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ABSTRACT 

 
Agriculture has contributed to India's GDP, accounting for 15-18% of the economy. However, Indian 
agriculture faces persistent challenges threatening its long-term stability, including soil degradation, pest 
management issues, and fluctuating crop prices. These challenges create significant uncertainty in crop 
yields. To address this, we propose data-driven solutions using machine learning and deep learning models 
to improve the accuracy of crop yield predictions. Machine learning models, such as decision trees, random 
forests, gradient boosting, and ensemble techniques like XGBoost, along with deep learning models like 
convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, provide reliable 
predictions and precise forecasting, enabling farmers to achieve more stable and optimized yields. Beyond 
economic benefits, accurate crop prediction also enhances food security and strengthens rural economies. By 
advancing precision in agricultural forecasting, these methods can help tackle longstanding agricultural 
issues, contributing to economic growth, increased profits, and a stable food supply for India. Embracing 
data-driven approaches is essential to addressing the evolving challenges of the nation's agricultural sector. 

Keywords: Deep learning, Machine learning, Agriculture, LSTM, CNN, Random Forest, Decision tree, 
Gradient Boosting, XGBoost 

 
1. INTRODUCTION  

 
Agriculture supports millions of people, is the 
foundation of the Indian economy, and contributes 
to the strength and stability of the nation. Despite 
advancements in the agricultural sector, much still 
needs to be done. Innovative predictive models such 
as machine learning (ML) and deep learning (DL) 
are gaining importance in addressing these 
challenges [1]. Over 50% of India's workforce was 
employed in agriculture as of 2018, contributing 
around 17-18% to the country's GDP [2]. India's 
total land area has remained relatively constant at 
around 328,726 thousand hectares from 1971 to 
2020. With advanced technologies, farmers can 

better navigate the complexities of crop growth, 
which are influenced by variables like soil 
conditions, weather patterns, and pest infestations.  

In the past, agricultural forecasting relied on 
simple statistical models or expert judgment. These 
methods, while helpful, often fail to account for the 
intricate and dynamic factors that influence crop 
production. New developments in deep learning and 
machine learning models have made it possible to 
create increasingly complex forecasting systems that 
make use of massive information, such as historical 
yields, soil health, and climate data. With their 
precise forecasts, these technologies may greatly 
increase agricultural output by assisting farmers with 
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crop choices, planting plans, and harvesting 
techniques [3]. Furthermore, forecasting models are 
being utilized as early warning systems to mitigate 
risks such as pests and extreme weather events, thus 
reducing crop losses and improving efficiency. 

Real-time monitoring of crop health, soil 
moisture, and climatic variables is now possible 
thanks to machine learning algorithms and remote 
sensing technology like drones and satellite sensors 
[4]. This integration makes precision farming 
possible, optimizing irrigation and fertilizer usage, 
increasing crop yields, and minimizing resource 
waste. While adopting these technologies faces some 
hurdles, such as policy challenges and capacity-
building needs, these advancements have 
considerable potential to transform Indian 
agriculture. 

In order to improve agricultural forecasting and 
increase sustainability and resilience, this study 
suggests using sophisticated machine learning and 
deep learning models. Enabling farmers to realize 
their crops' full potential is the goal. In order to do 
this, hybrid CNN-LSTM models are investigated for 
agricultural yield prediction, signaling a move away 
from conventional incremental approaches and 
toward deeper, data-driven insights. 

2. LITERATURE SURVEY 

N. Gandhi et al. [5] proposed a machine learning 
(ML) model using Support Vector Machines (SVM) 
for predicting rice crop yields in India. This model 
aims to provide timely predictions that can aid 
farmers and policymakers in resource allocation and 
agricultural planning. However, the model faces 
challenges in model tuning, and its practical 
implementation is more complex than anticipated. 
Additionally, the dataset used for model training 
could be expanded to include more diverse regions 
to enhance its generalizability. 

P. S. Maya Gopal et al. [20] developed a model 
that compares several ML algorithms (SVR, K-
Nearest Neighbors, Random Forest, and ANN) to 
identify the best feature subset for crop yield 
prediction. While the model provides valuable 
insights into algorithm performance, it has been 
limited by testing on a single dataset. Furthermore, 
the lack of specific details about the features 
considered and the failure to explore a broader set of 
datasets reduces the robustness of the findings. 

M. Khan et al. [6] developed a machine-learning 
approach to forecast irrigation runoff volume. The 
key disadvantage is that actual implementation is 
challenging, owing to the possibility of overfitting 
the model when applied to real-world data. A more 
complete method might alleviate this problem, 
incorporating hyperparameter adjustment and cross-
validation on many data sources. 

M. Khan and S. Noor [7] evaluated several 
regression-based ML algorithms for predicting 
runoff time. However, the model has limitations 
regarding sensitivity to input variables and its 
applicability to varied datasets. Expanding the range 
of datasets used and enhancing feature selection 
could improve the model's robustness and accuracy. 

M. Kavita and P. Mathur [8] explored multiple 
ML approaches for crop yield prediction, including 
linear, lasso, ridge regression, and decision trees. 
They found that while some methods 
underperformed compared to decision trees, the 
overall predictions lacked consistency in accuracy. 
A more granular evaluation of the feature's 
importance and performance could enhance the 
model's effectiveness. 

A. Suruliandi et al. [9] proposed a model using 
soil and environmental characteristics to predict crop 
yield, employing feature selection techniques and a 
Sequential Minimal Optimization Classifier 
(SMOC). The model's performance was lacking, 
particularly with multilayer perceptron (MLP) 
configurations, as the results exhibited lower 
accuracy and quality. Future research could explore 
other classifiers or hybrid models to overcome these 
limitations. 

S. Kunchakuri et al. [10] introduced a KNN-
based model using crop type and production area 
features for crop yield prediction. The model's 
drawback is its reliance on a limited set of features, 
which may fail to capture critical factors affecting 
crop yield. Additional variables, such as climatic 
data or soil health indicators, could significantly 
enhance the model's predictive power. 

D. J. Reddy and M. R. Kumar [11] proposed a 
model based on regression techniques like Linear 
and Support Vector Regression using data such as 
cultivable land, canal length, and the number of 
tanks. The primary limitation of this model is the 
small dataset size and reliance on a single algorithm 
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(Random Forest), which limits its applicability 
across different geographical regions. 

T. van Klompenburg et al. [12] created machine 
learning algorithms to estimate agricultural yields 
using meteorological variables, soil parameters, and 
historical crop data.. Despite the potential, the model 
faced challenges with data availability, 
environmental changes sensitivity, and overfitting 
risks. More comprehensive datasets with broader 
regional coverage could improve model accuracy. 

S. Bhansali et al. [13] integrated K-Fold 
validation, decision trees, and Naïve Bayes 
algorithms with soil and weather data for crop yield 
and disease prediction [14]. The main critique of this 
model is that the specific methodologies employed 
were not clearly explained, which raises concerns 
about replicability and reliability. A more 
transparent description of the methodologies and 
datasets would strengthen the model's credibility 
[15]. 

Z. Guo, Q. Liu, and J. Wang [16] introduced a 
model that employs linear equality constraints 
alongside a single-layer recurrent neural network for 
predicting agricultural yields. The fundamental 
disadvantage of this model is that it does not specify 
the dataset utilized, which makes it difficult to assess 
its applicability to other agricultural scenarios. 

K. He et al. [17] introduced residual learning for 
training deep neural networks in image recognition 
tasks, with the ResNet architecture aimed at 
addressing vanishing gradient problems. Despite its 
innovation, the primary disadvantages encompass 
heightened architectural complexity, elevated 
memory consumption, and the potential for 
overfitting, especially in crop yield prediction 
scenarios where training data may be scarce. 

S. Khaki and L. Wang [18] proposed a deep 
learning model to predict crop yield production 
using the Syngenta Crop Challenge 2018 dataset. 
However, the model requires high prediction 
accuracy and faces challenges with its "black-box" 
nature, which makes it difficult for stakeholders to 
interpret results. Overfitting is also a concern, 
highlighting the need for model refinement. 

Maya Gopal and R. Bhargavi [19] proposed a 
model utilizing Filter and Wrapper methodologies to 
enhance crop output prediction by the selection of 
the most pertinent characteristics. [20] The 

algorithm employs an artificial neural network to 
predict soybean and corn yields in adverse 
situations. However, the model's limitation lies in 
ignoring complex feature interactions and relying on 
a narrow feature selection set. 

F. Raimundo et al. [21] proposed an LSTM-
based model for soybean yield prediction using 
satellite data from Southern Brazil. While LSTM 
outperforms other algorithms for most forecasts, it 
fails to deliver superior results in some cases (e.g., 
DOY 16). Expanding the variety of data sources and 
including more environmental factors may improve 
the model's performance. 

H. Mureșan and M. Oltean [22] developed deep-
learning models for fruit classification using images. 
The main challenges included handling the 
variability in fruit appearance and the risk of 
overfitting, especially in less controlled 
environments. Further model refinement and better 
handling of image diversity could improve accuracy. 

N. Bali and A. Singla [23] presented a model 
employing ANN, SVM, and KNN to forecast 
agricultural yield based on survey data. However, 
the model's lack of original research and limited 
analysis of the specific algorithms hindered its 
ability to provide actionable insights. Future work 
should focus on deeper analysis and more extensive 
validation. 

P. Mohan and K. Patil [24] proposed using a 
parallel layer regression model paired with a deep 
belief network to estimate agricultural production in 
Karnataka. This model's accuracy is heavily 
dependent on data quality and availability, 
emphasizing the need for improved data 
management and more consistent input 
characteristics. 

E. Khosla et al. [25] presented a model for 
agricultural production prediction utilizing 
aggregated rainfall data with ANN and SVR 
approaches. While the model showed high accuracy 
(97.5%) during the Kharif season, its performance 
during other seasons is not well-documented. 
Expanding the dataset to include more seasonal 
variations could improve model robustness. 

S. Agarwal and S. Tarar [26] introduced a 
hybrid approach combining ML and deep learning 
algorithms, incorporating soil parameters, climate 
data, crop yields, and costs. The model's limitation is 
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its reliance on a limited dataset, raising concerns 
about its applicability and generalizability. 

C. H. Vanipriya, Maruyi, S. Malladi, and G. 
Gupta [27] proposed a project using ML and IoT 
algorithms for hydroponic farming systems. 
However, the complexity and high maintenance 
costs associated with the model pose significant 
implementation challenges. Simplifying the system 
could make it more viable for real-world application. 

A. Tomar et al. [28] reviewed plant disease 
detection using ML models with leaf images as input 
data. The review highlighted the limited scope, 
focusing solely on leaf-based methods, which may 
not apply to other plant species or environments. A 
broader approach considering other factors like 
environmental conditions could improve its 
applicability. 

R. Gupta and A.K. Sharma [29] used big data 
analytics and the MapReduce architecture to forecast 
agricultural yields in India based on meteorological 
data. The model's drawback is its focus on a limited 
number of crops and regions, limiting its 
applicability across different farming contexts in 
India. 

Annual Report 2020–21 (NIC IN) [30] provided 
an overview of the organization's activities and 
achievements, but the report faced issues with 
incomplete information, selective reporting, and 
limited stakeholder engagement. A more 
comprehensive and transparent report could improve 
stakeholder trust and decision-making. 

Crop Production Statistics Information System 
(Govt India) [31] serves as a centralized platform for 
crop production data but faces accessibility barriers, 
challenges in data integration, and privacy concerns. 
Improving data accessibility and integrating various 
data sources could enhance the platform's 
effectiveness. 

Agriculture & Farmer Welfare Ministry [32], 
India introduced initiatives to improve agriculture 
practices and farmer welfare but faced issues with 
incomplete project reports, which hindered a 
complete understanding of the results. Future 
initiatives could benefit from more detailed and 
transparent reporting.  

The literature review on crop yield prediction 
demonstrates the efficiency of machine learning 

models' efficiency in utilizing different data, 
including weather conditions, soil qualities, and 
satellite images, such as decision trees, support 
vector machines, and neural networks. However, 
gaps remain in dataset diversity, model 
generalization, and the exploration of feature 
interactions. Many studies suffer from overfitting, 
lack hyperparameter tuning, and fail to provide 
model interpretability, hindering practical adoption. 
Additionally, real-time data integration, seasonality 
considerations, and hybrid model exploration are 
underexplored, limiting model robustness. 
Comparative research, higher data quality, and 
scalable solutions are also required to improve the 
practical usefulness of these models in real-world 
agricultural contexts. Addressing these gaps would 
improve crop prediction systems' reliability, 
transparency, and scalability. 

3. METHODOLOGY 

3.1 Data Sources  
This research uses two datasets from Kaggle: 

one for agricultural yield prediction and another for 
crop recommendation. The datasets span from 1997 
to 2020 and contain columns such as crop type, crop 
year, season, state, area, production, rainfall, 
fertilizer consumption, pesticide application, and 
yield. The main objective is to estimate agricultural 
productivity via machine learning techniques, 
including Decision Trees, Gradient Boosting, 
Random Forest, XGBoost, and a meta-model. Deep 
learning methodologies are investigated, including 
convolutional neural networks (CNN), long short-
term memory networks (LSTM), and a hybrid model 
that combines numerous techniques. 

It was divided into training and testing subsets 
to prepare the data for model training, with 80% for 
training and 20% for testing. Model efficacy is 
measured using evaluation criteria such as R-
squared, Mean Absolute Error (MAE), and Root 
Mean Square Error (RMSE). These criteria assist 
evaluate each algorithm's dependability and 
accuracy in predicting crop yield. 

3.2 Methods 
3.2.1 Machine learning methods 
3.2.1.1 Decision trees 

Decision trees work by segmenting the feature 
space into discrete regions based on the values of 
various attributes. At each node, the algorithm 
chooses a characteristic and threshold that separates 
the data most effectively into two groups to enhance 
homogeneity within the target variable across both 
groups. This procedure, known as recursive binary 
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splitting, continues as the dataset is separated into 
two subsets at each node based on the feature and 
threshold selected. The procedure terminates when 
no more gains of inhomogeneity are achievable or 
other stopping requirements, such as reaching a 
maximum depth, are fulfilled. Once a stopping 
requirement is met, the model generates a leaf node 
and assigns it a forecast value. In regression tasks 
such as crop yield prediction, the prediction for a leaf 
node is generally the average of all target values in 
the training samples associated with that node. As a 
result, a decision tree's prediction for a particular 
input is calculated by passing it from the root to a 
leaf node, where the mean of the target values of all 
training samples in that leaf is used as the final 
forecast. 

 

Fig 1: Decision Tree 

A decision tree T's prediction 𝑦ො் For xi can be 
found by passing through the root towards some leaf 
node and then taking mean values of targets overall 
training samples falling into such leaves:  

𝑦పෝ ் =
ଵ

ேೕ
∑ 𝑦௝ ௫ೕ∈ ௟௘௔௙ ௡௢ௗ௘    (1) 

Where 𝑁௝ represents the number of training samples 
in the leaf node while 𝑦௝   denotes the jth observation's 
response variable. 

3.2.1.2 Random forest 
Random Forest is a decision tree-based model 

that divides the feature space into regions to forecast 
the target variable. The Random Forest approach 
generates many decision trees by sampling the 
training data with replacement, also known as 
bootstrapping. Each decision tree is trained on a 
distinct subset of the original data, limiting 
overfitting and giving a variety of models [33]. This 
method enhances the model's stability and accuracy. 
Random Forest only takes into account a random 
subset of characteristics at each split in a decision 
tree. This strategy improves forest diversity since 
each tree learns from a unique mix of elements [34]. 
The number of attributes reviewed at each split is 

typically the square root or logarithm of the total 
number of features, promoting variation among the 
trees. 

 
Fig 2: Random Forest 

3.2.1.3 Gradient boosting 
Gradient Boosting is used in regression 

applications like crop production prediction to 
reduce a loss function, which is often the mean 
squared error (MSE). This loss function quantifies 
the difference between the actual and projected 
values, allowing the model to optimize throughout 
training. The loss function's negative gradient (or 
derivative) is determined at each procedure stage 
based on the model's predictions for each data point. 
This gradient indicates how the forecasts should be 
adjusted to minimize the loss. It shows how much 
the model's predictions must alter to enhance 
performance. 

A weak learner, such as a decision tree, is 
trained to predict the loss function's negative 
gradient in order to fit the model [35]. This new 
model focuses on fitting the residuals, the disparities 
between actual and predicted values from earlier 
models. By focusing on these residuals, the model 
hopes to remedy the errors created by previous 
forecasts. 

 
Fig 3: Gradient Boosting 
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The final forecast is created by averaging the 
estimates from each model in phases. Each 
succeeding model is trained to minimize the loss 
function while incorporating the predictions of the 
previous models. This cumulative technique enables 
Gradient Boosting to improve the model's 
predictions iteratively. 

The gradient of the loss function with respect to 
predicted values 𝑦ො௜  is given by: 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = − 
డಽ೚ೞೞ

డ೤ෝ೔

    (2) 

For a data point xi, let 𝑦ො௜ be prediction made by 
the Gradient Boosting model, which is an aggregate 
overall individual model: 

𝑦ො௜ = ∑ 𝑓௞(𝑥௜)௄
௄ୀଵ     (3) 

3.2.1.4 XGBOOST 
XGBoost is intended to reduce the mean square 

error loss function in regression problems. The 
mathematically described objective function is as 
follows: 

𝑜𝑏𝑗 = ∑
ଵ

ଶ

௡
௜ୀଵ (𝑦௜ − 𝑦ො)ଶ           (4) 

This function quantifies the error between the 
actual values 𝑦௜ and the predicted values 𝑦ො, driving 
the optimization process. 

In each iteration, XGBoost computes the slope 
of the loss function in respect to the predicted values. 
The gradient, which specifies the direction of 
correction, is calculated as follows: 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = − 
డ೚್ೕ

డ೤ෝ೔

 = 𝑦௜ − 𝑦ො௜    (5) 

This gradient is essential for updating the model 
since it explains how the predictions should be 
changed to decrease loss. XGBoost creates trees 
replicating the loss function's negative gradient to 
develop the model. Each new tree is exceptionally 
trained to forecast residuals, the disparities between 
actual values and the prior ensemble of tree 
predictions. This iterative strategy allows the model 
to refine its predictions gradually. 

The prediction 𝑦ොi for a data point xi according to 
the XGBoost model is derived by summing the 
forecasts of all individual trees: 

𝑦ො௜ = ∑ 𝑓௞(𝑥௜)௄
௄ୀଵ     (6) 

Where K denotes the total number of trees in the 
ensemble, this formula demonstrates how the 
contributions of several trees combine to produce the 
final forecast, resulting in a more accurate and robust 
output.  

 

Fig 4: XGBoost 

3.2.2 Meta model 

In the Meta Model technique, the initial step is 
to train the base models individually. The specified 
basic models—Gradient Boosting, XGBoost, and 
Decision Trees—are all trained with identical 
training data. Each model is tuned independently to 
capture distinct parts of the data's underlying 
patterns. 

Once trained, the base models forecast the target 
variable from test data. The predictions from each 
base model are then layered horizontally to form a 
new feature matrix. This matrix effectively stores the 
predictions from each base model as additional 
characteristics for the subsequent process stages. 

The next step is to train a meta-model, such a 
Random Forest Regressor [36]. The meta-model 
receives base model predictions as input 
characteristics and the actual target values. This 
extra layer of learning enables the meta-model to 
integrate the capabilities of the basis models and 
produce more accurate predictions. 

Finally, the meta-model employs the base 
models' stacked predictions to generate its 
predictions for the test data. This ensemble 
technique improves overall performance by 
exploiting the pooled insights of all base models, as 
shown in Figure 5. 
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Fig 5: Meta model 

3.2.3 Deep Learning Methods 
 

3.2.3.1 Convolutional neural network 
Convolutional layers of a Convolutional Neural 

Network (CNN) identify significant characteristics 
from incoming data using filters (or kernels). The 
convolution operation can be mathematically 
expressed as: 

𝑦௜,௝ = ∑ 𝑋௜ା௠,௝ା௡ × 𝑊௠,௡௠,௡        (7) 

An Activation Function such as ReLU 
introduces nonlinearity, defined as: 

𝑅𝑒𝐿𝑈(𝑋) = max (0, 𝑋)   (8) 

Pooling layers are then used to downsample the 
feature maps, lowering their spatial dimensions 
while retaining critical information. For maximum 
pooling: 

Max 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 = max (𝑋௜,௝)  (9) 

The flattened layer converts the 2D feature 
mappings into a 1D vector before passing them 
through fully linked (dense) layers that learn the 
final mapping onto the target variable. This 
procedure may be stated numerically as: 

𝑌 = ReLu (𝑋𝑊 + 𝑏)   (10) 

A dropout layer randomly sets some input units 
to zero during training to avoid overfitting. Lastly, 
backpropagation and optimization techniques like 
Adam are used to train the model, and the mean 
squared error (MSE) loss function evaluates the 
discrepancy between expected and actual values in 
regression tasks. 

 

Fig 6: Convolutional Neural Networks 

3.2.3.2 LONG SHORT-TERM MEMORY 
A recurrent neural network (RNN), the LSTM 

(Long Short Term Memory), learns long-term 
relationships in data sequences and addresses the 
vanishing gradient problem. An LSTM cell 
comprises three essential gates: 

 Forget Gate (ft): Determine what information 
to discard from the cell state. 

 Input Gate (it): Controls which values in the 
cell state are to be updated [37]. 

 Output Gate (ot): Determines which section of 
the cell will be outputted. 

In order to control flow through them, LSTMs 
use activation functions like sigmoid or hyperbolic 
tangent function(tanh): 

 Sigmoid Function (σ): Squash values between 0 
and 1, controlling the gate activations.   

𝜎(𝑥) =
ଵ

ଵା௘షೣ   (11) 

 Hyperbolic Tangent Function (tanh): Squashes 
values between -1 and 1, regulating the input 
and output transformations. 

tanh(𝑥) =
௘ೣି௘షೣ

௘ೣା௘షೣ  (12) 
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The LSTM cell state (𝐶௧) which is the current 
memory cell content depends on the previous state 
(𝐶௧ିଵ) and current input (𝑥௧), Multiple LSTM cells 
can be connected in layers such that each layer 
receives its inputs from the preceding one or dense 
for prediction. 

 

Fig 7: Long Short-Term Memory 

3.2.3.3 Hybrid model (CNN, LSTM) 
The hybrid model combines CNN and LSTM to 

exploit spatial feature extraction (CNN) and 
sequential dependency modeling (LSTM). The CNN 
component retrieves spatial patterns from the data, 
whilst the LSTM layers identify temporal 
correlations. This hybrid approach is ideal for time-
series crop prediction tasks. 

The CNN layers use filters and pooling to 
reduce dimensions, and the LSTM layers learn the 
temporal patterns. The final output is computed 
using a dense layer: 

𝑌 = 𝜎(𝑋 × 𝑊 + 𝑏)   (13) 

The one-dimensional convolutional layer uses 
convolutions on the input time series data to pick up 
spatial patterns. The pooling layer samples the 
output of the convolutional layer, extracting 
significant characteristics while minimizing 
computing complexity. Mathematically, it 
aggregates information within a pooling window 
using a pooling operation (e.g., max pooling) [38]: 

 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋) = max(𝑋)  (14) 

The MaxPooling 1D layer conducts maximum 
pooling with a predetermined pool size. 

LSTM layers identify temporal connections in 
sequential data [39]. LSTM operations use gate 
mechanisms (forget gate, input gate, output gate) and 

activation functions (sigmoid, tanh) to regulate 
information flow over time. Input sequences are 
processed by LSTM layers that detect temporal 
dependencies. Depending on the features extracted 
from previous layers, these layers are responsible for 
either classification or regression. To be more 
precise, if we use an activation function denoted as 
∅ then the output of a dense layer can be expressed 
mathematically like this: 

𝑌 = ∅(𝑋𝑊 + 𝑏)    (15) 

 

Fig 8: Hybrid Model (CNN, LSTM) 

Finally, predictions are made by processing 
outputs from LSTM through some dense layer(s) 
with activation functions. The model gets compiled 
using an optimizer and a loss function, both 
employed during training. This is done by fitting it 
against train data for certain epochs and particular 
batch sizes. 

4. RESULT AND ANALYSIS 

4.1 Performance Evaluation 
Various criteria were used to evaluate the 

effectiveness of each model. These metrics give 
insights into the models' performance, helping to 
evaluate how well they match the data and generate 
predictions: 

 R-squared (R²): This measure assesses the 
degree to which the regression line closely 
resembles the data points. A better match is 
indicated by higher values ranging from 0 to 1. 
The R-squared calculation formula is: 

R2= 1 − (
ୗ୳୫ ୭୤ ୗ୯୳ୟ୰ୣୢ ୖୣୱ୧ୢ୳ୟ୪ୱ

୘୭୲ୟ୪ ୗ୳୫ ୭୤ ୗ୯୳ୟ୰ୣୱ
)      (16) 
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 Mean Absolute Error (MAE): The average 
absolute difference between expected and actual 
values is measured by this statistic. A lower 
MAE indicates better model performance. The 
formula used to determine MAE is: 

MAE = 
ଵ

௡
∑ (𝑦௜

௡
௜ୀଵ − 𝑦ො௜

ଶ)  (17) 

 Root Mean Square Error (RMSE): This 
metric measures the standard deviation of the 
residuals in a forecast. Lower RMSE values 
suggest smaller prediction errors, while higher 
values suggest larger errors. The formula for 
calculating RMSE is: 

 RMSE = ට
ଵ

௡
∑ (𝑦௜

௡
௜ୀଵ − 𝑦ො௜

ଶ)   (18) 

In Figure 9, the chart visually represents the 
fluctuations in rice harvests over twenty years, 
highlighting a steady increase in the later years. Most 
data points emphasize this upward trend above the 
average line in the final seasons. The line chart 
shows the annual rice yield between 2000 and 2020. 
On the x-axis, there is the year of cultivation, while 
on the y-axis, we have yield in an unknown unit of 
measurement. The dots are joined by a line, which 
shows how they change over time. There are some 
dips and peaks in output during this period, but there 
is also a sudden rise at the end, meaning that much 
more rice has been produced lately. 

 

Fig 9: Annual Rice Yield Over Time 

Fig 10 below shows the actual versus predicted 
yield of the meta-model. The graph shows a model 
against actual yield values at a glance. Actual yield 
is given on the x-axis, while predicted yield is on the 
y-axis. Each blue dot represents one point of data: 

individual yields and their corresponding 
predictions. The red dashed line captures the trend 
between actual and predicted values, commonly 
called the linear regression line. On the other hand, 
green dots represent outliers where the model's 
predictions differ greatly from the true values they 
should take up; these look like an irregular scatter 
plot for which nearly all points would be near or at 
the zero height above or below, as shown by a red 
line.  

 
Fig 10: Model performance of meta-model 

These metrics are essential for model 
comparison since they provide numerical values that 
illustrate the model's performance on specific test 
datasets. However, it is crucial to recognize that 
relying on a single measure is insufficient. Multiple 
metrics—such as R-squared, MAE, and RMSE—
must be considered to assess model performance 
comprehensively. 

Table 1: Comparison Table of machine learning models 

 

Table 2: Comparison Table of deep learning models 

Table 1 presents the forecast outcomes. The 
meta-model exhibited the highest R-squared value of 
98.3, meaning it can explain much of the variance in 
the target variable. In addition, it had the least MAE 
of 5.58 and RMSE of 114.43 among all other models 
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listed. This means that its predictions have fewer 
errors compared to base models. 

 

Accuracy and other related metrics are shown in 
Table 2 for all implemented models, where hybrid 
CNN-LSTM achieved the highest accuracy with 
95.6%. 

 
Fig 11: Loss graph of CNN_LSTM 

The graph provides the training and validation 
losses across epochs for ML models. Initially, both 
losses begin on high notes but steadily diminish after 
that. Around epoch 15, there's an abrupt increase, 
suggesting potential overfitting by our model. After 
that, point loss decreases again, with validation loss 
settling below training loss; this is what we want to 
see happening here. This chart shows the model's 
training progress, which helps identify overfitting or 
underfitting issues. 

4.2 Discussion of Results 
The results of the study significantly improve 

agricultural yield forecasts. Predicting rice yields 
with machine learning and deep learning models 
[40] offers a viable way to increase agricultural 
forecast accuracy. The high R-squared value of the 
meta-model, alongside its low MAE and RMSE, 
validates its superiority over base models. This 
further emphasizes the importance of combining 

multiple models in a hybrid framework, which can 
enhance prediction accuracy. 

The study's validity can be considered highly 
robust due to the careful application of performance 
metrics across different models. The study 
comprehensively evaluates forecasting techniques 
by employing multiple models, including deep 
learning architectures like CNN-LSTM. 

Additionally, this study significantly 
contributes to the overall body of knowledge by 
demonstrating the potential of hybrid machine-
learning approaches to enhance agricultural 
production forecasts. The models' improved 
prediction accuracy and performance measures 
demonstrate how this new information significantly 
outperforms conventional techniques. 

5. CONCLUSION 

This paper explored how contemporary 
machine and deep learning systems hold 
transformative potential for modern farming, 
particularly crop prediction. By utilizing advanced 
algorithms such as decision trees, meta-models, and 
XGBoost, farmers can gain insights into the various 
factors impacting crop growth and productivity. This 
data-driven approach supports informed decision-
making, aiming to maximize agricultural yields and 
improve resource efficiency.  

The research on forecasting within next-
generation farming systems underscores the 
revolutionary capability of these methods, especially 
as they foster the development of accurate models 
that can capture the complexities of agricultural 
processes. Ensemble techniques, including Random 
Forests, Gradient Boosting Machines (GBM), 
Extreme Gradient Boosting (XGBoost), and meta-
models, contribute to model stability and reduce 
overfitting—critical for reliable crop predictions.  

Additionally, by analyzing large datasets 
encompassing historical crop records, weather 
patterns, and soil fertility, machine learning models 
such as convolutional neural networks (CNNs), long 
short-term memory (LSTM) networks, and hybrid 
CNN-LSTM models can offer significant 
advancements in crop yield prediction. These 
approaches are positioned to drive more sustainable 
and efficient farming practices, ultimately aiding 
farmers in managing resources more effectively 
while adapting to changing environmental 
conditions. 
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