
Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8677

A HYBRID APPROACH COMBINING LONG SHORT-TERM
MEMORY AND RANDOM FOREST FEATURE SELECTION

FOR NETWORK INTRUSION DETECTION

1HANDRIZAL, 2FAUZAN NURAHMADI, 3ALBERTMAN PUTRA BARASA
1,2,3Department of Computer Science, Faculty of Computer Science and Information Technology,

Universitas Sumatera Utara, Jl. University No. 9-A, Medan 20155, Indonesia

E-mail: handrizal@usu.ac.id

ABSTRACT

Network intrusion detection is essential for identifying suspicious network activity. However, with
technological advancements and the increasing need for data, data processing becomes a significant challenge
in intrusion detection. This research explores a detection system using Long Short-Term Memory (LSTM)
combined with Random Forest-based feature selection (RFUTE) to enhance performance. RFUTE reduced
data dimensions by selecting 29 features for binary and 30 for multiclass classification from 43 total features.
Tested on the NF-UQ-NIDS-v2 dataset, the system showed significant improvements, achieving 99%
accuracy in binary classification and 95% in multiclass classification. Additionally, the AUC-ROC curve of
the model with RFUTE showed better performance than the model without RFUTE, with an increase in AUC
to 0.999 for binary classification and 0.9987 for multiclass classification. These findings demonstrate that the
integration of Long Short-Term Memory networks with Random Forest-based feature selection significantly
improves the accuracy and predictive performance of network intrusion detection systems, particularly in
large-scale and complex environments. This research contributes to the development of a more accurate and
efficient model for network intrusion detection by integrating Long Short-Term Memory networks with
Random Forest-based feature selection. This model improves the ability to identify network threats quickly
and responsively.

Keywords: Network Intrusion Detection, Binary Classification, Multiclass Classification, LSTM, Random
Forest Feature Selection (RFUTE), Feature Selection.

1. INTRODUCTION

In the rapidly evolving digital landscape, network
security has emerged as a critical concern for
individuals, organizations, and nations alike. Cyber-
attacks, ranging from data theft to service
disruptions, pose significant threats to the integrity,
confidentiality, and availability of information
systems [9]. The increasing sophistication of these
attacks, such as Distributed Denial of Service
(DDoS) and advanced malware, demands robust and
adaptive security measures to protect network
infrastructure [6]. Network Intrusion Detection
Systems (NIDS) have become essential in
identifying suspicious activities within network
traffic that may indicate potential security breaches
[16]. The effectiveness of these systems relies on
their ability to recognize and classify abnormal
patterns or behaviors, thereby allowing timely and
targeted responses to detected threats.

In this context, traffic classification is essential to
identify the source of traffic from various
applications and network services, ensuring quality
management, anomaly detection in network security,
and recognizing suspicious traffic patterns [1]. As
the complexity of network attacks increases, the
volume of data generated by network systems also
grows significantly. This large and diverse network
data presents substantial challenges in intrusion
detection, as it requires extensive computational
resources for processing and analysis. Efficient data
handling techniques are necessary to ensure accurate
and timely detection of intrusions. Feature selection
is particularly critical in developing effective
intrusion detection systems, as not all features in
high-dimensional data are essential. Including
irrelevant features can lead to model overfitting,
making feature selection vital for reducing data
dimensionality and enhancing model efficiency.

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8678

In light of these challenges and opportunities, this
study leverages the Random Forest algorithm for
feature selection, which not only provides accurate
predictions through multiple decision trees but also
effectively handles imbalanced data [15]. Random
Forest is used in this research to perform feature
selection by ranking and selecting a subset of
features that enhance the accuracy and precision of
intrusion detection. The Feature Importance
Measure (FIM), commonly employed in Random
Forest, assesses the significance of each feature
within the model. The selected subset of features is
then utilized as input for training a Long Short-Term
Memory (LSTM) method, which is well-suited for
sequential data like network traffic due to its ability
to capture temporal relationships within the data
[11].

By incorporating LSTM with Random Forest-
based feature selection, this study aims to advance
the field of intrusion detection by offering a robust
approach to mitigating modern cyber threats.

1.1 Research Problem

There are not many network intrusion detection
systems that can handle large and complex data
effectively, especially in terms of detecting attacks
with high accuracy. Many existing solutions still
face challenges in handling very large data which
can affect performance and detection accuracy. This
study examines these problems and applies the Long
Short-Term Memory (LSTM) method to handle
large sequential data, and uses Random Forest
Feature selection to reduce data dimensions and
improve model efficiency.

2. RELATE WORKS

 Recent research [10] demonstrates the potential of
optimizing Random Forest (RF) algorithms for
feature selection. By enhancing randomness to
strengthen each tree and reduce inter-tree
correlations, the optimized RF model achieved a
sensitivity above 0.8 on expanded datasets.
However, this study only uses the random forest
algorithm, while our study combines the Random
Forest algorithm and Long Short-Term Memory
Method. Building on these advancements, [3]
proposed a Hybrid Sampling & Feature Selection
Random Forest (HF_RF) algorithm. HF_RF
demonstrated superior performance compared to
traditional approaches, particularly in managing
imbalanced datasets. However, this study uses the
Hybrid Sampling & Feature Selection Random
Forest (HF_RF) algorithm, while our study
combines the Random Forest algorithm with the

Long Short-Term Memory Method. Moreover,
studies in deep learning approaches, such as the work
by [2], demonstrate the effectiveness of the Long
Short-Term Memory (LSTM) method in intrusion
detection systems. Their multilayer LSTM model
achieved high accuracy rates of 95% and 96% in
binary and multiclass classifications, respectively,
showcasing its scalability and robustness in network
defense. However, traditional intrusion detection
systems often suffer from low detection rates and
challenges in handling large data, imbalanced
classes, and large feature sets, indicating a critical
need for improved models and techniques in the
field. Therefore, this study proposes a combination
of the Random Forest algorithm and the Long Short-
Term Memory Method.

3. METHODS

3.1 Decision Tree
 Decision Tree is a supervised machine learning
algorithm used for both classification and regression
tasks. It operates by following a series of nested if-
else conditions to make predictions, commonly
referred to as Classification and Regression Trees
(CART). The structure of a Decision Tree begins
with a root node, which represents the initial
decision point. From there, branches emerge,
representing possible decision paths, leading to
either internal nodes (representing further decisions)
or leaf nodes, which provide final classifications or
outcomes [7] [10]. The general structure of a
Decision Tree is depicted in Figure 1.

Figure 1. Structure of Decision Tree [7]

 The process of Decision Tree learning follows a
top-down approach known as recursive binary
splitting, where the algorithm successively divides
the predictor space into two parts. This greedy
approach chooses the best split at each step, without
looking ahead to optimize the overall tree. The
algorithm evaluates variables using statistical
criteria to select the optimal split. Two major
approaches for selecting splits are based on Entropy
and Information Gain, which measure the purity of

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8679

the resulting nodes, aiming to create the most
homogeneous child nodes.
 Entropy measures the level of disorder within a
node, with values ranging from 0 (pure) to 1
(completely impure). The entropy at each split helps
identify which variable is most effective at dividing
the data. Information Gain measures the reduction in
entropy from the parent node to the child nodes. It is
calculated by subtracting the average entropy of the
child nodes from the parent node's entropy. Another
commonly used measure is the Gini Index, which
focuses on the probability of misclassifying a
randomly chosen instance, aiming to minimize
misclassification at each split.
 Despite its advantages, such as the ability to
handle complex, unstructured data (both categorical
and numerical) and imbalanced data, Decision Trees
have some drawbacks. The most significant
challenge is overfitting, where the model becomes
too complex and performs poorly on unseen data.
Pruning techniques are often applied to reduce tree
complexity and prevent overfitting. Furthermore,
Decision Trees can be highly sensitive to small
changes in the training data, which can lead to
significantly different trees. To overcome this,
ensemble methods like Random Forest, which
aggregates multiple trees, are often employed to
improve stability and accuracy.

3.2 Random Forest Feature Selection
 Random Forest was employed as the method for
feature selection due to its effectiveness in
identifying the most relevant and informative
attributes from a dataset. As an ensemble algorithm
that leverages a large number of Decision Trees,
Random Forest excels at measuring feature
importance through the Feature Importance Measure
(FIM), which estimates how frequently a feature is
utilized to split the dataset and the extent of impurity
reduction produced by that feature [16].
 During the feature selection process, features are
assessed based on their importance in enhancing
detection and classification accuracy. Features with
higher information gain are deemed more critical
and are retained, while those with lower importance
can be eliminated from the dataset. This method not
only facilitates the selection of the most relevant
feature subset but also helps avoid overfitting by
reducing data dimensionality. A detailed illustration
of the feature importance in Random Forest can be
seen in Figure 2 below.

Figure 2. Feature Importance in Random Forest [12]

 Another advantage of Random Forest is its ability
to identify feature interactions and nonlinear
relationships between features, which are often
missed by other feature selection methods. Several
methods have been developed to address the feature
selection problem, which can be grouped into three
general classes: filter methods, wrapper methods,
and embedded methods [8]. This capability provides
deeper insights into the factors influencing intrusion
detection or classification performance. However,
the results from feature selection using Random
Forest can vary based on the parameters and
configurations employed. Therefore, careful
experimentation and validation are necessary to
ensure the effectiveness and accuracy of the selected
features [15].
 Let 𝐴 = {𝑎ଵ, 𝑎ଶ, … , 𝑎ௗ} represent the original
available features. The objective of feature selection
is to choose a subset of features 𝐴ᇱ(|𝐴ᇱ| = 𝑑ᇱ, 𝑑ᇱ ≪
𝑑) from the original features, meaning 𝐴ᇱ is a part of
𝐴. The selected features must have the strongest
statistical dependence [5] on the target class 𝑦𝚤ෝ . In
this context, Random Forest performs feature
selection by focusing on maximizing the dependence
between the selected features 𝐴ᇱ and the information
provided by the target labels 𝑦𝚤ෝ . This dependence is
evaluated using FIM based on information entropy.
 Simply put, Random Forest Feature Selection
measures the average change in information entropy
of each feature by examining how nodes are split
across the Decision Trees in the Random Forest.
Subsequently, the changes for each feature are
ranked from highest to lowest, and the top 𝑛ᇱ features
are chosen to form the target subset 𝐴ᇱ.
 The entropy calculation can be expressed as
follows:

𝐸 = − ∑ 𝑝௜ logଶ 𝑝௜

௡
௜ୀଵ (1)

This change is referred to as Information Gain (IG),
which measures how much information a feature
contributes to predicting the target variable. It is
calculated using the following formula:

𝐼𝐺 = 𝐸𝑛𝑡௣௔௥௘௡௧ − 𝐸𝑛𝑡௖௛௜ (2)

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8680

Where 𝐸𝑛𝑡௣௔௥௘௡௧ is the entropy of the parent node
and 𝐸𝑛𝑡௖௛௜௟ௗ represents the weighted average
entropy of the child nodes following the split.

3.3 LSTM
 The main process in deep learning [3] begins with
artificial neural networks posing a series of binary
questions, classifying inputs as either true or false.
These networks extract numerical values from
existing datasets and group them based on the
learned information. The final step involves sorting,
tagging, and labeling data to ensure accurate and
relevant results. This method enables the deep
learning model to effectively capture patterns and
structure within large datasets.
 In particular, Long Short-Term Memory (LSTM)
networks, a specialized form of Recurrent Neural
Networks (RNN), are highly efficient for processing
sequential data, such as text, audio, and time series.
LSTM networks have the unique capability to retain
information over extended periods, addressing the
vanishing gradient problem that often plagues
traditional neural networks. This feature allows the
LSTM model to capture long-term dependencies
within the data, making them ideal for tasks
involving time series forecasting, natural language
processing, and other sequential data analysis [1].
 Combining the strengths of general deep learning
methods with the LSTM architecture, researchers
can enhance the accuracy and relevance of
predictions, especially in domains that rely on
sequential data. The binary classification and data
grouping mechanisms inherent in the deep learning
method, along with LSTM capacity to process time-
dependent data, provide a robust framework for
analyzing complex datasets. This integration is
crucial in applications like network intrusion
detection, financial forecasting, and various other
fields where pattern recognition across time is
essential.
 The architecture of an LSTM cell consists of three
gates: the forget gate, the input gate, and the output
gate. These gates aim to control and protect the cell
state while managing the flow of information within
the memory cell. With these gates, LSTM can
prevent stored information from being overwritten
by irrelevant data. Figure 3 below illustrates the
architecture of the LSTM cell.

Figure 3. Architecture of the LSTM Cell [4]

 Figure 3 depicts the architecture of the LSTM cell,
where the input layer is represented as 𝑥௧ and the
output is ℎ௧ at time 𝑡. During the model training
process and hyperparameter tuning, the LSTM cell
takes into account the input cell state 𝐶௧

෩ , the output
state from the previous cell 𝐶௧ିଵ, to produce the
output state 𝐶௧. The LSTM cell architecture features
three gates: input gate (𝑖௧), forget gate (𝑓௧), and
output gate (𝑜௧) (Cui et al., 2018). The formulation
of the LSTM cell architecture can be expressed as
follows:

𝑓௜

(௧)
= 𝜎൫𝑏௜

௙ + ∑ 𝑈௜௝
௙

𝑥௝
(௧)

+௝ ∑ 𝑊௜௝
௙

ℎ௝
(௧ିଵ)

௝ ൯ (3)

𝑔௜
(௧) = 𝜎൫𝑏௜

௚ + ∑ 𝑈௜௝
௚

𝑥௝
(௧)

+௝ ∑ 𝑊௜௝
௚

ℎ௝
(௧ିଵ)

௝ ൯ (4)

𝐶௧
෩ = tanh ൫𝑏௜ + ∑ 𝑈௜௝௝ 𝑥௝

(௧)
+ ∑ 𝑊௜௝௝ ℎ௝

(௧ିଵ)
൯ (5)

𝑞௜
(௧) = 𝜎൫𝑏௜

௢ + ∑ 𝑈௜௝
௢ 𝑥௝

(௧)
+௝ ∑ 𝑊௜௝

௢ℎ௝
(௧ିଵ)

௝ ൯ (6)

 Equations (1) to (4) illustrate the fundamental
operations in LSTM. In equation (1) 𝑓௜

(௧)
 represents

the forget gate at time step 𝑡 for cell 𝑖. The sigmoid
function (𝜎) is employed to adjust weights between
0 and 1. At time step 𝑡, 𝑥(𝑡) is the current input
vector, and ℎ(𝑡) is the vector at the hidden layer.
Biases 𝑏௙, 𝑏௚, 𝑏௢ are applied to each LSTM cell.
Input weights 𝑈௙, 𝑈௚, and 𝑈௢ are added to the
current input, while recurrent weights 𝑊௙, 𝑊௚, and
𝑊௢ are added to the hidden layer vector. Equation
(3) explains how to update the cell state and timestep
in LSTM, while equations (2) and (4) describe the
input gate unit 𝑔௜

(௧) and output unit 𝑞௜
(௧) for timestep

𝑡.
 In the context of network intrusion detection,
LSTM offers the capability to model complex and
dynamic network activity patterns that may change
over time. LSTM ability to maintain long-term
dependencies makes it an effective choice for
building network intrusion detection systems.

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8681

3.4 Dataset
 This research utilizes the NF-UQ-NIDS-v2
dataset, which provides comprehensive information
on network attack traffic, categorized to facilitate
analysis and application [14]. The NF-UQ-NIDS-v2
dataset includes original NetFlow features as well as
modified features. These features include source and
destination IP addresses, the protocol used,
connection duration, and other key information for
detecting network attacks.
 The dataset contains a total of 43 feature columns.
Of these, 33.12% represent normal (Benign) traffic,
while 66.88% are labeled as attack traffic. This
large-scale dataset offers a rich foundation for
analyzing network behavior and developing
intrusion detection models.

3.5 Data Preprocessing
 Data preprocessing is essential for preparing raw
datasets for machine learning models. This process
involves separating independent variables, such as
IP addresses, protocols, and connection durations,
from dependent variables, which represent network
activity labels (e.g., benign or attack types). At this
stage, the original multiclass classification labels,
which consisted of 21 attack categories, were
grouped into eight main categories. After this
grouping, the process of handling imbalanced data
was conducted. For the multiclass classification,
manual sampling was applied to ensure a balanced
representation of each category. The number of rows
for each category was adjusted to achieve a balance
between attack categories and normal network
activity, allowing for more effective model training.
 The dataset is then split into two subsets: 80% for
training and 20% for testing. The training set is used
to teach the model patterns based on historical data,
while the testing set evaluates the model
performance on unseen data, ensuring it can be
generalized effectively in tasks such as IP-based
network behavior detection. An example of the data-
splitting process can be seen in Table 1 below.

Table 1: Separation of IP Address Feature
IPV4_SRC_

ADDR
IPV4_
SRC_1

IPV4_
SRC_2

IPV4_
SRC_3

IPV4_
SRC_4

172.31.69.14 172 31 69 14

Additionally, categorical variables are encoded
using methods such as Label Encoding and One-Hot
Encoding to convert non-numeric data into
numerical form. Finally, normalization techniques
like Standard Scaler are applied to standardize the
feature values, ensuring all variables are on a
consistent scale by using the following equations:

𝑧 =
௫ି ఓ

ఙ
 (7)

3.6 Evaluation Measures
 This study involves two types of classification
used in network attack detection, namely binary
classification and multiclass classification. The
evaluation of the model in binary classification is
conducted to measure the model performance in
distinguishing between two classes: the positive
class and the negative class. In contrast, for
multiclass classification, the model performance is
evaluated based on its ability to differentiate among
more than two classes. Key terms for evaluation
include True Positive (TP), which refers to cases
where the prediction is positive and the actual result
is also positive; True Negative (TN), where both the
prediction and the actual result are negative; False
Positive (FP), where the prediction is positive, but
the actual result is negative; and False Negative
(FN), where the prediction is negative, but the actual
result is positive.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்

்௉ା்ேାி௉ାிே
 (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
 (9)

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାி
 (10)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
௉௥௘௖௜௦௜௢௡ × ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ା ோ௘௖௔௟௟
 (11)

 A receiver operating characteristic (ROC) curve
provides an overview of the trade-off between the
true positive rate and false positive rate for a
predictive model using different probability
thresholds for performance metrics.

4. RESULTS DISCUSSION

 This section presents and analyzes the
experimental results of applying Random Forest
Feature Selection and the LSTM Model for network
intrusion detection.

4.1 Random Forest Feature Selection
 For feature selection, the scikit-learn library was
employed, utilizing the Random Forest algorithm to
evaluate the importance of each feature in the
dataset. The feature selection process involved
choosing features with the highest importance scores
based on their contribution to classification
accuracy. This method was applied for both binary
and multiclass classification tasks. The Feature
Importance Measure (FIM) scores obtained from
this implementation provided a clear understanding
of the contribution of each feature in predicting the
target labels. The detailed results of feature
importance can be seen in Figure 4 for binary

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8682

classification and Figure 5 for multiclass
classification.

Figure 4. Random Forest FIM Scores Results in Binary

Classification

Figure 5. Random Forest FIM Scores Results in

Multiclass Classification

 The next step was to select an optimal subset of
features based on the FIM results. To achieve this,
the Recursive Feature Elimination with Cross-
Validation (RFECV) method was applied using the
pre-trained Random Forest model, as implemented
in the scikit-learn library. RFECV systematically
evaluates the model performance across different
feature subsets and recursively removes less
important features based on cross-validation results.
 The results from the RFECV method
demonstrated that for binary classification, 29
features were selected from the initial 43 features,
while for multiclass classification, 30 features were
chosen from the original set of 43. The selection of
these features aimed to optimize model performance
by focusing on those that contributed most to
classification outcomes. The final selection of
features effectively reduced the dimensionality of
the data while preserving essential information for
classification.

4.1 Results of Binary and Multiclass

Classification
 The model evaluation stage aims to measure the
performance of the trained model in both binary and
multiclass classification using test data. Then,

compares the model performance with and without
RFUTE to assess its impact on the model
effectiveness.

4.1.1 Binary Classification
 In binary classification, the model was evaluated
using 400,000 training data points and 100,000 test
data points. The evaluation compares the training
and validation performance of two models: one with
RFUTE (Random Forest-based Feature Selection)
and one without RFUTE. This comparison is made
to assess the impact of feature selection on model
performance.

Figure 6. Comparison of Train and Val Loss in Binary

Classification

 Figure 6 illustrates the comparison of training and
validation loss between the models trained without
and with RFUTE across multiple epochs. For the
model without RFUTE, the training loss begins at
0.2917 and decreases to 0.0713 by epoch 30, while
the validation loss starts at 0.2519 and drops to
0.0578 in the same period. This indicates that both
training and validation loss decrease steadily as the
number of epochs increases, although the validation
loss remains slightly higher than the training loss. In
contrast, the model trained with RFUTE shows a
more significant reduction in training loss, starting
from 0.0537 at epoch 1 and dropping to 0.0200 by
epoch 12. Similarly, the validation loss decreases
from 0.0271 to 0.0189 during the same epochs,
indicating that RFUTE aids in reducing both training
and validation loss more effectively. Furthermore,
the gap between training and validation loss is much
smaller when using RFUTE, suggesting better
generalization.

Figure 7. Comparison of Train and Val Accuracy in

Binary Classification

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8683

 Figure 7 presents the comparison of training and
validation accuracy for the two models. The model
without RFUTE shows a training accuracy starting
at 0.8818 and improving to 0.9502 by epoch 5, with
validation accuracy also increasing from 0.9070 to
0.9583 during the same period. As training
progresses, the model training accuracy reaches
0.9766 by epoch 30, while validation accuracy
steadily improves from 0.9069 to 0.9819.
Conversely, the model trained with RFUTE exhibits
significantly higher training accuracy from the first
epoch (0.9828), along with a higher validation
accuracy of 0.9918. As training continues, the
RFUTE-enabled model maintains high training
accuracy, reaching 0.9942 by epoch 10, and
validation accuracy improves to 0.9947 at the same
epoch, remaining stable with slight increases until
epoch 12. The classification report further
demonstrates that the model with RFUTE achieves
superior accuracy, precision, recall, and F1 score,
culminating in an overall performance of 99%,
compared to the model without RFUTE.

Figure 8. Comparison of AUC-ROC Curve in Binary

Classification

 Figure 8 illustrates the AUC-ROC curve
comparing the performance of both models. The
model without RFUTE achieves an AUC of 0.997,
while the model with RFUTE attains a higher AUC
of 0.999, indicating that RFUTE enhances the
model's ability to differentiate between classes and
improves overall predictive capability.
4.1.2 Multiclass Classification
 In multiclass classification, the model was
evaluated using 303,210 training data points and
75,803 test data points. Similar to binary
classification, this evaluation compares the training
and validation performance of the two models: one
with RFUTE (Random Forest-based Feature
Selection) and one without RFUTE.

Figure 9. Comparison of Train and Val Loss in

Multiclass Classification

 Figure 9 illustrates the comparison of training and
validation loss for both models across various
epochs. For the model without RFUTE, the training
loss starts at 1.0743 and decreases steadily to 0.3985
by epoch 38. The validation loss also shows a
decrease, dropping from 0.7514 at epoch 1 to 0.3108
at epoch 38. This decline indicates that the model
gradually improves its ability to minimize errors in
predicting both training and validation data. In
contrast, the model trained with RFUTE exhibits a
significant reduction in training loss, starting from
0.3322 at epoch 1 and falling to 0.1537 by epoch 33.
Similarly, the validation loss decreases from 0.2356
at epoch 1 to 0.1403 at epoch 33, demonstrating that
the use of RFUTE allows the model to achieve
optimal performance more quickly compared to the
model without RFUTE.

Figure 10. Comparison of Train and Val Accuracy in

Multiclass Classification

 Figure 10 presents the comparison of training and
validation accuracy for both models. The model
without RFUTE shows a training accuracy
beginning at 0.6055, steadily increasing to 0.8460 by
epoch 38, while validation accuracy rises from
0.7261 to 0.8765 over the same epochs. In contrast,
the model trained with RFUTE displays a significant
increase in training accuracy, rising from 0.8670 at
epoch 1 to 0.9412 at epoch 33. The validation
accuracy also improves from 0.9021 at epoch 1 to
0.9507 at epoch 32. The model reaches its best
performance at epoch 28, with the highest validation
accuracy before stabilizing in subsequent epochs,
indicating that the use of RFUTE enables the model
to reach optimal performance faster than the model
without RFUTE. The classification report indicates
a substantial improvement with RFUTE, showing

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8684

higher accuracy, precision, recall, and F1 score, with
an average result of 95% compared to 88% for the
model without RFUTE.

Figure 11. Comparison of AUC-ROC Curve in Multiclass

Classification

 Figure 11 displays the comparison of the AUC-
ROC curve for multiclass classification. The results
indicate that the application of RFUTE consistently
enhances model performance across nearly all
classes. Specifically, the micro-average AUC
increases from 0.9926 without RFUTE to 0.9987
with RFUTE, reflecting an overall improvement in
the model's ability to accurately predict multiple
classes. These facts are the key restrictions of this
work.

This research contributes to the development of
a more accurate and efficient model for network
intrusion detection by integrating Long Short-Term
Memory networks with Random Forest-based
feature selection. This model improves the ability to
identify network threats quickly and responsively.

This study uses the NF-UQ-NIDS-v2 dataset
from The University of Queensland, Australia which
contains network traffic data used to detect network
attacks. To check the validity, it is better to try with
datasets from other sources. The model is applied
with integration with the website interface. Website
users can upload a CSV of network data collection to
be predicted. To check the validity, it is better to try
the Android interface.

4. CONCLUSIONS

4.1 Conclusions
Based on the results of this study, it show that

the methods used by the author have proven
effective in improving model performance in
predicting various types of attacks more accurately,
both in binary classification and multiclass
classification to detect network intrusions. This
research effectively addresses the challenges of
managing large and complex network data for
intrusion detection by utilizing Long Short-Term
Memory (LSTM) methods and Random Forest
Feature Selection (RFUTE) to reduce data
dimensionality and enhance model efficiency.

RFUTE successfully decreased the dimensionality
from 43 features to 29 for binary classification and
30 for multiclass classification. The classification
report shows that the model with RFUTE achieved
accuracy, precision, recall, and F1-score values as
high as 99% in binary classification, while
multiclass classification saw average scores improve
from 88% to 95%. Additionally, AUC-ROC
comparisons indicate that the binary classification
model with RFUTE outperforms the model without
it, achieving an AUC of 0.999 compared to 0.997,
and in multiclass classification, the micro-average
AUC increased from 0.9926 to 0.9987. Overall, the
methods employed have proven effective in
enhancing model performance for accurately
predicting various types of attacks in both binary and
multiclass classifications for network intrusion
detection.

4.1 Future Research

For future works, in improving practical
applications, the results of this study can be
integrated with existing network security systems,
such as firewalls or signature-based threat detection
systems. This integration will provide a more
comprehensive approach to dealing with various
network security threats.

It is expected that this study can be further tested
in a real network environment, not only on a
simulation dataset. Testing on a real network will
provide an evaluation of the model's performance in
real conditions and provide valuable feedback on the
strengths and weaknesses of the developed system.

To facilitate the use of this system, the
development of a user-friendly interface for network
administrators or network security analysts is also
recommended. This interface can provide a real-time
display of the prediction model results with detailed
visualizations related to the type of attack, risk level,
and recommendations for mitigation actions.

REFRENCES:

[1] Ahmad, R., Alsmadi, I., Alhamdani, W., &

Tawalbeh, L. (2022). A Deep Learning
Ensemble Approach to Detecting Unknown
Network Attacks. Journal of Information
Security and Applications, 67, 103196.
https://doi.org/10.1016/j.jisa.2022.103196

[2] Bashar, G. M. H., Kashem, M. A., & Paul, L. C.
(2022). Intrusion Detection for Cyber-Physical
Security System Using Long Short-Term
Memory Model. Scientific Programming, 2022.
https://doi.org/10.1155/2022/6172362

Journal of Theoretical and Applied Information Technology
15th December 2024. Vol.102. No. 23

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8685

[3] Cui, H., Xu, H., & Li, J. (2023). Optimization of
Random Forest Algorithm Based on Mixed
Sampling Additional Feature Selection. 2023
3rd International Conference on Consumer
Electronics and Computer Engineering
(ICCECE), 461-467.
https://doi.org/10.1109/ICCECE58074.2023.10
135433

[4] Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2018). Deep
Bidirectional and Unidirectional LSTM
Recurrent Neural Network for Network-wide
Traffic Speed Prediction. 1–11.
https://doi.org/10.48550/arXiv.1801.02143

[5] Hamla, H., & Ghanem, K. (2021). Comparative
Study of Embedded Feature Selection Methods
on Microarray Data. Artificial Intelligence
Applications and Innovations, 69-77.
https://doi.org/10.1007/978-3-030-79150-6_6

[6] Intelligence, M. T. (2020). Microsoft Digital
Defense Report. Network Security, 2020(10), 4–
4. https://doi.org/10.1016/s1353-
4858(20)30114-8

[7] Krueger, E., Bongale, S., & Franklin, D. (2021).
Learn how decision trees are grown. Towards
Data Science. Accessed on April 30, 2024, from
https://towardsdatascience.com/learn-how-
decision-trees-are-grown-22bc3d22fb51

[8] Layeb, A. (2023). Novel Feature Selection
Algorithms Based on Crowding Distance and
Pearson Correlation Coefficient. International
Journal of Intelligent Systems and Applications,
15(2), 37–42.
https://doi.org/10.5815/ijisa.2023.02.04

[9] Lewis, J. A. (2022). A Shared Responsibility:
Public-Private Cooperation for Cybersecurity.
Accessed on April 2, 2024, from
https://www.csis.org/james-lewis-publications

[10] Li, W. (2022). Optimization and Application of
Random Forest Algorithm for Applied
Mathematics Specialty. Security and
Communication Networks, 2022.
https://doi.org/10.1155/2022/1131994

[11] Lindemann, B., Müller, T., Vietz, H., Jazdi, N.,
& Weyrich, M. (2021). A survey on long short-
term memory networks for time series
prediction. Procedia CIRP, 99(July 2020), 650–
655.
https://doi.org/10.1016/j.procir.2021.03.088

[12] Liu, Y., & Zhao, H. (2017). Variable
importance-weighted Random Forests. 5(4),
338–351. https://doi.org/10.1007/s40484-017-
0121-6

[13] Roberts, D. A., Yaida, S., & Hanin, B. (2022).
The Principles of Deep Learning Theory. The
Principles of Deep Learning Theory.
https://doi.org/10.1017/9781009023405

[14] Sarhan, M., Layeghy, S., & Portmann, M.
(2022). Towards a Standard Feature Set for
Network Intrusion Detection System Datasets.
357–370.
https://doi.org/https://doi.org/10.1007/s11036-
021-01843-0

[15] Sun, X., & Chai, J. (2023). Random forest
feature selection for partial label learning.
Neurocomputing, 561(June), 126870.
https://doi.org/10.1016/j.neucom.2023.126870

[16] Valdovinos, I. A., Pérez-Díaz, J. A., Choo, K.
K. R., & Botero, J. F. (2021). Emerging DDoS
attack detection and mitigation strategies in
software-defined networks: Taxonomy,
challenges, and future directions. Journal of
Network and Computer Applications,
187(May), 103093.
https://doi.org/10.1016/j.jnca.2021.103093

