
 Journal of Theoretical and Applied Information Technology 
15th November 2024. Vol.102. No. 21 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
7910 

 

OPTIMIZATION OF PUBLIC SERVICE MODEL WITH 
LIMITED RESOURCES USING LINEAR PROGRAMMING 

 
A M H PARDEDE1, A FAUZI2, Y MAULITA3, R J SIMAMORA4 

1,2,3STMIK Kaputama, Jl. Veteran No. 4A-9A, Binjai, Sumatera Utara, Indonesia  
4Universitas Methodist Indonesia, Medan, Sumatera Utara, Indonesia 

E mail: akimmhp@live.com  

 
 

ABSTRACT 
 

In daily life, people may require public services, which in this study refer to healthcare, security, protection, 
and emergency assistance involving threats to public safety. Public services are necessary in both routine and 
emergency situations where life-saving interventions must be delivered as quickly as possible, so the problem 
to be solved in this paper is how to provide appropriate and fast services to people who need services by 
utilizing limited resources. The goal is to provide timely services with limited resources from hospitals, police 
departments, fire departments, and the Regional Disaster Management Agency (RDMA/BPBD). When 
delivering public services, medical staff (me), police (po), firefighters (fi), and BPBD (bn) depart from their 
respective locations such as hospitals (ime), police stations (ipo), fire stations (ifi), and BPBD offices (ibn) 
to the victims' locations (j) to provide services. The model developed in this research addresses challenges 
by delivering intelligent services as early as possible, reducing fatalities caused by delays, minimizing costs, 
shortening service times, maximizing resource utilization, and achieving the maximum value from the 
model's objective function. The information obtained includes the type of solver used—either "B-and-B," 
"Global," or "Multi-start," depending on the specific solver employed. The objective value was 169.0000, 
with an objective bound of 169.0000, zero infeasibilities, zero extended solver steps, 20 total solver iterations, 
and an elapsed runtime of 0.19 seconds. The model is classified as MILP, consisting of 100 total variables, 
128 total constraints, and 750 nonzero elements. The designed modeling results have successfully minimized 
travel costs, service costs, and other costs arising from inaccuracies in patient care delivery. 
Keywords: Emergency; Health; Model; Optimization; Service. 
 
1. INTRODUCTION  
 

Public services are essential in both 
everyday situations and emergencies, where life-
saving interventions must be provided promptly. In 
such cases, it is crucial to ensure coordination among 
service centers that need to collaborate effectively 
[1], [2]. To deliver more effective emergency 
response services, a smart approach is required [3], 
similar to the "Safe City" concept, which is designed 
for rapid emergency response [4]. Public services 
must be capable of addressing various scenarios, and 
this research focuses on emergencies requiring 
immediate public assistance, such as medical crises, 
traffic accidents, criminal incidents, and fires 

. 
Integrating design thinking can optimize 

healthcare delivery and significantly enhance 
patient-centered care, especially in settings with 
limited resources [5], [6]. In the United States, 
specialized centers have been established to adopt 
design thinking principles to advance patient care 
[7], [8]. Numerous studies have indicated that design 
thinking fosters innovation within clinical and 

managerial contexts across various medical 
specialties [9]. Furthermore, design thinking 
facilitates the development of tailored solutions for 
low-resource environments. Compared to traditional 
methods, it has the potential to provide care that is 
usable, acceptable, and effective [10]. Recent 
research has reported the application of design 
thinking in a range of interdisciplinary innovation 
projects within fields such as pediatrics, psychiatry, 
radiology, gastroenterology, oncology, orthopedics, 
and surgery, as well as its utilization in hospital 
operations and healthcare management [8]. 
Moreover, design thinking has proven to be a 
catalyst by engaging patient-centered service 
providers and IT specialists in the development of 
solutions, thus enabling the creation of specific 
future scenarios and precise requirements [11]. 
 

The public service model has been 
modified by previous researchers by incorporating 
individualistic behavior to include decision-making 
[14], collision avoidance among public service 
providers [15], and cognitive abilities such as 
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altruism and the emotional impact of victim behavior 
[16]. 

 
When resources at the service center are 

abundant, optimal service delivery can be achieved. 
However, even in such conditions, it is not 
guaranteed that operations will be efficient, as 
surplus resources could lead to unnecessary costs. 
Conversely, if demand exceeds the available 
resources, it may result in unmet service needs, 
causing long waiting queues. This issue becomes 
more critical if the demand involves emergency 
patients (priority patients), and must be carefully 
managed to prevent negative outcomes for both 
service providers and patients. Health service 
requests submitted by patients, which include details 
about the desired location and type of service, are 
received by servers connected to the internet. These 
requests are then scheduled by the hospital’s server. 
Communication among resources within the server 
allows for efficient time allocation for each health 
service, ensuring that limited resources are utilized 
effectively to meet patient needs. The variables 
analyzed in this study include hospital resources, 
focusing on optimizing the early provision of 
healthcare services within resource constraints. The 
maximum objective function value reached was 
75.00000 at the 28th iteration [17]. 

 
Travel costs need to be minimized, 

including expenses for transporting healthcare 
providers to patients, the cost of medical personnel 
delivering specific services, and the travel time from 
the service location to the patient. Other 
considerations include the time it takes for medical 
personnel to reach the patient before starting 
treatment, the earliest time the patient can receive 
care, and the latest acceptable time for the patient to 
receive the service [18]. 

 
A new paradigm is emerging to support 

applications across various fields, such as home 
automation, automotive systems, traffic 
management, mobile healthcare, elderly care, 
industrial automation, medical assistance, smart 
energy management, and smart grids, among others 
[19]. The research framework for public service 
management is outlined in several stages, including 
developing a queueing model and constructing a 
mathematical model based on the objective function. 
Initial assumptions are applied as resource 
constraints, followed by the creation of a decision 
model, integrating two or more models, and 
conducting simulations to test the proposed models 
[20]. A model can also be utilized to minimize travel 

costs, service delivery expenses, and other costs that 
arise due to inefficiencies, which are considered 
penalty costs for inadequate service provision to 
patients (1), and optimizing patient care in a hospital 
can be achieved through the application of linear 
integer programming [19].  

 
The simulation of hospital queue resource 

optimization can be performed using the Simulink 
model in MATLAB. The simulation runs for 1,440 
minutes, equivalent to 24 hours a day, yielding an 
average busy probability of 12% for service centers, 
while the average patient waiting time to receive 
services is 30 minutes [21]. The design and 
optimization of a public service model involve 
managing incidents or series of events that disrupt 
and pose risks to the community, arising from 
natural or non-natural causes, as well as issues like 
health emergencies, traffic accidents, criminal 
activities, and fires. The objective is to enhance 
public service delivery while working within the 
limitations of available resources [22]. 
Previous studies need further refinement by 
incorporating new and distinct elements. This can be 
achieved by expanding the focus on hospital 
resources to include additional resource variables, 
such as police services, fire departments, and the 
Regional Disaster Management Agency 
(RDMA/BPBD). These variables are used to 
optimize public service models under resource 
constraints through the application of linear 
programming [23]. 
 

The goal of this research is to optimize a 
Smart Public Service Model using Linear 
Programming to Reduce Mortality. This is based on 
the "Smart Health and Safe City" concept, which 
aims to provide timely services by making the best 
use of the limited resources available to hospitals, 
police, fire departments, and the Regional Disaster 
Management Agency (RDMA/BPBD) [12]. In this 
model, medical personnel (me), police officers (po), 
firefighters (fi), and BPBD teams (bn) depart from 
their respective locations (ime/ipo/ifi/ibn) to the 
affected location (j) to provide necessary public 
services. The model aims to deliver smart, timely 
services that reduce the mortality rate by addressing 
delays in emergency response [13]. 

 
The primary issue addressed in this 

research is how to provide Smart Public Services in 
response to sudden and unforeseen events. It is 
essential to determine the necessary actions to be 
taken by decision-makers to ensure that public 
services can be delivered efficiently. Additionally, 
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this approach should aim to reduce costs by 
addressing resource shortages at each public service 
center. 

 
The approach to problem-solving and the 

specific goals of this research are: 
1. Developing and optimizing a Smart Public 

Service Model using Linear Programming for 
the community, addressing events or series of 
events that threaten and disrupt public life 
caused by natural and/or non-natural factors, 
as well as human factors. These include 
health disruptions, traffic accidents, criminal 
incidents, and fires. 

2. Maximizing public service with the 
constraints of available service provider 
resources, minimizing response time to both 
urgent and non-urgent incidents, reducing the 
time it takes for service providers to reach the 
scene, and shortening the time required for 
victim evacuation. 

 
This research can be used as an alternative 

approach to decision-making in public service 
delivery. The model developed aims to address the 
challenge of providing intelligent services as early as 
possible, which can help reduce the number of 
deaths due to delays in service, minimize costs, 
reduce service delivery time, maximize resource 
utilization, and achieve the highest possible value 
from the model's objective function. 

 
The significant problem formulations in 

this study are: 
1. How to Determine Efficient Resource 

Allocation? 
2. What is the Most Appropriate Objective 

Function for Optimizing Public Services? 
3. How to Formulate Constraints Based on 

Resource Capacity? 
4. How Optimally Can Public Services Be 

Improved with a Linear Programming 
Approach? 

5. How to Overcome Limitations in Data or 
Assumptions for Modeling? 

 
As a hypothesis in this paper, the use of 

linear programming models in the allocation of 
limited resources in public services will optimize the 
efficiency and effectiveness of services, increase the 
number of service recipients, and ensure that the 
quality of services is maintained without exceeding 
the available budget and capacity limits. 

 
 

2. METHODS AND MATERIAL 

From 2018 to 2023, the research team has 
conducted various studies and publications that 
support the achievement of the next research 
objectives for 2024. These efforts aim to develop a 
more optimal model for delivering public services 
with limited resources. The research roadmap and 
the publication record of the researchers are as 
follows: 

1. From 2018 to 2019; The focus was on 
designing a patient queue management 
framework for decision support systems in 
intelligent healthcare and developing a 
decision support system model for intelligent 
healthcare services; Developing an optimal 
model for delivering healthcare services with 
limited resources; Testing the model to 
minimize hospital service costs. 

2. From 2020 to 2021, the focus was on creating 
a simulation of emergency patient queue 
management as a support system for smart 
healthcare. 

3. From 2022 to 2023, the focus was on 
developing an initial model for smart public 
service optimization using linear 
programming. 

4. The plan for 2024 to 2025 involves testing the 
model in real-time at public service agencies 
based on available resources and producing a 
final prototype. 

5. The plan for 2026 to 2027 involves 
implementing policies and systems derived 
from the results of the Comprehensive 
System research. 

 
The research flowchart employs the 

concept of problem formulation through to the 
output results, which culminates in the Optimization 
of Public Service Models with Limited Resources 
Using Linear Programming [24]. The general 
research flowchart is depicted in Figure 1. 
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Figure 1:  Research Flow Chart 
 

The detailed explanation of the image 
above is provided in the following section: 

1. Literature Review: Investigating the 
foundational theories and concepts of Smart 
Health, Safe Cities, evacuation planning, 
disaster traffic, operations research, 
mathematical modeling, healthcare 
management, linear programming, 
coordination, along with pertinent prior 
studies. 

2. Data Collection: The data sources for this 
study include resource data from the medical 
health sector in hospitals and healthcare 
services, police resources, fire department 
resources, and resources from the Regional 
Disaster Management Agency. 

3. Formulating the Objective Function of the 
Model: The objective function of the model 
being developed is to minimize service 
response time in accordance with the 
incident's impact on the victims. 

4. Formulating a Constraint Model; Collecting 
resource constraint data. 

5. Model Building; Creating an optimal model 
based on the concept of “Smart Health and 
Safe City”. 

6. Model testing, simulation, and validation: 
Performing simulations and validations of the 
proposed model to address the identified 
problem. 

 
3. RESULTS AND DISCUSSION 

3.1 Data Collection 
The data utilized in this study encompasses 

medical data from hospitals and health departments, 
police resources data, fire department resources data, 
and Regional Disaster Management Agency 
resources data. These numerical data, organized in 
matrix form, support the model development process 
and provide mathematical clarity to the model's 
objective functions. The data is derived from a set of 
matrices that represent the minimum amount of 
resources and costs incurred for each event, and then 
extracted from a series of function matrices. Detailed 
information is provided in the following table: 

Table 1: This Function Indicates The Time Required For 
Medical Personnel To Travel From Point I To Point J To 

Save The Victim (Me) 

me j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 7 30 17 7 5 

i = 2 18 5 6 11 27 

i = 3 15 19 9 21 15 

i = 4 29 28 15 14 23 

i = 5 22 14 23 6 5 

 
The table presents the time required for 

medical personnel to travel to the victim's location to 
provide healthcare services, with the shortest 
assumed travel time being 5 minutes and the longest 
being 30 minutes. The table above explains the travel 
time for medical personnel (me) from meij (i = 1, j = 
1) with a time of 7 minutes, travel time from meij (i 
= 1, j = 2) with a time of 30 minutes, travel time from 
meij (i = 1, j = 3) with a time of 17 minutes, and so 
on. 

Table 2: This Function Represents The Time Required 
For The Police (Po) To Travel From Location I To 

Location J In Order To Assist In Rescuing The Victim 

po j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 24 30 19 22 6 

i = 2 21 18 14 20 22 

i = 3 24 24 13 24 6 

i = 4 26 17 28 30 11 

i = 5 25 10 21 17 9 

 

The table presents the time required for 
police units to travel to the victim's location to 
provide medical assistance, assuming the shortest 

Yes 

Data collection Literature review 

Model Formation Training Process 

Formulate the Objective Function of the model 

Formulating Model Constraints 

Formation of Smart Public Service Model 

Testing and Simulation of Smart Public Service 
Model 

Validasi 
Model 

Optimization of Public Service Model with 
Limited Resources using Linear 

Programming 

No 
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travel time is 5 minutes and the longest is 30 
minutes. The table above outlines the travel time for 
police units (po) from poij (i = 1, j = 1) with a time 
of 24 minutes, the travel time for medical personnel 
from poij (i = 1, j = 2) with a time of 30 minutes, the 
travel time for medical personnel from poij (i = 1, j = 
3) with a time of 19 minutes, and so on. 

Table 3: This Function Shows The Time Required For 
The Fire Brigade (Fi) To Travel From Location I To 

Location J To Assist In Rescuing The Victim. 

fi j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 19 9 12 21 22 

i = 2 7 6 14 27 10 

i = 3 10 16 17 14 26 

i = 4 18 15 30 24 13 

i = 5 21 7 12 13 27 

 
The table above details the travel time for the fire 

brigade (fi) from fiij (i = 1, j = 1) with a time of 19 
minutes, the travel time for medical officers from fiij 
(i = 1, j = 2) with a time of 9 minutes, and the travel 
time for medical officers from fiij (i = 1, j = 3) with a 
time of 12 minutes, among others. 

Table 3: This Function Shows The Time Required For 
The Fire Brigade (Fi) To Travel From Location I To 

Location J To Assist In Rescuing The Victim. 

bn j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 20 20 22 22 10 

i = 2 12 26 5 25 19 

i = 3 20 25 30 15 26 

i = 4 17 5 10 6 28 

i = 5 15 16 29 5 14 

 
The table above presents the travel times 

for the National BPBD (bn) from the location bnij (i 
= 1, j = 1), which takes 20 minutes, as well as the 
travel time for medical officers from bnij (i = 1, j = 
2), also taking 20 minutes. Additionally, the travel 
time for medical officers from bnij (i = 1, j = 3) is 22 
minutes, and so forth. 

 
3.2 Formulating the Objective Function 

The objective function of the developed 
model is to minimize the travel time from the public 
agency's location to the victim's site, reduce service 
time for the victims, and ensure that the delivery of 
services is appropriate for the specific incident 
concerning the victim. Below is one approach to 
formulating the optimization model [1]: 

 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑍 =  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝
௠௘

௝∈ே௜∈ே

+  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝
௣௢

௝∈ே௜∈ே

+  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝
௙௜

௝∈ே௜∈ே

+  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝
௕௡    (1)

௝∈ே௜∈ே

 

 
Equation (1) outlines the objective function 

of the constructed model, which aims to minimize 
the travel time from the public agency's location to 
the victim's site, reduce service time for victims, and 
ensure the feasibility of delivering services 
appropriate to the incident. Specifically, it represents 
the travel time for medical personnel (me) from 
origin i to destination j in order to provide assistance 
in victim rescue, the travel time for police officers 
(op) from origin i to destination j for the same 
purpose, the travel time for the fire brigade (fi) from 
origin i to destination j to assist in victim rescue, and 
the travel time for the National BPBD (bn) from 
origin i to destination j for victim assistance. 

 
3.3 Formulating a Constraint Model 

The data collection on resource limitations 
serves as a key support in the implementation of this 
research. These limitations include the constraints on 
the number of medical personnel available to serve, 
the constraints on the number of police officers 
available to assist, the constraints on the number of 
firefighters available to respond, and the constraints 
on the number of BPBD personnel available to 
provide services. The following table presents this 
data. 

Table 4: Medical Resources 

Medical Personnel Number 

General Doctor 33 

Surgical Specialist 2 

Internal Medicine Specialist 4 

Pediatrician Specialist 6 

Obstetrician and Gynecologist Specialist 2 

Clinical Pathology Specialist 3 

Ear Nose Throat Specialist 4 

Eye Specialist 2 

Pulmonologist 3 
Anesthesiologist 2 
Neurologist 3 
Dermatologist and Venereologist 1 
Orthopedic Surgeon 2 
Psychiatrist 1 
Radiologist 1 



 Journal of Theoretical and Applied Information Technology 
15th November 2024. Vol.102. No. 21 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
7915 

 

Pathologist 3 
Forensic Specialist 1 
Heartologist 2 
Neurosurgeon 0 
Dentist 6 
Medical Rehabilitation Specialist 2 
Plastic Surgeon 1 

Total number 84 

 
Table 5: Nursing Resources 

Nursing Pramedic Number 
S-2 Nursing 2 
S-1 Nursing 105 
Nursing Academy 80 
Health Nursing School 8 
Midwife D4 9 
Nurse Midwife D3 73 
Midwife D1 1 

Total number 278 

 
Establishing the boundaries of the model to 

be developed and determining the problem 
parameters or initial values are the first steps in 
formulating the model's constraints. The restrictions 
or limitations that must be satisfied for the model to 
function effectively are outlined as follows: 

1. Ensure that each victim is served only once by 
appropriate resources: Each victim j can only 
be served by one type of public service 
(medical, police, fire brigade, or BPBD), 
depending on the specific needs of the victim. 
Constraint: 

෍ ෍ 𝑥௜௝
௠௘௣௢௙௜௕௡

 

௝∈ே௜∈ே

≤ |1|  ∀௜∈ 𝑁  \{0}          (2) 

Where Xmeij, Xpoij, Xfiij, and Xbnij are binary 
variables indicating whether the respective 
service (medical, police, fire brigade, or 
BPBD) is provided from resource i to victim 
j.These variables take the value of 1 if the 
service is assigned, and 0 otherwise. 

2. Providing services to victims can be carried out 
with some or all public services: Services may 
be provided by one or more public service 
types, depending on the victim's needs. This 
constraint will be combined with the first 
constraint.  
Constraint: Same as the first constraint. 
This ensures that each victim is assigned the 
appropriate combination of public services 
(medical, police, fire brigade, or BPBD) based 
on their needs. 

3. Each victim receives service only once: Each 
victim is served only once, ensuring that no 
service is repeated or provided partially.  
Constraint: Same as the first constraint. 

4. Public services depart immediately upon 
completion: Once the service is rendered to the 
affected individual at location 𝑗, public 
resources cannot provide additional services to 
the same individual. 
Constraint:  
The departure time from victim 𝑗 is equal to the 
arrival time at victim  𝑗 plus the service time at 
victim 𝑗. This will be implemented in the time 
variables for each affected individual and the 
services provided. 

5. Elimination of Sub-Tours: Prevent the 
formation of sub-tours or loops within the 
service routes. 
Constraint: 

Ui − Uj + N × Xij ≤ N − 1        (3) 

𝑤௝ = 𝑚𝑎𝑘𝑠 ൫𝑚𝑒௝ −  𝑝𝑜௝ −  𝑓𝑖௝ −  𝑏𝑛௝൯ ∀௝  ∈

𝑁{0, 𝑖}                                               (4) 
 
Where Ui and Uj are decision variables 
ensuring that the service does not return to the 
origin within the same journey, and N 
represents the total number of affected 
individuals. 

6. Limitations on the Number of Medical, Police, 
Fire, and Disaster Management Services: Each 
type of public service is subject to restrictions 
on the availability of resources at each location. 
Constraint: 

෍ 𝑥௜௝
௠௘

௜∈ே

≤ 𝐶௜
௠௘                                    (5) 

෍ ෍ 𝑥௜௝
௠௘௣௢௙௜௕௡

 

௝∈ே௜∈ே

=< 4 ∀௜∈ 𝑁  \{0} (6) 

Where Cmei represents the maximum capacity 
of medical services from location i, and similar 
constraints apply to police, fire, and disaster 
management services. 

7. Victim Waiting Time: The waiting time for 
victims encompasses both the travel time and 
the duration required for public services to 
reach the victim's location. 
Constraint: 
Waiting time at victim j=Arrival time at 
victim j−Request time at victim j (7) 

8. Determine Officer Arrival Time: The arrival 
time of the service is calculated based on the 
total duration required for travel from the 
origin location to the victim's location, plus the 
time needed to complete the service. 
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Constraint: 
Arrival time at victim j = start time at origin 
i + travel time from i to j  (8) 

9. Sanctions Based on Arrival Time: Penalties are 
imposed if services arrive either too late or too 
early, with larger delays resulting in greater 
penalties. 
Constraint: 
Penalty at victim j=α× 
(Actual arrival time at victim j−Designated 
arrival time at victim j)  (9) 
Where α is the penalty coefficient that depends 
on the extent of the delay. 

10. Prerequisites for Public Services: Each public 
service must meet specific criteria to provide 
assistance. 
Constraint: 
Xij=1, 
Service type requirements at victim j are met (10) 
This is a logic-based constraint that can be 
adjusted according to the type of service 
provided. 

11. Time Limitations: There are time restrictions 
for each service, requiring public services to 
respond promptly to victims with higher 
priority. 
Constraint: 
Service time at victim j≤Tmax 

෍ ෍ 𝑥௜௝
௠௘௣௢௙௜௕௡

 

௝∈ே௜∈ே

= 1 ∀௜∈ 𝑁  \{0}       (11) 

12. Binary Decision Variable Range: The decision 
variables are binary, taking values of either 0 or 
1. 
Constraint: 

Xij∈ {0,1}                  (12) 
These constraints will be utilized to calculate 
the total time required for services to reach the 
victims. 

3.4 Model Building 
The primary issue described in optimizing 

healthcare services under the "Smart Health and Safe 
City" concept is how to provide services as early as 
possible given the limited resources of hospitals, 
police, fire departments, and the Regional Disaster 
Management Agency. In this context, public 
services medical (me), police (po), fire (fi), and 
BPBD (bn) depart from their respective locations 
(ime/ipo/ifi/ibn) to provide assistance at location j. 
The model aims to solve this issue through 
Optimization of a Smart Public Service Model with 
Limited Resources Using Linear Programming, with 

the goal of maximizing intelligent public service 
delivery while minimizing time or costs incurred. 

The objectives of the modeling phase are to 
maximize smart healthcare services and minimize 
costs by addressing the following: 

1. The time required for medical services (me) 
to reach the affected location 𝑖. 

2. The time required for police (po) to reach 
the affected location 𝑖. 

3. The time required for fire services (fi) to 
reach the affected location 𝑖. 

4. The time required for BPBD (bn) to reach 
the affected location 𝑖. 

3.5 Model testing simulation and validation 

The results from testing the proposed 
model to address the research problem focus on 
minimizing travel costs, service costs, and penalties 
for delays, ensuring that all patient requests are 
addressed. The proposed model is presented as an 
optimization model. 

The objective function of the model aims to 
minimize the travel time from the public agency’s 
location to the victim, minimize the service time for 
victims, and ensure that services are delivered 
appropriately according to the incident. Below is one 
approach to express the optimization model [1]: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑍

=  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝
௠௘ +  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝

௣௢

௝∈ே௜∈ே௝∈ே௜∈ே

+  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝
௙௜

௝∈ே௜∈ே

+  ෍ ෍ 𝛼௜௝ ෍ 𝑥௜௝
௕௡                  𝐸𝑞. (1)

௝∈ே௜∈ே

 

 
The following presents the mathematical notations 
or symbols used in the model: 
Set 
i = is a symbol to indicate a group of places where 
victim services are carried out. 
j = is a symbol to indicate a set of destinations for 
services to the next victim 
𝑖, 𝑗 ∈ 𝑁 = (0,1, … , 𝑛) 
o = Symbol used as service center 
me = Symbol used as a set of medical staff; 
𝑚𝑒 ∈ 𝑀𝐸 = (1, … , 𝑛) 
po = Symbol used as a set of Police staff 
𝑝𝑜 ∈ 𝑃𝑂 = (1, … , 𝑛) 
fi = Symbol used as a set of fire brigade staff;  
𝑓𝑖 ∈ 𝐹𝐼 = (1, … , 𝑛) 
bn = Symbol used as a set of BPBD staff;  
𝑏𝑛 ∈ 𝐵𝑁 = (1, … , 𝑛) 
k = Symbol used as the type of service;  
𝑘 ∈ 𝑘 = (1, … , 𝑛) 
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Parameter 
meij = medical time used to travel from place i to 
place j 
poij = police time used to travel from place i to place 
j 
fiij = fire brigade time used to travel from place i to 
place j 
bnij = BPBD time used to travel from place i to place 
j 
ij = time used to travel from place i to place j to 
provide assistance to save the victim 
𝜏௝= Time of service to to save the victim j 
W = waiting period before beginning care for the 
victim while medical personnel are on their way to 
the scene 
ai  = The first time Victim i received services i 
receives service 
bi = Before the patient i receives care, at the latest 
Sih = The time it takes for medical professionals to 
get to a victim's location when they require 
resources; Si = ai 
 Di  = The amount of time needed for medical staff 
to depart from the victim's location after they have 
finished providing care. So there is a time lag; 

 [ , ], { , }
i i i i i i i i

S a b D maks w a      

khjy  = If the kind of service k can be given by 

medical personnel h in place of patient j who needs 
it, the parameter is worth 1, and if not, it is worth 0. 

ijz = The parameter is worth 1 if the place of patient 

j has priority than where the patient i, is worth 0 if 
not. 
 
Decision Variable 
The decision variable in this model is a binary 
variable. 

hk
ijx    = 1, if medical personnel h provide the kind of 

care k at the patient's location, and = 0 otherwise. 

3.6 Mathematical Modeling Calculations 

The Linear Interactive and Discrete 
Optimizer (LINDO) modeling application was 
utilized to conduct mathematical modeling and 
calculations to solve this problem. The model aims 
to minimize the time victims spend receiving 
services, including medical care, police assistance, 
firefighting, and disaster management. By reducing 
the time spent in service, the model optimizes 
resource allocation and enhances response 
efficiency. 
Min 7 ME11 + 30 ME12 + 17 ME13 + 7 ME14 + 5 
ME15 

+ 18 ME21 + 5 ME22 + 6 ME23 + 11 ME24 + 27 
ME25 
+ 15 ME31 + 19 ME32 + 9 ME33 + 21 ME34 + 15 
ME35 
+ 29 ME41 + 28 ME42 + 15 ME43 + 14 ME44 + 23 
ME45 
+ 22 ME51 + 14 ME52 + 23 ME53 + 6 ME54 + 5 
ME55 
 
+ 24 PO11 + 30 PO12 + 19 PO13 + 22 PO14 + 6 
PO15 
+ 21 PO21 + 18 PO22 + 14 PO23 + 20 PO24 + 22 
PO25 
+ 24 PO31 + 24 PO32 + 13 PO33 + 24 PO34 + 6 
PO35 
+ 26 PO41 + 17 PO42 + 28 PO43 + 30 PO44 + 11 
PO45 
+ 25 PO51 + 10 PO52 + 21 PO53 + 17 PO54 + 9 
PO55 
 
+ 19 FI11 + 9 FI12 + 12 FI13 + 21 FI14 + 22 FI15 
+ 7 FI21 + 6 FI22 + 14 FI23 + 27 FI24 + 10 FI25 
+ 10 FI31 + 16 FI32 + 17 FI33 + 14 FI34 + 26 FI35 
+ 18 FI41 + 15 FI42 + 30 FI43 + 24 FI44 + 13 FI45 
+ 21 FI51 + 7 FI52 + 12 FI53 + 13 FI54 + 27 FI55 
 
+ 20 BN11 + 20 BN12 + 22 BN13 + 22 BN14 + 10 
BN15 
+ 12 BN21 + 26 BN22 + 5 BN23 + 25 BN24 + 19 
BN25 
+ 20 BN31 + 25 BN32 + 30 BN33 + 15 BN34 + 26 
BN35 
+ 17 BN41 + 5 BN42 + 10 BN43 + 6 BN44 + 28 
BN45 
+ 15 BN51 + 16 BN52 + 29 BN53 + 5 BN54 + 14 
BN55 
 

The Solver type used was either "B-and-B," 
"Global," or "Multi-start," depending on the specific 
solver employed for the optimization task. The 
model produced the following results: Objective 
value 169.0000, Objective bound: 169.0000, 
Infeasibilities: 0.000000, Extended solver steps: 0, 
Total solver iterations: 20, Elapsed runtime seconds: 
0.19, Model Class: MILP, Total variables: 100, 
Nonlinear variables: 0, Integer variables: 1, Total 
constraints: 128, Nonlinear constraints: 0, Total 
nonzeros: 750, and Nonlinear nonzeros: 0. The table 
below presents the values of the optimal decision 
variables obtained from the model:  

Table 6: Decision Variable 

Variable Value Reduced Cost 
ME11 0.000000 2.000.000 

ME12 0.000000 2.500.000 
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ME13 0.000000 1.200.000 
ME14 0.000000 2.000.000 
ME15 1.000.000 0.000000 

ME21 0.000000 1.300.000 
ME22 1.000.000 0.000000 
ME23 0.000000 1.000.000 

ME24 0.000000 6.000.000 
ME25 0.000000 2.200.000 
ME31 0.000000 6.000.000 

ME32 0.000000 1.000.000 
ME33 1.000.000 0.000000 
ME34 0.000000 1.200.000 

ME35 0.000000 6.000.000 
ME41 0.000000 1.500.000 
ME42 0.000000 1.400.000 

ME43 0.000000 1.000.000 
ME44 1.000.000 0.000000 
ME45 0.000000 9.000.000 

ME51 0.000000 1.700.000 
ME52 0.000000 9.000.000 
ME53 0.000000 1.800.000 

ME54 0.000000 1.000.000 
ME55 1.000.000 0.000000 
PO11 0.000000 1.800.000 

PO12 0.000000 2.400.000 
PO13 0.000000 1.300.000 
PO14 0.000000 1.600.000 

PO15 1.000.000 0.000000 
PO21 0.000000 7.000.000 
PO22 0.000000 4.000.000 

PO23 1.000.000 0.000000 
PO24 0.000000 6.000.000 
PO25 0.000000 8.000.000 

PO31 0.000000 1.800.000 
PO32 0.000000 1.800.000 
PO33 0.000000 7.000.000 

PO34 0.000000 1.800.000 
PO35 1.000.000 0.000000 
PO41 0.000000 1.500.000 

PO42 0.000000 6.000.000 
PO43 0.000000 1.700.000 
PO44 0.000000 1.900.000 

PO45 1.000.000 0.000000 
PO51 0.000000 1.600.000 
PO52 0.000000 1.000.000 

PO53 0.000000 1.200.000 
PO54 0.000000 8.000.000 
PO55 1.000.000 0.000000 

FI11 0.000000 1.000.000 
FI12 1.000.000 0.000000 
FI13 0.000000 3.000.000 

FI14 0.000000 1.200.000 
FI15 0.000000 1.300.000 
FI21 0.000000 1.000.000 

FI22 1.000.000 0.000000 
FI23 0.000000 8.000.000 
FI24 0.000000 2.100.000 

FI25 0.000000 4.000.000 
FI31 1.000.000 0.000000 
FI32 0.000000 6.000.000 

FI33 0.000000 7.000.000 
FI34 0.000000 4.000.000 
FI35 0.000000 1.600.000 

FI41 0.000000 5.000.000 
FI42 0.000000 2.000.000 
FI43 0.000000 1.700.000 

FI44 0.000000 1.100.000 
FI45 1.000.000 0.000000 
FI51 0.000000 1.400.000 

FI52 1.000.000 0.000000 
FI53 0.000000 5.000.000 
FI54 0.000000 6.000.000 

FI55 0.000000 2.000.000 
BN11 0.000000 1.000.000 
BN12 0.000000 1.000.000 

BN13 0.000000 1.200.000 
BN14 0.000000 1.200.000 
BN15 1.000.000 0.000000 

BN21 0.000000 7.000.000 
BN22 0.000000 2.100.000 
BN23 1.000.000 0.000000 

BN24 0.000000 2.000.000 
BN25 0.000000 1.400.000 
BN31 0.000000 5.000.000 

BN32 0.000000 1.000.000 
BN33 0.000000 1.500.000 
BN34 1.000.000 0.000000 

BN35 0.000000 1.100.000 
BN41 0.000000 1.200.000 
BN42 1.000.000 0.000000 

BN43 0.000000 5.000.000 
BN44 0.000000 1.000.000 
BN45 0.000000 2.300.000 

BN51 0.000000 1.000.000 
BN52 0.000000 1.100.000 
BN53 0.000000 2.400.000 

BN54 1.000.000 0.000000 
BN55 0.000000 9.000.000 
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Figure 2:  Optimal Decision Variable Values 

Table 7: Slack Or Surplus 

Row Slack or Surplus Dual Price 
1 1.690.000 -1.000.000 
2 4.000.000 0.000000 

3 3.000.000 0.000000 
4 4.000.000 0.000000 
5 4.000.000 0.000000 

6 1.000.000 0.000000 
7 4.000.000 0.000000 
8 2.000.000 0.000000 

9 2.000.000 0.000000 
10 4.000.000 0.000000 
11 4.000.000 0.000000 

12 3.000.000 0.000000 
13 4.000.000 0.000000 
14 3.000.000 0.000000 

15 3.000.000 0.000000 
16 3.000.000 0.000000 
17 4.000.000 0.000000 

18 3.000.000 0.000000 
19 4.000.000 0.000000 
20 3.000.000 0.000000 

21 2.000.000 0.000000 
22 4.000.000 0.000000 
23 3.000.000 0.000000 

24 4.000.000 0.000000 
25 3.000.000 0.000000 
26 2.000.000 0.000000 

27 0.000000 -5.000.000 
28 0.000000 -5.000.000 
29 0.000000 -9.000.000 

30 0.000000 -1.400.000 
31 0.000000 -5.000.000 
32 0.000000 -6.000.000 

33 0.000000 -1.400.000 
34 0.000000 -6.000.000 

35 0.000000 -1.100.000 
36 0.000000 -9.000.000 
37 0.000000 -9.000.000 

38 0.000000 -6.000.000 
39 0.000000 -1.000.000 
40 0.000000 -1.300.000 

41 0.000000 -7.000.000 
42 0.000000 -1.000.000 
43 0.000000 -5.000.000 

44 0.000000 -1.500.000 
45 0.000000 -5.000.000 
46 0.000000 -5.000.000 

47 3.000.000 0.000000 
48 3.000.000 0.000000 
49 3.000.000 0.000000 

50 3.000.000 0.000000 
51 3.000.000 0.000000 
52 3.000.000 0.000000 

53 3.000.000 0.000000 
54 3.000.000 0.000000 
55 3.000.000 0.000000 

56 3.000.000 0.000000 
57 3.000.000 0.000000 
58 3.000.000 0.000000 

59 3.000.000 0.000000 
60 3.000.000 0.000000 
61 3.000.000 0.000000 

62 3.000.000 0.000000 
63 3.000.000 0.000000 
64 3.000.000 0.000000 

65 3.000.000 0.000000 
66 3.000.000 0.000000 
67 0.000000 0.000000 

68 0.000000 0.000000 
69 0.000000 0.000000 
70 0.000000 0.000000 

71 0.000000 0.000000 
72 0.000000 0.000000 
73 0.000000 0.000000 

74 0.000000 0.000000 
75 0.000000 0.000000 
76 0.000000 0.000000 

77 0.000000 0.000000 
78 0.000000 0.000000 
79 0.000000 0.000000 

80 0.000000 0.000000 
81 0.000000 0.000000 
82 0.000000 0.000000 

83 0.000000 0.000000 
84 0.000000 0.000000 
85 0.000000 0.000000 
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86 0.000000 0.000000 
87 7.000.000 0.000000 
88 7.000.000 0.000000 

89 7.000.000 0.000000 
90 7.000.000 0.000000 
91 7.000.000 0.000000 

92 7.000.000 0.000000 
93 7.000.000 0.000000 
94 7.000.000 0.000000 

95 7.000.000 0.000000 
96 7.000.000 0.000000 
97 7.000.000 0.000000 

98 7.000.000 0.000000 
99 7.000.000 0.000000 

100 7.000.000 0.000000 

101 7.000.000 0.000000 
102 7.000.000 0.000000 
103 7.000.000 0.000000 

104 7.000.000 0.000000 
105 7.000.000 0.000000 
106 7.000.000 0.000000 

107 4.000.000 0.000000 
108 4.000.000 0.000000 
109 4.000.000 0.000000 

110 4.000.000 0.000000 
111 4.000.000 0.000000 
112 4.000.000 0.000000 

113 4.000.000 0.000000 
114 4.000.000 0.000000 
115 4.000.000 0.000000 

116 4.000.000 0.000000 
117 4.000.000 0.000000 
118 4.000.000 0.000000 

119 4.000.000 0.000000 
120 4.000.000 0.000000 
121 4.000.000 0.000000 

122 4.000.000 0.000000 
123 4.000.000 0.000000 
124 4.000.000 0.000000 

125 4.000.000 0.000000 
126 4.000.000 0.000000 
127 2.500.000 0.000000 

128 2.500.000 0.000000 

 
Slack or surplus provides an indication of 

whether a constraint is active. If the slack or surplus 
is zero, the constraint is classified as active. 
Conversely, if the slack or surplus is non-zero, the 
constraint is deemed inactive. For instance, in row 
27, the constraint is identified as active with a dual 
price of -5.00. This value signifies that increasing the 

right-hand side of the constraint by one unit will 
result in a decrease of the objective function by 5.00. 
 

4. CONCLUSIONS 

From the findings of this study, the 
following conclusions can be drawn: 

1. The intelligent healthcare service 
optimization model serves to enhance the 
delivery of healthcare services based on the 
Smart Health concept. It focuses on 
providing high-quality care to patients as 
quickly as possible while reducing 
healthcare costs and addressing the issue of 
limited nursing staff resources through 
optimal resource utilization. 

2. This model is designed to minimize travel 
expenses, service costs, and other costs that 
arise from inaccuracies in patient service 
delivery. 

3. Active constraints with negative dual prices 
indicate that an increase of one unit in the 
right-hand side value of these constraints 
will lead to a decrease in the objective 
function value. 

4. The information obtained indicates that the 
solver type is either "B-and-B," "Global," 
or "Multi-start," depending on the specific 
solver utilized. The objective value is 
169.0000, with an objective bound of 
169.0000, indicating no infeasibilities 
(0.000000). The extended solver steps are 
0, with a total of 20 solver iterations and an 
elapsed runtime of 0.19 seconds. The 
model class is MILP, comprising a total of 
100 variables (with 0 nonlinear variables 
and 1 integer variable), 128 constraints 
(with 0 nonlinear constraints), 750 total 
nonzeros, and 0 nonlinear nonzeros. 
 
This study has provided a structured 

framework for optimizing public service delivery 
with constrained resources using linear 
programming. The primary argument centers around 
the concept that limited public resources such as 
budget, workforce, and infrastructure require 
meticulous allocation to maximize impact. By 
leveraging linear programming, this work 
demonstrates how public service organizations can 
make data-driven decisions to allocate these 
resources efficiently, ensuring that services reach a 
broader segment of the population without 
exceeding constraints. 
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Through mathematical modeling, we have 
shown that it is possible to optimize both the reach 
and quality of public services by focusing on a 
function objective, such as cost minimization or 
maximization of service access, and adhering to 
predefined constraints. The results support the 
notion that resource optimization models can 
significantly enhance service delivery outcomes 
while respecting the inherent limits in public service 
settings. 

 
However, several questions arise that 

extend beyond the scope of this study. For instance: 
1. Dynamic Changes in Demand and 

Resources: This work assumes a static 
model of demand and resource availability. 
How would fluctuations in demand or 
changes in resource allocations throughout 
the year affect the model's effectiveness? 

2. Quantifying Social Impact: While this 
study focuses on maximizing the number of 
service recipients or minimizing costs, it 
does not directly quantify social impact, 
such as improved quality of life or social 
equity. How can the model incorporate 
these broader social outcomes into the 
optimization function? 

3. Adaptation to Real-World Constraints: 
Linear programming assumes a high degree 
of data accuracy and stable conditions, 
which may not always hold in public 
service contexts. What methods could be 
used to adjust the model for real-world 
unpredictability, such as policy shifts, 
economic changes, or unforeseen crises? 
 

 
5. SUGGESTIONS 

The suggestions that can be given in this 
study are as follows: 

1. The resulting model is expected to be 
combined with a measurement model of the 
priority level of patient requests. 

2. The resulting model needs to be further 
developed by adding constraint variables 
and conducting simulations in various 
locations, so that it can maximize services 
at the service center. 

3. For the sustainability of this research, it 
needs to be implemented in online and real-
time applications, and it is recommended to 
combine resources from several hospitals 
so that services can be more optimal 
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