Short-Term 
Memory (LSTM) methods and Random Forest 
Feature Selection (RFUTE) to reduce data 
dimensionality and enhance model efficiency. 

RFUTE successfully decreased the dimensionality 
from 43 features to 29 for binary classification and 
30 for multiclass classification. The classification 
report shows that the model with RFUTE achieved 
accuracy, precision, recall, and F1-score values as 
high as 99% in binary classification, while 
multiclass classification saw average scores improve 
from 88% to 95%. Additionally, AUC-ROC 
comparisons indicate that the binary classification 
model with RFUTE outperforms the model without 
it, achieving an AUC of 0.999 compared to 0.997, 
and in multiclass classification, the micro-average 
AUC increased from 0.9926 to 0.9987. Overall, the 
methods employed have proven effective in 
enhancing model performance for accurately 
predicting various types of attacks in both binary and 
multiclass classifications for network intrusion 
detection.  
 
4.1 Future Research 

For future works, in improving practical 
applications, the results of this study can be 
integrated with existing network security systems, 
such as firewalls or signature-based threat detection 
systems. This integration will provide a more 
comprehensive approach to dealing with various 
network security threats. 

It is expected that this study can be further tested 
in a real network environment, not only on a 
simulation dataset. Testing on a real network will 
provide an evaluation of the model's performance in 
real conditions and provide valuable feedback on the 
strengths and weaknesses of the developed system. 

To facilitate the use of this system, the 
development of a user-friendly interface for network 
administrators or network security analysts is also 
recommended. This interface can provide a real-time 
display of the prediction model results with detailed 
visualizations related to the type of attack, risk level, 
and recommendations for mitigation actions. 
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