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ABSTRACT 
 

Sign language is the communication tool for deaf and hard-of-hearing (DHH) communities all around the 
world. But it is still difficult to establish proper communication between hearing and DHH individuals. As a 
result, numerous explorations and investigations that focused on sign language recognition and translation 
(SLRT) have garnered significant attention from researchers in related fields. This systematic literature 
review aims to provide a comprehensive study on current trends of state-of-the-art dynamic SLRT models 
proposed in 85 journal articles found in the Scopus database from 2020 to 2024. Based on the selected articles, 
this review produced an in-depth analyzation of dynamic SLRT models in terms of their frameworks, deep 
learning techniques, datasets, pre-processing techniques, and evaluation metrics used. Additionally, this 
review also highlights both the advancements and ongoing challenges in the domain. Notably, there have 
been considerable development in isolated and continuous SLRT models, particularly through the 
combinations of deep learning algorithms such as Convolutional Neural Network, Recurrent Neural Network 
and Transformer models, with suitable datasets. However, the complexities and challenges of developing 
robust continuous SLRT models for real-time SLRT persist. This systematic literature review was prepared 
to serve as a foundational reference that will assist future studies on dynamic SLRT. 

Keywords: Dynamic Sign Language, Sign Language Recognition, Sign Language Translation, Deep 
Learning, PICOC Criteria 

 
1. INTRODUCTION  
 

Sign language is a standard language that is 
used by deaf people as their communication tool [1]. 
Based on the statistics, over 200 different SLs have 
been discovered and spoken around the world [2]. 
The deaf and hard-of-hearing (DHH) individuals and 
others can express sign language through two 
features, which are manual features (i.e., body and 
hand movements) and non-manual features (i.e., 
facial expressions) [3]. As the advancement of 
technology continues to improve, contributions 
towards sign language-based recognition and 
translation models are seemingly notable [4]. 
According to Al-Qurishi et al. [5], deep learning, 
also known as deep neural networks, has gained 
popularity in sign language recognition (SLR) and 

sign language translation (SLT) systems. In both the 
SLR and SLT processes, different deep learning 
models are commonly applied to achieve good 
performance [3]. There is said to be an advancement 
in this field of research, with papers on deep learning 
being increasingly published [6-7]. 

 
The deep learning models used in current 

studies include Convolutional Neural Networks 
(CNN) [8-11], Recurrent Neural Networks (RNN) 
[12-14], radial basis function neural networks 
(RBFNN) [15], 2D CNN [16], 3D CNN [17-19], 
Long Short Term Memory (LSTM) [20-24], Self-
Organizing Map (SOM) [25], bidirectional LSTM 
(BiLSTM) [26], Residual Networks (ResNet) [27-
29], Convolutional Block Attention Module 
(CBAM) [30-31], bidirectional encoder 
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representations from Transformers (BERT) [27], 
Spatial-Temporal Transformer Network (STTN) 
[32], Gated Recurrent Unit (GRU) [33], and 
Transformers [34-35]. There are also studies that 
combine the deep learning models mentioned priorly 
such as a CNN-LSTM combination [4,36-38], CNN-
RNN combination [39], and CNN-BiLSTM 
combination [30,40].   
 

Another point that needs to be highlighted 
in current studies on SLR and SLT using deep 
learning models is the usage of either static or 
dynamic sign language gestures when conducting 
these processes. According to Johari et al. [41] sign 
language recognition and translation (SLRT) for 
static sign language was more commonly studied 
compared to dynamic sign language. SLR systems 
can process datasets of static gestures that are 
collected in image format directly and proceed with 
the SLR process after pre-processing methods, 
whereas dynamic gestures need to be collected in 
video format and split into key frames that represent 
each sign language movement [42-43]. Dynamic 
SLR and SLT, especially in real-time, is still a 
challenge [44-45]. Real-time systems face 
challenges in processing, detection and classification 
of sign language video datasets because each data 
has different durations, speeds and backgrounds 
[46].  
  

There are two types of dynamic sign 
languages identified in past research, which are 
isolated and continuous sign languages. Isolated sign 
language includes different dynamic gestures of 
commands, alphabets, numbers or words 
[13,15,18,26,37,47-50] whereas continuous sign 
language is produced in sequences and divided into 
five frameworks, which are Sign2Gloss (S2G), 
Gloss2Text (G2T), Sign2Gloss2Text (S2G2T), 
Sign2Gloss+Text(S2(G+T)), and Sign2Text (S2T). 
Gloss refers to a label that represents the meaning of 
a sign gesture [51]. Models based on the S2G 
framework perform recognition from dynamic 
(continuous) signs to glosses that include 
information on the semantic and grammatical rules 
of the signs [20-21,52]. The G2T framework-based 
models translate from glosses to grammatically 
correct sentences in a target spoken language [53]. 
Next, models based on the S2G2T framework 
perform the recognition task from sequential 
dynamic (continuous) signs to gloss annotations, and 
then perform the translation task from gloss 
annotations into complete sentences [22,54]. The 
S2(G+T) framework-based models, on the other 
hand, output gloss and text simultaneously [53] 

while models based on the S2T framework conduct 
SLT tasks in an end-to-end manner from dynamic 
(continuous) sign language into spoken language 
sentences [24,27,32,39,56-57]. 
 

Researchers have utilized multiple varieties 
of models with modified functionalities to recognize 
and translate sign languages [4,33,59]. The datasets 
researchers use differ according to the needs of their 
models or systems. However, some of the most 
common datasets used are RWTH-PHOENIX-
Weather-2014T [24,27,52,60], CSL dataset 
[24,27,52,54,60-62], and ASL dataset [14,48-49,61]. 
Many researchers have also created their own 
datasets according to the needs of their specific 
localities [22,17,19,31,63-66]. Current research on 
dynamic SLR and SLT has gained outstanding 
results such that the average accuracy of the models 
proposed by the researchers is approximately above 
85% for alphabets or isolated words [8,11-
13,23,35,48,50,59,67-71] and continuous sentences 
[10,40,56]. Researchers are able to compare the 
efficiency and reliability of their models by using 
datasets that are similarly used by other studies. Yet 
researchers still use different sign language datasets 
according to the specific sign language their research 
mainly focuses on.  

 
The focus on real-time SLR and SLT 

depends on the development of dynamic SLRT. This 
is because merely focusing on dynamic isolated sign 
languages does not significantly contribute to the 
context of real-time sign language translation 
[16,25,38,48-49,72-73]. Besides that, although many 
studies [12,35-36,70-71,74-75] do claim to have 
developed dynamic SLRT systems using deep 
learning models, their study only relies on specific 
aspects of the sign language such as fingerspelling, 
numbers, alphabets, greetings, colors, action-based 
hand gestures, and common words. These studies 
that focused on isolated sign languages are still 
limited in producing efficient conversation in real-
time [16,59,64,76-78], while continuous sign 
language models that include SLRT tasks on 
sentences-based output are more practical in real-
time conversation [22,24,27-28,32,39,79-80].   
 

  Therefore, this systematic literature review 
aims to identify state-of-the-art dynamic SLRT deep 
learning models that can substantially contribute 
towards real-time SLRT in various frameworks. 
Previous literature reviews or surveys have typically 
focused on recognition or translation for dynamic 
sign languages in a separate manner [5,7,41,44-
45,53]. Therefore, in order to bridge the gap found in 
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previous reviews, this study provides a 
comprehensive examination of both aspects together 
in a systematic manner. Besides, it is found that 
previous reviews and surveys are yet to specifically 
focus on the SLRT processes that lead to real-time 
SLRT. Motivated by these limitations, this study 
undertakes a detailed and rigorous investigation, 
aiming to identify specific deep learning techniques 
used in dynamic sign language models and the 
aspects of dynamic sign language they address in 
recognition and translation processes which could 
direct SLRT research towards real-time SLRT. By 
specifically examining SLRT studies published from 
2020 to 2024 in the Scopus database, this will offer 
a timely perspective on advancements and trends 
within this period. Scopus database was selected 
because it covers many articles under different 
journals worldwide and is commonly used in writing 
literature review [92].  

 
Additionally, this systematic review also 

aims to understand the challenges and limitations 
that still exist using deep learning models in SLRT 
research, and what is the way forward in addressing 
them. This systematic literature review will also 
highlight the advancements of current dynamic 
SLRT systems to confer the processes needed for 
proper and comprehensive SLRT. Next, the study 
will analyze each paper retrieved to find out which 
datasets, pre-processing methods, and evaluation 
metrics are used by the researchers in their study. It 
will assess these elements on whether they enable or 
support both recognition and translation within 
dynamic SLRT models, rather than being limited to 
one aspect as seen in previous systematic reviews. 
This systematic literature review is significant in 
searching, investigating, and analyzing the potential 
tools and modifications of SLRT models in different 
frameworks, so that possible future development for 
advancements in the area of dynamic SLRT using 
deep learning models and techniques can be 
informed. 

 
2. METHODOLOGY 
 
2.1 Review Protocol 

This study uses Kitchenham’s 
methodology in conducting a systematic literature 
review as this methodology is commonly used as a 
referring point in software engineering or 
programming research [81]. A study by Usman et al. 
[82] explained that the Kitchenham methodology 
contributed to the growing number of systematic 
literature reviews as it published guidelines on 
writing a systematic literature review through 

identifying, evaluating, and integrating the evidence 
reported in scientific literature. To write a systematic 
literature review, the review should be prepared by 
answering specific research questions which are 
clearly formulated by collecting, learning, and 
analyzing the relevant studies found [83]. 
 
2.2 Research Questions 

In this study, the formation of research 
questions will be based on the Population, 
Intervention, Comparison, Outcome, and Context 
(PICOC) criteria, should any of the criteria be 
deemed necessary by the researchers. Table 1 shows 
the descriptions of PICOC criteria. 

Table 1: PICOC Criteria By Nishikawa-Pacher [84] 

Criteria Description 
P (Population) What population am I 

interested in? 
I (Intervention) What intervention exactly 

am I interested in 
reviewing? 

Is it one intervention, or a 
cluster of interventions? 

C (Comparison) With what is the 
intervention being 

compared? 
O (Outcomes) For many social 

interventions there is a wide 
range of outcomes, and the 
assessment of effectiveness 

involves collecting 
information on both positive 

and negative impacts and 
assessing the balance 

between them. 
C (Context) There is a further 

component, which needs to 
be considered – the context 

within which the 
intervention is delivered. 

 
According to Kitchenham and Charters 

[81], the PICOC criteria was suggested by Petticrew 
and Roberts in generating research questions which 
was redefined as an extension from the original 
criteria named PICO (Population, Intervention, 
Comparison and Outcome) only without Context. 
PICO was a popular research question framing 
method, especially in clinical studies [85-86]. 
However, the study found that the PICO model was 
not only limited to clinical investigation studies, and 
it argues that the PICO model can be used 
universally for all study designs [84]. According to 
Nishikawa-Pacher [84], the researcher proved his 
argument by giving samples taken from Google 
Scholar Metrics that have used the universal PICO 
scheme in different research fields. One such sample 
is a study in the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition which applied a 
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residual learning framework (I) to neural networks 
(P) so as to generate substantially deeper neural nets 
despite lower complexity (O) compared to VGG nets 
(C) [87]. Table 2 shows the compiled list by 
Kitchenham and Charters [81] of the PICOC criteria 
that matches Computer Science related fields [81]. 

Table 2: PICOC Criteria In Software Engineering’s 
Viewpoints By Kitchenham And Charters [81] 

Criteria Viewpoints in Software 
Engineering Fields 

P (Population) A question may refer to very 
specific population groups, 

e.g. novice testers, 
experienced software 

architects working on IT 
systems, or population area 
e.g. IT systems, command 

and control systems. 
I (Intervention) The intervention is the 

software methodology, tool, 
technology, or procedure 
that addresses a specific 

issue, e.g. technologies to 
perform specific tasks such 

as requirements 
specification, system 

testing, or software cost 
estimation. 

C (Comparison) This is the software 
engineering methodology, 

tool, technology, or 
procedure with which the 

intervention is being 
compared, e.g. compare 
people using a technique 
with people not using a 

technique. 
O (Outcomes) All relevant outcomes 

should be specified. For 
example, in some cases we 
require interventions that 
improve some aspect of 

software production without 
affecting another e.g. 

improved reliability with no 
increase in cost. 

C (Context) For Software Engineering, 
this is the context in which 
the comparison takes place 
(e.g. academia or industry), 
the participants taking part 

in the study (e.g. 
practitioners, academics, 

consultants, students), and 
the tasks being performed 

(e.g. small scale, large 
scale). Many software 

experiments take place in 
academia using student 
participants and tasks in 

small scale. 

 
This study aims to analyze research gaps in 

published studies that focus on dynamic SLR, SLT, 

and SLRT models from 2020 to 2024. The research 
questions below have been formed in accordance 
with the PICOC criteria in Table 2 to achieve this 
aim.   

1. What are the types of dynamic systems 
presented in the studies and the frameworks 
employed?  

2. What are the deep learning techniques and 
models presented in the studies?  

3. What are the datasets used to test the 
models in each published article?  

a. How was the data collected?   
b. What is the availability of the 

dataset?   
c. What is the size of the dataset?   
d. Which sign language is the dataset 

subjected to?  
4. What pre-processing techniques are applied 

to the dynamic sign language datasets used 
in the models?  

5. What are the evaluation metrics used to 
assess the models? 

 
According to the research questions above, 

the types of dynamic sign language systems, the 
frameworks employed, deep learning techniques and 
models found in previous studies will first be 
identified. Next, the datasets used to test the models 
in each published article will be investigated and 
clarified by exploring the collection methods, 
availability, sizes and sign languages used of 
datasets. Then, the pre-processing techniques 
applied to the dynamic sign language datasets used 
in the models found in previous studies will be 
determined and explained. Lastly, the evaluation 
metrics that can be used to assess these models will 
be determined and assessed for suitability.  
 

By obtaining these information from the 
reviewed studies, the major gap in dynamic SLR, 
SLT, and SLRT research can be identified to direct 
further research in this field. As current studies in 
this field differ in the aspects stated above, this study 
aims to identify the specific models, techniques, 
datasets, pre-processing techniques, and evaluation 
metrics that are required for a systematic dynamic 
SLRT system to be developed. This would 
inevitably guide researchers in choosing the 
appropriate models, datasets, and metrics for future 
research in the field of dynamic SLRT research 
directing them towards real-time SLRT. 
Nevertheless, it is important to note that this study 
does not include highly cited papers that are not 
available in the Scopus database which may exclude 
certain models, datasets, and metrics from being 
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identified and investigated. However, future 
researchers are encouraged to replicate this 
systematic literature review with other databases 
such as Web of Science, ERIC, IEEE Xplore, and 
Science Direct to get a bigger picture of the current 
advancement in the field of dynamic SLRT research. 

 
2.3 Search Strategy 

The search strategy used by the researchers 
is in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 flow diagram. According to Trifu 
et al. [88], the recommendations of using PRISMA 
statements have been widely approved in assisting 
researchers in preparing review papers. The 
PRISMA flow diagram is published in the format of 
four divided stages, which are Identification, 
Screening, Eligibility and Included. The PRISMA 
flow diagram shows the stages of the literature 
search process that researchers use to finalize the 
articles that will be accounted for in their review 
[89]. The search process starts with the number of 
documents retrieved from different databases and 
resources using certain keywords or search strings 
(Identification Stage) [90]. Then, the documents are 
filtered manually or through the databases for 
specific reasons normally mentioned in the PRISMA 
2020 flow diagram (Screening and Eligibility Stage). 
Afterwards, the PRISMA flow diagram will be 
completed with the finalized number of specific 
included articles (Included Stage), which will 
become the main discussants in the results section of 
the study [88]. The flow diagram can be modified 

according to whether it is a new and original review 
or an updated review [89].   
 

For this review, the academic publications 
were retrieved from the Scopus database by Elsevier 
using the search string “TITLE-ABS-KEY ( ( "sign 
language" ) AND ( "recognition" OR "translation" ) 
AND ( "deep learning" OR "neural network*" OR 
"artificial neural network*" ) AND ( "dynamic" OR 
"continuous" ) ) AND ( PUBYEAR > 2019 ) AND ( 
PUBYEAR < 2025 ) AND ( LIMIT-TO ( 
PUBSTAGE , "final" ) ) AND ( LIMIT-TO ( DOC-
TYPE , "ar" ) ) AND ( LIMIT-TO ( SRCTYPE , "j" 
) )”. Scopus is a citation and abstract database that 
was founded in 2004 [91]. It is a database that 
indexes peer-reviewed scientific literature that are 
highly curated [91-92]. Scopus contains publications 
indexed from all around the world, and it covers four 
main areas of publications, which are Physical 
Sciences, Social Sciences, Health Sciences, and Life 
Sciences [92]. One of the many reasons why Scopus 
is commonly used in systematic literature review 
studies is that it is a dependable search tool when 
searching for literature that ought to be reviewed 
through basic and advanced search queries [91-93]. 
Boolean operators, such as ‘AND’ and ‘OR’ are 
commonly used as the strategy in keywords 
combinations for search string purposes [94]. 
Moreover, it also offers easier forward and backward 
citation search which can assist researchers when 
conducting thorough literature reviews [91]. Hence, 
Scopus was chosen as the database in this study.   

 
 
The publications retrieved range from the 

year 2020 till the year 2024. Studies found that the 
generation of the most recent systematic literature 
review is a challenging task, with one-third of review 
papers generally updated within two years, and 
publications within six years are considered as up-
to-date references [95-96]. For this study, the time 
span of five years is selected. The PRISMA flow 
diagram for this review is shown in Figure 1. 

2.4 Study Selection 
Inclusion and exclusion criteria are 

essential to set the boundaries of the systematic 
literature review and to determine the results of the 
articles acquired by implementing the search 
strategy. The researchers have determined the 
criteria beforehand to avoid any biases. Table 3 
below shows the inclusion and exclusion criteria of 
this systematic review. 

Table 3: Inclusion And Exclusion Criteria 

No. Inclusion Criteria Exclusion Criteria 
1. Must be empirical 

studies 
Review studies 

2. Must be final 
publication staged 

journal articles 
In-press journal articles 

3. 
English articles 

Other language journal 
articles 

4. Must be published 
between the year 2020 

and 2024 

Studies before the year 
2020 

5. Relevant to dynamic or 
continuous sign 

language recognition or 
translation or both 

No focus on dynamic or 
continuous sign 

language recognition or 
translation 

6. Relevant to the context 
of deep learning and 

neural networks 

Irrelevant to the topic of 
deep learning and neural 

networks 
7. The SLR or SLT 

performed should be 
one-way, i.e. Sign 

language to text/speech 

Bidirectional models 
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Figure 1: PRISMA Flow Diagram (Source: Authors, Adopted From Page et al. [89]) 

 
2.5 Study Quality Assessment 

The review was conducted only on journal 
articles that have been published or have reached the 
final publication stage. In order to maintain the 
quality of the study, duplicate records were 
thoroughly checked. In the screening stage, 
according to the PRISMA flow diagram, the 
abstracts of the 139 journal articles were read 
through, and only relevant articles were sought for 
retrieval which was 127 articles. 12 articles were 
found to be irrelevant. Next, from the records that 
were sought for retrieval, 26 records were not 
retrieved as the full-text articles were not available. 
Additionally, a Quality Assessment Form as shown 
in Table 4 was proposed to check the quality and 
eligibility of the full-text reports retrieved. This form 
was adapted from the proposed questionnaire by 

Boggaram et al. [44]. This questionnaire was created 
in accordance with the Kitchenham and Charters 
[81] quality assessment form and the Oxman and 
Guyatt [97] quality assessment questionnaire [44].  
 

101 articles were assessed for eligibility, 
and five reports were removed due to being in a 
language other than English as stated in the inclusion 
and exclusion criteria in Table 3. Another 11 reports 
were removed after a full-text screening based on the 
proposed Quality Assessment Form due to 
irrelevancy to the subject matter of this systematic 
literature review. The studies were also checked for 
bias and internal and external validity. Finally, a 
total of 85 journal articles to be reviewed were 
included in this study. 
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Table 4: Quality Assessment Form 

Assessment Questions Considerations 
A. Primary Screening Question 

Is the goal of the research article to use deep 
learning technique(s) to perform SLR, SLT or 
SLRT? Is the goal of the research article to use 

deep learning technique(s) to perform SLR, 
SLT or SLRT? 
Yes (  ) No (  ) 

The article should mention the deep learning 
technique used for SLR, SLT or SLRT. 

 

B. Secondary Screening Question 
Is the goal of the research article to use deep 

learning technique(s) to develop dynamic sign 
language models? 

Yes (  ) No (  ) 

The article should mention or clearly show the 
type of sign language models (static or 

dynamic) being developed. 

Is the goal of the research article to use deep 
learning technique(s) to develop dynamic sign 

language models? 
Yes (  ) No (  ) 

The article should mention or clearly show the 
type of sign language models (static or 

dynamic) being developed. 

Is the type of dynamic sign language model(s) 
used in terms of isolated sign language 

model(s), S2G, G2T, S2(G+T), S2G2T, or 
S2T framework-based model(s) clearly shown 

in the research article? 
Yes (  ) No (  ) 

The article should clearly show the type of 
dynamic sign language models (isolated or 

continuous) and the frameworks (S2G, G2T, 
S2(G+T), S2G2T, or S2T) used to develop the 

model(s). 

Is the research article testing the SLR, SLT or 
SLRT model(s) using dynamic sign language 

dataset(s)? 
Yes (  ) No (  ) 

The article should mention the dynamic sign 
language(s) dataset used to test their SLR, 

SLT or SLRT model(s). 

Is the model in each article assessed using 
some kind of evaluation metric(s)? 

Yes (  ) No (  ) 

The article should mention the evaluation 
metric(s) used in assessing their model(s). 

If the answer to the previous question is ‘Yes’, the next question is considered. 
C. Comprehensive Question 

Research Results 
Is there a succinct purpose for the findings? 

Yes (  ) No (  ) 
The article should give conclusive evidence 

regarding the SLR, SLT or SLRT performed. 
 

3. RESULTS AND FINDINGS 
 
3.1 Publications By Years 

 
 

Figure 2: Total Number Of Publication By Years
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The total number of publications for all five 
years chosen in this study are shown in Figure 2. The 
years 2020, 2021, 2022, 2023, and 2024 have 13, 12, 
24, 29, and 7 publications respectively. There is a 
decrease in one publication from the year 2020 to 
2021. However, the years 2021, 2022, and 2023 have 
recorded a continuous increase in publications, with 
a drastic increase in publications in the year 2022. 
This indicates that more researchers have gained an 
interest in the field of SLRT, especially in the years 
2022 and 2023. 
  
3.2 Findings Based On Research Questions 
3.2.1 RQ1: What are the types of dynamic 

systems presented in the studies and the 
frameworks employed?  

Table 5: Number Of Studies Identified Based On 
Different Dynamic System Types And Frameworks 

Types/ Frameworks Total Number of Studies 
Isolated Signs 

Words, Phrases, 
Alphanumeric Characters 

or Simple Gestures 
61 

Continuous Signs (Sentences) 
Sign2Gloss 3 
Gloss2Text 0 

Sign2Gloss2Text 2 
Sign2(Gloss+Text) 0 

Sign2Text 19 

 
Table 5 shows the number of studies found 

based on different dynamic system types and 
frameworks. The table above is divided into two 
types of dynamic systems, which are the systems that 
focus on continuous sign language (sentences) and 
isolated sign language only, such as alphabets, 
numbers, words, short phrases, and simple gestures 

for movement, direction or contexts that are not 
representative through words. Of the 85 studies 
reviewed, there are 61 studies [4,8-9,11-19,23,25-
26,30-31,34-38,42,46-50,55,58-59,63-69,70-78, 98-
111] that focused on isolated sign language 
recognition. In these studies, eight studies [12,18, 
42,48-49,63,69,72] included static sign images. 
There are 19 studies [9,14-15,18-19,42,46,55, 
58,67,69,72,75-77,99-100,106,111] that included 
action gesture recognition and eight of these studies 
[15,19,55,58,75,100,106,111] focused specifically 
only on action gesture recognition. The study 
conducted by Nadgeri and Kumar [38] converted the 
isolated signs into vectors only, while several other 
studies focused only on either alphabet [48-49,110] 
or fingerspelling [16,74] only.    
 

For the continuous sign language systems, 
there are three studies [20-21,52] that used the 
Sign2Gloss framework. Next, there are two studies 
[22,54] that employed the Sign2Gloss2Text 
framework whereas the frameworks Gloss2Text and 
Sign2(Gloss+Text) were not employed by any of the 
studies. The Sign2Text framework has the highest 
number of studies with 19 studies [10,24,27-29,32-
33,39-40,56-57,60-62,79-80,112-114] employing it. 
Out of all the continuous sign language-based 
studies, seven studies [20,22,29,32,79-80,112] 
included isolated signs as well. Additionally, the 
study conducted by Belissen et al. [39] recognized 
lexical signs but not gloss whereas Hu et al. [29] 
interestingly tested their model thrice separately 
with isolated signs, the Sign2Gloss framework for 
SLR, and the Sign2Text framework for SLT. Wang 
et al. [57] on the other hand worked on SLT, 
subsequently converting the spoken language text 
into voice output.  

 
3.2.2 RQ2: What are the deep learning techniques and models presented in the studies?  

 
 

Figure 3: Deep Learning Techniques Presented In Reviewed Studies
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Figure 3 shows the percentage of six deep 
learning baseline techniques found from 89 models 
from the reviewed studies. Convolution Neural 
Network (CNN) was the most common deep 
learning tool that covered 62.92%, of which are 56 
CNN models. Then, Recurrent Neural Network 
(RNN) was the second most common deep learning 
technique used to develop 17 models (19.10%). 
Other than this, other deep learning techniques have 
published fewer than ten models. There are six 

Transformer models that have been proposed in the 
studies, which constitute 6.74%. In addition to that, 
Artificial Neural Network (ANN) techniques have 
also been applied to five models from the total 
(5.62%). While Graph Convolution Network (GCN) 
and Generative Adversarial Network (GAN) 
techniques only covered 3.37% and 2.25% 
respectively, which are three GCN and two GAN 
models in the reviewed studies. 

Table 6: Deep Learning Models Identified In The Reviewed Studies 

Techniques / Variants Model Framework 
CNN (56) 

1DCNN 

- Isolated [69] 
Two-Stream Mixed-ResNet50 Isolated [49] 

1DCNN-BiLSTM Isolated [104] 
VGG11-1DCNN-BiLSTM-Encoder (BiLSTM)-Decoder 

(SA-LSTM) 
S2T [56] 

CNN/ 2DCNN 

- 
 

Isolated 
[8,16,18,50,58,63-

65,69,76,98,101,107] 
S2T [10] 

CNN-Window Sliding S2T [79] 
CNN-FC Isolated [26] 

CNN-LSTM 
 

Isolated [36-38] 
S2G [20] 

DMN-AMN-SRN (CNN-LSTM) Isolated [105] 
CNN-LSTM-CTC S2G2T [22] 

CNN-LSTM-SelfMLP Isolated [77] 
CNN-SLSTM Isolated [4] 
CNN-BiLSTM 

 
Isolated [46,66,109] 

S2T [28,39] 
CNN-BiLSTM-TCL S2G [52] 
CNN-BiLSTM-GAN S2T [40] 

2DCNN-Attentive Multi Feature-BiLSTM-CTC S2G2T [54] 
CNN-Transformer-Reinforcement Learning S2T [61] 

Meta Metric Learning with Triplet  
Loss Embeddings (MVDMML) Isolated [108] 

CNN-Hybrid Arithmetic Hunger Games Isolated [75] 
End-to-end Fourier-CNN Isolated [9] 

3DCNN/ C3D 

- Isolated [19,73] 
3DCNN-LSTM Isolated [23] 

3DCNN-ConvLSTM Isolated [11,18] 
C3D-MLP Isolated [17] 

Deformable Convolution Sequence attention 3D Residual 
Network (DCSR3D) Encoder-GRU Decoder 

S2T [33] 

2D & 3DCNN 2D & 3DCNN- Batch-Normalization Isolated [42] 
Convolution Self-Organizing Map 

(CSOM) 
CSOM-BiLSTM Isolated [25] 

Temporal Convolution Network (TCN) 
 

CNN-TCN 
 

Isolated [100] 
S2T [60] 

Multi-channel CNN 
 

Multi-channel CNN-LSTM Isolated [106] 
Multi-channel CNN-Attention-based-Encoder-Decoder S2T [57,113] 

Convolutional block attention module 
(CBAM) 

 

CBAM-3DResNet Isolated [31] 

CBAM-BiLSTM Isolated [30] 

RNN (17) 
RNN InceptionV3-RNN Isolated [12] 

Bidirectional RNN (BiRNN) 
 

- Isolated [14] 
BiRNN-LSTM-BiLSTM Isolated [67] 

Recurrent CNN (RCNN) ResNet50-LSTM Isolated [102] 
Long Short-Term Memory (LSTM) 

 
- Isolated [13,48,55] 

LSTM-Attention Mechanism Isolated [23] 
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LSTM Encoder-Decoder Isolated [26] 
VTCNN-LSTM Encoder-CTC and Attention-based 

Decoders 
Isolated [74] 

Convolution LSTM (ConvLSTM) - Isolated [78] 

Bidirectional LSTM (BiLSTM) 
 

BiLSTM-Fast Fisher Vector Isolated [47,68] 
BiLSTM-Attention Isolated [103] 

BiLSTM-ST-Attention S2T [24] 
CNN Transfer Learning-BiLSTM S2T [108] 

Boundary Adaptive Encoder (BAE) BAE-LSTM-Window Attention Encoder-Decoder S2T [112] 
Transformers (6) 

Transformers - Isolated [34-35] 
Bidirectional 

Encoder Representations from 
Transformers (BERT) 

ResNet-SignBERT S2T [27] 

Cross-Attention-SignBERT S2T [62] 

SignBERT+ SignBert+ - Encoder-Decoder S2T [29] 
Spatial Temporal Transformer Network 

(STTN) 
- S2T [32] 

GAN (2) 
GAN GAN (Generator & Discriminator - CNN) Isolated [71] 

Hyperparameter based-GAN (H-GAN) H-GAN (Generator-LSTM, Discriminator-3DCNN+LSTM) S2G [21] 
ANN (5) 

ANN 
 

- Isolated [110] 
SNN-ST-Back Propagating Training Isolated [99] 

Radial Basis Function (RBF) Neural Network Isolated [15] 
Multilayer Perception (MLP) 

 
- Isolated [72] 

Neural Network Isolated [22] 
GCN (3) 

GCN GCN-Attention-CNN Isolated [59] 
Spatial-Temporal Graph Convolution 

(STGC) 
STGC-Transformer S2T [80] 

Dense GCN 
Dynamic Dense ST GCN (DDSTGCN) - Dynamic ST CN 
Module (DSTCNM) -Encoder (BiLSTM)-Decoder (CTC) 

S2T [56] 

 
The baseline deep learning techniques 

identified in the studies in Table 6 are CNN, RNN, 
Transformers, GAN, ANN, and GCN. Researchers 
have used different variants of these baseline 
techniques and have developed their models 
according to those variants. For CNN, there are eight 
variants identified which are 1DCNN, 2DCNN (the 
original variant), 3DCNN, and 2D and 3D CNN, 
CSOM, TCN, Multi-channel CNN, and CBAM. 
1DCNN has been found in developing isolated sign 
language models in an independent mode [69]. 
Moreover, it was also incorporated with other 
techniques to build Two-Stream Mixed-ResNet50 
and 1DCNN-BiLSTM as two different isolated sign 
language models [49,104], and VGG11-1DCNN-
BiLSTM in applying encoder-decoder tasks as a S2T 
model [56]. Next, 2DCNN was found to be highly 
used in developing models resulting in 34 models 
based on the studies reviewed. Independent 2DCNN 
was used to develop 13 isolated sign language 
models [8,16,18,50,58,63-65,69,76,98,101,107] and 
one S2T model [10]. There are also 13 isolated sign 
language models identified that were developed 
using 2DCNN combined with LSTM, LSTM-
SelfMLP, SLSTM, BiLSTM, FC, meta metric 
learning, hybrid arithmetic hunger games, and end-
to-end Fourier [4,9,26,36-38,46,66,75-77,105,108-

109]. Besides this, 2DCNN was also used to develop 
six models using the S2T framework in an 
independent mode [10] by cooperating BiLSTM, 
BiLSTM-GAN, window learning, transformer-
reinforcement learning [28,39-40,61,79].  

 
Furthermore, there are also two S2G 

[20,52] and S2G2T [22,54] models found from the 
studies that have been developed using 2DCNN 
combined with LSTM, LSTM-CTC, BiLSTM-TCL, 
and attentive-multi feature-BiLSTM-CTC 
techniques. Next, 3DCNN was applied as an 
independent baseline model in developing two 
isolated sign language models [19,73] and 
contributed to the development of four hybrid 
isolated sign language models [11,17-18,23] by 
incorporating LSTM, ConvLSTM, and MLP, and 
one hybrid S2T DCSR3D encoder-GRU decoder 
model [33]. In addition to that, there is also an 
isolated sign language model that was developed by 
combining 2D and 3DCNN as a baseline with the 
Batch Normalization technique [42]. Other than this, 
CSOM and CBAM were used to develop several 
isolated sign language models by combining with 
BiLSTM [25,30] and 3DResNet [31] techniques in 
the reviewed studies. TCN also worked as a baseline 
to develop an isolated sign language [100] and a S2T 
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[60] hybrid model by cooperating CNN. An isolated 
sign language [106] and two S2T [57,113] hybrid 
models have been found under the baseline of multi-
channel CNN in Multi-channel CNN-LSTM and 
attention-based Multi-channel CNN encoder-
decoder models.  

 
 There are seven variants of RNN which are 
RNN (the original variant), BiRNN, RCNN, LSTM, 
ConvLSTM, BiLSTM, and BAE. RNN has been 
used to develop an isolated sign language model by 
incorporating InceptionV3 that is covered under the 
CNN technique [12]. Besides that, RNN has also 
been adapted into several extensions such as BiRNN 
and RCNN. BiRNN was used as an independent 
baseline model [14] and a com-bination with LSTM-
BiLSTM [67] in isolated sign language model 
development, whereas RCNN was combined with 
ResNet50 and LSTM in developing an isolated sign 
language model as well [102]. LSTM is the variant 
of RNN that is often used by researchers in building 
isolated sign language models as identified in the 
reviewed studies. LSTM has been used as an 
independent tool in developing three isolated sign 
language models [13,22,48] and a baseline in three 
hybrid models [23,26,74] of LSTM-Attention 
Mechanism and two encoder-decoder models. 
LSTM has also been extended into ConvLSTM and 
BiLSTM to develop different models. For example, 
ConvLSTM was used to develop an isolated sign 
language model [78], whereas BiLSTM was used in 
developing five hybrid models, which are two 
models for S2T framework, combining spatial-
temporal-attention and CNN Transfer Learning 
methods [24,114], and three models for isolated sign 
language models, incorporating attention 
mechanism and Fast Fisher Vector method 
[47,68,103]. Lastly, a BAE-based S2T was 
identified in the studies which combined the LSTM 
and window attention in encoder-decoder platform 
techniques [112].  
 

Next, for Transformers, there are three 
variants identified which are Transformers (the 
original variant), BERT, BERT+ and STTN. Based 
on the studies reviewed, Trans-former was used as 
an independent baseline tool in developing two 
isolated sign language models [34-35]. Whereas, its 
variants, BERT, BERT+ and STTN were focused on 
proposing models based on the S2T framework. 
BERT and BERT+ have been found in the 
development of three hybrid models combined with 
ResNet, Cross-Attention and encoder-decoder task 

techniques [27,29,62], while STTN was only used in 
developing an independent S2T model without any 
additional tools [32]. GAN and ANN have two 
variants respectively which are the GAN technique 
itself, H-GAN for GAN, and the ANN technique 
itself, and MLP for ANN. According to the studies 
reviewed, the GAN technique was used to develop a 
Generator and Discriminator. It was found to be 
applied to an isolated sign language model with 
CNN using it as a Generator and Discriminator [71], 
whereas H-GAN was proposed in a model based on 
the S2G framework with a LSTM Generator and 
3DCNN-LSTM Discriminator [21].  

 
Apart from this, ANN was used most in 

isolated sign language models. From the 85 studies 
reviewed, ANN has been proposed as an 
independent baseline, combined with SNN-ST-Back 
Propagating Training and PCO-RBF neural network 
[15,99,110]. Its MLP variant was found in 
developing isolated sign language models in an 
independent mode with neural network extensions 
[22,72]. Finally, there are three variants identified 
for the GCN technique which are GCN (the original 
variant), STGC, and Dense GCN. GCN has been 
combined with attention mechanism and CNN to 
develop an isolated sign language model [59]. While 
STGC and Dense GCN are found in a couple of 
hybrid models based on the S2T framework, which 
are STGC-Transformer and DDSTGCN-DSTCNM 
Encoder-Decoder model [56,80]. Overall, there are a 
total of 89 models that have been identified from the 
85 reviewed studies. There are some studies that 
have developed and proposed more than one model 
for different criteria and purposes. For example, 
several researchers have developed different models 
to process different formats of input data inserted 
[18,26,56,69]. In addition to that, Table 6 has only 
included the most efficient and finalized models 
found in the studies after ablation studies such as 
testing and comparing between various CNN layers 
[4,12-13,20,49,61,63,77,102,108-109] and different 
techniques, such as IDCNN and GRU were applied 
[76]. 
 
3.2.3 RQ3: What are the datasets used to test 

the models in each published article? 

This question will focus on the detailed 
information of different datasets found in the 
research articles, what are the dataset data collection 
methods, availability, sizes, and sign languages. 
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3.2.3.1 RQ 3(a): How was the data collected? 

 
 

Figure 4: Data Collection Methods For Dynamic Sign Language Datasets  

Based on Figure 4, there are three data 
collection methods found from the 85 studies 
reviewed. Data collection methods are divided into 
vision-based, sensor-based and hybrid methods. 
There is a total of 100 datasets collected according 
to the vision-based method, which achieved the 
highest percentage of 83.61% when compared to 
other methods. Sensor-based method achieved 
13.93%, which was identified in 17 datasets from the 
total of 120 datasets. Lastly, there are only three 
datasets, which constitute 2.46% using hybrid mode 
of both methods found in the studies reviewed.   

Table 7: Data Collection Tools For Dynamic Sign 
Language Datasets 

Data Collection Tools 
Vision-based Method Sensor-based Method 

Camera 71 Data Glove 8 
Leap Motion 

Controller (LMC) 
10 Armband 2 

Microsoft Kinect 6 
Millimeter Wave 

Radar 
2 

Smart Phone 5 Perception Neuron 2 

Webcam 3 
Electromyography 

(EMG) 
1 

Depth Camera 2 Position Tracker 1 
Event Camera 1 Smart Watch 1 

Open Computer 
Vision Camera 

1 Total 17 

Raspberry pi Camera 1   
Total 100   

Hybrid Method 
Camera + EMG 1 

Camera + Data Glove 1 
Smart Phone + Sign Ring 1 

Total 3 

 

Table 7 shows different types of data 
collection tools that have been found from 120 
datasets in the 85 studies reviewed. There are nine 
tools that have been used in collecting vision-based 
data and seven tools for sensor-based data. For 
vision-based data collection, most of the datasets 
were collected by using camera as identified in 53 of 
the studies [4,8,10-11,16-18,20-22,23-25,27-29,32-
35,37,39-40,42,46-47,49,52,54,56,59-61,63-66,70, 
72-76,78,98-99,101,105-106,108-109,112,114]. 
Ten datasets were collected through LMC tool 
[9,14,48,55,58,67-68,106]. There are also six dataset 
data collected through Microsoft Kinect [9,30,76-
77,102,112]. Smart phone cameras were also used as 
a data collection tool to capture videos and images 
for five of the datasets found [12,31,36,76,80]. There 
are three datasets collected through webcam 
[18,38,47] and two datasets using depth camera 
[46,58,75,106]. While there is only one dataset 
found from the 85 studies collected by event camera 
[99], Open Computer Vision [11], and Raspberry pi 
camera [76]. On the other hand, data glove was used 
as the popular tool in collecting sensor information 
for eight of the datasets studied [13,50,69,79,100, 
103,110-111]. Next, there are two datasets 
developed through armband [55,113], millimeter 
wave radar system [19,71] and perception neuron 
[26]. Lastly, an EMG sensor system [15], a position 
tracker [111] and a smart watch [28] were used to 
capture sensor information for one dataset from the 
studies found. Apart from that, there are three 
datasets that have been developed through a 
combination of vision and sensor-based tools to 
collect hybrid data [22,57,104]. 
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3.2.3.2 RQ 3(b): What is the availability of the 
dataset? 

 
 

Figure 5: Availability of Datasets found from the 
Studies 

According to Figure 5 above, there are two 
types of datasets that have been covered in the 85 
studies reviewed, which are identified as own and 
public datasets. Both types of datasets have a similar 
total number in close proximity from the reviewed 
studies. There are 61 own datasets developed by the 
researchers in their studies, while some of these 
researchers used public datasets published in 
previous studies as well. There are 59 different 
public datasets that have been included in the studies 
reviewed. 

Table 8: List Of Datasets 

Availability Datasets 

Public 

Dataset 
(59) 

26ASL Dataset, 50ASL Dataset, 500 CSL Dataset (7), American Sign Language (ASL) Dataset1, 
American Sign Language (ASL) Dataset2, American Sign Language Lexicon Video (ASLLVD) 

Dataset (3), American Sign Language (Triesch) Dataset, Ankara University Turkish Sign 
Language Dataset, Arabic Sign Language Dataset, Arabic Sign Language (Al-Jarrah) Dataset, 

ASL Alphabet Dataset, ASL Dataset (2), ASLLRP Dataset (2), Australian Sign Language 
Dataset, British Sign Language (BSL) Dataset, Cambridge Dataset, ChicagoFSWild Dataset, 

ChicagoFSWild+ Dataset, CSL-Daily Dataset, CSL Dataset (6), DEVISIGN-D Dataset, DJSLC 
Dataset, DHG Dataset (4), Dicta-Sign-LSF-v2 Dataset, First-Person Hand Action (FPHA) 

Dataset (2), Greek Sign Language (GSL) Dataset, GSL Dataset, HANDS17 Dataset, HKSL 
Dataset, How2Sign Dataset, ICSLD Dataset, INCLUDE Dataset, ISL-CSLTR Dataset (2), Isolate 
Words Arabic Sign Language Dataset, Jester Dataset, KArSL-190 Dataset, KArSL-502 Dataset 

(2), Kazakh-Rusian Sign Language (K-RSL) Dataset, KSU-SSL Dataset (2), Large KSL Dataset, 
LIBRAS-BSL Dataset, LMDHG Dataset (2), LSA64 Dataset (6), LSA40 Dataset, Marcel 

Dynamic Dataset, MNIST Dataset, MSASL Dataset, NVIDIA Gesture Dataset, RWTH-Boston-
50 Dataset, RWTH-Boston-104 Dataset, RWTH-PHOENIX-Weather 2014 Dataset (10), RWTH-

PHOENIX-Weather 2014T Dataset (5), Saudi Dictionary Dataset, Shanableh Dataset, Shape 
Retrieval Contest (SHREC) Dataset (4), SIGNUM Dataset, SLR-500 Dataset, SLR Dataset, 

WLASL Dataset (3) 

Own Dataset 
(61) 

48CSL Dataset, Isolated Hand Gestures Recognition of 26 letter in Alphabet Dataset, American 
Sign Language (ASL) Dataset, Armband New Dataset, ASL Alphabet Dataset, Arabic Dynamic 

Sign Language Dataset, ASL Alphabets Dataset, ASL Dataglove Dataset, ASL Dataset 
(Raspberry pi Camera), ASL Gestures Dataset, ASL IMU Dataset, Baby Sign Dataset, Channel 

State Information Dataset, Complex ASL Dataset, CSL Action (Dataglove) Dataset, CSL 
mmWave Dataset, CSL Standard Dataset, DSL-46 Dataset, DSL10 Dataset, DVS_Sign Dataset, 
DVS_Sign_v2e Dataset, Dynamic Arabic Sign Video Dataset, Dynamic ArSL Dataset, Dynamic 

Gesture Dataset, Dynamic Thai Fingerspelling Dataset, Gesture Dataset, Gesture Direction 
Dataset, Handicraft-Gesture Dataset, Hong Kong Continuous Sign Language (HKSL) Dataset, 

Hong Kong Sign Language (HKSL) Dataset, Indian Sign Language Custom Dataset, Indian Sign 
Language MIT-Anna University Dataset, Individual Alphabet Dataset, ISL Agricultural Words 

Dataset, ISL Dataset (Static & Dynamic), ISL Farmer Dataset, ISL Patient Dataset, Isolated 
Chinese Sign Language Dataset, Italian Sign Language Dataset, Japanese Sign Language Dataset, 
Japanese Video Dataset, Kazakh Sign Language (KSL) Dataset, KL_MV2DSL Dataset, KSL Lab 

Dataset, LMC Hand 3D Dataset, MuHAVi Dataset, MVDMML Dataset, Malaysian Sign 
Language (MSL) Videos Dataset, Myo Armband Sensor Dataset, New Dataset (Number, 
Alphabet, Phrase), NTU RGB D Dataset, NUMA Dataset, Number Dataset, Pakistan Sign 
Language Dataset, Portuguese Sign Language LGP Dataset, Sign-language Dataset, Sign 

Language Correctness Discrimination (SLCD) Dataset, Simple ASL Dataset, Talking Hands 
Dataset, Tunisian Sign Language (TunSigns) Dataset, WEIZMANN Dataset 
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Table 8 shows the list of 120 datasets that 
have been found in the 85 studies reviewed. Of the 
59 public datasets, there are some datasets that have 
been used several times in different studies. The 
most popularly used public dataset found was 
RWTH-PHOENIX-Weather 2014 dataset which has 
been used in the training and testing for dynamic 
SLR models in ten studies [21,24,27,29, 
32,52,54,60-62]. Then, its extension which is the 
RWTH-PHOENIX-Weather 2014T dataset was also 
found in five different studies [24,29,40, 52,60]. 
Other than these, the 500 CSL dataset was used in 
seven studies [24,27,29,52,61,98,112]. LSA64 
[11,42,64,76,98,105] and the CSL dataset 
[32,54,57,60,62,112] is also often used by 
researchers in six studies found. In addition to that, 
four studies also applied the use of the DHG dataset 
[58,75,106] and SHREC [58,67-68,106] in testing 
their models’ performances. Apart from this, the 
ASLLVD dataset [21,66,73] and the WLASL 
dataset [29,34-35] have been found in three different 
studies, whereas the ASL dataset [67-68], ASLLRP 
[22,61], FPHA dataset [75,106], ISL-CSLTR dataset 
[40,56], KArSL-502 [4,105], KSU-SLL [17,46] and 
LMDHG dataset [67-68] were found in two different 
studies. Besides that, the rest of public datasets have 
only been used in one study each from the total 
number of datasets [4,8-11,20-21,25-26,29-30,34-
36,39-40,42,46,49,59-60,62,64,72,74,98,101,105, 
108,111]. Whereas 61 own datasets that have been 
listed in Table 8 which were also newly developed 
datasets have only been used by the respective 
researchers only in their own studies [8,11-15,18-
19,22-23,26-27,31,37-38,42,47-50,55,57-59,62-66, 
69,70-71,76-80,99-104,107-113]. 
 
3.2.3.3 RQ 3(c): What is the size of the dataset? 

Table 9: Sample Sizes Of Datasets 

Sample Size 
 

Number of Datasets 

Own Datasets 
Public 

Datasets 
> 10000 12 13 

5001-10000 5 11 
2501-5000 3 13 
1000-2500 12 6 

< 1000 29 16 
 
Through a detailed investigation, 120 

datasets were found with different sizes of samples 
that have been developed by researchers. Table 9 
shows all the datasets found arranged into different 
range of sample sizes, which are more than 10000, 
5001-10000, 2501-5000, 1000-2500, and less than 
1000 samples. According to the table, there are 28 
datasets found in preparing over 10000 datasets, 12 

for own datasets [8,13,18,33,42,57,80,108,110,112] 
and 13 for public datasets [4,9,17,24,27,29-30,34-
35,46,52,56,61,64,98,101,105,112]. Next, there are 
five own datasets [50,71,76-77,102,107] and nine 
public datasets [4,9,16,21,24-27,29,32,39-40,52,54, 
57,60-62,73-74,98,112] found for the sample sizes 
of 5001 to 10000. The 2501 to 5000 samples size 
range had the least number of datasets found, which 
are three own datasets [37,48,71] and 13 public 
datasets [4,8-9,11,20,25,28,36,42,58,60,64,67-68, 
75,98,105-106,111]. 18 datasets were also found 
between the sizes of 1000 to 2500 samples, which 
are 12 own datasets [18,23,26-27,31,64,66,69,78, 
100,104,108] and six public datasets [10,40,59,62, 
75,101,106].    
 

For the smallest size of datasets which is 
less than 1000 samples, there were 29 own datasets 
[11-12,14-15,18-19,22-23,28,38,47,55,59,63,65,79, 
99,101,103,108-109,111,113] and 16 public datasets 
[11,22,26,29,40,46-47,49,58,61,67-68,72,101,106, 
108] identified from the total of 120 datasets. 
Overall, the Isolated Chinese Sign Language Dataset 
was the largest own dataset that has been found from 
the studies reviewed, which contains 70000 vision-
based samples obtained using Microsoft Kinect 
[112], while the Individual Alphabet Dataset has the 
highest number of own dataset samples (41600) for 
a sensor-based dataset that was developed using data 
glove [110]. Besides these, the largest public dataset 
that has been found from the studies reviewed is the 
SIGNUM dataset that has 33210 samples in video 
format [101]. However, the smallest sizes of own 
and public datasets were not able to be determined 
clearly in this study due to some of datasets found 
without the mention of an accurate number 
[15,19,22,28,49,55,59,62-63,65,72,98-99,103-104, 
108,113-114]. The lowest number of samples that 
was obtained based on the accurate stated value was 
from the HANDS17 dataset which has 99 public data 
samples [29]. 

 
3.2.3.4 RQ 3(d): What is the size of the dataset? 

Table 10: Sign Languages Used In Datasets 

Sign Language 
 

Number of Datasets 
Own 

Datasets 
Public 

Datasets 
American Sign 

Language 
13 15 

Chinese Sign Language 6 6 
Indian Sign Language 8 2 
Arabic Sign Language 3 6 

German Sign Language 0 6 
Japanese Sign Language 2 2 

Hong Kong Sign 
Language 

2 1 
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Argentinian Sign 
Language 

0 2 

Kazakh Sign Language 1 1 
Korean Sign Language 1 1 
Saudi Sign Language 0 2 

Australian Sign 
Language 

0 1 

Brazilian Sign Language 0 1 
British Sign Language 0 1 
French Sign Language 0 1 
Greek Sign Language 0 1 

Turkish Sign Language 0 1 
Italian Sign Language 1 0 

Malaysian Sign 
Language 

1 0 

Pakistan Sign Language 1 0 
Portugues Sign 

Language 
1 0 

Thai Sign Language 1 0 
Tunisian Sign Language 1 0 

Others 19 9 

 
Based on Table 10, there are 24 sign 

languages that have been found from the total of 120 
datasets stated before. The most common sign 
language that were studied by the researchers is 
American Sign Language that had 13 own datasets 
[8,13-14,18,22,26,34,42,48,65,69,71,110] and 15 
public datasets [4,16,21,26,29,35,40,47,49,62,72-
75,102]. Follow by that, Chinese Sign Language had 
the same total number of datasets with six own 
datasets [4,33,79,103,112] and six public datasets 
[21-22,24,27,29,52,57,60-61,73,98], respectively.  
There was a total of ten datasets found for Indian 
Sign Language, where eight datasets were own 
datasets [12,23-24,30,63,66,108-109] and two were 
public datasets [20,40,56]. Nine datasets have been 
found using Arabic Sign Language with three own 
[11,77,102] and six public datasets [4,25,72,105, 
108,113]. German Sign Language was also popular 
used in datasets, such as the RWTH’s series and 
another two public datasets that are commonly used 
in the studies reviewed [21,24,27,29,32,40,52,54, 
60-62,101].   

  
Other than this, the rest of sign languages 

have less than five datasets respectively. Two own 
datasets [80,104] and public datasets [10,46] were 
developed using Japanese Sign language. 
Additionally, two own datasets [27-28] and one 
public dataset [62] were developed using Hong 
Kong Sign Language. There is no own dataset that 
has been developed by the researchers in their 
studies for Argentinian Sign Language [11], and 
Saudi Arabian Sign Language [17,46], but the 
researchers did train and test their models with two 
public datasets found for each sign language. 
According to Table 10, there are also two datasets 
found using Kazakh Sign Language [4,64] and 

Korean Sign Language [59]. Moreover, there are the 
total of six public datasets in a certain sign language 
that have been used in the studies directly without 
developing any of their own dataset, which are 
developed for Australian [14], Brazilian [76], British 
[9], French [39], Greek [9] and Turkish [64] sign 
languages. While there are also some researchers 
who developed their own unique dataset for Italian 
[50], Malaysian [31], Pakistan [107], Portuguese 
[78], Thai [37], and Tunisian [101] sign languages 
from the studies reviewed without using any other 
public datasets. Apart from that, 19 own datasets 
from 13 studies [14-15,18-19,33,38,47,55,99-
100,108,111,113] and nine public datasets [29-
30,46,58,67-68,72,75,106] found did not mention 
the sign languages used and obtained certain sign 
gestures for their model to recognize.   
 
3.2.4 RQ4: What pre-processing techniques 

are applied to the dynamic sign language 
datasets used in the models?  
There are many pre-processing techniques 

identified in the reviewed studies. Data pre-
processing is usually conducted in SLRT studies in 
order to reduce the computational complexity of 
processing the data for recognition and translation 
[44]. Both the vision-based and sensor-based studies 
each have different data pre-processing methods. 
The most common pre-processing methods 
identified for vision-based studies are splitting the 
video data into consecutive frames, dimensionality 
reduction or resizing, normalization, frame cropping 
or segmentation, denoising or smoothing, RGB to 
grayscale conversion, and lighting elimination. 20 
studies [4,11,16-18,22,30,31,38,42,46-47,62,64,73, 
76-77,102,107-108] have pre-processed their video 
input by splitting it into a certain number of frames.  

 
Another 19 studies [11-12,16,18,21,30-31, 

38,42,46-47,49,54,61,66,73,77,99,102] conducted 
dimensionality reduction or resized the frames and 
images data. Next, there are 18 studies 
[9,14,16,17,23,25,31,34,35,47,49,57,63,68,78,106, 
109,73] identified that conducted normalization to 
ensure data consistency. 12 studies [12,17,25, 
31,33,54,56,66, 74,77-78,99] cropped or segmented 
the frames and images to ensure the effects of 
nonrelevant features are reduced.  

 
Next, there are 15 studies 

[10,14,16,21,23,56-57,61,68,73,75,78,99,105,107] 
that conducted denoising or smoothing to remove 
outliers and improve the quality of the frames and 
images. Finally, there are five studies 
[16,18,25,73,107] that converted RGB videos into 
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grayscale and two studies [16,73] that conducted 
lighting elimination using Histogram equalization. 
Besides these common pre-processing techniques, 
several studies also conducted different pre-
processing methods according to the requirements of 
their data and system. For instance, Chen et al. [99] 
converted RGB video frames into Dynamic Vision 
Sensor data using the video-to-event method 
whereas Abdullah et al. [8] converted RGB sign 
images into Hue Saturation Value scale-based 
images. Abdallah et al. [76] and Adão et al. [78] 
flipped the video data to ensure full coverage of 
every sign. While Amrutha et al. [20] removed 
duplicates, deblurred frames, and fused frames to 
pre-process their data.  

 
 For sensor-based studies, the most common 
pre-processing techniques used are normalization, 
and denoising or smoothing. There are nine studies 
[13,15,50,55,57,69,79,110,113] identified 
conducting normalization and eight studies [15,26, 
28,50,55,57,79,113] identified conducting denoising 
or smoothing processes. Additionally, one study [22] 
was found to have up-sampled their data based on 
frame rates. Out of the studies reviewed, there are 
also 23 studies [9,24,27,29,32,36-37,39-40,48,52, 
58-60,65,71-72,80,100,104,108,111-112] that did 
not explicitly mention or explain any pre-processing 
techniques that were used in their studies while six 
studies [21,25,66,103,106,109] briefly mentioned 
the pre-processing techniques involved in the data 
processing or feature extraction section. 
 
3.2.5 RQ5: What are the evaluation metrics 

used to assess the models?  

Table 11: Types Of Evaluation Metrics Used In The 
Reviewed Studies 

Evaluation Metrics ISL 
CSL 

S2G S2G2T S2T 
Accuracy 59 2 - 9 

Word Error Rates 
(WER) 

1 3 2 11 

BiLingual Evaluation 
Understudy (BLEU) 

Score 
- - - 2 

Character Error Rate 
(CER) /  Levenshtein 

distance 
2 1 - - 

Others 4 1 - 2 

 
Table 11 shows the types of evaluation 

metrics used in the reviewed studies. The findings 
show 59 studies [4,8-9,11-19,23,25-26,30-31,34-
38,42,46-50,55,58-59,63-69,70-72,75-78,98-111] 
that have utilized Accuracy as the evaluation metric 
for isolated sign language systems. There are 11 

studies that have used Accuracy for continuous sign 
language systems, namely Sign2Gloss studies and 
Sign2Text studies at two [20-21] and nine studies 
[10,24,29,33,39,40,56,79,108], respectively. Ten 
studies [23,31,36,49,59,64,66,69,75,100] included 
the findings for Precision, Recall, and F1-Score in 
order to find the Accuracy. Muthusamy & Murugan 
[56] only included Recall and Precision with 
Accuracy whereas Zhang et al. [33] used the Mean 
Average Precision metric with Accuracy. 
Interestingly, Sharma & Kumar [73] did not 
calculate the Accuracy of their system instead, they 
only used Precision, Recall, and F1-Score to 
evaluate their system.  
 

Next, the WER evaluation metric was 
mostly used in continuous sign language system-
based studies where there are three [20-21,52], two 
[22,54], and 11 studies [10,27-29,32,57,60,62,80, 
112-113] that used WER for the Sign2Gloss, 
Sign2Gloss2Text, and Sign2Text approaches 
respectively. Another evaluation metric identified in 
the studies is the BLEU Score. The BLEU Score was 
identified in two Sign2Text continuous sign 
language system studies which are Natarajan et al. 
[40] and Ananthanarayana et al. [61]. Next, there 
were three studies identified to have used the CER 
evaluation metric which are Kozhamkulova et al. 
[16] and Pannattee et al. [74] for isolated sign 
language systems and Elakkiya et al. [21] for a 
Sign2Gloss continuous sign language system. The 
CER evaluation metric is said to be derived from the 
Levenshtein Distance metric. Several studies have 
also included other types of evaluation metrics such 
as Computation Time [16], Validation Loss [16,31], 
Probability [20], Training Time [31], Fréchet 
Inception Distance for video (FID2vid) [40], 
Structural Similarity (SSIM) Index [40], Prediction 
Time Complexity [56], Specificity [75], and Time 
Response [110], 
 
4. DISCUSSION 
 

Based on the publications in the years 2020 
till 2024, it can be procured that SLRT is a growing 
field of research. However, the majority of studies 
conducted throughout these past five years have 
been on isolated sign language, which does not 
effectively solve the real-time communication issues 
faced by DHH individuals. Nevertheless, the effort 
of researchers exploring continuous SLRT in 24 of 
the studies mentioned in the findings for the first 
research question must be acknowledged. A sign 
language recognition system is only efficient when 
the translation aspect is also covered. This is because 
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users would not necessarily be able to comprehend 
the entire conversation with only glosses or lexical 
signs. Moreover, since conversations are usually 
sentence-based, the system developed should be able 
to recognize and translate continuous sign language. 
Unlike isolated signs, continuous signs are more 
complex to perform and process as sequential data in 
models.  

 
Based on the studies reviewed, a couple of 

researchers have faced challenges in accurately 
detecting sign semantics and segmentations from the 
sequential signs performed by signers in continuous 
sign language systems [24,52]. Multiple deep 
learning techniques and additional tools, such as 
gloss annotations, vectors, and tokenization, are 
needed to develop and improve models for effective 
recognition and translation. As a result, some 
existing isolated sign language models identified in 
the studies have the potential to be extended and 
upgraded into powerful continuous sign language 
models by incorporating appropriate deep learning 
techniques. This approach has been implemented 
and documented by several researchers [24,79]. The 
suggested modifications of models, from isolated to 
continuous sign language systems, can be informed 
by the effective continuous sign language models 
discussed in the reviewed studies. 

 
According to research questions one and 

two, researchers have focused on continuous sign 
language models that were developed using the S2T 
frameworks, which were a total of 19 studies. Most 
of these models are hybrid models with 
combinations of CNN with additional techniques 
such as RNN variants to better process temporal data 
of continuous signs. For example, there are eight 
CNN hybrid models found that were combined with 
LSTM, BiLSTM or GRU techniques to perform 
SLRT tasks on their datasets 
[22,28,33,39,40,54,56,108]. This proved that the 
combination of CNN-RNN and RNN variants in 
existing isolated sign language models has created 
opportunities for processing sentence-based data to 
upgrade them into SLRT models. In addition, 
Window Sliding Attention was found as a potential 
modification that may be able to produce better 
segmentation between signs in continuous 
presentations [79,112]. 

Other than this, Transformers and its 
variants were also highly recommended for 
developing continuous sign language models. This is 
because most of the techniques for Transformers, 
BERT, BERT+, and STTN were commonly tested 
for SLRT hybrid models using the S2T framework 

[27,29,32,60-62,80]. Thus, it can be derived that 
existing Transformers models can be modified to 
process SLRT tasks for sentence-based datasets. 
Nevertheless, some studies with existing isolated 
sign language models that achieved good results also 
suggested upgrading to SLRT models by combining 
Transformers techniques to perform sequence-to-
sequence tasks from sign to text conversion. Apart 
from that, the encoder-decoder is another technique 
that is encouraged as it is a good additional tool in 
assisting models to perform recognition and 
translation tasks in an end-to-end manner. For 
instance, some existing encoder-decoder models 
found from the studies performed SLRT tasks 
concerning continuous sign language using the S2T 
framework by assigning certain algorithms to their 
encoder and decoder [29,33,56-57,112-113].  
 

On the other hand, there are also some 
models that applied the methods of gloss annotations 
to perform recognition and translation using the 
S2G2T framework. These models are mostly 
developed with the combination of CNN and RNN 
techniques [22,54]. In both the S2G2T models found 
from the studies reviewed, there is a common ground 
in applying the CTC mechanism to improve the 
performance of processing long-term data into 
sequences. This mechanism was recommended as an 
efficient tool that may assist S2G or isolated sign 
language models with the G2T process. According 
to Papastratis et al. [52], recognition tasks for 
isolated sign language and S2G framework-based 
models follow a similar process of converting signs 
into corresponding words or glosses. It is highly 
recommended that S2G framework models be 
upgraded to S2G2T frameworks by incorporating 
robust attention mechanisms or leveraging existing 
G2T techniques from current models [21,52].  

 
Next, according to the third research 

question, in order to develop a good continuous sign 
language model, the model must be trained and 
tested with suitable datasets. Based on the studies 
reviewed, researchers have often used RWTH-
PHOENIX-Weather 2014 and its extension, the 
RWTH-PHOENIX-Weather 2014T datasets on 
German Sign Language to test their SLRT models 
[24,27,29,32,40,54,60,62]. Besides these, CSL and 
500 CSL were also popular datasets that were highly 
used to train and test SLRT models [24,27,32,57,60-
62]. The RWTH-PHOENIX datasets were prepared 
with around 7000 sentences by nine signers which 
resulted in 1232 words and 80000 glosses and are 
stored in video format, whereas the CSL datasets 
were also prepared on a large-scale, with around 
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25000 videos [54]. Because of their large-scale sizes, 
these public datasets are suitable for training and 
testing both recognition and translation 
performances for S2G2T and S2T framework-based 
models. 

 
Furthermore, there is another public dataset 

called the CSLTR dataset that includes 18863 
sentence-based frames for Indian Sign Language 
[56]. It has been found in testing two vision-based 
continuous sign language models in the reviewed 
studies [40,56]. On the other hand, there is a 
comprehensive sentence-level public dataset called 
SIGNUM, which includes a large vocabulary of 
German Sign Language in 33210 videos for 
recognition and translation tasks. However, this 
dataset was underutilized in the reviewed studies, 
with only eight gestures selected for testing in a 
single isolated sign language model [101]. 
Researchers should take the opportunity to utilize 
this large-scale dataset to train and test S2G2T or 
S2T framework-based models. Based on the public 
datasets introduced in this study, the training and 
testing of these datasets in novel SLRT models are 
highly encouraged in future studies to assist the 
researchers in assessing their model’s performance.  
 

Apart from this, the development of own 
datasets was also encouraged for researchers 
focusing on specific sign languages and 
requirements. Some researchers focused on 
developing their own sign language datasets for 
training and testing in order to determine whether 
their models were able to perform well for specific 
sign languages. Isolated Malaysian [31], Italian [50], 
Pakistan [107], Portuguese [78], and Thailand [37] 
sign languages’ datasets were created in these 
studies, respectively. On another note, continuous 
sign language datasets have a more complex 
development process compared to isolated sign 
language datasets, where only three studies have 
developed continuous datasets which are the 48 
CSL, Hong Kong Sign Language and Japanese 
Video dataset [28,79,80]. In the 48 CSL sensor-
based dataset, there is a possibility of extending the 
isolated words-level dataset into a new sentence-
level dataset by combining those vocabularies and 
their grammar rules [79]. Researchers could improve 
existing isolated sign language datasets by 
transitioning from word-level to sentence-level 
datasets, particularly for large vocabulary datasets 
such as the Isolated Chinese Sign Language dataset, 
which contains 70,000 samples [112]. 

Next, according to the findings for research 
question four, the studies reviewed have a diverse 

array of pre-processing techniques for both vision-
based and sensor-based SLRT systems. The pre-
processing techniques for isolated and continuous 
sign language videos are similar, which are frame 
splitting, dimensionality reduction, normalization, 
cropping or segmentation, and denoising or 
smoothing, RGB to grayscale, and lighting 
elimination. Most of the continuous sign language-
based studies have specifically focused on frame 
splitting [62,108], dimensionality reduction [21,54], 
normalization [57,79,113], cropping or 
segmentation [33,54,56], and denoising or 
smoothing [10,21,28,56,61,79]. From these studies, 
it can be derived that continuous sign language 
videos introduce additional complexity due to their 
temporal nature. While the pre-processing 
techniques are similar to isolated sign language, their 
application must adapt to handle the longer 
continuous flow of data. The best pre-processing 
techniques for continuous sign language can be 
determined by the researcher depending on the 
dataset or data collection procedure. Several studies 
[27,29,32,40,60,80,112] that used public datasets did 
not mention any pre-processing techniques except 
for one study [62] that adopted a frame selection 
mechanism. Studies that have created their own 
dataset on the other hand, have pre-determined 
certain aspects of their data collection procedure. For 
example, Takayama et al. [80] collected video data 
at 30 frames per second hence, no pre-processing of 
the data frames splitting needed to be done after the 
data has been collected. Hence, the process of frame 
splitting to pre-processing the data was not required. 
 

Therefore, researchers may need to conduct 
pre-processing techniques based on the nature of 
their data. The most common pre-processing that can 
be done to ensure the input data can be easily 
processed is denoising or smoothing. This is because 
dynamic data tends to have external noise or outliers 
which may affect the clarity of the data. Next, 
although some studies did not explicitly mention or 
explain the pre-processing techniques used, 
researchers are encouraged to explain the pre-
processing techniques that will be conducted in 
future SLRT studies for research transparency. This 
will allow for reproducibility of the study so that 
improvements can be continuously made in this field 
of research. Besides, more research is also needed to 
evaluate the effectiveness of specialized pre-
processing techniques like dynamic vision sensors or 
frame flipping as these techniques may offer 
significant benefits in specific contexts.  

Finally, based on the findings for research 
question five, the WER evaluation metric is 
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recommended for continuous sign language-based 
system as compared to accuracy. This is because 
accuracy works well with isolated data whereas 
WER is able to evaluate sequence-based data more 
efficiently [40]. On the other hand, the BLEU 
evaluation metric is also said to be popularly used 
for sentence-based data in machine translation [61]. 
Therefore, based on the studies reviewed, Accuracy 
is a popular evaluation metric that can be used for 
isolated sign language system evaluation for the 
recognition task whereas WER and BLEU 
evaluation metrics can be used for continuous sign 
language system evaluation for the translation task. 
Researchers are encouraged to use popular 
evaluation metrics to ensure that their studies can be 
compared with other studies as well. This will give a 
clearer picture on whether the model they have used 
is better in terms of performance, giving future 
researchers directions of the models that they can 
use, modify, and improvise in order to develop an 
efficient SLRT system.  

 
Overall, with the wide range of deep 

learning techniques used in the dynamic field of 
SLRT that have been continually evolving through 
variants and combinations of namely CNN, RNN, 
Transformers deep learning models and techniques, 
key improvements in the field of SLRT have been 
observed and can be anticipated in future research. 
As the state-of-the-art research on SLRT has stepped 
into continuous sign language SLRT research, much 
future research on real-time continuous SLRT can be 
expected. Moreover, vision-based models have 
gained the interest of researchers as it is more likely 
to ensure every aspect of sign language such as the 
manual and non-manual cues have been covered for 
SLRT. This leads as a stepping-stone in real-time 
SLRT research as vision-based models are more 
convenient compared to hardware sensor-based 
models. Additionally, substantial advancement in 
additional techniques, such as attention mechanisms, 
are needed to ensure end-to-end translation can be 
conducted using the S2T framework while there is 
still a need for larger and more curated sign language 
datasets to be developed. Furthermore, heavy 
reliance on gloss-based models may not be entirely 
applicable for every sign language, researchers may 
work on developing larger datasets for a specific 
sign language or multi-lingual datasets with glosses 
as well to ensure both the gloss-based frameworks 
and the gloss-free frameworks can be tested for the 
best possible outcome. All in all, the state-of-the-art 
research on SLRT is one step closer to bridging the 
gap between hearing and DHH individuals. 
 

5. CONCLUSION 
 

In conclusion, a systematic literature 
review offers insights and meaningful findings 
regarding a specific field of study. This study has 
identified and summarized the key takeaways from 
85 studies reviewed, which were obtained from the 
Scopus database from the year 2020 till 2024. This 
systematic literature review highlights the SLR and 
SLT frameworks, deep learning models and 
techniques, datasets, pre-processing techniques, and 
evaluation metrics used by researchers in SLRT 
research over the five years. Additionally, this 
research contributes to the body of systematic 
literature reviews in the field of SLRT systems, 
providing a detailed overview of the current leads in 
this research area. Based on the studies reviewed, it 
can be derived that researchers have begun to 
recognize the importance of SLRT research in aiding 
the DHH community.  

 
As a summary of the findings, isolated SLR 

studies have outnumbered continuous SLRT studies 
(S2G, G2T, S2G2T, S2(G+T), S2T). However, 
continuous SLRT has gained the interest of 
researchers, especially using the S2T framework in 
recent years, indicating improvement and growth in 
this field. CNN, RNN, and Transformers are the 
most commonly used baseline deep learning models 
and techniques in a majority of the studies. 
Additionally, the reviewed studies suggest that 
existing isolated models have potential for 
adaptation to continuous SLRT, yet this remains 
underexplored. Techniques such as CNN-RNN 
hybrids, attention mechanisms, and Transformers 
have been shown to improve processing of sentence-
level data, but their application to real-time tasks 
requires further validation. 

 
The RWTH Phoenix Weather 2014 dataset 

and its extension (RWTH Phoenix Weather 2014T 
dataset) are the most commonly used public 
continuous sign language dataset in standardizing 
performance evaluation, while more diverse, 
multilingual, and real-time-appropriate datasets are 
still necessary. Pre-processing techniques differ with 
every study depending on the type of data that is 
being pre-processed and the data collection 
procedure, while Accuracy and WER are notably the 
most common evaluation metrics used in the studies. 
Nevertheless, the inconsistencies in evaluation 
metrics such as WER and BLEU hinder model 
comparability and the ability to draw broader 
conclusions. Future studies should prioritize 
transparency in choosing standardized sign language 
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datasets and adopt suitable evaluation metrics based 
on their frameworks to enhance comparability across 
models. 
 

This study acknowledges certain 
limitations, such as the exclusion of highly cited 
journal articles on SLRT that are not available in the 
Scopus database and another part of the SLRT 
process which is the feature extraction process that 
was not explored. It is acknowledged that the exact 
real-time SLRT process of the models is also 
difficult to determine due to the limitations of the 
current available models for dynamic sign language. 
Future researchers may consider reviewing SLRT 
literature from other databases, such as Web of 
Science, ERIC, IEEE Xplore, and Science Direct, in 
order to view this field of research from a much 
bigger perspective. SLRT researchers on the other 
hand may consider exploring the processes that can 
direct them towards real-time SLRT to ensure their 
SLRT models are more comprehensive and practical 
for daily usage. All in all, the research on SLRT is 
definitely advancing in many ways using deep 
learning and the current technological advantages 
such as the Internet of Things. While dynamic SLRT 
has seen notable progress, there remains a need for 
continued research to address and tackle the 
challenges and limitations of currently available 
studies in order to bridge the communication gap 
between DHH individuals and the wider society. 
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